ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.45
Committed: Thu May 29 00:20:39 2008 UTC (16 years ago) by root
Branch: MAIN
Changes since 1.44: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 package AnyEvent::Handle;
2    
3 elmex 1.6 no warnings;
4 elmex 1.1 use strict;
5    
6 root 1.8 use AnyEvent ();
7 root 1.42 use AnyEvent::Util qw(WSAEWOULDBLOCK);
8 root 1.8 use Scalar::Util ();
9     use Carp ();
10     use Fcntl ();
11 root 1.43 use Errno qw(EAGAIN EINTR);
12 elmex 1.1
13     =head1 NAME
14    
15 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 elmex 1.1
17     =cut
18    
19 root 1.15 our $VERSION = '0.04';
20 elmex 1.1
21     =head1 SYNOPSIS
22    
23     use AnyEvent;
24     use AnyEvent::Handle;
25    
26     my $cv = AnyEvent->condvar;
27    
28 root 1.31 my $handle =
29 elmex 1.2 AnyEvent::Handle->new (
30     fh => \*STDIN,
31     on_eof => sub {
32     $cv->broadcast;
33     },
34     );
35    
36 root 1.31 # send some request line
37     $handle->push_write ("getinfo\015\012");
38    
39     # read the response line
40     $handle->push_read (line => sub {
41     my ($handle, $line) = @_;
42     warn "read line <$line>\n";
43     $cv->send;
44     });
45    
46     $cv->recv;
47 elmex 1.1
48     =head1 DESCRIPTION
49    
50 root 1.8 This module is a helper module to make it easier to do event-based I/O on
51 elmex 1.13 filehandles. For utility functions for doing non-blocking connects and accepts
52     on sockets see L<AnyEvent::Util>.
53 root 1.8
54     In the following, when the documentation refers to of "bytes" then this
55     means characters. As sysread and syswrite are used for all I/O, their
56     treatment of characters applies to this module as well.
57 elmex 1.1
58 root 1.8 All callbacks will be invoked with the handle object as their first
59     argument.
60 elmex 1.1
61     =head1 METHODS
62    
63     =over 4
64    
65     =item B<new (%args)>
66    
67 root 1.8 The constructor supports these arguments (all as key => value pairs).
68 elmex 1.1
69     =over 4
70    
71 root 1.8 =item fh => $filehandle [MANDATORY]
72 elmex 1.1
73     The filehandle this L<AnyEvent::Handle> object will operate on.
74    
75 root 1.8 NOTE: The filehandle will be set to non-blocking (using
76     AnyEvent::Util::fh_nonblocking).
77    
78 root 1.40 =item on_eof => $cb->($handle)
79 root 1.10
80     Set the callback to be called on EOF.
81 root 1.8
82 root 1.16 While not mandatory, it is highly recommended to set an eof callback,
83     otherwise you might end up with a closed socket while you are still
84     waiting for data.
85    
86 root 1.40 =item on_error => $cb->($handle)
87 root 1.10
88     This is the fatal error callback, that is called when, well, a fatal error
89 elmex 1.20 occurs, such as not being able to resolve the hostname, failure to connect
90 root 1.10 or a read error.
91 root 1.8
92     The object will not be in a usable state when this callback has been
93     called.
94    
95 root 1.10 On callback entrance, the value of C<$!> contains the operating system
96 root 1.43 error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
97 root 1.8
98 root 1.38 The callback should throw an exception. If it returns, then
99 root 1.37 AnyEvent::Handle will C<croak> for you.
100    
101 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
102     you will not be notified of errors otherwise. The default simply calls
103     die.
104 root 1.8
105 root 1.40 =item on_read => $cb->($handle)
106 root 1.8
107     This sets the default read callback, which is called when data arrives
108 root 1.10 and no read request is in the queue.
109 root 1.8
110     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
111 root 1.40 method or access the C<$handle->{rbuf}> member directly.
112 root 1.8
113     When an EOF condition is detected then AnyEvent::Handle will first try to
114     feed all the remaining data to the queued callbacks and C<on_read> before
115     calling the C<on_eof> callback. If no progress can be made, then a fatal
116     error will be raised (with C<$!> set to C<EPIPE>).
117 elmex 1.1
118 root 1.40 =item on_drain => $cb->($handle)
119 elmex 1.1
120 root 1.8 This sets the callback that is called when the write buffer becomes empty
121     (or when the callback is set and the buffer is empty already).
122 elmex 1.1
123 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
124 elmex 1.2
125 root 1.43 =item timeout => $fractional_seconds
126    
127     If non-zero, then this enables an "inactivity" timeout: whenever this many
128     seconds pass without a successful read or write on the underlying file
129     handle, the C<on_timeout> callback will be invoked (and if that one is
130 root 1.45 missing, an C<ETIMEDOUT> error will be raised).
131 root 1.43
132     Note that timeout processing is also active when you currently do not have
133     any outstanding read or write requests: If you plan to keep the connection
134     idle then you should disable the timout temporarily or ignore the timeout
135     in the C<on_timeout> callback.
136    
137     Zero (the default) disables this timeout.
138    
139     =item on_timeout => $cb->($handle)
140    
141     Called whenever the inactivity timeout passes. If you return from this
142     callback, then the timeout will be reset as if some activity had happened,
143     so this condition is not fatal in any way.
144    
145 root 1.8 =item rbuf_max => <bytes>
146 elmex 1.2
147 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
148     when the read buffer ever (strictly) exceeds this size. This is useful to
149     avoid denial-of-service attacks.
150 elmex 1.2
151 root 1.8 For example, a server accepting connections from untrusted sources should
152     be configured to accept only so-and-so much data that it cannot act on
153     (for example, when expecting a line, an attacker could send an unlimited
154     amount of data without a callback ever being called as long as the line
155     isn't finished).
156 elmex 1.2
157 root 1.8 =item read_size => <bytes>
158 elmex 1.2
159 root 1.8 The default read block size (the amount of bytes this module will try to read
160     on each [loop iteration). Default: C<4096>.
161    
162     =item low_water_mark => <bytes>
163    
164     Sets the amount of bytes (default: C<0>) that make up an "empty" write
165     buffer: If the write reaches this size or gets even samller it is
166     considered empty.
167 elmex 1.2
168 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
169    
170     When this parameter is given, it enables TLS (SSL) mode, that means it
171     will start making tls handshake and will transparently encrypt/decrypt
172     data.
173    
174 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
175     automatically when you try to create a TLS handle).
176    
177 root 1.19 For the TLS server side, use C<accept>, and for the TLS client side of a
178     connection, use C<connect> mode.
179    
180     You can also provide your own TLS connection object, but you have
181     to make sure that you call either C<Net::SSLeay::set_connect_state>
182     or C<Net::SSLeay::set_accept_state> on it before you pass it to
183     AnyEvent::Handle.
184    
185 root 1.26 See the C<starttls> method if you need to start TLs negotiation later.
186    
187 root 1.19 =item tls_ctx => $ssl_ctx
188    
189     Use the given Net::SSLeay::CTX object to create the new TLS connection
190     (unless a connection object was specified directly). If this parameter is
191     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
192    
193 root 1.40 =item json => JSON or JSON::XS object
194    
195     This is the json coder object used by the C<json> read and write types.
196    
197 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
198     suitable one, which will write and expect UTF-8 encoded JSON texts.
199 root 1.40
200     Note that you are responsible to depend on the JSON module if you want to
201     use this functionality, as AnyEvent does not have a dependency itself.
202    
203 root 1.38 =item filter_r => $cb
204    
205     =item filter_w => $cb
206    
207     These exist, but are undocumented at this time.
208    
209 elmex 1.1 =back
210    
211     =cut
212    
213     sub new {
214 root 1.8 my $class = shift;
215    
216     my $self = bless { @_ }, $class;
217    
218     $self->{fh} or Carp::croak "mandatory argument fh is missing";
219    
220     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
221 elmex 1.1
222 root 1.19 if ($self->{tls}) {
223     require Net::SSLeay;
224     $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
225     }
226    
227 root 1.43 # $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; # nop
228     # $self->on_error (delete $self->{on_error}) if $self->{on_error}; # nop
229     # $self->on_read (delete $self->{on_read} ) if $self->{on_read}; # nop
230 root 1.8 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
231 root 1.43
232 root 1.44 $self->{_activity} = AnyEvent->now;
233 root 1.43 $self->_timeout;
234 elmex 1.1
235 root 1.10 $self->start_read;
236    
237 root 1.8 $self
238     }
239 elmex 1.2
240 root 1.8 sub _shutdown {
241     my ($self) = @_;
242 elmex 1.2
243 root 1.38 delete $self->{_rw};
244     delete $self->{_ww};
245 root 1.8 delete $self->{fh};
246     }
247    
248     sub error {
249     my ($self) = @_;
250    
251     {
252     local $!;
253     $self->_shutdown;
254 elmex 1.1 }
255    
256 root 1.37 $self->{on_error}($self)
257     if $self->{on_error};
258    
259     Carp::croak "AnyEvent::Handle uncaught fatal error: $!";
260 elmex 1.1 }
261    
262 root 1.8 =item $fh = $handle->fh
263 elmex 1.1
264 root 1.22 This method returns the file handle of the L<AnyEvent::Handle> object.
265 elmex 1.1
266     =cut
267    
268 root 1.38 sub fh { $_[0]{fh} }
269 elmex 1.1
270 root 1.8 =item $handle->on_error ($cb)
271 elmex 1.1
272 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
273 elmex 1.1
274 root 1.8 =cut
275    
276     sub on_error {
277     $_[0]{on_error} = $_[1];
278     }
279    
280     =item $handle->on_eof ($cb)
281    
282     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
283 elmex 1.1
284     =cut
285    
286 root 1.8 sub on_eof {
287     $_[0]{on_eof} = $_[1];
288     }
289    
290 root 1.43 =item $handle->on_timeout ($cb)
291    
292     Replace the current C<on_timeout> callback, or disables the callback
293     (but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
294     argument.
295    
296     =cut
297    
298     sub on_timeout {
299     $_[0]{on_timeout} = $_[1];
300     }
301    
302     #############################################################################
303    
304     =item $handle->timeout ($seconds)
305    
306     Configures (or disables) the inactivity timeout.
307    
308     =cut
309    
310     sub timeout {
311     my ($self, $timeout) = @_;
312    
313     $self->{timeout} = $timeout;
314     $self->_timeout;
315     }
316    
317     # reset the timeout watcher, as neccessary
318     # also check for time-outs
319     sub _timeout {
320     my ($self) = @_;
321    
322     if ($self->{timeout}) {
323 root 1.44 my $NOW = AnyEvent->now;
324 root 1.43
325     # when would the timeout trigger?
326     my $after = $self->{_activity} + $self->{timeout} - $NOW;
327    
328     # now or in the past already?
329     if ($after <= 0) {
330     $self->{_activity} = $NOW;
331    
332     if ($self->{on_timeout}) {
333     $self->{on_timeout}->($self);
334     } else {
335     $! = Errno::ETIMEDOUT;
336     $self->error;
337     }
338    
339     # callbakx could have changed timeout value, optimise
340     return unless $self->{timeout};
341    
342     # calculate new after
343     $after = $self->{timeout};
344     }
345    
346     Scalar::Util::weaken $self;
347    
348     $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
349     delete $self->{_tw};
350     $self->_timeout;
351     });
352     } else {
353     delete $self->{_tw};
354     }
355     }
356    
357 root 1.9 #############################################################################
358    
359     =back
360    
361     =head2 WRITE QUEUE
362    
363     AnyEvent::Handle manages two queues per handle, one for writing and one
364     for reading.
365    
366     The write queue is very simple: you can add data to its end, and
367     AnyEvent::Handle will automatically try to get rid of it for you.
368    
369 elmex 1.20 When data could be written and the write buffer is shorter then the low
370 root 1.9 water mark, the C<on_drain> callback will be invoked.
371    
372     =over 4
373    
374 root 1.8 =item $handle->on_drain ($cb)
375    
376     Sets the C<on_drain> callback or clears it (see the description of
377     C<on_drain> in the constructor).
378    
379     =cut
380    
381     sub on_drain {
382 elmex 1.1 my ($self, $cb) = @_;
383    
384 root 1.8 $self->{on_drain} = $cb;
385    
386     $cb->($self)
387     if $cb && $self->{low_water_mark} >= length $self->{wbuf};
388     }
389    
390     =item $handle->push_write ($data)
391    
392     Queues the given scalar to be written. You can push as much data as you
393     want (only limited by the available memory), as C<AnyEvent::Handle>
394     buffers it independently of the kernel.
395    
396     =cut
397    
398 root 1.17 sub _drain_wbuf {
399     my ($self) = @_;
400 root 1.8
401 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
402 root 1.35
403 root 1.8 Scalar::Util::weaken $self;
404 root 1.35
405 root 1.8 my $cb = sub {
406     my $len = syswrite $self->{fh}, $self->{wbuf};
407    
408 root 1.29 if ($len >= 0) {
409 root 1.8 substr $self->{wbuf}, 0, $len, "";
410    
411 root 1.44 $self->{_activity} = AnyEvent->now;
412 root 1.43
413 root 1.8 $self->{on_drain}($self)
414     if $self->{low_water_mark} >= length $self->{wbuf}
415     && $self->{on_drain};
416    
417 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
418 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
419 root 1.8 $self->error;
420 elmex 1.1 }
421 root 1.8 };
422    
423 root 1.35 # try to write data immediately
424     $cb->();
425 root 1.8
426 root 1.35 # if still data left in wbuf, we need to poll
427 root 1.38 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
428 root 1.35 if length $self->{wbuf};
429 root 1.8 };
430     }
431    
432 root 1.30 our %WH;
433    
434     sub register_write_type($$) {
435     $WH{$_[0]} = $_[1];
436     }
437    
438 root 1.17 sub push_write {
439     my $self = shift;
440    
441 root 1.29 if (@_ > 1) {
442     my $type = shift;
443    
444     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
445     ->($self, @_);
446     }
447    
448 root 1.17 if ($self->{filter_w}) {
449 root 1.18 $self->{filter_w}->($self, \$_[0]);
450 root 1.17 } else {
451     $self->{wbuf} .= $_[0];
452     $self->_drain_wbuf;
453     }
454     }
455    
456 root 1.29 =item $handle->push_write (type => @args)
457    
458     =item $handle->unshift_write (type => @args)
459    
460     Instead of formatting your data yourself, you can also let this module do
461     the job by specifying a type and type-specific arguments.
462    
463 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
464     drop by and tell us):
465 root 1.29
466     =over 4
467    
468     =item netstring => $string
469    
470     Formats the given value as netstring
471     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
472    
473 root 1.30 =back
474    
475 root 1.29 =cut
476    
477     register_write_type netstring => sub {
478     my ($self, $string) = @_;
479    
480     sprintf "%d:%s,", (length $string), $string
481     };
482    
483 root 1.39 =item json => $array_or_hashref
484    
485 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
486     provide your own JSON object, this means it will be encoded to JSON text
487     in UTF-8.
488    
489     JSON objects (and arrays) are self-delimiting, so you can write JSON at
490     one end of a handle and read them at the other end without using any
491     additional framing.
492    
493 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
494     this module doesn't need delimiters after or between JSON texts to be
495     able to read them, many other languages depend on that.
496    
497     A simple RPC protocol that interoperates easily with others is to send
498     JSON arrays (or objects, although arrays are usually the better choice as
499     they mimic how function argument passing works) and a newline after each
500     JSON text:
501    
502     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
503     $handle->push_write ("\012");
504    
505     An AnyEvent::Handle receiver would simply use the C<json> read type and
506     rely on the fact that the newline will be skipped as leading whitespace:
507    
508     $handle->push_read (json => sub { my $array = $_[1]; ... });
509    
510     Other languages could read single lines terminated by a newline and pass
511     this line into their JSON decoder of choice.
512    
513 root 1.40 =cut
514    
515     register_write_type json => sub {
516     my ($self, $ref) = @_;
517    
518     require JSON;
519    
520     $self->{json} ? $self->{json}->encode ($ref)
521     : JSON::encode_json ($ref)
522     };
523    
524     =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
525 root 1.30
526     This function (not method) lets you add your own types to C<push_write>.
527     Whenever the given C<type> is used, C<push_write> will invoke the code
528     reference with the handle object and the remaining arguments.
529 root 1.29
530 root 1.30 The code reference is supposed to return a single octet string that will
531     be appended to the write buffer.
532 root 1.29
533 root 1.30 Note that this is a function, and all types registered this way will be
534     global, so try to use unique names.
535 root 1.29
536 root 1.30 =cut
537 root 1.29
538 root 1.8 #############################################################################
539    
540 root 1.9 =back
541    
542     =head2 READ QUEUE
543    
544     AnyEvent::Handle manages two queues per handle, one for writing and one
545     for reading.
546    
547     The read queue is more complex than the write queue. It can be used in two
548     ways, the "simple" way, using only C<on_read> and the "complex" way, using
549     a queue.
550    
551     In the simple case, you just install an C<on_read> callback and whenever
552     new data arrives, it will be called. You can then remove some data (if
553     enough is there) from the read buffer (C<< $handle->rbuf >>) if you want
554     or not.
555    
556     In the more complex case, you want to queue multiple callbacks. In this
557     case, AnyEvent::Handle will call the first queued callback each time new
558     data arrives and removes it when it has done its job (see C<push_read>,
559     below).
560    
561     This way you can, for example, push three line-reads, followed by reading
562     a chunk of data, and AnyEvent::Handle will execute them in order.
563    
564     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
565     the specified number of bytes which give an XML datagram.
566    
567     # in the default state, expect some header bytes
568     $handle->on_read (sub {
569     # some data is here, now queue the length-header-read (4 octets)
570     shift->unshift_read_chunk (4, sub {
571     # header arrived, decode
572     my $len = unpack "N", $_[1];
573    
574     # now read the payload
575     shift->unshift_read_chunk ($len, sub {
576     my $xml = $_[1];
577     # handle xml
578     });
579     });
580     });
581    
582     Example 2: Implement a client for a protocol that replies either with
583     "OK" and another line or "ERROR" for one request, and 64 bytes for the
584     second request. Due tot he availability of a full queue, we can just
585     pipeline sending both requests and manipulate the queue as necessary in
586     the callbacks:
587    
588     # request one
589     $handle->push_write ("request 1\015\012");
590    
591     # we expect "ERROR" or "OK" as response, so push a line read
592     $handle->push_read_line (sub {
593     # if we got an "OK", we have to _prepend_ another line,
594     # so it will be read before the second request reads its 64 bytes
595     # which are already in the queue when this callback is called
596     # we don't do this in case we got an error
597     if ($_[1] eq "OK") {
598     $_[0]->unshift_read_line (sub {
599     my $response = $_[1];
600     ...
601     });
602     }
603     });
604    
605     # request two
606     $handle->push_write ("request 2\015\012");
607    
608     # simply read 64 bytes, always
609     $handle->push_read_chunk (64, sub {
610     my $response = $_[1];
611     ...
612     });
613    
614     =over 4
615    
616 root 1.10 =cut
617    
618 root 1.8 sub _drain_rbuf {
619     my ($self) = @_;
620 elmex 1.1
621 root 1.17 if (
622     defined $self->{rbuf_max}
623     && $self->{rbuf_max} < length $self->{rbuf}
624     ) {
625 root 1.37 $! = &Errno::ENOSPC;
626     $self->error;
627 root 1.17 }
628    
629 root 1.11 return if $self->{in_drain};
630 root 1.8 local $self->{in_drain} = 1;
631 elmex 1.1
632 root 1.8 while (my $len = length $self->{rbuf}) {
633     no strict 'refs';
634 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
635 root 1.29 unless ($cb->($self)) {
636 root 1.38 if ($self->{_eof}) {
637 root 1.10 # no progress can be made (not enough data and no data forthcoming)
638 root 1.37 $! = &Errno::EPIPE;
639     $self->error;
640 root 1.10 }
641    
642 root 1.38 unshift @{ $self->{_queue} }, $cb;
643 root 1.8 return;
644     }
645     } elsif ($self->{on_read}) {
646     $self->{on_read}($self);
647    
648     if (
649 root 1.38 $self->{_eof} # if no further data will arrive
650 root 1.8 && $len == length $self->{rbuf} # and no data has been consumed
651 root 1.38 && !@{ $self->{_queue} } # and the queue is still empty
652 root 1.8 && $self->{on_read} # and we still want to read data
653     ) {
654     # then no progress can be made
655 root 1.37 $! = &Errno::EPIPE;
656     $self->error;
657 elmex 1.1 }
658 root 1.8 } else {
659     # read side becomes idle
660 root 1.38 delete $self->{_rw};
661 root 1.8 return;
662     }
663     }
664    
665 root 1.38 if ($self->{_eof}) {
666 root 1.8 $self->_shutdown;
667 root 1.16 $self->{on_eof}($self)
668     if $self->{on_eof};
669 root 1.8 }
670 elmex 1.1 }
671    
672 root 1.8 =item $handle->on_read ($cb)
673 elmex 1.1
674 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
675     the new callback is C<undef>). See the description of C<on_read> in the
676     constructor.
677 elmex 1.1
678 root 1.8 =cut
679    
680     sub on_read {
681     my ($self, $cb) = @_;
682 elmex 1.1
683 root 1.8 $self->{on_read} = $cb;
684 elmex 1.1 }
685    
686 root 1.8 =item $handle->rbuf
687    
688     Returns the read buffer (as a modifiable lvalue).
689 elmex 1.1
690 root 1.8 You can access the read buffer directly as the C<< ->{rbuf} >> member, if
691     you want.
692 elmex 1.1
693 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
694     C<push_read> or C<unshift_read> methods are used. The other read methods
695     automatically manage the read buffer.
696 elmex 1.1
697     =cut
698    
699 elmex 1.2 sub rbuf : lvalue {
700 root 1.8 $_[0]{rbuf}
701 elmex 1.2 }
702 elmex 1.1
703 root 1.8 =item $handle->push_read ($cb)
704    
705     =item $handle->unshift_read ($cb)
706    
707     Append the given callback to the end of the queue (C<push_read>) or
708     prepend it (C<unshift_read>).
709    
710     The callback is called each time some additional read data arrives.
711 elmex 1.1
712 elmex 1.20 It must check whether enough data is in the read buffer already.
713 elmex 1.1
714 root 1.8 If not enough data is available, it must return the empty list or a false
715     value, in which case it will be called repeatedly until enough data is
716     available (or an error condition is detected).
717    
718     If enough data was available, then the callback must remove all data it is
719     interested in (which can be none at all) and return a true value. After returning
720     true, it will be removed from the queue.
721 elmex 1.1
722     =cut
723    
724 root 1.30 our %RH;
725    
726     sub register_read_type($$) {
727     $RH{$_[0]} = $_[1];
728     }
729    
730 root 1.8 sub push_read {
731 root 1.28 my $self = shift;
732     my $cb = pop;
733    
734     if (@_) {
735     my $type = shift;
736    
737     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
738     ->($self, $cb, @_);
739     }
740 elmex 1.1
741 root 1.38 push @{ $self->{_queue} }, $cb;
742 root 1.8 $self->_drain_rbuf;
743 elmex 1.1 }
744    
745 root 1.8 sub unshift_read {
746 root 1.28 my $self = shift;
747     my $cb = pop;
748    
749     if (@_) {
750     my $type = shift;
751    
752     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
753     ->($self, $cb, @_);
754     }
755    
756 root 1.8
757 root 1.38 unshift @{ $self->{_queue} }, $cb;
758 root 1.8 $self->_drain_rbuf;
759     }
760 elmex 1.1
761 root 1.28 =item $handle->push_read (type => @args, $cb)
762 elmex 1.1
763 root 1.28 =item $handle->unshift_read (type => @args, $cb)
764 elmex 1.1
765 root 1.28 Instead of providing a callback that parses the data itself you can chose
766     between a number of predefined parsing formats, for chunks of data, lines
767     etc.
768 elmex 1.1
769 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
770     drop by and tell us):
771 root 1.28
772     =over 4
773    
774 root 1.40 =item chunk => $octets, $cb->($handle, $data)
775 root 1.28
776     Invoke the callback only once C<$octets> bytes have been read. Pass the
777     data read to the callback. The callback will never be called with less
778     data.
779    
780     Example: read 2 bytes.
781    
782     $handle->push_read (chunk => 2, sub {
783     warn "yay ", unpack "H*", $_[1];
784     });
785 elmex 1.1
786     =cut
787    
788 root 1.28 register_read_type chunk => sub {
789     my ($self, $cb, $len) = @_;
790 elmex 1.1
791 root 1.8 sub {
792     $len <= length $_[0]{rbuf} or return;
793 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
794 root 1.8 1
795     }
796 root 1.28 };
797 root 1.8
798 root 1.28 # compatibility with older API
799 root 1.8 sub push_read_chunk {
800 root 1.28 $_[0]->push_read (chunk => $_[1], $_[2]);
801 root 1.8 }
802 elmex 1.1
803 root 1.8 sub unshift_read_chunk {
804 root 1.28 $_[0]->unshift_read (chunk => $_[1], $_[2]);
805 elmex 1.1 }
806    
807 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
808 elmex 1.1
809 root 1.8 The callback will be called only once a full line (including the end of
810     line marker, C<$eol>) has been read. This line (excluding the end of line
811     marker) will be passed to the callback as second argument (C<$line>), and
812     the end of line marker as the third argument (C<$eol>).
813 elmex 1.1
814 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
815     will be interpreted as a fixed record end marker, or it can be a regex
816     object (e.g. created by C<qr>), in which case it is interpreted as a
817     regular expression.
818 elmex 1.1
819 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
820     undef), then C<qr|\015?\012|> is used (which is good for most internet
821     protocols).
822 elmex 1.1
823 root 1.8 Partial lines at the end of the stream will never be returned, as they are
824     not marked by the end of line marker.
825 elmex 1.1
826 root 1.8 =cut
827 elmex 1.1
828 root 1.28 register_read_type line => sub {
829     my ($self, $cb, $eol) = @_;
830 elmex 1.1
831 root 1.28 $eol = qr|(\015?\012)| if @_ < 3;
832 root 1.14 $eol = quotemeta $eol unless ref $eol;
833     $eol = qr|^(.*?)($eol)|s;
834 elmex 1.1
835 root 1.8 sub {
836     $_[0]{rbuf} =~ s/$eol// or return;
837 elmex 1.1
838 elmex 1.12 $cb->($_[0], $1, $2);
839 root 1.8 1
840     }
841 root 1.28 };
842 elmex 1.1
843 root 1.28 # compatibility with older API
844 root 1.8 sub push_read_line {
845 root 1.28 my $self = shift;
846     $self->push_read (line => @_);
847 root 1.10 }
848    
849     sub unshift_read_line {
850 root 1.28 my $self = shift;
851     $self->unshift_read (line => @_);
852 root 1.10 }
853    
854 root 1.40 =item netstring => $cb->($handle, $string)
855 root 1.29
856     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
857    
858     Throws an error with C<$!> set to EBADMSG on format violations.
859    
860     =cut
861    
862     register_read_type netstring => sub {
863     my ($self, $cb) = @_;
864    
865     sub {
866     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
867     if ($_[0]{rbuf} =~ /[^0-9]/) {
868     $! = &Errno::EBADMSG;
869     $self->error;
870     }
871     return;
872     }
873    
874     my $len = $1;
875    
876     $self->unshift_read (chunk => $len, sub {
877     my $string = $_[1];
878     $_[0]->unshift_read (chunk => 1, sub {
879     if ($_[1] eq ",") {
880     $cb->($_[0], $string);
881     } else {
882     $! = &Errno::EBADMSG;
883     $self->error;
884     }
885     });
886     });
887    
888     1
889     }
890     };
891    
892 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
893 root 1.36
894     Makes a regex match against the regex object C<$accept> and returns
895     everything up to and including the match.
896    
897     Example: read a single line terminated by '\n'.
898    
899     $handle->push_read (regex => qr<\n>, sub { ... });
900    
901     If C<$reject> is given and not undef, then it determines when the data is
902     to be rejected: it is matched against the data when the C<$accept> regex
903     does not match and generates an C<EBADMSG> error when it matches. This is
904     useful to quickly reject wrong data (to avoid waiting for a timeout or a
905     receive buffer overflow).
906    
907     Example: expect a single decimal number followed by whitespace, reject
908     anything else (not the use of an anchor).
909    
910     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
911    
912     If C<$skip> is given and not C<undef>, then it will be matched against
913     the receive buffer when neither C<$accept> nor C<$reject> match,
914     and everything preceding and including the match will be accepted
915     unconditionally. This is useful to skip large amounts of data that you
916     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
917     have to start matching from the beginning. This is purely an optimisation
918     and is usually worth only when you expect more than a few kilobytes.
919    
920     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
921     expect the header to be very large (it isn't in practise, but...), we use
922     a skip regex to skip initial portions. The skip regex is tricky in that
923     it only accepts something not ending in either \015 or \012, as these are
924     required for the accept regex.
925    
926     $handle->push_read (regex =>
927     qr<\015\012\015\012>,
928     undef, # no reject
929     qr<^.*[^\015\012]>,
930     sub { ... });
931    
932     =cut
933    
934     register_read_type regex => sub {
935     my ($self, $cb, $accept, $reject, $skip) = @_;
936    
937     my $data;
938     my $rbuf = \$self->{rbuf};
939    
940     sub {
941     # accept
942     if ($$rbuf =~ $accept) {
943     $data .= substr $$rbuf, 0, $+[0], "";
944     $cb->($self, $data);
945     return 1;
946     }
947    
948     # reject
949     if ($reject && $$rbuf =~ $reject) {
950     $! = &Errno::EBADMSG;
951     $self->error;
952     }
953    
954     # skip
955     if ($skip && $$rbuf =~ $skip) {
956     $data .= substr $$rbuf, 0, $+[0], "";
957     }
958    
959     ()
960     }
961     };
962    
963 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
964    
965     Reads a JSON object or array, decodes it and passes it to the callback.
966    
967     If a C<json> object was passed to the constructor, then that will be used
968     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
969    
970     This read type uses the incremental parser available with JSON version
971     2.09 (and JSON::XS version 2.2) and above. You have to provide a
972     dependency on your own: this module will load the JSON module, but
973     AnyEvent does not depend on it itself.
974    
975     Since JSON texts are fully self-delimiting, the C<json> read and write
976 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
977     the C<json> write type description, above, for an actual example.
978 root 1.40
979     =cut
980    
981     register_read_type json => sub {
982     my ($self, $cb, $accept, $reject, $skip) = @_;
983    
984     require JSON;
985    
986     my $data;
987     my $rbuf = \$self->{rbuf};
988    
989 root 1.41 my $json = $self->{json} ||= JSON->new->utf8;
990 root 1.40
991     sub {
992     my $ref = $json->incr_parse ($self->{rbuf});
993    
994     if ($ref) {
995     $self->{rbuf} = $json->incr_text;
996     $json->incr_text = "";
997     $cb->($self, $ref);
998    
999     1
1000     } else {
1001     $self->{rbuf} = "";
1002     ()
1003     }
1004     }
1005     };
1006    
1007 root 1.28 =back
1008    
1009 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1010 root 1.30
1011     This function (not method) lets you add your own types to C<push_read>.
1012    
1013     Whenever the given C<type> is used, C<push_read> will invoke the code
1014     reference with the handle object, the callback and the remaining
1015     arguments.
1016    
1017     The code reference is supposed to return a callback (usually a closure)
1018     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1019    
1020     It should invoke the passed callback when it is done reading (remember to
1021 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1022 root 1.30
1023     Note that this is a function, and all types registered this way will be
1024     global, so try to use unique names.
1025    
1026     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1027     search for C<register_read_type>)).
1028    
1029 root 1.10 =item $handle->stop_read
1030    
1031     =item $handle->start_read
1032    
1033 root 1.18 In rare cases you actually do not want to read anything from the
1034 root 1.10 socket. In this case you can call C<stop_read>. Neither C<on_read> no
1035 root 1.22 any queued callbacks will be executed then. To start reading again, call
1036 root 1.10 C<start_read>.
1037    
1038     =cut
1039    
1040     sub stop_read {
1041     my ($self) = @_;
1042 elmex 1.1
1043 root 1.38 delete $self->{_rw};
1044 root 1.8 }
1045 elmex 1.1
1046 root 1.10 sub start_read {
1047     my ($self) = @_;
1048    
1049 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1050 root 1.10 Scalar::Util::weaken $self;
1051    
1052 root 1.38 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1053 root 1.17 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
1054     my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1055 root 1.10
1056     if ($len > 0) {
1057 root 1.44 $self->{_activity} = AnyEvent->now;
1058 root 1.43
1059 root 1.17 $self->{filter_r}
1060 root 1.18 ? $self->{filter_r}->($self, $rbuf)
1061 root 1.17 : $self->_drain_rbuf;
1062 root 1.10
1063     } elsif (defined $len) {
1064 root 1.38 delete $self->{_rw};
1065 root 1.43 delete $self->{_ww};
1066     delete $self->{_tw};
1067 root 1.38 $self->{_eof} = 1;
1068 root 1.17 $self->_drain_rbuf;
1069 root 1.10
1070 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1071 root 1.10 return $self->error;
1072     }
1073     });
1074     }
1075 elmex 1.1 }
1076    
1077 root 1.19 sub _dotls {
1078     my ($self) = @_;
1079    
1080 root 1.38 if (length $self->{_tls_wbuf}) {
1081     while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1082     substr $self->{_tls_wbuf}, 0, $len, "";
1083 root 1.22 }
1084 root 1.19 }
1085    
1086 root 1.38 if (defined (my $buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1087 root 1.19 $self->{wbuf} .= $buf;
1088     $self->_drain_wbuf;
1089     }
1090    
1091 root 1.23 while (defined (my $buf = Net::SSLeay::read ($self->{tls}))) {
1092     $self->{rbuf} .= $buf;
1093     $self->_drain_rbuf;
1094     }
1095    
1096 root 1.24 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1097    
1098     if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1099 root 1.23 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1100     $self->error;
1101     } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1102     $! = &Errno::EIO;
1103     $self->error;
1104 root 1.19 }
1105 root 1.23
1106     # all others are fine for our purposes
1107 root 1.19 }
1108     }
1109    
1110 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1111    
1112     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1113     object is created, you can also do that at a later time by calling
1114     C<starttls>.
1115    
1116     The first argument is the same as the C<tls> constructor argument (either
1117     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1118    
1119     The second argument is the optional C<Net::SSLeay::CTX> object that is
1120     used when AnyEvent::Handle has to create its own TLS connection object.
1121    
1122 root 1.38 The TLS connection object will end up in C<< $handle->{tls} >> after this
1123     call and can be used or changed to your liking. Note that the handshake
1124     might have already started when this function returns.
1125    
1126 root 1.25 =cut
1127    
1128 root 1.19 # TODO: maybe document...
1129     sub starttls {
1130     my ($self, $ssl, $ctx) = @_;
1131    
1132 root 1.25 $self->stoptls;
1133    
1134 root 1.19 if ($ssl eq "accept") {
1135     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1136     Net::SSLeay::set_accept_state ($ssl);
1137     } elsif ($ssl eq "connect") {
1138     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1139     Net::SSLeay::set_connect_state ($ssl);
1140     }
1141    
1142     $self->{tls} = $ssl;
1143    
1144 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1145     # but the openssl maintainers basically said: "trust us, it just works".
1146     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1147     # and mismaintained ssleay-module doesn't even offer them).
1148 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1149 root 1.21 Net::SSLeay::CTX_set_mode ($self->{tls},
1150 root 1.34 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1151     | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1152 root 1.21
1153 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1154     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1155 root 1.19
1156 root 1.38 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1157 root 1.19
1158     $self->{filter_w} = sub {
1159 root 1.38 $_[0]{_tls_wbuf} .= ${$_[1]};
1160 root 1.19 &_dotls;
1161     };
1162     $self->{filter_r} = sub {
1163 root 1.38 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1164 root 1.19 &_dotls;
1165     };
1166     }
1167    
1168 root 1.25 =item $handle->stoptls
1169    
1170     Destroys the SSL connection, if any. Partial read or write data will be
1171     lost.
1172    
1173     =cut
1174    
1175     sub stoptls {
1176     my ($self) = @_;
1177    
1178     Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
1179 root 1.38
1180     delete $self->{_rbio};
1181     delete $self->{_wbio};
1182     delete $self->{_tls_wbuf};
1183 root 1.25 delete $self->{filter_r};
1184     delete $self->{filter_w};
1185     }
1186    
1187 root 1.19 sub DESTROY {
1188     my $self = shift;
1189    
1190 root 1.25 $self->stoptls;
1191 root 1.19 }
1192    
1193     =item AnyEvent::Handle::TLS_CTX
1194    
1195     This function creates and returns the Net::SSLeay::CTX object used by
1196     default for TLS mode.
1197    
1198     The context is created like this:
1199    
1200     Net::SSLeay::load_error_strings;
1201     Net::SSLeay::SSLeay_add_ssl_algorithms;
1202     Net::SSLeay::randomize;
1203    
1204     my $CTX = Net::SSLeay::CTX_new;
1205    
1206     Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1207    
1208     =cut
1209    
1210     our $TLS_CTX;
1211    
1212     sub TLS_CTX() {
1213     $TLS_CTX || do {
1214     require Net::SSLeay;
1215    
1216     Net::SSLeay::load_error_strings ();
1217     Net::SSLeay::SSLeay_add_ssl_algorithms ();
1218     Net::SSLeay::randomize ();
1219    
1220     $TLS_CTX = Net::SSLeay::CTX_new ();
1221    
1222     Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1223    
1224     $TLS_CTX
1225     }
1226     }
1227    
1228 elmex 1.1 =back
1229    
1230 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
1231    
1232     In many cases, you might want to subclass AnyEvent::Handle.
1233    
1234     To make this easier, a given version of AnyEvent::Handle uses these
1235     conventions:
1236    
1237     =over 4
1238    
1239     =item * all constructor arguments become object members.
1240    
1241     At least initially, when you pass a C<tls>-argument to the constructor it
1242     will end up in C<< $handle->{tls} >>. Those members might be changes or
1243     mutated later on (for example C<tls> will hold the TLS connection object).
1244    
1245     =item * other object member names are prefixed with an C<_>.
1246    
1247     All object members not explicitly documented (internal use) are prefixed
1248     with an underscore character, so the remaining non-C<_>-namespace is free
1249     for use for subclasses.
1250    
1251     =item * all members not documented here and not prefixed with an underscore
1252     are free to use in subclasses.
1253    
1254     Of course, new versions of AnyEvent::Handle may introduce more "public"
1255     member variables, but thats just life, at least it is documented.
1256    
1257     =back
1258    
1259 elmex 1.1 =head1 AUTHOR
1260    
1261 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1262 elmex 1.1
1263     =cut
1264    
1265     1; # End of AnyEvent::Handle