ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.244
Committed: Wed Apr 1 19:59:01 2015 UTC (9 years, 2 months ago) by root
Branch: MAIN
CVS Tags: rel-7_09
Changes since 1.243: +2 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 =head1 NAME
2    
3 root 1.194 AnyEvent::Handle - non-blocking I/O on streaming handles via AnyEvent
4 elmex 1.1
5     =head1 SYNOPSIS
6    
7     use AnyEvent;
8     use AnyEvent::Handle;
9    
10     my $cv = AnyEvent->condvar;
11    
12 root 1.149 my $hdl; $hdl = new AnyEvent::Handle
13     fh => \*STDIN,
14     on_error => sub {
15 root 1.151 my ($hdl, $fatal, $msg) = @_;
16 root 1.233 AE::log error => $msg;
17 root 1.151 $hdl->destroy;
18 root 1.149 $cv->send;
19 root 1.188 };
20 elmex 1.2
21 root 1.31 # send some request line
22 root 1.149 $hdl->push_write ("getinfo\015\012");
23 root 1.31
24     # read the response line
25 root 1.149 $hdl->push_read (line => sub {
26     my ($hdl, $line) = @_;
27 root 1.225 say "got line <$line>";
28 root 1.31 $cv->send;
29     });
30    
31     $cv->recv;
32 elmex 1.1
33     =head1 DESCRIPTION
34    
35 root 1.198 This is a helper module to make it easier to do event-based I/O on
36     stream-based filehandles (sockets, pipes, and other stream things).
37 root 1.8
38 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
39     AnyEvent::Handle examples.
40    
41 root 1.198 In the following, where the documentation refers to "bytes", it means
42     characters. As sysread and syswrite are used for all I/O, their
43 root 1.8 treatment of characters applies to this module as well.
44 elmex 1.1
45 root 1.159 At the very minimum, you should specify C<fh> or C<connect>, and the
46     C<on_error> callback.
47    
48 root 1.8 All callbacks will be invoked with the handle object as their first
49     argument.
50 elmex 1.1
51 root 1.176 =cut
52    
53     package AnyEvent::Handle;
54    
55     use Scalar::Util ();
56     use List::Util ();
57     use Carp ();
58 root 1.243 use Errno qw(EAGAIN EWOULDBLOCK EINTR);
59 root 1.176
60     use AnyEvent (); BEGIN { AnyEvent::common_sense }
61     use AnyEvent::Util qw(WSAEWOULDBLOCK);
62    
63 root 1.177 our $VERSION = $AnyEvent::VERSION;
64    
65 root 1.185 sub _load_func($) {
66     my $func = $_[0];
67    
68     unless (defined &$func) {
69     my $pkg = $func;
70     do {
71     $pkg =~ s/::[^:]+$//
72     or return;
73     eval "require $pkg";
74     } until defined &$func;
75     }
76    
77     \&$func
78     }
79    
80 root 1.203 sub MAX_READ_SIZE() { 131072 }
81    
82 elmex 1.1 =head1 METHODS
83    
84     =over 4
85    
86 root 1.191 =item $handle = B<new> AnyEvent::Handle fh => $filehandle, key => value...
87 elmex 1.1
88 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
89 elmex 1.1
90     =over 4
91    
92 root 1.159 =item fh => $filehandle [C<fh> or C<connect> MANDATORY]
93 root 1.158
94 elmex 1.1 The filehandle this L<AnyEvent::Handle> object will operate on.
95 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
96     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
97     that mode.
98 root 1.8
99 root 1.159 =item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
100    
101     Try to connect to the specified host and service (port), using
102     C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
103     default C<peername>.
104    
105     You have to specify either this parameter, or C<fh>, above.
106    
107 root 1.160 It is possible to push requests on the read and write queues, and modify
108     properties of the stream, even while AnyEvent::Handle is connecting.
109    
110 root 1.159 When this parameter is specified, then the C<on_prepare>,
111     C<on_connect_error> and C<on_connect> callbacks will be called under the
112     appropriate circumstances:
113    
114     =over 4
115    
116     =item on_prepare => $cb->($handle)
117    
118     This (rarely used) callback is called before a new connection is
119 root 1.210 attempted, but after the file handle has been created (you can access that
120     file handle via C<< $handle->{fh} >>). It could be used to prepare the
121     file handle with parameters required for the actual connect (as opposed to
122     settings that can be changed when the connection is already established).
123 root 1.159
124 root 1.161 The return value of this callback should be the connect timeout value in
125 root 1.198 seconds (or C<0>, or C<undef>, or the empty list, to indicate that the
126     default timeout is to be used).
127 root 1.161
128 root 1.159 =item on_connect => $cb->($handle, $host, $port, $retry->())
129    
130     This callback is called when a connection has been successfully established.
131    
132 root 1.198 The peer's numeric host and port (the socket peername) are passed as
133 root 1.228 parameters, together with a retry callback. At the time it is called the
134     read and write queues, EOF status, TLS status and similar properties of
135     the handle will have been reset.
136    
137     If, for some reason, the handle is not acceptable, calling C<$retry> will
138     continue with the next connection target (in case of multi-homed hosts or
139     SRV records there can be multiple connection endpoints). The C<$retry>
140     callback can be invoked after the connect callback returns, i.e. one can
141     start a handshake and then decide to retry with the next host if the
142     handshake fails.
143 root 1.159
144 root 1.198 In most cases, you should ignore the C<$retry> parameter.
145 root 1.158
146 root 1.159 =item on_connect_error => $cb->($handle, $message)
147 root 1.10
148 root 1.186 This callback is called when the connection could not be
149 root 1.159 established. C<$!> will contain the relevant error code, and C<$message> a
150     message describing it (usually the same as C<"$!">).
151 root 1.8
152 root 1.159 If this callback isn't specified, then C<on_error> will be called with a
153     fatal error instead.
154 root 1.82
155 root 1.159 =back
156 root 1.80
157 root 1.133 =item on_error => $cb->($handle, $fatal, $message)
158 root 1.10
159 root 1.52 This is the error callback, which is called when, well, some error
160     occured, such as not being able to resolve the hostname, failure to
161 root 1.198 connect, or a read error.
162 root 1.52
163     Some errors are fatal (which is indicated by C<$fatal> being true). On
164 root 1.149 fatal errors the handle object will be destroyed (by a call to C<< ->
165     destroy >>) after invoking the error callback (which means you are free to
166     examine the handle object). Examples of fatal errors are an EOF condition
167 root 1.204 with active (but unsatisfiable) read watchers (C<EPIPE>) or I/O errors. In
168 root 1.198 cases where the other side can close the connection at will, it is
169 root 1.159 often easiest to not report C<EPIPE> errors in this callback.
170 root 1.82
171 root 1.133 AnyEvent::Handle tries to find an appropriate error code for you to check
172 root 1.233 against, but in some cases (TLS errors), this does not work well.
173    
174     If you report the error to the user, it is recommended to always output
175     the C<$message> argument in human-readable error messages (you don't need
176     to report C<"$!"> if you report C<$message>).
177    
178     If you want to react programmatically to the error, then looking at C<$!>
179     and comparing it against some of the documented C<Errno> values is usually
180     better than looking at the C<$message>.
181 root 1.133
182 root 1.198 Non-fatal errors can be retried by returning, but it is recommended
183 root 1.82 to simply ignore this parameter and instead abondon the handle object
184     when this callback is invoked. Examples of non-fatal errors are timeouts
185     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
186 root 1.8
187 root 1.198 On entry to the callback, the value of C<$!> contains the operating
188     system error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
189 root 1.133 C<EPROTO>).
190 root 1.8
191 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
192 root 1.198 you will not be notified of errors otherwise. The default just calls
193 root 1.52 C<croak>.
194 root 1.8
195 root 1.40 =item on_read => $cb->($handle)
196 root 1.8
197     This sets the default read callback, which is called when data arrives
198 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
199     callback will only be called when at least one octet of data is in the
200     read buffer).
201 root 1.8
202     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
203 root 1.139 method or access the C<< $handle->{rbuf} >> member directly. Note that you
204 root 1.117 must not enlarge or modify the read buffer, you can only remove data at
205     the beginning from it.
206 root 1.8
207 root 1.197 You can also call C<< ->push_read (...) >> or any other function that
208     modifies the read queue. Or do both. Or ...
209    
210 root 1.198 When an EOF condition is detected, AnyEvent::Handle will first try to
211 root 1.8 feed all the remaining data to the queued callbacks and C<on_read> before
212     calling the C<on_eof> callback. If no progress can be made, then a fatal
213     error will be raised (with C<$!> set to C<EPIPE>).
214 elmex 1.1
215 root 1.150 Note that, unlike requests in the read queue, an C<on_read> callback
216     doesn't mean you I<require> some data: if there is an EOF and there
217     are outstanding read requests then an error will be flagged. With an
218     C<on_read> callback, the C<on_eof> callback will be invoked.
219    
220 root 1.159 =item on_eof => $cb->($handle)
221    
222     Set the callback to be called when an end-of-file condition is detected,
223     i.e. in the case of a socket, when the other side has closed the
224     connection cleanly, and there are no outstanding read requests in the
225     queue (if there are read requests, then an EOF counts as an unexpected
226     connection close and will be flagged as an error).
227    
228     For sockets, this just means that the other side has stopped sending data,
229     you can still try to write data, and, in fact, one can return from the EOF
230     callback and continue writing data, as only the read part has been shut
231     down.
232    
233     If an EOF condition has been detected but no C<on_eof> callback has been
234     set, then a fatal error will be raised with C<$!> set to <0>.
235    
236 root 1.40 =item on_drain => $cb->($handle)
237 elmex 1.1
238 root 1.229 This sets the callback that is called once when the write buffer becomes
239     empty (and immediately when the handle object is created).
240 elmex 1.1
241 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
242 elmex 1.2
243 root 1.69 This callback is useful when you don't want to put all of your write data
244     into the queue at once, for example, when you want to write the contents
245     of some file to the socket you might not want to read the whole file into
246     memory and push it into the queue, but instead only read more data from
247     the file when the write queue becomes empty.
248    
249 root 1.43 =item timeout => $fractional_seconds
250    
251 root 1.176 =item rtimeout => $fractional_seconds
252    
253     =item wtimeout => $fractional_seconds
254    
255     If non-zero, then these enables an "inactivity" timeout: whenever this
256     many seconds pass without a successful read or write on the underlying
257     file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
258     will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
259     error will be raised).
260    
261 root 1.218 There are three variants of the timeouts that work independently of each
262     other, for both read and write (triggered when nothing was read I<OR>
263     written), just read (triggered when nothing was read), and just write:
264 root 1.176 C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
265     C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
266     C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
267 root 1.43
268 root 1.218 Note that timeout processing is active even when you do not have any
269     outstanding read or write requests: If you plan to keep the connection
270     idle then you should disable the timeout temporarily or ignore the
271     timeout in the corresponding C<on_timeout> callback, in which case
272     AnyEvent::Handle will simply restart the timeout.
273 root 1.43
274 root 1.218 Zero (the default) disables the corresponding timeout.
275 root 1.43
276     =item on_timeout => $cb->($handle)
277    
278 root 1.218 =item on_rtimeout => $cb->($handle)
279    
280     =item on_wtimeout => $cb->($handle)
281    
282 root 1.43 Called whenever the inactivity timeout passes. If you return from this
283     callback, then the timeout will be reset as if some activity had happened,
284     so this condition is not fatal in any way.
285    
286 root 1.8 =item rbuf_max => <bytes>
287 elmex 1.2
288 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
289     when the read buffer ever (strictly) exceeds this size. This is useful to
290 root 1.88 avoid some forms of denial-of-service attacks.
291 elmex 1.2
292 root 1.8 For example, a server accepting connections from untrusted sources should
293     be configured to accept only so-and-so much data that it cannot act on
294     (for example, when expecting a line, an attacker could send an unlimited
295     amount of data without a callback ever being called as long as the line
296     isn't finished).
297 elmex 1.2
298 root 1.209 =item wbuf_max => <bytes>
299    
300     If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
301     when the write buffer ever (strictly) exceeds this size. This is useful to
302     avoid some forms of denial-of-service attacks.
303    
304     Although the units of this parameter is bytes, this is the I<raw> number
305     of bytes not yet accepted by the kernel. This can make a difference when
306     you e.g. use TLS, as TLS typically makes your write data larger (but it
307     can also make it smaller due to compression).
308    
309     As an example of when this limit is useful, take a chat server that sends
310     chat messages to a client. If the client does not read those in a timely
311     manner then the send buffer in the server would grow unbounded.
312    
313 root 1.70 =item autocork => <boolean>
314    
315 root 1.198 When disabled (the default), C<push_write> will try to immediately
316     write the data to the handle if possible. This avoids having to register
317 root 1.88 a write watcher and wait for the next event loop iteration, but can
318     be inefficient if you write multiple small chunks (on the wire, this
319     disadvantage is usually avoided by your kernel's nagle algorithm, see
320     C<no_delay>, but this option can save costly syscalls).
321 root 1.70
322 root 1.198 When enabled, writes will always be queued till the next event loop
323 root 1.70 iteration. This is efficient when you do many small writes per iteration,
324 root 1.88 but less efficient when you do a single write only per iteration (or when
325     the write buffer often is full). It also increases write latency.
326 root 1.70
327     =item no_delay => <boolean>
328    
329     When doing small writes on sockets, your operating system kernel might
330     wait a bit for more data before actually sending it out. This is called
331     the Nagle algorithm, and usually it is beneficial.
332    
333 root 1.88 In some situations you want as low a delay as possible, which can be
334     accomplishd by setting this option to a true value.
335 root 1.70
336 root 1.198 The default is your operating system's default behaviour (most likely
337     enabled). This option explicitly enables or disables it, if possible.
338 root 1.70
339 root 1.182 =item keepalive => <boolean>
340    
341     Enables (default disable) the SO_KEEPALIVE option on the stream socket:
342     normally, TCP connections have no time-out once established, so TCP
343 root 1.186 connections, once established, can stay alive forever even when the other
344 root 1.182 side has long gone. TCP keepalives are a cheap way to take down long-lived
345 root 1.198 TCP connections when the other side becomes unreachable. While the default
346 root 1.182 is OS-dependent, TCP keepalives usually kick in after around two hours,
347     and, if the other side doesn't reply, take down the TCP connection some 10
348     to 15 minutes later.
349    
350     It is harmless to specify this option for file handles that do not support
351     keepalives, and enabling it on connections that are potentially long-lived
352     is usually a good idea.
353    
354     =item oobinline => <boolean>
355    
356     BSD majorly fucked up the implementation of TCP urgent data. The result
357     is that almost no OS implements TCP according to the specs, and every OS
358     implements it slightly differently.
359    
360 root 1.183 If you want to handle TCP urgent data, then setting this flag (the default
361     is enabled) gives you the most portable way of getting urgent data, by
362     putting it into the stream.
363    
364     Since BSD emulation of OOB data on top of TCP's urgent data can have
365     security implications, AnyEvent::Handle sets this flag automatically
366 root 1.184 unless explicitly specified. Note that setting this flag after
367     establishing a connection I<may> be a bit too late (data loss could
368     already have occured on BSD systems), but at least it will protect you
369     from most attacks.
370 root 1.182
371 root 1.8 =item read_size => <bytes>
372 elmex 1.2
373 root 1.221 The initial read block size, the number of bytes this module will try
374     to read during each loop iteration. Each handle object will consume
375     at least this amount of memory for the read buffer as well, so when
376     handling many connections watch out for memory requirements). See also
377     C<max_read_size>. Default: C<2048>.
378 root 1.203
379     =item max_read_size => <bytes>
380    
381     The maximum read buffer size used by the dynamic adjustment
382     algorithm: Each time AnyEvent::Handle can read C<read_size> bytes in
383     one go it will double C<read_size> up to the maximum given by this
384     option. Default: C<131072> or C<read_size>, whichever is higher.
385 root 1.8
386     =item low_water_mark => <bytes>
387    
388 root 1.198 Sets the number of bytes (default: C<0>) that make up an "empty" write
389     buffer: If the buffer reaches this size or gets even samller it is
390 root 1.8 considered empty.
391 elmex 1.2
392 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
393     the write buffer before it is fully drained, but this is a rare case, as
394     the operating system kernel usually buffers data as well, so the default
395     is good in almost all cases.
396    
397 root 1.62 =item linger => <seconds>
398    
399 root 1.198 If this is non-zero (default: C<3600>), the destructor of the
400 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
401     write data and will install a watcher that will write this data to the
402     socket. No errors will be reported (this mostly matches how the operating
403     system treats outstanding data at socket close time).
404 root 1.62
405 root 1.88 This will not work for partial TLS data that could not be encoded
406 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
407     help.
408 root 1.62
409 root 1.133 =item peername => $string
410    
411 root 1.134 A string used to identify the remote site - usually the DNS hostname
412     (I<not> IDN!) used to create the connection, rarely the IP address.
413 root 1.131
414 root 1.133 Apart from being useful in error messages, this string is also used in TLS
415 root 1.144 peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
416 root 1.198 verification will be skipped when C<peername> is not specified or is
417 root 1.144 C<undef>.
418 root 1.131
419 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
420    
421 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
422 root 1.186 AnyEvent will start a TLS handshake as soon as the connection has been
423 root 1.88 established and will transparently encrypt/decrypt data afterwards.
424 root 1.19
425 root 1.133 All TLS protocol errors will be signalled as C<EPROTO>, with an
426     appropriate error message.
427    
428 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
429 root 1.88 automatically when you try to create a TLS handle): this module doesn't
430     have a dependency on that module, so if your module requires it, you have
431 root 1.234 to add the dependency yourself. If Net::SSLeay cannot be loaded or is too
432     old, you get an C<EPROTO> error.
433 root 1.26
434 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
435     C<accept>, and for the TLS client side of a connection, use C<connect>
436     mode.
437 root 1.19
438     You can also provide your own TLS connection object, but you have
439     to make sure that you call either C<Net::SSLeay::set_connect_state>
440     or C<Net::SSLeay::set_accept_state> on it before you pass it to
441 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
442     object.
443    
444     At some future point, AnyEvent::Handle might switch to another TLS
445     implementation, then the option to use your own session object will go
446     away.
447 root 1.19
448 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
449     passing in the wrong integer will lead to certain crash. This most often
450     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
451     segmentation fault.
452    
453 root 1.198 Use the C<< ->starttls >> method if you need to start TLS negotiation later.
454 root 1.26
455 root 1.131 =item tls_ctx => $anyevent_tls
456 root 1.19
457 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
458 root 1.207 (unless a connection object was specified directly). If this
459     parameter is missing (or C<undef>), then AnyEvent::Handle will use
460     C<AnyEvent::Handle::TLS_CTX>.
461 root 1.19
462 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
463     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
464     new TLS context object.
465    
466 root 1.143 =item on_starttls => $cb->($handle, $success[, $error_message])
467 root 1.142
468     This callback will be invoked when the TLS/SSL handshake has finished. If
469     C<$success> is true, then the TLS handshake succeeded, otherwise it failed
470     (C<on_stoptls> will not be called in this case).
471    
472     The session in C<< $handle->{tls} >> can still be examined in this
473     callback, even when the handshake was not successful.
474    
475 root 1.143 TLS handshake failures will not cause C<on_error> to be invoked when this
476     callback is in effect, instead, the error message will be passed to C<on_starttls>.
477    
478     Without this callback, handshake failures lead to C<on_error> being
479 root 1.198 called as usual.
480 root 1.143
481 root 1.198 Note that you cannot just call C<starttls> again in this callback. If you
482 root 1.143 need to do that, start an zero-second timer instead whose callback can
483     then call C<< ->starttls >> again.
484    
485 root 1.142 =item on_stoptls => $cb->($handle)
486    
487     When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
488     set, then it will be invoked after freeing the TLS session. If it is not,
489     then a TLS shutdown condition will be treated like a normal EOF condition
490     on the handle.
491    
492     The session in C<< $handle->{tls} >> can still be examined in this
493     callback.
494    
495     This callback will only be called on TLS shutdowns, not when the
496     underlying handle signals EOF.
497    
498 root 1.240 =item json => L<JSON>, L<JSON::PP> or L<JSON::XS> object
499 root 1.40
500     This is the json coder object used by the C<json> read and write types.
501    
502 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
503 root 1.241 suitable one (on demand), which will write and expect UTF-8 encoded
504     JSON texts (either using L<JSON::XS> or L<JSON>). The written texts are
505     guaranteed not to contain any newline character.
506    
507     For security reasons, this encoder will likely I<not> handle numbers and
508     strings, only arrays and objects/hashes. The reason is that originally
509     JSON was self-delimited, but Dougles Crockford thought it was a splendid
510     idea to redefine JSON incompatibly, so this is no longer true.
511    
512     For protocols that used back-to-back JSON texts, this might lead to
513     run-ins, where two or more JSON texts will be interpreted as one JSON
514     text.
515    
516     For this reason, if the default encoder uses L<JSON::XS>, it will default
517     to not allowing anything but arrays and objects/hashes, at least for the
518     forseeable future (it will change at some point). This might or might not
519     be true for the L<JSON> module, so this might cause a security issue.
520    
521     If you depend on either behaviour, you should create your own json object
522     and pass it in explicitly.
523 root 1.40
524 root 1.238 =item cbor => L<CBOR::XS> object
525    
526     This is the cbor coder object used by the C<cbor> read and write types.
527    
528     If you don't supply it, then AnyEvent::Handle will create and use a
529     suitable one (on demand), which will write CBOR without using extensions,
530 root 1.241 if possible.
531 root 1.238
532     Note that you are responsible to depend on the L<CBOR::XS> module if you
533     want to use this functionality, as AnyEvent does not have a dependency on
534     it itself.
535 root 1.40
536 elmex 1.1 =back
537    
538     =cut
539    
540     sub new {
541 root 1.8 my $class = shift;
542     my $self = bless { @_ }, $class;
543    
544 root 1.159 if ($self->{fh}) {
545     $self->_start;
546     return unless $self->{fh}; # could be gone by now
547    
548     } elsif ($self->{connect}) {
549     require AnyEvent::Socket;
550    
551     $self->{peername} = $self->{connect}[0]
552     unless exists $self->{peername};
553    
554     $self->{_skip_drain_rbuf} = 1;
555    
556     {
557     Scalar::Util::weaken (my $self = $self);
558    
559     $self->{_connect} =
560     AnyEvent::Socket::tcp_connect (
561     $self->{connect}[0],
562     $self->{connect}[1],
563     sub {
564     my ($fh, $host, $port, $retry) = @_;
565    
566 root 1.206 delete $self->{_connect}; # no longer needed
567 root 1.205
568 root 1.159 if ($fh) {
569     $self->{fh} = $fh;
570    
571     delete $self->{_skip_drain_rbuf};
572     $self->_start;
573    
574     $self->{on_connect}
575     and $self->{on_connect}($self, $host, $port, sub {
576 root 1.178 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
577 root 1.159 $self->{_skip_drain_rbuf} = 1;
578     &$retry;
579     });
580    
581     } else {
582     if ($self->{on_connect_error}) {
583     $self->{on_connect_error}($self, "$!");
584 root 1.217 $self->destroy if $self;
585 root 1.159 } else {
586 root 1.161 $self->_error ($!, 1);
587 root 1.159 }
588     }
589     },
590     sub {
591     local $self->{fh} = $_[0];
592    
593 root 1.161 $self->{on_prepare}
594 root 1.210 ? $self->{on_prepare}->($self)
595 root 1.161 : ()
596 root 1.159 }
597     );
598     }
599    
600     } else {
601     Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
602     }
603    
604     $self
605     }
606    
607     sub _start {
608     my ($self) = @_;
609 root 1.8
610 root 1.194 # too many clueless people try to use udp and similar sockets
611     # with AnyEvent::Handle, do them a favour.
612 root 1.195 my $type = getsockopt $self->{fh}, Socket::SOL_SOCKET (), Socket::SO_TYPE ();
613     Carp::croak "AnyEvent::Handle: only stream sockets supported, anything else will NOT work!"
614 root 1.196 if Socket::SOCK_STREAM () != (unpack "I", $type) && defined $type;
615 root 1.194
616 root 1.8 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
617 elmex 1.1
618 root 1.176 $self->{_activity} =
619     $self->{_ractivity} =
620     $self->{_wactivity} = AE::now;
621    
622 root 1.203 $self->{read_size} ||= 2048;
623     $self->{max_read_size} = $self->{read_size}
624     if $self->{read_size} > ($self->{max_read_size} || MAX_READ_SIZE);
625    
626 root 1.182 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
627     $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
628     $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
629    
630 root 1.183 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
631     $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
632    
633     $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
634 root 1.131
635 root 1.182 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
636 root 1.94 if $self->{tls};
637 root 1.19
638 root 1.199 $self->on_drain (delete $self->{on_drain} ) if $self->{on_drain};
639 root 1.10
640 root 1.66 $self->start_read
641 root 1.159 if $self->{on_read} || @{ $self->{_queue} };
642 root 1.160
643     $self->_drain_wbuf;
644 root 1.8 }
645 elmex 1.2
646 root 1.52 sub _error {
647 root 1.133 my ($self, $errno, $fatal, $message) = @_;
648 root 1.8
649 root 1.52 $! = $errno;
650 root 1.133 $message ||= "$!";
651 root 1.37
652 root 1.52 if ($self->{on_error}) {
653 root 1.133 $self->{on_error}($self, $fatal, $message);
654 root 1.151 $self->destroy if $fatal;
655 root 1.187 } elsif ($self->{fh} || $self->{connect}) {
656 root 1.149 $self->destroy;
657 root 1.133 Carp::croak "AnyEvent::Handle uncaught error: $message";
658 root 1.52 }
659 elmex 1.1 }
660    
661 root 1.8 =item $fh = $handle->fh
662 elmex 1.1
663 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
664 elmex 1.1
665     =cut
666    
667 root 1.38 sub fh { $_[0]{fh} }
668 elmex 1.1
669 root 1.8 =item $handle->on_error ($cb)
670 elmex 1.1
671 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
672 elmex 1.1
673 root 1.8 =cut
674    
675     sub on_error {
676     $_[0]{on_error} = $_[1];
677     }
678    
679     =item $handle->on_eof ($cb)
680    
681     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
682 elmex 1.1
683     =cut
684    
685 root 1.8 sub on_eof {
686     $_[0]{on_eof} = $_[1];
687     }
688    
689 root 1.43 =item $handle->on_timeout ($cb)
690    
691 root 1.176 =item $handle->on_rtimeout ($cb)
692    
693     =item $handle->on_wtimeout ($cb)
694    
695     Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
696     callback, or disables the callback (but not the timeout) if C<$cb> =
697     C<undef>. See the C<timeout> constructor argument and method.
698 root 1.43
699     =cut
700    
701 root 1.176 # see below
702 root 1.43
703 root 1.70 =item $handle->autocork ($boolean)
704    
705     Enables or disables the current autocork behaviour (see C<autocork>
706 root 1.105 constructor argument). Changes will only take effect on the next write.
707 root 1.70
708     =cut
709    
710 root 1.105 sub autocork {
711     $_[0]{autocork} = $_[1];
712     }
713    
714 root 1.70 =item $handle->no_delay ($boolean)
715    
716     Enables or disables the C<no_delay> setting (see constructor argument of
717     the same name for details).
718    
719     =cut
720    
721     sub no_delay {
722     $_[0]{no_delay} = $_[1];
723    
724 root 1.200 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
725     if $_[0]{fh};
726 root 1.182 }
727    
728     =item $handle->keepalive ($boolean)
729    
730     Enables or disables the C<keepalive> setting (see constructor argument of
731     the same name for details).
732    
733     =cut
734    
735     sub keepalive {
736     $_[0]{keepalive} = $_[1];
737    
738     eval {
739     local $SIG{__DIE__};
740     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
741     if $_[0]{fh};
742     };
743     }
744    
745     =item $handle->oobinline ($boolean)
746    
747     Enables or disables the C<oobinline> setting (see constructor argument of
748     the same name for details).
749    
750     =cut
751    
752     sub oobinline {
753     $_[0]{oobinline} = $_[1];
754    
755     eval {
756     local $SIG{__DIE__};
757     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
758     if $_[0]{fh};
759     };
760     }
761    
762     =item $handle->keepalive ($boolean)
763    
764     Enables or disables the C<keepalive> setting (see constructor argument of
765     the same name for details).
766    
767     =cut
768    
769     sub keepalive {
770     $_[0]{keepalive} = $_[1];
771    
772     eval {
773     local $SIG{__DIE__};
774     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
775 root 1.159 if $_[0]{fh};
776 root 1.70 };
777     }
778    
779 root 1.142 =item $handle->on_starttls ($cb)
780    
781     Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
782    
783     =cut
784    
785     sub on_starttls {
786     $_[0]{on_starttls} = $_[1];
787     }
788    
789     =item $handle->on_stoptls ($cb)
790    
791     Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
792    
793     =cut
794    
795 root 1.189 sub on_stoptls {
796 root 1.142 $_[0]{on_stoptls} = $_[1];
797     }
798    
799 root 1.168 =item $handle->rbuf_max ($max_octets)
800    
801     Configures the C<rbuf_max> setting (C<undef> disables it).
802    
803 root 1.209 =item $handle->wbuf_max ($max_octets)
804    
805     Configures the C<wbuf_max> setting (C<undef> disables it).
806    
807 root 1.168 =cut
808    
809     sub rbuf_max {
810     $_[0]{rbuf_max} = $_[1];
811     }
812    
813 root 1.215 sub wbuf_max {
814 root 1.209 $_[0]{wbuf_max} = $_[1];
815     }
816    
817 root 1.43 #############################################################################
818    
819     =item $handle->timeout ($seconds)
820    
821 root 1.176 =item $handle->rtimeout ($seconds)
822    
823     =item $handle->wtimeout ($seconds)
824    
825 root 1.43 Configures (or disables) the inactivity timeout.
826    
827 root 1.218 The timeout will be checked instantly, so this method might destroy the
828     handle before it returns.
829    
830 root 1.176 =item $handle->timeout_reset
831    
832     =item $handle->rtimeout_reset
833    
834     =item $handle->wtimeout_reset
835    
836     Reset the activity timeout, as if data was received or sent.
837    
838     These methods are cheap to call.
839    
840 root 1.43 =cut
841    
842 root 1.176 for my $dir ("", "r", "w") {
843     my $timeout = "${dir}timeout";
844     my $tw = "_${dir}tw";
845     my $on_timeout = "on_${dir}timeout";
846     my $activity = "_${dir}activity";
847     my $cb;
848    
849     *$on_timeout = sub {
850     $_[0]{$on_timeout} = $_[1];
851     };
852    
853     *$timeout = sub {
854     my ($self, $new_value) = @_;
855 root 1.43
856 root 1.201 $new_value >= 0
857     or Carp::croak "AnyEvent::Handle->$timeout called with negative timeout ($new_value), caught";
858    
859 root 1.176 $self->{$timeout} = $new_value;
860     delete $self->{$tw}; &$cb;
861     };
862 root 1.43
863 root 1.176 *{"${dir}timeout_reset"} = sub {
864     $_[0]{$activity} = AE::now;
865     };
866 root 1.43
867 root 1.176 # main workhorse:
868     # reset the timeout watcher, as neccessary
869     # also check for time-outs
870     $cb = sub {
871     my ($self) = @_;
872    
873     if ($self->{$timeout} && $self->{fh}) {
874     my $NOW = AE::now;
875    
876     # when would the timeout trigger?
877     my $after = $self->{$activity} + $self->{$timeout} - $NOW;
878    
879     # now or in the past already?
880     if ($after <= 0) {
881     $self->{$activity} = $NOW;
882 root 1.43
883 root 1.176 if ($self->{$on_timeout}) {
884     $self->{$on_timeout}($self);
885     } else {
886     $self->_error (Errno::ETIMEDOUT);
887     }
888 root 1.43
889 root 1.176 # callback could have changed timeout value, optimise
890     return unless $self->{$timeout};
891 root 1.43
892 root 1.176 # calculate new after
893     $after = $self->{$timeout};
894 root 1.43 }
895    
896 root 1.176 Scalar::Util::weaken $self;
897     return unless $self; # ->error could have destroyed $self
898 root 1.43
899 root 1.176 $self->{$tw} ||= AE::timer $after, 0, sub {
900     delete $self->{$tw};
901     $cb->($self);
902     };
903     } else {
904     delete $self->{$tw};
905 root 1.43 }
906     }
907     }
908    
909 root 1.9 #############################################################################
910    
911     =back
912    
913     =head2 WRITE QUEUE
914    
915     AnyEvent::Handle manages two queues per handle, one for writing and one
916     for reading.
917    
918     The write queue is very simple: you can add data to its end, and
919     AnyEvent::Handle will automatically try to get rid of it for you.
920    
921 elmex 1.20 When data could be written and the write buffer is shorter then the low
922 root 1.229 water mark, the C<on_drain> callback will be invoked once.
923 root 1.9
924     =over 4
925    
926 root 1.8 =item $handle->on_drain ($cb)
927    
928     Sets the C<on_drain> callback or clears it (see the description of
929     C<on_drain> in the constructor).
930    
931 root 1.193 This method may invoke callbacks (and therefore the handle might be
932     destroyed after it returns).
933    
934 root 1.8 =cut
935    
936     sub on_drain {
937 elmex 1.1 my ($self, $cb) = @_;
938    
939 root 1.8 $self->{on_drain} = $cb;
940    
941     $cb->($self)
942 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
943 root 1.8 }
944    
945     =item $handle->push_write ($data)
946    
947 root 1.209 Queues the given scalar to be written. You can push as much data as
948     you want (only limited by the available memory and C<wbuf_max>), as
949     C<AnyEvent::Handle> buffers it independently of the kernel.
950 root 1.8
951 root 1.193 This method may invoke callbacks (and therefore the handle might be
952     destroyed after it returns).
953    
954 root 1.8 =cut
955    
956 root 1.17 sub _drain_wbuf {
957     my ($self) = @_;
958 root 1.8
959 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
960 root 1.35
961 root 1.8 Scalar::Util::weaken $self;
962 root 1.35
963 root 1.8 my $cb = sub {
964     my $len = syswrite $self->{fh}, $self->{wbuf};
965    
966 root 1.146 if (defined $len) {
967 root 1.8 substr $self->{wbuf}, 0, $len, "";
968    
969 root 1.176 $self->{_activity} = $self->{_wactivity} = AE::now;
970 root 1.43
971 root 1.8 $self->{on_drain}($self)
972 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
973 root 1.8 && $self->{on_drain};
974    
975 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
976 root 1.243 } elsif ($! != EAGAIN && $! != EINTR && $! != EWOULDBLOCK && $! != WSAEWOULDBLOCK) {
977 root 1.52 $self->_error ($!, 1);
978 elmex 1.1 }
979 root 1.8 };
980    
981 root 1.35 # try to write data immediately
982 root 1.70 $cb->() unless $self->{autocork};
983 root 1.8
984 root 1.35 # if still data left in wbuf, we need to poll
985 root 1.175 $self->{_ww} = AE::io $self->{fh}, 1, $cb
986 root 1.35 if length $self->{wbuf};
987 root 1.209
988     if (
989     defined $self->{wbuf_max}
990     && $self->{wbuf_max} < length $self->{wbuf}
991     ) {
992     $self->_error (Errno::ENOSPC, 1), return;
993     }
994 root 1.8 };
995     }
996    
997 root 1.30 our %WH;
998    
999 root 1.185 # deprecated
1000 root 1.30 sub register_write_type($$) {
1001     $WH{$_[0]} = $_[1];
1002     }
1003    
1004 root 1.17 sub push_write {
1005     my $self = shift;
1006    
1007 root 1.29 if (@_ > 1) {
1008     my $type = shift;
1009    
1010 root 1.185 @_ = ($WH{$type} ||= _load_func "$type\::anyevent_write_type"
1011     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_write")
1012 root 1.29 ->($self, @_);
1013     }
1014    
1015 root 1.190 # we downgrade here to avoid hard-to-track-down bugs,
1016     # and diagnose the problem earlier and better.
1017    
1018 root 1.93 if ($self->{tls}) {
1019 root 1.190 utf8::downgrade $self->{_tls_wbuf} .= $_[0];
1020 root 1.160 &_dotls ($self) if $self->{fh};
1021 root 1.17 } else {
1022 root 1.190 utf8::downgrade $self->{wbuf} .= $_[0];
1023 root 1.159 $self->_drain_wbuf if $self->{fh};
1024 root 1.17 }
1025     }
1026    
1027 root 1.29 =item $handle->push_write (type => @args)
1028    
1029 root 1.185 Instead of formatting your data yourself, you can also let this module
1030     do the job by specifying a type and type-specific arguments. You
1031     can also specify the (fully qualified) name of a package, in which
1032     case AnyEvent tries to load the package and then expects to find the
1033 root 1.197 C<anyevent_write_type> function inside (see "custom write types", below).
1034 root 1.29
1035 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1036     drop by and tell us):
1037 root 1.29
1038     =over 4
1039    
1040     =item netstring => $string
1041    
1042     Formats the given value as netstring
1043     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
1044    
1045     =cut
1046    
1047     register_write_type netstring => sub {
1048     my ($self, $string) = @_;
1049    
1050 root 1.96 (length $string) . ":$string,"
1051 root 1.29 };
1052    
1053 root 1.61 =item packstring => $format, $data
1054    
1055     An octet string prefixed with an encoded length. The encoding C<$format>
1056     uses the same format as a Perl C<pack> format, but must specify a single
1057     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1058     optional C<!>, C<< < >> or C<< > >> modifier).
1059    
1060     =cut
1061    
1062     register_write_type packstring => sub {
1063     my ($self, $format, $string) = @_;
1064    
1065 root 1.65 pack "$format/a*", $string
1066 root 1.61 };
1067    
1068 root 1.39 =item json => $array_or_hashref
1069    
1070 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
1071     provide your own JSON object, this means it will be encoded to JSON text
1072     in UTF-8.
1073    
1074 root 1.241 The default encoder might or might not handle every type of JSON value -
1075     it might be limited to arrays and objects for security reasons. See the
1076     C<json> constructor attribute for more details.
1077    
1078     JSON objects (and arrays) are self-delimiting, so if you only use arrays
1079     and hashes, you can write JSON at one end of a handle and read them at the
1080     other end without using any additional framing.
1081    
1082     The JSON text generated by the default encoder is guaranteed not to
1083     contain any newlines: While this module doesn't need delimiters after or
1084     between JSON texts to be able to read them, many other languages depend on
1085     them.
1086 root 1.41
1087 root 1.238 A simple RPC protocol that interoperates easily with other languages is
1088     to send JSON arrays (or objects, although arrays are usually the better
1089     choice as they mimic how function argument passing works) and a newline
1090     after each JSON text:
1091 root 1.41
1092     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
1093     $handle->push_write ("\012");
1094    
1095     An AnyEvent::Handle receiver would simply use the C<json> read type and
1096     rely on the fact that the newline will be skipped as leading whitespace:
1097    
1098     $handle->push_read (json => sub { my $array = $_[1]; ... });
1099    
1100     Other languages could read single lines terminated by a newline and pass
1101     this line into their JSON decoder of choice.
1102    
1103 root 1.238 =item cbor => $perl_scalar
1104    
1105     Encodes the given scalar into a CBOR value. Unless you provide your own
1106     L<CBOR::XS> object, this means it will be encoded to a CBOR string not
1107     using any extensions, if possible.
1108    
1109     CBOR values are self-delimiting, so you can write CBOR at one end of
1110     a handle and read them at the other end without using any additional
1111     framing.
1112    
1113     A simple nd very very fast RPC protocol that interoperates with
1114     other languages is to send CBOR and receive CBOR values (arrays are
1115     recommended):
1116    
1117     $handle->push_write (cbor => ["method", "arg1", "arg2"]); # whatever
1118    
1119     An AnyEvent::Handle receiver would simply use the C<cbor> read type:
1120    
1121     $handle->push_read (cbor => sub { my $array = $_[1]; ... });
1122    
1123 root 1.40 =cut
1124    
1125 root 1.179 sub json_coder() {
1126     eval { require JSON::XS; JSON::XS->new->utf8 }
1127 root 1.240 || do { require JSON::PP; JSON::PP->new->utf8 }
1128 root 1.179 }
1129    
1130 root 1.40 register_write_type json => sub {
1131     my ($self, $ref) = @_;
1132    
1133 root 1.238 ($self->{json} ||= json_coder)
1134     ->encode ($ref)
1135     };
1136    
1137     sub cbor_coder() {
1138     require CBOR::XS;
1139     CBOR::XS->new
1140     }
1141    
1142     register_write_type cbor => sub {
1143     my ($self, $scalar) = @_;
1144 root 1.40
1145 root 1.238 ($self->{cbor} ||= cbor_coder)
1146     ->encode ($scalar)
1147 root 1.40 };
1148    
1149 root 1.63 =item storable => $reference
1150    
1151     Freezes the given reference using L<Storable> and writes it to the
1152     handle. Uses the C<nfreeze> format.
1153    
1154     =cut
1155    
1156     register_write_type storable => sub {
1157     my ($self, $ref) = @_;
1158    
1159 root 1.224 require Storable unless $Storable::VERSION;
1160 root 1.63
1161 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
1162 root 1.63 };
1163    
1164 root 1.53 =back
1165    
1166 root 1.133 =item $handle->push_shutdown
1167    
1168     Sometimes you know you want to close the socket after writing your data
1169     before it was actually written. One way to do that is to replace your
1170 root 1.142 C<on_drain> handler by a callback that shuts down the socket (and set
1171     C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1172     replaces the C<on_drain> callback with:
1173 root 1.133
1174 root 1.214 sub { shutdown $_[0]{fh}, 1 }
1175 root 1.133
1176     This simply shuts down the write side and signals an EOF condition to the
1177     the peer.
1178    
1179     You can rely on the normal read queue and C<on_eof> handling
1180     afterwards. This is the cleanest way to close a connection.
1181    
1182 root 1.193 This method may invoke callbacks (and therefore the handle might be
1183     destroyed after it returns).
1184    
1185 root 1.133 =cut
1186    
1187     sub push_shutdown {
1188 root 1.142 my ($self) = @_;
1189    
1190     delete $self->{low_water_mark};
1191     $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1192 root 1.133 }
1193    
1194 root 1.185 =item custom write types - Package::anyevent_write_type $handle, @args
1195    
1196     Instead of one of the predefined types, you can also specify the name of
1197     a package. AnyEvent will try to load the package and then expects to find
1198     a function named C<anyevent_write_type> inside. If it isn't found, it
1199     progressively tries to load the parent package until it either finds the
1200     function (good) or runs out of packages (bad).
1201    
1202     Whenever the given C<type> is used, C<push_write> will the function with
1203     the handle object and the remaining arguments.
1204    
1205     The function is supposed to return a single octet string that will be
1206 root 1.223 appended to the write buffer, so you can mentally treat this function as a
1207 root 1.185 "arguments to on-the-wire-format" converter.
1208 root 1.30
1209 root 1.185 Example: implement a custom write type C<join> that joins the remaining
1210     arguments using the first one.
1211 root 1.29
1212 root 1.185 $handle->push_write (My::Type => " ", 1,2,3);
1213 root 1.29
1214 root 1.185 # uses the following package, which can be defined in the "My::Type" or in
1215     # the "My" modules to be auto-loaded, or just about anywhere when the
1216     # My::Type::anyevent_write_type is defined before invoking it.
1217    
1218     package My::Type;
1219    
1220     sub anyevent_write_type {
1221     my ($handle, $delim, @args) = @_;
1222    
1223     join $delim, @args
1224     }
1225 root 1.29
1226 root 1.30 =cut
1227 root 1.29
1228 root 1.8 #############################################################################
1229    
1230 root 1.9 =back
1231    
1232     =head2 READ QUEUE
1233    
1234     AnyEvent::Handle manages two queues per handle, one for writing and one
1235     for reading.
1236    
1237     The read queue is more complex than the write queue. It can be used in two
1238     ways, the "simple" way, using only C<on_read> and the "complex" way, using
1239     a queue.
1240    
1241     In the simple case, you just install an C<on_read> callback and whenever
1242     new data arrives, it will be called. You can then remove some data (if
1243 root 1.197 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you can
1244 root 1.69 leave the data there if you want to accumulate more (e.g. when only a
1245 root 1.197 partial message has been received so far), or change the read queue with
1246     e.g. C<push_read>.
1247 root 1.9
1248     In the more complex case, you want to queue multiple callbacks. In this
1249     case, AnyEvent::Handle will call the first queued callback each time new
1250 root 1.198 data arrives (also the first time it is queued) and remove it when it has
1251 root 1.61 done its job (see C<push_read>, below).
1252 root 1.9
1253     This way you can, for example, push three line-reads, followed by reading
1254     a chunk of data, and AnyEvent::Handle will execute them in order.
1255    
1256     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
1257     the specified number of bytes which give an XML datagram.
1258    
1259     # in the default state, expect some header bytes
1260     $handle->on_read (sub {
1261     # some data is here, now queue the length-header-read (4 octets)
1262 root 1.52 shift->unshift_read (chunk => 4, sub {
1263 root 1.9 # header arrived, decode
1264     my $len = unpack "N", $_[1];
1265    
1266     # now read the payload
1267 root 1.52 shift->unshift_read (chunk => $len, sub {
1268 root 1.9 my $xml = $_[1];
1269     # handle xml
1270     });
1271     });
1272     });
1273    
1274 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
1275     and another line or "ERROR" for the first request that is sent, and 64
1276     bytes for the second request. Due to the availability of a queue, we can
1277     just pipeline sending both requests and manipulate the queue as necessary
1278     in the callbacks.
1279    
1280     When the first callback is called and sees an "OK" response, it will
1281     C<unshift> another line-read. This line-read will be queued I<before> the
1282     64-byte chunk callback.
1283 root 1.9
1284 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
1285 root 1.9 $handle->push_write ("request 1\015\012");
1286    
1287     # we expect "ERROR" or "OK" as response, so push a line read
1288 root 1.52 $handle->push_read (line => sub {
1289 root 1.9 # if we got an "OK", we have to _prepend_ another line,
1290     # so it will be read before the second request reads its 64 bytes
1291     # which are already in the queue when this callback is called
1292     # we don't do this in case we got an error
1293     if ($_[1] eq "OK") {
1294 root 1.52 $_[0]->unshift_read (line => sub {
1295 root 1.9 my $response = $_[1];
1296     ...
1297     });
1298     }
1299     });
1300    
1301 root 1.69 # request two, simply returns 64 octets
1302 root 1.9 $handle->push_write ("request 2\015\012");
1303    
1304     # simply read 64 bytes, always
1305 root 1.52 $handle->push_read (chunk => 64, sub {
1306 root 1.9 my $response = $_[1];
1307     ...
1308     });
1309    
1310     =over 4
1311    
1312 root 1.10 =cut
1313    
1314 root 1.8 sub _drain_rbuf {
1315     my ($self) = @_;
1316 elmex 1.1
1317 root 1.159 # avoid recursion
1318 root 1.167 return if $self->{_skip_drain_rbuf};
1319 root 1.159 local $self->{_skip_drain_rbuf} = 1;
1320 root 1.59
1321     while () {
1322 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
1323     # we are draining the buffer, and this can only happen with TLS.
1324 root 1.163 $self->{rbuf} .= delete $self->{_tls_rbuf}
1325     if exists $self->{_tls_rbuf};
1326 root 1.115
1327 root 1.59 my $len = length $self->{rbuf};
1328 elmex 1.1
1329 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
1330 root 1.29 unless ($cb->($self)) {
1331 root 1.163 # no progress can be made
1332     # (not enough data and no data forthcoming)
1333     $self->_error (Errno::EPIPE, 1), return
1334     if $self->{_eof};
1335 root 1.10
1336 root 1.38 unshift @{ $self->{_queue} }, $cb;
1337 root 1.55 last;
1338 root 1.8 }
1339     } elsif ($self->{on_read}) {
1340 root 1.61 last unless $len;
1341    
1342 root 1.8 $self->{on_read}($self);
1343    
1344     if (
1345 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
1346     && !@{ $self->{_queue} } # and the queue is still empty
1347     && $self->{on_read} # but we still have on_read
1348 root 1.8 ) {
1349 root 1.55 # no further data will arrive
1350     # so no progress can be made
1351 root 1.150 $self->_error (Errno::EPIPE, 1), return
1352 root 1.55 if $self->{_eof};
1353    
1354     last; # more data might arrive
1355 elmex 1.1 }
1356 root 1.8 } else {
1357     # read side becomes idle
1358 root 1.93 delete $self->{_rw} unless $self->{tls};
1359 root 1.55 last;
1360 root 1.8 }
1361     }
1362    
1363 root 1.80 if ($self->{_eof}) {
1364 root 1.163 $self->{on_eof}
1365     ? $self->{on_eof}($self)
1366     : $self->_error (0, 1, "Unexpected end-of-file");
1367    
1368     return;
1369 root 1.80 }
1370 root 1.55
1371 root 1.169 if (
1372     defined $self->{rbuf_max}
1373     && $self->{rbuf_max} < length $self->{rbuf}
1374     ) {
1375     $self->_error (Errno::ENOSPC, 1), return;
1376     }
1377    
1378 root 1.55 # may need to restart read watcher
1379     unless ($self->{_rw}) {
1380     $self->start_read
1381     if $self->{on_read} || @{ $self->{_queue} };
1382     }
1383 elmex 1.1 }
1384    
1385 root 1.8 =item $handle->on_read ($cb)
1386 elmex 1.1
1387 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
1388     the new callback is C<undef>). See the description of C<on_read> in the
1389     constructor.
1390 elmex 1.1
1391 root 1.193 This method may invoke callbacks (and therefore the handle might be
1392     destroyed after it returns).
1393    
1394 root 1.8 =cut
1395    
1396     sub on_read {
1397     my ($self, $cb) = @_;
1398 elmex 1.1
1399 root 1.8 $self->{on_read} = $cb;
1400 root 1.159 $self->_drain_rbuf if $cb;
1401 elmex 1.1 }
1402    
1403 root 1.8 =item $handle->rbuf
1404    
1405 root 1.199 Returns the read buffer (as a modifiable lvalue). You can also access the
1406     read buffer directly as the C<< ->{rbuf} >> member, if you want (this is
1407     much faster, and no less clean).
1408    
1409     The only operation allowed on the read buffer (apart from looking at it)
1410     is removing data from its beginning. Otherwise modifying or appending to
1411     it is not allowed and will lead to hard-to-track-down bugs.
1412    
1413     NOTE: The read buffer should only be used or modified in the C<on_read>
1414     callback or when C<push_read> or C<unshift_read> are used with a single
1415     callback (i.e. untyped). Typed C<push_read> and C<unshift_read> methods
1416     will manage the read buffer on their own.
1417 elmex 1.1
1418     =cut
1419    
1420 elmex 1.2 sub rbuf : lvalue {
1421 root 1.8 $_[0]{rbuf}
1422 elmex 1.2 }
1423 elmex 1.1
1424 root 1.8 =item $handle->push_read ($cb)
1425    
1426     =item $handle->unshift_read ($cb)
1427    
1428     Append the given callback to the end of the queue (C<push_read>) or
1429     prepend it (C<unshift_read>).
1430    
1431     The callback is called each time some additional read data arrives.
1432 elmex 1.1
1433 elmex 1.20 It must check whether enough data is in the read buffer already.
1434 elmex 1.1
1435 root 1.8 If not enough data is available, it must return the empty list or a false
1436     value, in which case it will be called repeatedly until enough data is
1437     available (or an error condition is detected).
1438    
1439     If enough data was available, then the callback must remove all data it is
1440     interested in (which can be none at all) and return a true value. After returning
1441     true, it will be removed from the queue.
1442 elmex 1.1
1443 root 1.193 These methods may invoke callbacks (and therefore the handle might be
1444     destroyed after it returns).
1445    
1446 elmex 1.1 =cut
1447    
1448 root 1.30 our %RH;
1449    
1450     sub register_read_type($$) {
1451     $RH{$_[0]} = $_[1];
1452     }
1453    
1454 root 1.8 sub push_read {
1455 root 1.28 my $self = shift;
1456     my $cb = pop;
1457    
1458     if (@_) {
1459     my $type = shift;
1460    
1461 root 1.185 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1462     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_read")
1463 root 1.28 ->($self, $cb, @_);
1464     }
1465 elmex 1.1
1466 root 1.38 push @{ $self->{_queue} }, $cb;
1467 root 1.159 $self->_drain_rbuf;
1468 elmex 1.1 }
1469    
1470 root 1.8 sub unshift_read {
1471 root 1.28 my $self = shift;
1472     my $cb = pop;
1473    
1474     if (@_) {
1475     my $type = shift;
1476    
1477 root 1.199 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1478     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::unshift_read")
1479 root 1.28 ->($self, $cb, @_);
1480     }
1481    
1482 root 1.38 unshift @{ $self->{_queue} }, $cb;
1483 root 1.159 $self->_drain_rbuf;
1484 root 1.8 }
1485 elmex 1.1
1486 root 1.28 =item $handle->push_read (type => @args, $cb)
1487 elmex 1.1
1488 root 1.28 =item $handle->unshift_read (type => @args, $cb)
1489 elmex 1.1
1490 root 1.28 Instead of providing a callback that parses the data itself you can chose
1491     between a number of predefined parsing formats, for chunks of data, lines
1492 root 1.185 etc. You can also specify the (fully qualified) name of a package, in
1493     which case AnyEvent tries to load the package and then expects to find the
1494     C<anyevent_read_type> function inside (see "custom read types", below).
1495 elmex 1.1
1496 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1497     drop by and tell us):
1498 root 1.28
1499     =over 4
1500    
1501 root 1.40 =item chunk => $octets, $cb->($handle, $data)
1502 root 1.28
1503     Invoke the callback only once C<$octets> bytes have been read. Pass the
1504     data read to the callback. The callback will never be called with less
1505     data.
1506    
1507     Example: read 2 bytes.
1508    
1509     $handle->push_read (chunk => 2, sub {
1510 root 1.225 say "yay " . unpack "H*", $_[1];
1511 root 1.28 });
1512 elmex 1.1
1513     =cut
1514    
1515 root 1.28 register_read_type chunk => sub {
1516     my ($self, $cb, $len) = @_;
1517 elmex 1.1
1518 root 1.8 sub {
1519     $len <= length $_[0]{rbuf} or return;
1520 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
1521 root 1.8 1
1522     }
1523 root 1.28 };
1524 root 1.8
1525 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
1526 elmex 1.1
1527 root 1.8 The callback will be called only once a full line (including the end of
1528     line marker, C<$eol>) has been read. This line (excluding the end of line
1529     marker) will be passed to the callback as second argument (C<$line>), and
1530     the end of line marker as the third argument (C<$eol>).
1531 elmex 1.1
1532 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
1533     will be interpreted as a fixed record end marker, or it can be a regex
1534     object (e.g. created by C<qr>), in which case it is interpreted as a
1535     regular expression.
1536 elmex 1.1
1537 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
1538     undef), then C<qr|\015?\012|> is used (which is good for most internet
1539     protocols).
1540 elmex 1.1
1541 root 1.8 Partial lines at the end of the stream will never be returned, as they are
1542     not marked by the end of line marker.
1543 elmex 1.1
1544 root 1.8 =cut
1545 elmex 1.1
1546 root 1.28 register_read_type line => sub {
1547     my ($self, $cb, $eol) = @_;
1548 elmex 1.1
1549 root 1.76 if (@_ < 3) {
1550 root 1.237 # this is faster then the generic code below
1551 root 1.76 sub {
1552 root 1.237 (my $pos = index $_[0]{rbuf}, "\012") >= 0
1553     or return;
1554 elmex 1.1
1555 root 1.237 (my $str = substr $_[0]{rbuf}, 0, $pos + 1, "") =~ s/(\015?\012)\Z// or die;
1556     $cb->($_[0], $str, "$1");
1557 root 1.76 1
1558     }
1559     } else {
1560     $eol = quotemeta $eol unless ref $eol;
1561     $eol = qr|^(.*?)($eol)|s;
1562    
1563     sub {
1564     $_[0]{rbuf} =~ s/$eol// or return;
1565 elmex 1.1
1566 root 1.227 $cb->($_[0], "$1", "$2");
1567 root 1.76 1
1568     }
1569 root 1.8 }
1570 root 1.28 };
1571 elmex 1.1
1572 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1573 root 1.36
1574     Makes a regex match against the regex object C<$accept> and returns
1575 root 1.244 everything up to and including the match. All the usual regex variables
1576     ($1, %+ etc.) from the regex match are available in the callback.
1577 root 1.36
1578     Example: read a single line terminated by '\n'.
1579    
1580     $handle->push_read (regex => qr<\n>, sub { ... });
1581    
1582     If C<$reject> is given and not undef, then it determines when the data is
1583     to be rejected: it is matched against the data when the C<$accept> regex
1584     does not match and generates an C<EBADMSG> error when it matches. This is
1585     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1586     receive buffer overflow).
1587    
1588     Example: expect a single decimal number followed by whitespace, reject
1589     anything else (not the use of an anchor).
1590    
1591     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1592    
1593     If C<$skip> is given and not C<undef>, then it will be matched against
1594     the receive buffer when neither C<$accept> nor C<$reject> match,
1595     and everything preceding and including the match will be accepted
1596     unconditionally. This is useful to skip large amounts of data that you
1597     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1598     have to start matching from the beginning. This is purely an optimisation
1599 root 1.198 and is usually worth it only when you expect more than a few kilobytes.
1600 root 1.36
1601     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1602 root 1.198 expect the header to be very large (it isn't in practice, but...), we use
1603 root 1.36 a skip regex to skip initial portions. The skip regex is tricky in that
1604     it only accepts something not ending in either \015 or \012, as these are
1605     required for the accept regex.
1606    
1607     $handle->push_read (regex =>
1608     qr<\015\012\015\012>,
1609     undef, # no reject
1610     qr<^.*[^\015\012]>,
1611     sub { ... });
1612    
1613     =cut
1614    
1615     register_read_type regex => sub {
1616     my ($self, $cb, $accept, $reject, $skip) = @_;
1617    
1618     my $data;
1619     my $rbuf = \$self->{rbuf};
1620    
1621     sub {
1622     # accept
1623     if ($$rbuf =~ $accept) {
1624     $data .= substr $$rbuf, 0, $+[0], "";
1625 root 1.220 $cb->($_[0], $data);
1626 root 1.36 return 1;
1627     }
1628    
1629     # reject
1630     if ($reject && $$rbuf =~ $reject) {
1631 root 1.220 $_[0]->_error (Errno::EBADMSG);
1632 root 1.36 }
1633    
1634     # skip
1635     if ($skip && $$rbuf =~ $skip) {
1636     $data .= substr $$rbuf, 0, $+[0], "";
1637     }
1638    
1639     ()
1640     }
1641     };
1642    
1643 root 1.61 =item netstring => $cb->($handle, $string)
1644    
1645     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1646    
1647     Throws an error with C<$!> set to EBADMSG on format violations.
1648    
1649     =cut
1650    
1651     register_read_type netstring => sub {
1652     my ($self, $cb) = @_;
1653    
1654     sub {
1655     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1656     if ($_[0]{rbuf} =~ /[^0-9]/) {
1657 root 1.220 $_[0]->_error (Errno::EBADMSG);
1658 root 1.61 }
1659     return;
1660     }
1661    
1662     my $len = $1;
1663    
1664 root 1.220 $_[0]->unshift_read (chunk => $len, sub {
1665 root 1.61 my $string = $_[1];
1666     $_[0]->unshift_read (chunk => 1, sub {
1667     if ($_[1] eq ",") {
1668     $cb->($_[0], $string);
1669     } else {
1670 root 1.220 $_[0]->_error (Errno::EBADMSG);
1671 root 1.61 }
1672     });
1673     });
1674    
1675     1
1676     }
1677     };
1678    
1679     =item packstring => $format, $cb->($handle, $string)
1680    
1681     An octet string prefixed with an encoded length. The encoding C<$format>
1682     uses the same format as a Perl C<pack> format, but must specify a single
1683     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1684     optional C<!>, C<< < >> or C<< > >> modifier).
1685    
1686 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1687     EPP uses a prefix of C<N> (4 octtes).
1688 root 1.61
1689     Example: read a block of data prefixed by its length in BER-encoded
1690     format (very efficient).
1691    
1692     $handle->push_read (packstring => "w", sub {
1693     my ($handle, $data) = @_;
1694     });
1695    
1696     =cut
1697    
1698     register_read_type packstring => sub {
1699     my ($self, $cb, $format) = @_;
1700    
1701     sub {
1702     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1703 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1704 root 1.61 or return;
1705    
1706 root 1.77 $format = length pack $format, $len;
1707 root 1.61
1708 root 1.77 # bypass unshift if we already have the remaining chunk
1709     if ($format + $len <= length $_[0]{rbuf}) {
1710     my $data = substr $_[0]{rbuf}, $format, $len;
1711     substr $_[0]{rbuf}, 0, $format + $len, "";
1712     $cb->($_[0], $data);
1713     } else {
1714     # remove prefix
1715     substr $_[0]{rbuf}, 0, $format, "";
1716    
1717     # read remaining chunk
1718     $_[0]->unshift_read (chunk => $len, $cb);
1719     }
1720 root 1.61
1721     1
1722     }
1723     };
1724    
1725 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1726    
1727 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1728     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1729 root 1.40
1730 root 1.240 If a C<json> object was passed to the constructor, then that will be
1731     used for the final decode, otherwise it will create a L<JSON::XS> or
1732     L<JSON::PP> coder object expecting UTF-8.
1733 root 1.40
1734     This read type uses the incremental parser available with JSON version
1735 root 1.240 2.09 (and JSON::XS version 2.2) and above.
1736 root 1.40
1737     Since JSON texts are fully self-delimiting, the C<json> read and write
1738 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1739     the C<json> write type description, above, for an actual example.
1740 root 1.40
1741     =cut
1742    
1743     register_read_type json => sub {
1744 root 1.63 my ($self, $cb) = @_;
1745 root 1.40
1746 root 1.179 my $json = $self->{json} ||= json_coder;
1747 root 1.40
1748     my $data;
1749    
1750     sub {
1751 root 1.220 my $ref = eval { $json->incr_parse ($_[0]{rbuf}) };
1752 root 1.110
1753 root 1.113 if ($ref) {
1754 root 1.220 $_[0]{rbuf} = $json->incr_text;
1755 root 1.113 $json->incr_text = "";
1756 root 1.220 $cb->($_[0], $ref);
1757 root 1.110
1758     1
1759 root 1.113 } elsif ($@) {
1760 root 1.111 # error case
1761 root 1.110 $json->incr_skip;
1762 root 1.40
1763 root 1.220 $_[0]{rbuf} = $json->incr_text;
1764 root 1.40 $json->incr_text = "";
1765    
1766 root 1.220 $_[0]->_error (Errno::EBADMSG);
1767 root 1.114
1768 root 1.113 ()
1769     } else {
1770 root 1.220 $_[0]{rbuf} = "";
1771 root 1.114
1772 root 1.113 ()
1773     }
1774 root 1.40 }
1775     };
1776    
1777 root 1.238 =item cbor => $cb->($handle, $scalar)
1778    
1779     Reads a CBOR value, decodes it and passes it to the callback. When a parse
1780     error occurs, an C<EBADMSG> error will be raised.
1781    
1782     If a L<CBOR::XS> object was passed to the constructor, then that will be
1783     used for the final decode, otherwise it will create a CBOR coder without
1784     enabling any options.
1785    
1786     You have to provide a dependency to L<CBOR::XS> on your own: this module
1787     will load the L<CBOR::XS> module, but AnyEvent does not depend on it
1788     itself.
1789    
1790     Since CBOR values are fully self-delimiting, the C<cbor> read and write
1791     types are an ideal simple RPC protocol: just exchange CBOR datagrams. See
1792     the C<cbor> write type description, above, for an actual example.
1793    
1794     =cut
1795    
1796     register_read_type cbor => sub {
1797     my ($self, $cb) = @_;
1798    
1799     my $cbor = $self->{cbor} ||= cbor_coder;
1800    
1801     my $data;
1802    
1803     sub {
1804     my (@value) = eval { $cbor->incr_parse ($_[0]{rbuf}) };
1805    
1806     if (@value) {
1807     $cb->($_[0], @value);
1808    
1809     1
1810     } elsif ($@) {
1811     # error case
1812     $cbor->incr_reset;
1813    
1814     $_[0]->_error (Errno::EBADMSG);
1815    
1816     ()
1817     } else {
1818     ()
1819     }
1820     }
1821     };
1822    
1823 root 1.63 =item storable => $cb->($handle, $ref)
1824    
1825     Deserialises a L<Storable> frozen representation as written by the
1826     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1827     data).
1828    
1829     Raises C<EBADMSG> error if the data could not be decoded.
1830    
1831     =cut
1832    
1833     register_read_type storable => sub {
1834     my ($self, $cb) = @_;
1835    
1836 root 1.224 require Storable unless $Storable::VERSION;
1837 root 1.63
1838     sub {
1839     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1840 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1841 root 1.63 or return;
1842    
1843 root 1.77 my $format = length pack "w", $len;
1844 root 1.63
1845 root 1.77 # bypass unshift if we already have the remaining chunk
1846     if ($format + $len <= length $_[0]{rbuf}) {
1847     my $data = substr $_[0]{rbuf}, $format, $len;
1848     substr $_[0]{rbuf}, 0, $format + $len, "";
1849 root 1.232
1850     eval { $cb->($_[0], Storable::thaw ($data)); 1 }
1851     or return $_[0]->_error (Errno::EBADMSG);
1852 root 1.77 } else {
1853     # remove prefix
1854     substr $_[0]{rbuf}, 0, $format, "";
1855    
1856     # read remaining chunk
1857     $_[0]->unshift_read (chunk => $len, sub {
1858 root 1.232 eval { $cb->($_[0], Storable::thaw ($_[1])); 1 }
1859     or $_[0]->_error (Errno::EBADMSG);
1860 root 1.77 });
1861     }
1862    
1863     1
1864 root 1.63 }
1865     };
1866    
1867 root 1.236 =item tls_detect => $cb->($handle, $detect, $major, $minor)
1868    
1869     Checks the input stream for a valid SSL or TLS handshake TLSPaintext
1870     record without consuming anything. Only SSL version 3 or higher
1871     is handled, up to the fictituous protocol 4.x (but both SSL3+ and
1872     SSL2-compatible framing is supported).
1873    
1874     If it detects that the input data is likely TLS, it calls the callback
1875     with a true value for C<$detect> and the (on-wire) TLS version as second
1876     and third argument (C<$major> is C<3>, and C<$minor> is 0..3 for SSL
1877     3.0, TLS 1.0, 1.1 and 1.2, respectively). If it detects the input to
1878     be definitely not TLS, it calls the callback with a false value for
1879     C<$detect>.
1880    
1881     The callback could use this information to decide whether or not to start
1882     TLS negotiation.
1883    
1884     In all cases the data read so far is passed to the following read
1885     handlers.
1886    
1887     Usually you want to use the C<tls_autostart> read type instead.
1888    
1889     If you want to design a protocol that works in the presence of TLS
1890     dtection, make sure that any non-TLS data doesn't start with the octet 22
1891     (ASCII SYN, 16 hex) or 128-255 (i.e. highest bit set). The checks this
1892     read type does are a bit more strict, but might losen in the future to
1893     accomodate protocol changes.
1894    
1895     This read type does not rely on L<AnyEvent::TLS> (and thus, not on
1896     L<Net::SSLeay>).
1897    
1898     =item tls_autostart => $tls[, $tls_ctx]
1899    
1900     Tries to detect a valid SSL or TLS handshake. If one is detected, it tries
1901     to start tls by calling C<starttls> with the given arguments.
1902    
1903     In practise, C<$tls> must be C<accept>, or a Net::SSLeay context that has
1904     been configured to accept, as servers do not normally send a handshake on
1905     their own and ths cannot be detected in this way.
1906    
1907     See C<tls_detect> above for more details.
1908    
1909     Example: give the client a chance to start TLS before accepting a text
1910     line.
1911    
1912     $hdl->push_read (tls_detect => "accept");
1913     $hdl->push_read (line => sub {
1914     print "received ", ($_[0]{tls} ? "encrypted" : "cleartext"), " <$_[1]>\n";
1915     });
1916    
1917     =cut
1918    
1919     register_read_type tls_detect => sub {
1920     my ($self, $cb) = @_;
1921    
1922     sub {
1923     # this regex matches a full or partial tls record
1924     if (
1925     # ssl3+: type(22=handshake) major(=3) minor(any) length_hi
1926     $self->{rbuf} =~ /^(?:\z| \x16 (\z| [\x03\x04] (?:\z| . (?:\z| [\x00-\x40] ))))/xs
1927     # ssl2 comapatible: len_hi len_lo type(1) major minor dummy(forlength)
1928     or $self->{rbuf} =~ /^(?:\z| [\x80-\xff] (?:\z| . (?:\z| \x01 (\z| [\x03\x04] (?:\z| . (?:\z| . ))))))/xs
1929     ) {
1930     return if 3 != length $1; # partial match, can't decide yet
1931    
1932     # full match, valid TLS record
1933     my ($major, $minor) = unpack "CC", $1;
1934     $cb->($self, "accept", $major + $minor * 0.1);
1935     } else {
1936     # mismatch == guaranteed not TLS
1937     $cb->($self, undef);
1938     }
1939    
1940     1
1941     }
1942     };
1943    
1944     register_read_type tls_autostart => sub {
1945     my ($self, @tls) = @_;
1946    
1947     $RH{tls_detect}($self, sub {
1948     return unless $_[1];
1949     $_[0]->starttls (@tls);
1950     })
1951     };
1952    
1953 root 1.28 =back
1954    
1955 root 1.185 =item custom read types - Package::anyevent_read_type $handle, $cb, @args
1956 root 1.30
1957 root 1.185 Instead of one of the predefined types, you can also specify the name
1958     of a package. AnyEvent will try to load the package and then expects to
1959     find a function named C<anyevent_read_type> inside. If it isn't found, it
1960     progressively tries to load the parent package until it either finds the
1961     function (good) or runs out of packages (bad).
1962    
1963     Whenever this type is used, C<push_read> will invoke the function with the
1964     handle object, the original callback and the remaining arguments.
1965    
1966     The function is supposed to return a callback (usually a closure) that
1967     works as a plain read callback (see C<< ->push_read ($cb) >>), so you can
1968     mentally treat the function as a "configurable read type to read callback"
1969     converter.
1970    
1971     It should invoke the original callback when it is done reading (remember
1972     to pass C<$handle> as first argument as all other callbacks do that,
1973     although there is no strict requirement on this).
1974 root 1.30
1975 root 1.185 For examples, see the source of this module (F<perldoc -m
1976     AnyEvent::Handle>, search for C<register_read_type>)).
1977 root 1.30
1978 root 1.10 =item $handle->stop_read
1979    
1980     =item $handle->start_read
1981    
1982 root 1.18 In rare cases you actually do not want to read anything from the
1983 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1984 root 1.22 any queued callbacks will be executed then. To start reading again, call
1985 root 1.10 C<start_read>.
1986    
1987 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1988     you change the C<on_read> callback or push/unshift a read callback, and it
1989     will automatically C<stop_read> for you when neither C<on_read> is set nor
1990     there are any read requests in the queue.
1991    
1992 root 1.213 In older versions of this module (<= 5.3), these methods had no effect,
1993     as TLS does not support half-duplex connections. In current versions they
1994     work as expected, as this behaviour is required to avoid certain resource
1995     attacks, where the program would be forced to read (and buffer) arbitrary
1996     amounts of data before being able to send some data. The drawback is that
1997     some readings of the the SSL/TLS specifications basically require this
1998     attack to be working, as SSL/TLS implementations might stall sending data
1999     during a rehandshake.
2000    
2001     As a guideline, during the initial handshake, you should not stop reading,
2002 root 1.226 and as a client, it might cause problems, depending on your application.
2003 root 1.93
2004 root 1.10 =cut
2005    
2006     sub stop_read {
2007     my ($self) = @_;
2008 elmex 1.1
2009 root 1.213 delete $self->{_rw};
2010 root 1.8 }
2011 elmex 1.1
2012 root 1.10 sub start_read {
2013     my ($self) = @_;
2014    
2015 root 1.192 unless ($self->{_rw} || $self->{_eof} || !$self->{fh}) {
2016 root 1.10 Scalar::Util::weaken $self;
2017    
2018 root 1.175 $self->{_rw} = AE::io $self->{fh}, 0, sub {
2019 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
2020 root 1.203 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size}, length $$rbuf;
2021 root 1.10
2022     if ($len > 0) {
2023 root 1.176 $self->{_activity} = $self->{_ractivity} = AE::now;
2024 root 1.43
2025 root 1.93 if ($self->{tls}) {
2026     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
2027 root 1.97
2028 root 1.93 &_dotls ($self);
2029     } else {
2030 root 1.159 $self->_drain_rbuf;
2031 root 1.93 }
2032 root 1.10
2033 root 1.203 if ($len == $self->{read_size}) {
2034     $self->{read_size} *= 2;
2035     $self->{read_size} = $self->{max_read_size} || MAX_READ_SIZE
2036     if $self->{read_size} > ($self->{max_read_size} || MAX_READ_SIZE);
2037     }
2038    
2039 root 1.10 } elsif (defined $len) {
2040 root 1.38 delete $self->{_rw};
2041     $self->{_eof} = 1;
2042 root 1.159 $self->_drain_rbuf;
2043 root 1.10
2044 root 1.243 } elsif ($! != EAGAIN && $! != EINTR && $! != EWOULDBLOCK && $! != WSAEWOULDBLOCK) {
2045 root 1.52 return $self->_error ($!, 1);
2046 root 1.10 }
2047 root 1.175 };
2048 root 1.10 }
2049 elmex 1.1 }
2050    
2051 root 1.133 our $ERROR_SYSCALL;
2052     our $ERROR_WANT_READ;
2053    
2054     sub _tls_error {
2055     my ($self, $err) = @_;
2056    
2057     return $self->_error ($!, 1)
2058     if $err == Net::SSLeay::ERROR_SYSCALL ();
2059    
2060 root 1.233 my $err = Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
2061 root 1.137
2062     # reduce error string to look less scary
2063     $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
2064    
2065 root 1.143 if ($self->{_on_starttls}) {
2066     (delete $self->{_on_starttls})->($self, undef, $err);
2067     &_freetls;
2068     } else {
2069     &_freetls;
2070 root 1.150 $self->_error (Errno::EPROTO, 1, $err);
2071 root 1.143 }
2072 root 1.133 }
2073    
2074 root 1.97 # poll the write BIO and send the data if applicable
2075 root 1.133 # also decode read data if possible
2076     # this is basiclaly our TLS state machine
2077     # more efficient implementations are possible with openssl,
2078     # but not with the buggy and incomplete Net::SSLeay.
2079 root 1.19 sub _dotls {
2080     my ($self) = @_;
2081    
2082 root 1.97 my $tmp;
2083 root 1.56
2084 root 1.239 while (length $self->{_tls_wbuf}) {
2085     if (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) <= 0) {
2086     $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
2087    
2088     return $self->_tls_error ($tmp)
2089     if $tmp != $ERROR_WANT_READ
2090     && ($tmp != $ERROR_SYSCALL || $!);
2091    
2092     last;
2093 root 1.22 }
2094 root 1.133
2095 root 1.239 substr $self->{_tls_wbuf}, 0, $tmp, "";
2096 root 1.19 }
2097    
2098 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
2099     unless (length $tmp) {
2100 root 1.143 $self->{_on_starttls}
2101     and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
2102 root 1.92 &_freetls;
2103 root 1.143
2104 root 1.142 if ($self->{on_stoptls}) {
2105     $self->{on_stoptls}($self);
2106     return;
2107     } else {
2108     # let's treat SSL-eof as we treat normal EOF
2109     delete $self->{_rw};
2110     $self->{_eof} = 1;
2111     }
2112 root 1.56 }
2113 root 1.91
2114 root 1.116 $self->{_tls_rbuf} .= $tmp;
2115 root 1.159 $self->_drain_rbuf;
2116 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
2117 root 1.23 }
2118    
2119 root 1.239 $tmp = Net::SSLeay::get_error ($self->{tls}, -1); # -1 is not neccessarily correct, but Net::SSLeay doesn't tell us
2120 root 1.133 return $self->_tls_error ($tmp)
2121     if $tmp != $ERROR_WANT_READ
2122 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
2123 root 1.91
2124 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
2125     $self->{wbuf} .= $tmp;
2126 root 1.91 $self->_drain_wbuf;
2127 root 1.192 $self->{tls} or return; # tls session might have gone away in callback
2128 root 1.91 }
2129 root 1.142
2130     $self->{_on_starttls}
2131     and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
2132 root 1.143 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
2133 root 1.19 }
2134    
2135 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
2136    
2137     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
2138     object is created, you can also do that at a later time by calling
2139 root 1.234 C<starttls>. See the C<tls> constructor argument for general info.
2140 root 1.25
2141 root 1.157 Starting TLS is currently an asynchronous operation - when you push some
2142     write data and then call C<< ->starttls >> then TLS negotiation will start
2143 root 1.234 immediately, after which the queued write data is then sent. This might
2144     change in future versions, so best make sure you have no outstanding write
2145     data when calling this method.
2146 root 1.157
2147 root 1.25 The first argument is the same as the C<tls> constructor argument (either
2148     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
2149    
2150 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
2151     when AnyEvent::Handle has to create its own TLS connection object, or
2152     a hash reference with C<< key => value >> pairs that will be used to
2153     construct a new context.
2154    
2155     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
2156     context in C<< $handle->{tls_ctx} >> after this call and can be used or
2157     changed to your liking. Note that the handshake might have already started
2158     when this function returns.
2159 root 1.38
2160 root 1.160 Due to bugs in OpenSSL, it might or might not be possible to do multiple
2161 root 1.198 handshakes on the same stream. It is best to not attempt to use the
2162     stream after stopping TLS.
2163 root 1.92
2164 root 1.193 This method may invoke callbacks (and therefore the handle might be
2165     destroyed after it returns).
2166    
2167 root 1.25 =cut
2168    
2169 root 1.137 our %TLS_CACHE; #TODO not yet documented, should we?
2170    
2171 root 1.19 sub starttls {
2172 root 1.160 my ($self, $tls, $ctx) = @_;
2173    
2174     Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
2175     if $self->{tls};
2176    
2177 root 1.234 unless (defined $AnyEvent::TLS::VERSION) {
2178     eval {
2179     require Net::SSLeay;
2180     require AnyEvent::TLS;
2181     1
2182     } or return $self->_error (Errno::EPROTO, 1, "TLS support not available on this system");
2183     }
2184    
2185 root 1.160 $self->{tls} = $tls;
2186     $self->{tls_ctx} = $ctx if @_ > 2;
2187    
2188     return unless $self->{fh};
2189 root 1.19
2190 root 1.142 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
2191     $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
2192 root 1.133
2193 root 1.180 $tls = delete $self->{tls};
2194 root 1.160 $ctx = $self->{tls_ctx};
2195 root 1.131
2196 root 1.157 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
2197    
2198 root 1.131 if ("HASH" eq ref $ctx) {
2199 root 1.137 if ($ctx->{cache}) {
2200     my $key = $ctx+0;
2201     $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
2202     } else {
2203     $ctx = new AnyEvent::TLS %$ctx;
2204     }
2205 root 1.131 }
2206 root 1.92
2207 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
2208 root 1.160 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
2209 root 1.19
2210 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
2211     # but the openssl maintainers basically said: "trust us, it just works".
2212     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
2213     # and mismaintained ssleay-module doesn't even offer them).
2214 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
2215 root 1.87 #
2216     # in short: this is a mess.
2217     #
2218 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
2219 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
2220 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
2221     # have identity issues in that area.
2222 root 1.131 # Net::SSLeay::CTX_set_mode ($ssl,
2223     # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
2224     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
2225 root 1.160 Net::SSLeay::CTX_set_mode ($tls, 1|2);
2226 root 1.21
2227 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
2228     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
2229 root 1.19
2230 root 1.219 Net::SSLeay::BIO_write ($self->{_rbio}, $self->{rbuf});
2231     $self->{rbuf} = "";
2232 root 1.172
2233 root 1.160 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
2234 root 1.19
2235 root 1.142 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
2236 root 1.143 if $self->{on_starttls};
2237 root 1.142
2238 root 1.93 &_dotls; # need to trigger the initial handshake
2239     $self->start_read; # make sure we actually do read
2240 root 1.19 }
2241    
2242 root 1.25 =item $handle->stoptls
2243    
2244 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
2245     sending a close notify to the other side, but since OpenSSL doesn't
2246 root 1.192 support non-blocking shut downs, it is not guaranteed that you can re-use
2247 root 1.160 the stream afterwards.
2248 root 1.25
2249 root 1.193 This method may invoke callbacks (and therefore the handle might be
2250     destroyed after it returns).
2251    
2252 root 1.25 =cut
2253    
2254     sub stoptls {
2255     my ($self) = @_;
2256    
2257 root 1.192 if ($self->{tls} && $self->{fh}) {
2258 root 1.94 Net::SSLeay::shutdown ($self->{tls});
2259 root 1.92
2260     &_dotls;
2261    
2262 root 1.142 # # we don't give a shit. no, we do, but we can't. no...#d#
2263     # # we, we... have to use openssl :/#d#
2264     # &_freetls;#d#
2265 root 1.92 }
2266     }
2267    
2268     sub _freetls {
2269     my ($self) = @_;
2270    
2271     return unless $self->{tls};
2272 root 1.38
2273 root 1.160 $self->{tls_ctx}->_put_session (delete $self->{tls})
2274 root 1.171 if $self->{tls} > 0;
2275 root 1.92
2276 root 1.143 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
2277 root 1.25 }
2278    
2279 root 1.216 =item $handle->resettls
2280    
2281     This rarely-used method simply resets and TLS state on the handle, usually
2282     causing data loss.
2283    
2284     One case where it may be useful is when you want to skip over the data in
2285     the stream but you are not interested in interpreting it, so data loss is
2286     no concern.
2287    
2288     =cut
2289    
2290     *resettls = \&_freetls;
2291    
2292 root 1.19 sub DESTROY {
2293 root 1.120 my ($self) = @_;
2294 root 1.19
2295 root 1.92 &_freetls;
2296 root 1.62
2297     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
2298    
2299 root 1.156 if ($linger && length $self->{wbuf} && $self->{fh}) {
2300 root 1.62 my $fh = delete $self->{fh};
2301     my $wbuf = delete $self->{wbuf};
2302    
2303     my @linger;
2304    
2305 root 1.175 push @linger, AE::io $fh, 1, sub {
2306 root 1.62 my $len = syswrite $fh, $wbuf, length $wbuf;
2307    
2308     if ($len > 0) {
2309     substr $wbuf, 0, $len, "";
2310 root 1.243 } elsif (defined $len || ($! != EAGAIN && $! != EINTR && $! != EWOULDBLOCK && $! != WSAEWOULDBLOCK)) {
2311 root 1.62 @linger = (); # end
2312     }
2313 root 1.175 };
2314     push @linger, AE::timer $linger, 0, sub {
2315 root 1.62 @linger = ();
2316 root 1.175 };
2317 root 1.62 }
2318 root 1.19 }
2319    
2320 root 1.99 =item $handle->destroy
2321    
2322 root 1.101 Shuts down the handle object as much as possible - this call ensures that
2323 root 1.141 no further callbacks will be invoked and as many resources as possible
2324 root 1.165 will be freed. Any method you will call on the handle object after
2325     destroying it in this way will be silently ignored (and it will return the
2326     empty list).
2327 root 1.99
2328 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
2329     object and it will simply shut down. This works in fatal error and EOF
2330     callbacks, as well as code outside. It does I<NOT> work in a read or write
2331     callback, so when you want to destroy the AnyEvent::Handle object from
2332     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
2333     that case.
2334    
2335 root 1.149 Destroying the handle object in this way has the advantage that callbacks
2336     will be removed as well, so if those are the only reference holders (as
2337     is common), then one doesn't need to do anything special to break any
2338     reference cycles.
2339    
2340 root 1.99 The handle might still linger in the background and write out remaining
2341     data, as specified by the C<linger> option, however.
2342    
2343     =cut
2344    
2345     sub destroy {
2346     my ($self) = @_;
2347    
2348     $self->DESTROY;
2349     %$self = ();
2350 root 1.164 bless $self, "AnyEvent::Handle::destroyed";
2351     }
2352    
2353 root 1.165 sub AnyEvent::Handle::destroyed::AUTOLOAD {
2354     #nop
2355 root 1.99 }
2356    
2357 root 1.192 =item $handle->destroyed
2358    
2359     Returns false as long as the handle hasn't been destroyed by a call to C<<
2360     ->destroy >>, true otherwise.
2361    
2362     Can be useful to decide whether the handle is still valid after some
2363     callback possibly destroyed the handle. For example, C<< ->push_write >>,
2364     C<< ->starttls >> and other methods can call user callbacks, which in turn
2365     can destroy the handle, so work can be avoided by checking sometimes:
2366    
2367     $hdl->starttls ("accept");
2368     return if $hdl->destroyed;
2369     $hdl->push_write (...
2370    
2371     Note that the call to C<push_write> will silently be ignored if the handle
2372     has been destroyed, so often you can just ignore the possibility of the
2373     handle being destroyed.
2374    
2375     =cut
2376    
2377     sub destroyed { 0 }
2378     sub AnyEvent::Handle::destroyed::destroyed { 1 }
2379    
2380 root 1.19 =item AnyEvent::Handle::TLS_CTX
2381    
2382 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
2383     for TLS mode.
2384 root 1.19
2385 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
2386 root 1.19
2387     =cut
2388    
2389     our $TLS_CTX;
2390    
2391     sub TLS_CTX() {
2392 root 1.131 $TLS_CTX ||= do {
2393     require AnyEvent::TLS;
2394 root 1.19
2395 root 1.131 new AnyEvent::TLS
2396 root 1.19 }
2397     }
2398    
2399 elmex 1.1 =back
2400    
2401 root 1.95
2402     =head1 NONFREQUENTLY ASKED QUESTIONS
2403    
2404     =over 4
2405    
2406 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
2407     still get further invocations!
2408    
2409     That's because AnyEvent::Handle keeps a reference to itself when handling
2410     read or write callbacks.
2411    
2412     It is only safe to "forget" the reference inside EOF or error callbacks,
2413     from within all other callbacks, you need to explicitly call the C<<
2414     ->destroy >> method.
2415    
2416 root 1.208 =item Why is my C<on_eof> callback never called?
2417    
2418     Probably because your C<on_error> callback is being called instead: When
2419     you have outstanding requests in your read queue, then an EOF is
2420     considered an error as you clearly expected some data.
2421    
2422     To avoid this, make sure you have an empty read queue whenever your handle
2423 root 1.223 is supposed to be "idle" (i.e. connection closes are O.K.). You can set
2424 root 1.208 an C<on_read> handler that simply pushes the first read requests in the
2425     queue.
2426    
2427     See also the next question, which explains this in a bit more detail.
2428    
2429     =item How can I serve requests in a loop?
2430    
2431     Most protocols consist of some setup phase (authentication for example)
2432     followed by a request handling phase, where the server waits for requests
2433     and handles them, in a loop.
2434    
2435     There are two important variants: The first (traditional, better) variant
2436     handles requests until the server gets some QUIT command, causing it to
2437     close the connection first (highly desirable for a busy TCP server). A
2438     client dropping the connection is an error, which means this variant can
2439     detect an unexpected detection close.
2440    
2441 root 1.235 To handle this case, always make sure you have a non-empty read queue, by
2442 root 1.208 pushing the "read request start" handler on it:
2443    
2444     # we assume a request starts with a single line
2445     my @start_request; @start_request = (line => sub {
2446     my ($hdl, $line) = @_;
2447    
2448     ... handle request
2449    
2450     # push next request read, possibly from a nested callback
2451     $hdl->push_read (@start_request);
2452     });
2453    
2454     # auth done, now go into request handling loop
2455     # now push the first @start_request
2456     $hdl->push_read (@start_request);
2457    
2458     By always having an outstanding C<push_read>, the handle always expects
2459     some data and raises the C<EPIPE> error when the connction is dropped
2460     unexpectedly.
2461    
2462     The second variant is a protocol where the client can drop the connection
2463     at any time. For TCP, this means that the server machine may run out of
2464 root 1.223 sockets easier, and in general, it means you cannot distinguish a protocl
2465 root 1.208 failure/client crash from a normal connection close. Nevertheless, these
2466     kinds of protocols are common (and sometimes even the best solution to the
2467     problem).
2468    
2469     Having an outstanding read request at all times is possible if you ignore
2470     C<EPIPE> errors, but this doesn't help with when the client drops the
2471     connection during a request, which would still be an error.
2472    
2473     A better solution is to push the initial request read in an C<on_read>
2474     callback. This avoids an error, as when the server doesn't expect data
2475     (i.e. is idly waiting for the next request, an EOF will not raise an
2476     error, but simply result in an C<on_eof> callback. It is also a bit slower
2477     and simpler:
2478    
2479     # auth done, now go into request handling loop
2480     $hdl->on_read (sub {
2481     my ($hdl) = @_;
2482    
2483     # called each time we receive data but the read queue is empty
2484     # simply start read the request
2485    
2486     $hdl->push_read (line => sub {
2487     my ($hdl, $line) = @_;
2488    
2489     ... handle request
2490    
2491     # do nothing special when the request has been handled, just
2492     # let the request queue go empty.
2493     });
2494     });
2495    
2496 root 1.101 =item I get different callback invocations in TLS mode/Why can't I pause
2497     reading?
2498    
2499     Unlike, say, TCP, TLS connections do not consist of two independent
2500 root 1.198 communication channels, one for each direction. Or put differently, the
2501 root 1.101 read and write directions are not independent of each other: you cannot
2502     write data unless you are also prepared to read, and vice versa.
2503    
2504 root 1.198 This means that, in TLS mode, you might get C<on_error> or C<on_eof>
2505 root 1.101 callback invocations when you are not expecting any read data - the reason
2506     is that AnyEvent::Handle always reads in TLS mode.
2507    
2508     During the connection, you have to make sure that you always have a
2509     non-empty read-queue, or an C<on_read> watcher. At the end of the
2510     connection (or when you no longer want to use it) you can call the
2511     C<destroy> method.
2512    
2513 root 1.95 =item How do I read data until the other side closes the connection?
2514    
2515 root 1.96 If you just want to read your data into a perl scalar, the easiest way
2516     to achieve this is by setting an C<on_read> callback that does nothing,
2517     clearing the C<on_eof> callback and in the C<on_error> callback, the data
2518     will be in C<$_[0]{rbuf}>:
2519 root 1.95
2520     $handle->on_read (sub { });
2521     $handle->on_eof (undef);
2522     $handle->on_error (sub {
2523     my $data = delete $_[0]{rbuf};
2524     });
2525    
2526 root 1.219 Note that this example removes the C<rbuf> member from the handle object,
2527     which is not normally allowed by the API. It is expressly permitted in
2528     this case only, as the handle object needs to be destroyed afterwards.
2529    
2530 root 1.95 The reason to use C<on_error> is that TCP connections, due to latencies
2531     and packets loss, might get closed quite violently with an error, when in
2532 root 1.198 fact all data has been received.
2533 root 1.95
2534 root 1.101 It is usually better to use acknowledgements when transferring data,
2535 root 1.95 to make sure the other side hasn't just died and you got the data
2536     intact. This is also one reason why so many internet protocols have an
2537     explicit QUIT command.
2538    
2539 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
2540     all data has been written?
2541 root 1.95
2542     After writing your last bits of data, set the C<on_drain> callback
2543     and destroy the handle in there - with the default setting of
2544     C<low_water_mark> this will be called precisely when all data has been
2545     written to the socket:
2546    
2547     $handle->push_write (...);
2548     $handle->on_drain (sub {
2549 root 1.231 AE::log debug => "All data submitted to the kernel.";
2550 root 1.95 undef $handle;
2551     });
2552    
2553 root 1.143 If you just want to queue some data and then signal EOF to the other side,
2554     consider using C<< ->push_shutdown >> instead.
2555    
2556     =item I want to contact a TLS/SSL server, I don't care about security.
2557    
2558     If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2559 root 1.198 connect to it and then create the AnyEvent::Handle with the C<tls>
2560 root 1.143 parameter:
2561    
2562 root 1.144 tcp_connect $host, $port, sub {
2563     my ($fh) = @_;
2564 root 1.143
2565 root 1.144 my $handle = new AnyEvent::Handle
2566     fh => $fh,
2567     tls => "connect",
2568     on_error => sub { ... };
2569    
2570     $handle->push_write (...);
2571     };
2572 root 1.143
2573     =item I want to contact a TLS/SSL server, I do care about security.
2574    
2575 root 1.144 Then you should additionally enable certificate verification, including
2576     peername verification, if the protocol you use supports it (see
2577     L<AnyEvent::TLS>, C<verify_peername>).
2578    
2579     E.g. for HTTPS:
2580    
2581     tcp_connect $host, $port, sub {
2582     my ($fh) = @_;
2583    
2584     my $handle = new AnyEvent::Handle
2585     fh => $fh,
2586     peername => $host,
2587     tls => "connect",
2588     tls_ctx => { verify => 1, verify_peername => "https" },
2589     ...
2590    
2591     Note that you must specify the hostname you connected to (or whatever
2592     "peername" the protocol needs) as the C<peername> argument, otherwise no
2593     peername verification will be done.
2594    
2595     The above will use the system-dependent default set of trusted CA
2596     certificates. If you want to check against a specific CA, add the
2597     C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2598    
2599     tls_ctx => {
2600     verify => 1,
2601     verify_peername => "https",
2602     ca_file => "my-ca-cert.pem",
2603     },
2604    
2605     =item I want to create a TLS/SSL server, how do I do that?
2606    
2607     Well, you first need to get a server certificate and key. You have
2608     three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2609     self-signed certificate (cheap. check the search engine of your choice,
2610     there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2611     nice program for that purpose).
2612    
2613     Then create a file with your private key (in PEM format, see
2614     L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2615     file should then look like this:
2616    
2617     -----BEGIN RSA PRIVATE KEY-----
2618     ...header data
2619     ... lots of base64'y-stuff
2620     -----END RSA PRIVATE KEY-----
2621    
2622     -----BEGIN CERTIFICATE-----
2623     ... lots of base64'y-stuff
2624     -----END CERTIFICATE-----
2625    
2626     The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2627     specify this file as C<cert_file>:
2628    
2629     tcp_server undef, $port, sub {
2630     my ($fh) = @_;
2631    
2632     my $handle = new AnyEvent::Handle
2633     fh => $fh,
2634     tls => "accept",
2635     tls_ctx => { cert_file => "my-server-keycert.pem" },
2636     ...
2637 root 1.143
2638 root 1.144 When you have intermediate CA certificates that your clients might not
2639     know about, just append them to the C<cert_file>.
2640 root 1.143
2641 root 1.95 =back
2642    
2643 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
2644    
2645     In many cases, you might want to subclass AnyEvent::Handle.
2646    
2647     To make this easier, a given version of AnyEvent::Handle uses these
2648     conventions:
2649    
2650     =over 4
2651    
2652     =item * all constructor arguments become object members.
2653    
2654     At least initially, when you pass a C<tls>-argument to the constructor it
2655 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
2656 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
2657    
2658     =item * other object member names are prefixed with an C<_>.
2659    
2660     All object members not explicitly documented (internal use) are prefixed
2661     with an underscore character, so the remaining non-C<_>-namespace is free
2662     for use for subclasses.
2663    
2664     =item * all members not documented here and not prefixed with an underscore
2665     are free to use in subclasses.
2666    
2667     Of course, new versions of AnyEvent::Handle may introduce more "public"
2668 root 1.198 member variables, but that's just life. At least it is documented.
2669 root 1.38
2670     =back
2671    
2672 elmex 1.1 =head1 AUTHOR
2673    
2674 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
2675 elmex 1.1
2676     =cut
2677    
2678 root 1.230 1
2679