ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.47
Committed: Thu May 29 00:25:28 2008 UTC (16 years ago) by root
Branch: MAIN
Changes since 1.46: +0 -2 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 package AnyEvent::Handle;
2    
3 elmex 1.6 no warnings;
4 elmex 1.1 use strict;
5    
6 root 1.8 use AnyEvent ();
7 root 1.42 use AnyEvent::Util qw(WSAEWOULDBLOCK);
8 root 1.8 use Scalar::Util ();
9     use Carp ();
10     use Fcntl ();
11 root 1.43 use Errno qw(EAGAIN EINTR);
12 elmex 1.1
13     =head1 NAME
14    
15 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 elmex 1.1
17     =cut
18    
19 root 1.15 our $VERSION = '0.04';
20 elmex 1.1
21     =head1 SYNOPSIS
22    
23     use AnyEvent;
24     use AnyEvent::Handle;
25    
26     my $cv = AnyEvent->condvar;
27    
28 root 1.31 my $handle =
29 elmex 1.2 AnyEvent::Handle->new (
30     fh => \*STDIN,
31     on_eof => sub {
32     $cv->broadcast;
33     },
34     );
35    
36 root 1.31 # send some request line
37     $handle->push_write ("getinfo\015\012");
38    
39     # read the response line
40     $handle->push_read (line => sub {
41     my ($handle, $line) = @_;
42     warn "read line <$line>\n";
43     $cv->send;
44     });
45    
46     $cv->recv;
47 elmex 1.1
48     =head1 DESCRIPTION
49    
50 root 1.8 This module is a helper module to make it easier to do event-based I/O on
51 elmex 1.13 filehandles. For utility functions for doing non-blocking connects and accepts
52     on sockets see L<AnyEvent::Util>.
53 root 1.8
54     In the following, when the documentation refers to of "bytes" then this
55     means characters. As sysread and syswrite are used for all I/O, their
56     treatment of characters applies to this module as well.
57 elmex 1.1
58 root 1.8 All callbacks will be invoked with the handle object as their first
59     argument.
60 elmex 1.1
61     =head1 METHODS
62    
63     =over 4
64    
65     =item B<new (%args)>
66    
67 root 1.8 The constructor supports these arguments (all as key => value pairs).
68 elmex 1.1
69     =over 4
70    
71 root 1.8 =item fh => $filehandle [MANDATORY]
72 elmex 1.1
73     The filehandle this L<AnyEvent::Handle> object will operate on.
74    
75 root 1.8 NOTE: The filehandle will be set to non-blocking (using
76     AnyEvent::Util::fh_nonblocking).
77    
78 root 1.40 =item on_eof => $cb->($handle)
79 root 1.10
80     Set the callback to be called on EOF.
81 root 1.8
82 root 1.16 While not mandatory, it is highly recommended to set an eof callback,
83     otherwise you might end up with a closed socket while you are still
84     waiting for data.
85    
86 root 1.40 =item on_error => $cb->($handle)
87 root 1.10
88     This is the fatal error callback, that is called when, well, a fatal error
89 elmex 1.20 occurs, such as not being able to resolve the hostname, failure to connect
90 root 1.10 or a read error.
91 root 1.8
92     The object will not be in a usable state when this callback has been
93     called.
94    
95 root 1.10 On callback entrance, the value of C<$!> contains the operating system
96 root 1.43 error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
97 root 1.8
98 root 1.38 The callback should throw an exception. If it returns, then
99 root 1.37 AnyEvent::Handle will C<croak> for you.
100    
101 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
102     you will not be notified of errors otherwise. The default simply calls
103     die.
104 root 1.8
105 root 1.40 =item on_read => $cb->($handle)
106 root 1.8
107     This sets the default read callback, which is called when data arrives
108 root 1.10 and no read request is in the queue.
109 root 1.8
110     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
111 root 1.40 method or access the C<$handle->{rbuf}> member directly.
112 root 1.8
113     When an EOF condition is detected then AnyEvent::Handle will first try to
114     feed all the remaining data to the queued callbacks and C<on_read> before
115     calling the C<on_eof> callback. If no progress can be made, then a fatal
116     error will be raised (with C<$!> set to C<EPIPE>).
117 elmex 1.1
118 root 1.40 =item on_drain => $cb->($handle)
119 elmex 1.1
120 root 1.8 This sets the callback that is called when the write buffer becomes empty
121     (or when the callback is set and the buffer is empty already).
122 elmex 1.1
123 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
124 elmex 1.2
125 root 1.43 =item timeout => $fractional_seconds
126    
127     If non-zero, then this enables an "inactivity" timeout: whenever this many
128     seconds pass without a successful read or write on the underlying file
129     handle, the C<on_timeout> callback will be invoked (and if that one is
130 root 1.45 missing, an C<ETIMEDOUT> error will be raised).
131 root 1.43
132     Note that timeout processing is also active when you currently do not have
133     any outstanding read or write requests: If you plan to keep the connection
134     idle then you should disable the timout temporarily or ignore the timeout
135     in the C<on_timeout> callback.
136    
137     Zero (the default) disables this timeout.
138    
139     =item on_timeout => $cb->($handle)
140    
141     Called whenever the inactivity timeout passes. If you return from this
142     callback, then the timeout will be reset as if some activity had happened,
143     so this condition is not fatal in any way.
144    
145 root 1.8 =item rbuf_max => <bytes>
146 elmex 1.2
147 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
148     when the read buffer ever (strictly) exceeds this size. This is useful to
149     avoid denial-of-service attacks.
150 elmex 1.2
151 root 1.8 For example, a server accepting connections from untrusted sources should
152     be configured to accept only so-and-so much data that it cannot act on
153     (for example, when expecting a line, an attacker could send an unlimited
154     amount of data without a callback ever being called as long as the line
155     isn't finished).
156 elmex 1.2
157 root 1.8 =item read_size => <bytes>
158 elmex 1.2
159 root 1.8 The default read block size (the amount of bytes this module will try to read
160 root 1.46 during each (loop iteration). Default: C<8192>.
161 root 1.8
162     =item low_water_mark => <bytes>
163    
164     Sets the amount of bytes (default: C<0>) that make up an "empty" write
165     buffer: If the write reaches this size or gets even samller it is
166     considered empty.
167 elmex 1.2
168 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
169    
170     When this parameter is given, it enables TLS (SSL) mode, that means it
171     will start making tls handshake and will transparently encrypt/decrypt
172     data.
173    
174 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
175     automatically when you try to create a TLS handle).
176    
177 root 1.19 For the TLS server side, use C<accept>, and for the TLS client side of a
178     connection, use C<connect> mode.
179    
180     You can also provide your own TLS connection object, but you have
181     to make sure that you call either C<Net::SSLeay::set_connect_state>
182     or C<Net::SSLeay::set_accept_state> on it before you pass it to
183     AnyEvent::Handle.
184    
185 root 1.26 See the C<starttls> method if you need to start TLs negotiation later.
186    
187 root 1.19 =item tls_ctx => $ssl_ctx
188    
189     Use the given Net::SSLeay::CTX object to create the new TLS connection
190     (unless a connection object was specified directly). If this parameter is
191     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
192    
193 root 1.40 =item json => JSON or JSON::XS object
194    
195     This is the json coder object used by the C<json> read and write types.
196    
197 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
198     suitable one, which will write and expect UTF-8 encoded JSON texts.
199 root 1.40
200     Note that you are responsible to depend on the JSON module if you want to
201     use this functionality, as AnyEvent does not have a dependency itself.
202    
203 root 1.38 =item filter_r => $cb
204    
205     =item filter_w => $cb
206    
207     These exist, but are undocumented at this time.
208    
209 elmex 1.1 =back
210    
211     =cut
212    
213     sub new {
214 root 1.8 my $class = shift;
215    
216     my $self = bless { @_ }, $class;
217    
218     $self->{fh} or Carp::croak "mandatory argument fh is missing";
219    
220     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
221 elmex 1.1
222 root 1.19 if ($self->{tls}) {
223     require Net::SSLeay;
224     $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
225     }
226    
227 root 1.43 # $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; # nop
228     # $self->on_error (delete $self->{on_error}) if $self->{on_error}; # nop
229     # $self->on_read (delete $self->{on_read} ) if $self->{on_read}; # nop
230 root 1.8 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
231 root 1.43
232 root 1.44 $self->{_activity} = AnyEvent->now;
233 root 1.43 $self->_timeout;
234 elmex 1.1
235 root 1.10 $self->start_read;
236    
237 root 1.8 $self
238     }
239 elmex 1.2
240 root 1.8 sub _shutdown {
241     my ($self) = @_;
242 elmex 1.2
243 root 1.46 delete $self->{_tw};
244 root 1.38 delete $self->{_rw};
245     delete $self->{_ww};
246 root 1.8 delete $self->{fh};
247     }
248    
249     sub error {
250     my ($self) = @_;
251    
252     {
253     local $!;
254     $self->_shutdown;
255 elmex 1.1 }
256    
257 root 1.37 $self->{on_error}($self)
258     if $self->{on_error};
259    
260     Carp::croak "AnyEvent::Handle uncaught fatal error: $!";
261 elmex 1.1 }
262    
263 root 1.8 =item $fh = $handle->fh
264 elmex 1.1
265 root 1.22 This method returns the file handle of the L<AnyEvent::Handle> object.
266 elmex 1.1
267     =cut
268    
269 root 1.38 sub fh { $_[0]{fh} }
270 elmex 1.1
271 root 1.8 =item $handle->on_error ($cb)
272 elmex 1.1
273 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
274 elmex 1.1
275 root 1.8 =cut
276    
277     sub on_error {
278     $_[0]{on_error} = $_[1];
279     }
280    
281     =item $handle->on_eof ($cb)
282    
283     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
284 elmex 1.1
285     =cut
286    
287 root 1.8 sub on_eof {
288     $_[0]{on_eof} = $_[1];
289     }
290    
291 root 1.43 =item $handle->on_timeout ($cb)
292    
293     Replace the current C<on_timeout> callback, or disables the callback
294     (but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
295     argument.
296    
297     =cut
298    
299     sub on_timeout {
300     $_[0]{on_timeout} = $_[1];
301     }
302    
303     #############################################################################
304    
305     =item $handle->timeout ($seconds)
306    
307     Configures (or disables) the inactivity timeout.
308    
309     =cut
310    
311     sub timeout {
312     my ($self, $timeout) = @_;
313    
314     $self->{timeout} = $timeout;
315     $self->_timeout;
316     }
317    
318     # reset the timeout watcher, as neccessary
319     # also check for time-outs
320     sub _timeout {
321     my ($self) = @_;
322    
323     if ($self->{timeout}) {
324 root 1.44 my $NOW = AnyEvent->now;
325 root 1.43
326     # when would the timeout trigger?
327     my $after = $self->{_activity} + $self->{timeout} - $NOW;
328    
329     # now or in the past already?
330     if ($after <= 0) {
331     $self->{_activity} = $NOW;
332    
333     if ($self->{on_timeout}) {
334     $self->{on_timeout}->($self);
335     } else {
336     $! = Errno::ETIMEDOUT;
337     $self->error;
338     }
339    
340     # callbakx could have changed timeout value, optimise
341     return unless $self->{timeout};
342    
343     # calculate new after
344     $after = $self->{timeout};
345     }
346    
347     Scalar::Util::weaken $self;
348    
349     $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
350     delete $self->{_tw};
351     $self->_timeout;
352     });
353     } else {
354     delete $self->{_tw};
355     }
356     }
357    
358 root 1.9 #############################################################################
359    
360     =back
361    
362     =head2 WRITE QUEUE
363    
364     AnyEvent::Handle manages two queues per handle, one for writing and one
365     for reading.
366    
367     The write queue is very simple: you can add data to its end, and
368     AnyEvent::Handle will automatically try to get rid of it for you.
369    
370 elmex 1.20 When data could be written and the write buffer is shorter then the low
371 root 1.9 water mark, the C<on_drain> callback will be invoked.
372    
373     =over 4
374    
375 root 1.8 =item $handle->on_drain ($cb)
376    
377     Sets the C<on_drain> callback or clears it (see the description of
378     C<on_drain> in the constructor).
379    
380     =cut
381    
382     sub on_drain {
383 elmex 1.1 my ($self, $cb) = @_;
384    
385 root 1.8 $self->{on_drain} = $cb;
386    
387     $cb->($self)
388     if $cb && $self->{low_water_mark} >= length $self->{wbuf};
389     }
390    
391     =item $handle->push_write ($data)
392    
393     Queues the given scalar to be written. You can push as much data as you
394     want (only limited by the available memory), as C<AnyEvent::Handle>
395     buffers it independently of the kernel.
396    
397     =cut
398    
399 root 1.17 sub _drain_wbuf {
400     my ($self) = @_;
401 root 1.8
402 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
403 root 1.35
404 root 1.8 Scalar::Util::weaken $self;
405 root 1.35
406 root 1.8 my $cb = sub {
407     my $len = syswrite $self->{fh}, $self->{wbuf};
408    
409 root 1.29 if ($len >= 0) {
410 root 1.8 substr $self->{wbuf}, 0, $len, "";
411    
412 root 1.44 $self->{_activity} = AnyEvent->now;
413 root 1.43
414 root 1.8 $self->{on_drain}($self)
415     if $self->{low_water_mark} >= length $self->{wbuf}
416     && $self->{on_drain};
417    
418 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
419 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
420 root 1.8 $self->error;
421 elmex 1.1 }
422 root 1.8 };
423    
424 root 1.35 # try to write data immediately
425     $cb->();
426 root 1.8
427 root 1.35 # if still data left in wbuf, we need to poll
428 root 1.38 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
429 root 1.35 if length $self->{wbuf};
430 root 1.8 };
431     }
432    
433 root 1.30 our %WH;
434    
435     sub register_write_type($$) {
436     $WH{$_[0]} = $_[1];
437     }
438    
439 root 1.17 sub push_write {
440     my $self = shift;
441    
442 root 1.29 if (@_ > 1) {
443     my $type = shift;
444    
445     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
446     ->($self, @_);
447     }
448    
449 root 1.17 if ($self->{filter_w}) {
450 root 1.18 $self->{filter_w}->($self, \$_[0]);
451 root 1.17 } else {
452     $self->{wbuf} .= $_[0];
453     $self->_drain_wbuf;
454     }
455     }
456    
457 root 1.29 =item $handle->push_write (type => @args)
458    
459     =item $handle->unshift_write (type => @args)
460    
461     Instead of formatting your data yourself, you can also let this module do
462     the job by specifying a type and type-specific arguments.
463    
464 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
465     drop by and tell us):
466 root 1.29
467     =over 4
468    
469     =item netstring => $string
470    
471     Formats the given value as netstring
472     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
473    
474 root 1.30 =back
475    
476 root 1.29 =cut
477    
478     register_write_type netstring => sub {
479     my ($self, $string) = @_;
480    
481     sprintf "%d:%s,", (length $string), $string
482     };
483    
484 root 1.39 =item json => $array_or_hashref
485    
486 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
487     provide your own JSON object, this means it will be encoded to JSON text
488     in UTF-8.
489    
490     JSON objects (and arrays) are self-delimiting, so you can write JSON at
491     one end of a handle and read them at the other end without using any
492     additional framing.
493    
494 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
495     this module doesn't need delimiters after or between JSON texts to be
496     able to read them, many other languages depend on that.
497    
498     A simple RPC protocol that interoperates easily with others is to send
499     JSON arrays (or objects, although arrays are usually the better choice as
500     they mimic how function argument passing works) and a newline after each
501     JSON text:
502    
503     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
504     $handle->push_write ("\012");
505    
506     An AnyEvent::Handle receiver would simply use the C<json> read type and
507     rely on the fact that the newline will be skipped as leading whitespace:
508    
509     $handle->push_read (json => sub { my $array = $_[1]; ... });
510    
511     Other languages could read single lines terminated by a newline and pass
512     this line into their JSON decoder of choice.
513    
514 root 1.40 =cut
515    
516     register_write_type json => sub {
517     my ($self, $ref) = @_;
518    
519     require JSON;
520    
521     $self->{json} ? $self->{json}->encode ($ref)
522     : JSON::encode_json ($ref)
523     };
524    
525     =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
526 root 1.30
527     This function (not method) lets you add your own types to C<push_write>.
528     Whenever the given C<type> is used, C<push_write> will invoke the code
529     reference with the handle object and the remaining arguments.
530 root 1.29
531 root 1.30 The code reference is supposed to return a single octet string that will
532     be appended to the write buffer.
533 root 1.29
534 root 1.30 Note that this is a function, and all types registered this way will be
535     global, so try to use unique names.
536 root 1.29
537 root 1.30 =cut
538 root 1.29
539 root 1.8 #############################################################################
540    
541 root 1.9 =back
542    
543     =head2 READ QUEUE
544    
545     AnyEvent::Handle manages two queues per handle, one for writing and one
546     for reading.
547    
548     The read queue is more complex than the write queue. It can be used in two
549     ways, the "simple" way, using only C<on_read> and the "complex" way, using
550     a queue.
551    
552     In the simple case, you just install an C<on_read> callback and whenever
553     new data arrives, it will be called. You can then remove some data (if
554     enough is there) from the read buffer (C<< $handle->rbuf >>) if you want
555     or not.
556    
557     In the more complex case, you want to queue multiple callbacks. In this
558     case, AnyEvent::Handle will call the first queued callback each time new
559     data arrives and removes it when it has done its job (see C<push_read>,
560     below).
561    
562     This way you can, for example, push three line-reads, followed by reading
563     a chunk of data, and AnyEvent::Handle will execute them in order.
564    
565     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
566     the specified number of bytes which give an XML datagram.
567    
568     # in the default state, expect some header bytes
569     $handle->on_read (sub {
570     # some data is here, now queue the length-header-read (4 octets)
571     shift->unshift_read_chunk (4, sub {
572     # header arrived, decode
573     my $len = unpack "N", $_[1];
574    
575     # now read the payload
576     shift->unshift_read_chunk ($len, sub {
577     my $xml = $_[1];
578     # handle xml
579     });
580     });
581     });
582    
583     Example 2: Implement a client for a protocol that replies either with
584     "OK" and another line or "ERROR" for one request, and 64 bytes for the
585     second request. Due tot he availability of a full queue, we can just
586     pipeline sending both requests and manipulate the queue as necessary in
587     the callbacks:
588    
589     # request one
590     $handle->push_write ("request 1\015\012");
591    
592     # we expect "ERROR" or "OK" as response, so push a line read
593     $handle->push_read_line (sub {
594     # if we got an "OK", we have to _prepend_ another line,
595     # so it will be read before the second request reads its 64 bytes
596     # which are already in the queue when this callback is called
597     # we don't do this in case we got an error
598     if ($_[1] eq "OK") {
599     $_[0]->unshift_read_line (sub {
600     my $response = $_[1];
601     ...
602     });
603     }
604     });
605    
606     # request two
607     $handle->push_write ("request 2\015\012");
608    
609     # simply read 64 bytes, always
610     $handle->push_read_chunk (64, sub {
611     my $response = $_[1];
612     ...
613     });
614    
615     =over 4
616    
617 root 1.10 =cut
618    
619 root 1.8 sub _drain_rbuf {
620     my ($self) = @_;
621 elmex 1.1
622 root 1.17 if (
623     defined $self->{rbuf_max}
624     && $self->{rbuf_max} < length $self->{rbuf}
625     ) {
626 root 1.37 $! = &Errno::ENOSPC;
627     $self->error;
628 root 1.17 }
629    
630 root 1.11 return if $self->{in_drain};
631 root 1.8 local $self->{in_drain} = 1;
632 elmex 1.1
633 root 1.8 while (my $len = length $self->{rbuf}) {
634     no strict 'refs';
635 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
636 root 1.29 unless ($cb->($self)) {
637 root 1.38 if ($self->{_eof}) {
638 root 1.10 # no progress can be made (not enough data and no data forthcoming)
639 root 1.37 $! = &Errno::EPIPE;
640     $self->error;
641 root 1.10 }
642    
643 root 1.38 unshift @{ $self->{_queue} }, $cb;
644 root 1.8 return;
645     }
646     } elsif ($self->{on_read}) {
647     $self->{on_read}($self);
648    
649     if (
650 root 1.38 $self->{_eof} # if no further data will arrive
651 root 1.8 && $len == length $self->{rbuf} # and no data has been consumed
652 root 1.38 && !@{ $self->{_queue} } # and the queue is still empty
653 root 1.8 && $self->{on_read} # and we still want to read data
654     ) {
655     # then no progress can be made
656 root 1.37 $! = &Errno::EPIPE;
657     $self->error;
658 elmex 1.1 }
659 root 1.8 } else {
660     # read side becomes idle
661 root 1.38 delete $self->{_rw};
662 root 1.8 return;
663     }
664     }
665    
666 root 1.38 if ($self->{_eof}) {
667 root 1.8 $self->_shutdown;
668 root 1.16 $self->{on_eof}($self)
669     if $self->{on_eof};
670 root 1.8 }
671 elmex 1.1 }
672    
673 root 1.8 =item $handle->on_read ($cb)
674 elmex 1.1
675 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
676     the new callback is C<undef>). See the description of C<on_read> in the
677     constructor.
678 elmex 1.1
679 root 1.8 =cut
680    
681     sub on_read {
682     my ($self, $cb) = @_;
683 elmex 1.1
684 root 1.8 $self->{on_read} = $cb;
685 elmex 1.1 }
686    
687 root 1.8 =item $handle->rbuf
688    
689     Returns the read buffer (as a modifiable lvalue).
690 elmex 1.1
691 root 1.8 You can access the read buffer directly as the C<< ->{rbuf} >> member, if
692     you want.
693 elmex 1.1
694 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
695     C<push_read> or C<unshift_read> methods are used. The other read methods
696     automatically manage the read buffer.
697 elmex 1.1
698     =cut
699    
700 elmex 1.2 sub rbuf : lvalue {
701 root 1.8 $_[0]{rbuf}
702 elmex 1.2 }
703 elmex 1.1
704 root 1.8 =item $handle->push_read ($cb)
705    
706     =item $handle->unshift_read ($cb)
707    
708     Append the given callback to the end of the queue (C<push_read>) or
709     prepend it (C<unshift_read>).
710    
711     The callback is called each time some additional read data arrives.
712 elmex 1.1
713 elmex 1.20 It must check whether enough data is in the read buffer already.
714 elmex 1.1
715 root 1.8 If not enough data is available, it must return the empty list or a false
716     value, in which case it will be called repeatedly until enough data is
717     available (or an error condition is detected).
718    
719     If enough data was available, then the callback must remove all data it is
720     interested in (which can be none at all) and return a true value. After returning
721     true, it will be removed from the queue.
722 elmex 1.1
723     =cut
724    
725 root 1.30 our %RH;
726    
727     sub register_read_type($$) {
728     $RH{$_[0]} = $_[1];
729     }
730    
731 root 1.8 sub push_read {
732 root 1.28 my $self = shift;
733     my $cb = pop;
734    
735     if (@_) {
736     my $type = shift;
737    
738     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
739     ->($self, $cb, @_);
740     }
741 elmex 1.1
742 root 1.38 push @{ $self->{_queue} }, $cb;
743 root 1.8 $self->_drain_rbuf;
744 elmex 1.1 }
745    
746 root 1.8 sub unshift_read {
747 root 1.28 my $self = shift;
748     my $cb = pop;
749    
750     if (@_) {
751     my $type = shift;
752    
753     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
754     ->($self, $cb, @_);
755     }
756    
757 root 1.8
758 root 1.38 unshift @{ $self->{_queue} }, $cb;
759 root 1.8 $self->_drain_rbuf;
760     }
761 elmex 1.1
762 root 1.28 =item $handle->push_read (type => @args, $cb)
763 elmex 1.1
764 root 1.28 =item $handle->unshift_read (type => @args, $cb)
765 elmex 1.1
766 root 1.28 Instead of providing a callback that parses the data itself you can chose
767     between a number of predefined parsing formats, for chunks of data, lines
768     etc.
769 elmex 1.1
770 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
771     drop by and tell us):
772 root 1.28
773     =over 4
774    
775 root 1.40 =item chunk => $octets, $cb->($handle, $data)
776 root 1.28
777     Invoke the callback only once C<$octets> bytes have been read. Pass the
778     data read to the callback. The callback will never be called with less
779     data.
780    
781     Example: read 2 bytes.
782    
783     $handle->push_read (chunk => 2, sub {
784     warn "yay ", unpack "H*", $_[1];
785     });
786 elmex 1.1
787     =cut
788    
789 root 1.28 register_read_type chunk => sub {
790     my ($self, $cb, $len) = @_;
791 elmex 1.1
792 root 1.8 sub {
793     $len <= length $_[0]{rbuf} or return;
794 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
795 root 1.8 1
796     }
797 root 1.28 };
798 root 1.8
799 root 1.28 # compatibility with older API
800 root 1.8 sub push_read_chunk {
801 root 1.28 $_[0]->push_read (chunk => $_[1], $_[2]);
802 root 1.8 }
803 elmex 1.1
804 root 1.8 sub unshift_read_chunk {
805 root 1.28 $_[0]->unshift_read (chunk => $_[1], $_[2]);
806 elmex 1.1 }
807    
808 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
809 elmex 1.1
810 root 1.8 The callback will be called only once a full line (including the end of
811     line marker, C<$eol>) has been read. This line (excluding the end of line
812     marker) will be passed to the callback as second argument (C<$line>), and
813     the end of line marker as the third argument (C<$eol>).
814 elmex 1.1
815 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
816     will be interpreted as a fixed record end marker, or it can be a regex
817     object (e.g. created by C<qr>), in which case it is interpreted as a
818     regular expression.
819 elmex 1.1
820 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
821     undef), then C<qr|\015?\012|> is used (which is good for most internet
822     protocols).
823 elmex 1.1
824 root 1.8 Partial lines at the end of the stream will never be returned, as they are
825     not marked by the end of line marker.
826 elmex 1.1
827 root 1.8 =cut
828 elmex 1.1
829 root 1.28 register_read_type line => sub {
830     my ($self, $cb, $eol) = @_;
831 elmex 1.1
832 root 1.28 $eol = qr|(\015?\012)| if @_ < 3;
833 root 1.14 $eol = quotemeta $eol unless ref $eol;
834     $eol = qr|^(.*?)($eol)|s;
835 elmex 1.1
836 root 1.8 sub {
837     $_[0]{rbuf} =~ s/$eol// or return;
838 elmex 1.1
839 elmex 1.12 $cb->($_[0], $1, $2);
840 root 1.8 1
841     }
842 root 1.28 };
843 elmex 1.1
844 root 1.28 # compatibility with older API
845 root 1.8 sub push_read_line {
846 root 1.28 my $self = shift;
847     $self->push_read (line => @_);
848 root 1.10 }
849    
850     sub unshift_read_line {
851 root 1.28 my $self = shift;
852     $self->unshift_read (line => @_);
853 root 1.10 }
854    
855 root 1.40 =item netstring => $cb->($handle, $string)
856 root 1.29
857     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
858    
859     Throws an error with C<$!> set to EBADMSG on format violations.
860    
861     =cut
862    
863     register_read_type netstring => sub {
864     my ($self, $cb) = @_;
865    
866     sub {
867     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
868     if ($_[0]{rbuf} =~ /[^0-9]/) {
869     $! = &Errno::EBADMSG;
870     $self->error;
871     }
872     return;
873     }
874    
875     my $len = $1;
876    
877     $self->unshift_read (chunk => $len, sub {
878     my $string = $_[1];
879     $_[0]->unshift_read (chunk => 1, sub {
880     if ($_[1] eq ",") {
881     $cb->($_[0], $string);
882     } else {
883     $! = &Errno::EBADMSG;
884     $self->error;
885     }
886     });
887     });
888    
889     1
890     }
891     };
892    
893 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
894 root 1.36
895     Makes a regex match against the regex object C<$accept> and returns
896     everything up to and including the match.
897    
898     Example: read a single line terminated by '\n'.
899    
900     $handle->push_read (regex => qr<\n>, sub { ... });
901    
902     If C<$reject> is given and not undef, then it determines when the data is
903     to be rejected: it is matched against the data when the C<$accept> regex
904     does not match and generates an C<EBADMSG> error when it matches. This is
905     useful to quickly reject wrong data (to avoid waiting for a timeout or a
906     receive buffer overflow).
907    
908     Example: expect a single decimal number followed by whitespace, reject
909     anything else (not the use of an anchor).
910    
911     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
912    
913     If C<$skip> is given and not C<undef>, then it will be matched against
914     the receive buffer when neither C<$accept> nor C<$reject> match,
915     and everything preceding and including the match will be accepted
916     unconditionally. This is useful to skip large amounts of data that you
917     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
918     have to start matching from the beginning. This is purely an optimisation
919     and is usually worth only when you expect more than a few kilobytes.
920    
921     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
922     expect the header to be very large (it isn't in practise, but...), we use
923     a skip regex to skip initial portions. The skip regex is tricky in that
924     it only accepts something not ending in either \015 or \012, as these are
925     required for the accept regex.
926    
927     $handle->push_read (regex =>
928     qr<\015\012\015\012>,
929     undef, # no reject
930     qr<^.*[^\015\012]>,
931     sub { ... });
932    
933     =cut
934    
935     register_read_type regex => sub {
936     my ($self, $cb, $accept, $reject, $skip) = @_;
937    
938     my $data;
939     my $rbuf = \$self->{rbuf};
940    
941     sub {
942     # accept
943     if ($$rbuf =~ $accept) {
944     $data .= substr $$rbuf, 0, $+[0], "";
945     $cb->($self, $data);
946     return 1;
947     }
948    
949     # reject
950     if ($reject && $$rbuf =~ $reject) {
951     $! = &Errno::EBADMSG;
952     $self->error;
953     }
954    
955     # skip
956     if ($skip && $$rbuf =~ $skip) {
957     $data .= substr $$rbuf, 0, $+[0], "";
958     }
959    
960     ()
961     }
962     };
963    
964 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
965    
966     Reads a JSON object or array, decodes it and passes it to the callback.
967    
968     If a C<json> object was passed to the constructor, then that will be used
969     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
970    
971     This read type uses the incremental parser available with JSON version
972     2.09 (and JSON::XS version 2.2) and above. You have to provide a
973     dependency on your own: this module will load the JSON module, but
974     AnyEvent does not depend on it itself.
975    
976     Since JSON texts are fully self-delimiting, the C<json> read and write
977 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
978     the C<json> write type description, above, for an actual example.
979 root 1.40
980     =cut
981    
982     register_read_type json => sub {
983     my ($self, $cb, $accept, $reject, $skip) = @_;
984    
985     require JSON;
986    
987     my $data;
988     my $rbuf = \$self->{rbuf};
989    
990 root 1.41 my $json = $self->{json} ||= JSON->new->utf8;
991 root 1.40
992     sub {
993     my $ref = $json->incr_parse ($self->{rbuf});
994    
995     if ($ref) {
996     $self->{rbuf} = $json->incr_text;
997     $json->incr_text = "";
998     $cb->($self, $ref);
999    
1000     1
1001     } else {
1002     $self->{rbuf} = "";
1003     ()
1004     }
1005     }
1006     };
1007    
1008 root 1.28 =back
1009    
1010 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1011 root 1.30
1012     This function (not method) lets you add your own types to C<push_read>.
1013    
1014     Whenever the given C<type> is used, C<push_read> will invoke the code
1015     reference with the handle object, the callback and the remaining
1016     arguments.
1017    
1018     The code reference is supposed to return a callback (usually a closure)
1019     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1020    
1021     It should invoke the passed callback when it is done reading (remember to
1022 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1023 root 1.30
1024     Note that this is a function, and all types registered this way will be
1025     global, so try to use unique names.
1026    
1027     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1028     search for C<register_read_type>)).
1029    
1030 root 1.10 =item $handle->stop_read
1031    
1032     =item $handle->start_read
1033    
1034 root 1.18 In rare cases you actually do not want to read anything from the
1035 root 1.10 socket. In this case you can call C<stop_read>. Neither C<on_read> no
1036 root 1.22 any queued callbacks will be executed then. To start reading again, call
1037 root 1.10 C<start_read>.
1038    
1039     =cut
1040    
1041     sub stop_read {
1042     my ($self) = @_;
1043 elmex 1.1
1044 root 1.38 delete $self->{_rw};
1045 root 1.8 }
1046 elmex 1.1
1047 root 1.10 sub start_read {
1048     my ($self) = @_;
1049    
1050 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1051 root 1.10 Scalar::Util::weaken $self;
1052    
1053 root 1.38 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1054 root 1.17 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
1055     my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1056 root 1.10
1057     if ($len > 0) {
1058 root 1.44 $self->{_activity} = AnyEvent->now;
1059 root 1.43
1060 root 1.17 $self->{filter_r}
1061 root 1.18 ? $self->{filter_r}->($self, $rbuf)
1062 root 1.17 : $self->_drain_rbuf;
1063 root 1.10
1064     } elsif (defined $len) {
1065 root 1.38 delete $self->{_rw};
1066     $self->{_eof} = 1;
1067 root 1.17 $self->_drain_rbuf;
1068 root 1.10
1069 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1070 root 1.10 return $self->error;
1071     }
1072     });
1073     }
1074 elmex 1.1 }
1075    
1076 root 1.19 sub _dotls {
1077     my ($self) = @_;
1078    
1079 root 1.38 if (length $self->{_tls_wbuf}) {
1080     while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1081     substr $self->{_tls_wbuf}, 0, $len, "";
1082 root 1.22 }
1083 root 1.19 }
1084    
1085 root 1.38 if (defined (my $buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1086 root 1.19 $self->{wbuf} .= $buf;
1087     $self->_drain_wbuf;
1088     }
1089    
1090 root 1.23 while (defined (my $buf = Net::SSLeay::read ($self->{tls}))) {
1091     $self->{rbuf} .= $buf;
1092     $self->_drain_rbuf;
1093     }
1094    
1095 root 1.24 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1096    
1097     if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1098 root 1.23 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1099     $self->error;
1100     } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1101     $! = &Errno::EIO;
1102     $self->error;
1103 root 1.19 }
1104 root 1.23
1105     # all others are fine for our purposes
1106 root 1.19 }
1107     }
1108    
1109 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1110    
1111     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1112     object is created, you can also do that at a later time by calling
1113     C<starttls>.
1114    
1115     The first argument is the same as the C<tls> constructor argument (either
1116     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1117    
1118     The second argument is the optional C<Net::SSLeay::CTX> object that is
1119     used when AnyEvent::Handle has to create its own TLS connection object.
1120    
1121 root 1.38 The TLS connection object will end up in C<< $handle->{tls} >> after this
1122     call and can be used or changed to your liking. Note that the handshake
1123     might have already started when this function returns.
1124    
1125 root 1.25 =cut
1126    
1127 root 1.19 # TODO: maybe document...
1128     sub starttls {
1129     my ($self, $ssl, $ctx) = @_;
1130    
1131 root 1.25 $self->stoptls;
1132    
1133 root 1.19 if ($ssl eq "accept") {
1134     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1135     Net::SSLeay::set_accept_state ($ssl);
1136     } elsif ($ssl eq "connect") {
1137     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1138     Net::SSLeay::set_connect_state ($ssl);
1139     }
1140    
1141     $self->{tls} = $ssl;
1142    
1143 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1144     # but the openssl maintainers basically said: "trust us, it just works".
1145     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1146     # and mismaintained ssleay-module doesn't even offer them).
1147 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1148 root 1.21 Net::SSLeay::CTX_set_mode ($self->{tls},
1149 root 1.34 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1150     | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1151 root 1.21
1152 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1153     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1154 root 1.19
1155 root 1.38 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1156 root 1.19
1157     $self->{filter_w} = sub {
1158 root 1.38 $_[0]{_tls_wbuf} .= ${$_[1]};
1159 root 1.19 &_dotls;
1160     };
1161     $self->{filter_r} = sub {
1162 root 1.38 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1163 root 1.19 &_dotls;
1164     };
1165     }
1166    
1167 root 1.25 =item $handle->stoptls
1168    
1169     Destroys the SSL connection, if any. Partial read or write data will be
1170     lost.
1171    
1172     =cut
1173    
1174     sub stoptls {
1175     my ($self) = @_;
1176    
1177     Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
1178 root 1.38
1179     delete $self->{_rbio};
1180     delete $self->{_wbio};
1181     delete $self->{_tls_wbuf};
1182 root 1.25 delete $self->{filter_r};
1183     delete $self->{filter_w};
1184     }
1185    
1186 root 1.19 sub DESTROY {
1187     my $self = shift;
1188    
1189 root 1.25 $self->stoptls;
1190 root 1.19 }
1191    
1192     =item AnyEvent::Handle::TLS_CTX
1193    
1194     This function creates and returns the Net::SSLeay::CTX object used by
1195     default for TLS mode.
1196    
1197     The context is created like this:
1198    
1199     Net::SSLeay::load_error_strings;
1200     Net::SSLeay::SSLeay_add_ssl_algorithms;
1201     Net::SSLeay::randomize;
1202    
1203     my $CTX = Net::SSLeay::CTX_new;
1204    
1205     Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1206    
1207     =cut
1208    
1209     our $TLS_CTX;
1210    
1211     sub TLS_CTX() {
1212     $TLS_CTX || do {
1213     require Net::SSLeay;
1214    
1215     Net::SSLeay::load_error_strings ();
1216     Net::SSLeay::SSLeay_add_ssl_algorithms ();
1217     Net::SSLeay::randomize ();
1218    
1219     $TLS_CTX = Net::SSLeay::CTX_new ();
1220    
1221     Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1222    
1223     $TLS_CTX
1224     }
1225     }
1226    
1227 elmex 1.1 =back
1228    
1229 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
1230    
1231     In many cases, you might want to subclass AnyEvent::Handle.
1232    
1233     To make this easier, a given version of AnyEvent::Handle uses these
1234     conventions:
1235    
1236     =over 4
1237    
1238     =item * all constructor arguments become object members.
1239    
1240     At least initially, when you pass a C<tls>-argument to the constructor it
1241     will end up in C<< $handle->{tls} >>. Those members might be changes or
1242     mutated later on (for example C<tls> will hold the TLS connection object).
1243    
1244     =item * other object member names are prefixed with an C<_>.
1245    
1246     All object members not explicitly documented (internal use) are prefixed
1247     with an underscore character, so the remaining non-C<_>-namespace is free
1248     for use for subclasses.
1249    
1250     =item * all members not documented here and not prefixed with an underscore
1251     are free to use in subclasses.
1252    
1253     Of course, new versions of AnyEvent::Handle may introduce more "public"
1254     member variables, but thats just life, at least it is documented.
1255    
1256     =back
1257    
1258 elmex 1.1 =head1 AUTHOR
1259    
1260 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1261 elmex 1.1
1262     =cut
1263    
1264     1; # End of AnyEvent::Handle