ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.50
Committed: Fri May 30 21:38:46 2008 UTC (16 years ago) by root
Branch: MAIN
CVS Tags: rel-4_11
Changes since 1.49: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 package AnyEvent::Handle;
2    
3 elmex 1.6 no warnings;
4 elmex 1.1 use strict;
5    
6 root 1.8 use AnyEvent ();
7 root 1.42 use AnyEvent::Util qw(WSAEWOULDBLOCK);
8 root 1.8 use Scalar::Util ();
9     use Carp ();
10     use Fcntl ();
11 root 1.43 use Errno qw(EAGAIN EINTR);
12 elmex 1.1
13     =head1 NAME
14    
15 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 elmex 1.1
17     =cut
18    
19 root 1.50 our $VERSION = 4.1;
20 elmex 1.1
21     =head1 SYNOPSIS
22    
23     use AnyEvent;
24     use AnyEvent::Handle;
25    
26     my $cv = AnyEvent->condvar;
27    
28 root 1.31 my $handle =
29 elmex 1.2 AnyEvent::Handle->new (
30     fh => \*STDIN,
31     on_eof => sub {
32     $cv->broadcast;
33     },
34     );
35    
36 root 1.31 # send some request line
37     $handle->push_write ("getinfo\015\012");
38    
39     # read the response line
40     $handle->push_read (line => sub {
41     my ($handle, $line) = @_;
42     warn "read line <$line>\n";
43     $cv->send;
44     });
45    
46     $cv->recv;
47 elmex 1.1
48     =head1 DESCRIPTION
49    
50 root 1.8 This module is a helper module to make it easier to do event-based I/O on
51 elmex 1.13 filehandles. For utility functions for doing non-blocking connects and accepts
52     on sockets see L<AnyEvent::Util>.
53 root 1.8
54     In the following, when the documentation refers to of "bytes" then this
55     means characters. As sysread and syswrite are used for all I/O, their
56     treatment of characters applies to this module as well.
57 elmex 1.1
58 root 1.8 All callbacks will be invoked with the handle object as their first
59     argument.
60 elmex 1.1
61     =head1 METHODS
62    
63     =over 4
64    
65     =item B<new (%args)>
66    
67 root 1.8 The constructor supports these arguments (all as key => value pairs).
68 elmex 1.1
69     =over 4
70    
71 root 1.8 =item fh => $filehandle [MANDATORY]
72 elmex 1.1
73     The filehandle this L<AnyEvent::Handle> object will operate on.
74    
75 root 1.8 NOTE: The filehandle will be set to non-blocking (using
76     AnyEvent::Util::fh_nonblocking).
77    
78 root 1.40 =item on_eof => $cb->($handle)
79 root 1.10
80     Set the callback to be called on EOF.
81 root 1.8
82 root 1.16 While not mandatory, it is highly recommended to set an eof callback,
83     otherwise you might end up with a closed socket while you are still
84     waiting for data.
85    
86 root 1.40 =item on_error => $cb->($handle)
87 root 1.10
88     This is the fatal error callback, that is called when, well, a fatal error
89 elmex 1.20 occurs, such as not being able to resolve the hostname, failure to connect
90 root 1.10 or a read error.
91 root 1.8
92     The object will not be in a usable state when this callback has been
93     called.
94    
95 root 1.10 On callback entrance, the value of C<$!> contains the operating system
96 root 1.43 error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
97 root 1.8
98 root 1.38 The callback should throw an exception. If it returns, then
99 root 1.37 AnyEvent::Handle will C<croak> for you.
100    
101 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
102     you will not be notified of errors otherwise. The default simply calls
103     die.
104 root 1.8
105 root 1.40 =item on_read => $cb->($handle)
106 root 1.8
107     This sets the default read callback, which is called when data arrives
108 root 1.10 and no read request is in the queue.
109 root 1.8
110     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
111 root 1.40 method or access the C<$handle->{rbuf}> member directly.
112 root 1.8
113     When an EOF condition is detected then AnyEvent::Handle will first try to
114     feed all the remaining data to the queued callbacks and C<on_read> before
115     calling the C<on_eof> callback. If no progress can be made, then a fatal
116     error will be raised (with C<$!> set to C<EPIPE>).
117 elmex 1.1
118 root 1.40 =item on_drain => $cb->($handle)
119 elmex 1.1
120 root 1.8 This sets the callback that is called when the write buffer becomes empty
121     (or when the callback is set and the buffer is empty already).
122 elmex 1.1
123 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
124 elmex 1.2
125 root 1.43 =item timeout => $fractional_seconds
126    
127     If non-zero, then this enables an "inactivity" timeout: whenever this many
128     seconds pass without a successful read or write on the underlying file
129     handle, the C<on_timeout> callback will be invoked (and if that one is
130 root 1.45 missing, an C<ETIMEDOUT> error will be raised).
131 root 1.43
132     Note that timeout processing is also active when you currently do not have
133     any outstanding read or write requests: If you plan to keep the connection
134     idle then you should disable the timout temporarily or ignore the timeout
135     in the C<on_timeout> callback.
136    
137     Zero (the default) disables this timeout.
138    
139     =item on_timeout => $cb->($handle)
140    
141     Called whenever the inactivity timeout passes. If you return from this
142     callback, then the timeout will be reset as if some activity had happened,
143     so this condition is not fatal in any way.
144    
145 root 1.8 =item rbuf_max => <bytes>
146 elmex 1.2
147 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
148     when the read buffer ever (strictly) exceeds this size. This is useful to
149     avoid denial-of-service attacks.
150 elmex 1.2
151 root 1.8 For example, a server accepting connections from untrusted sources should
152     be configured to accept only so-and-so much data that it cannot act on
153     (for example, when expecting a line, an attacker could send an unlimited
154     amount of data without a callback ever being called as long as the line
155     isn't finished).
156 elmex 1.2
157 root 1.8 =item read_size => <bytes>
158 elmex 1.2
159 root 1.8 The default read block size (the amount of bytes this module will try to read
160 root 1.46 during each (loop iteration). Default: C<8192>.
161 root 1.8
162     =item low_water_mark => <bytes>
163    
164     Sets the amount of bytes (default: C<0>) that make up an "empty" write
165     buffer: If the write reaches this size or gets even samller it is
166     considered empty.
167 elmex 1.2
168 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
169    
170     When this parameter is given, it enables TLS (SSL) mode, that means it
171     will start making tls handshake and will transparently encrypt/decrypt
172     data.
173    
174 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
175     automatically when you try to create a TLS handle).
176    
177 root 1.19 For the TLS server side, use C<accept>, and for the TLS client side of a
178     connection, use C<connect> mode.
179    
180     You can also provide your own TLS connection object, but you have
181     to make sure that you call either C<Net::SSLeay::set_connect_state>
182     or C<Net::SSLeay::set_accept_state> on it before you pass it to
183     AnyEvent::Handle.
184    
185 root 1.26 See the C<starttls> method if you need to start TLs negotiation later.
186    
187 root 1.19 =item tls_ctx => $ssl_ctx
188    
189     Use the given Net::SSLeay::CTX object to create the new TLS connection
190     (unless a connection object was specified directly). If this parameter is
191     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
192    
193 root 1.40 =item json => JSON or JSON::XS object
194    
195     This is the json coder object used by the C<json> read and write types.
196    
197 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
198     suitable one, which will write and expect UTF-8 encoded JSON texts.
199 root 1.40
200     Note that you are responsible to depend on the JSON module if you want to
201     use this functionality, as AnyEvent does not have a dependency itself.
202    
203 root 1.38 =item filter_r => $cb
204    
205     =item filter_w => $cb
206    
207     These exist, but are undocumented at this time.
208    
209 elmex 1.1 =back
210    
211     =cut
212    
213     sub new {
214 root 1.8 my $class = shift;
215    
216     my $self = bless { @_ }, $class;
217    
218     $self->{fh} or Carp::croak "mandatory argument fh is missing";
219    
220     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
221 elmex 1.1
222 root 1.19 if ($self->{tls}) {
223     require Net::SSLeay;
224     $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
225     }
226    
227 root 1.43 # $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; # nop
228     # $self->on_error (delete $self->{on_error}) if $self->{on_error}; # nop
229     # $self->on_read (delete $self->{on_read} ) if $self->{on_read}; # nop
230 root 1.8 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
231 root 1.43
232 root 1.44 $self->{_activity} = AnyEvent->now;
233 root 1.43 $self->_timeout;
234 elmex 1.1
235 root 1.10 $self->start_read;
236    
237 root 1.8 $self
238     }
239 elmex 1.2
240 root 1.8 sub _shutdown {
241     my ($self) = @_;
242 elmex 1.2
243 root 1.46 delete $self->{_tw};
244 root 1.38 delete $self->{_rw};
245     delete $self->{_ww};
246 root 1.8 delete $self->{fh};
247     }
248    
249     sub error {
250     my ($self) = @_;
251    
252     {
253     local $!;
254     $self->_shutdown;
255 elmex 1.1 }
256    
257 root 1.37 $self->{on_error}($self)
258     if $self->{on_error};
259    
260     Carp::croak "AnyEvent::Handle uncaught fatal error: $!";
261 elmex 1.1 }
262    
263 root 1.8 =item $fh = $handle->fh
264 elmex 1.1
265 root 1.22 This method returns the file handle of the L<AnyEvent::Handle> object.
266 elmex 1.1
267     =cut
268    
269 root 1.38 sub fh { $_[0]{fh} }
270 elmex 1.1
271 root 1.8 =item $handle->on_error ($cb)
272 elmex 1.1
273 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
274 elmex 1.1
275 root 1.8 =cut
276    
277     sub on_error {
278     $_[0]{on_error} = $_[1];
279     }
280    
281     =item $handle->on_eof ($cb)
282    
283     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
284 elmex 1.1
285     =cut
286    
287 root 1.8 sub on_eof {
288     $_[0]{on_eof} = $_[1];
289     }
290    
291 root 1.43 =item $handle->on_timeout ($cb)
292    
293     Replace the current C<on_timeout> callback, or disables the callback
294     (but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
295     argument.
296    
297     =cut
298    
299     sub on_timeout {
300     $_[0]{on_timeout} = $_[1];
301     }
302    
303     #############################################################################
304    
305     =item $handle->timeout ($seconds)
306    
307     Configures (or disables) the inactivity timeout.
308    
309     =cut
310    
311     sub timeout {
312     my ($self, $timeout) = @_;
313    
314     $self->{timeout} = $timeout;
315     $self->_timeout;
316     }
317    
318     # reset the timeout watcher, as neccessary
319     # also check for time-outs
320     sub _timeout {
321     my ($self) = @_;
322    
323     if ($self->{timeout}) {
324 root 1.44 my $NOW = AnyEvent->now;
325 root 1.43
326     # when would the timeout trigger?
327     my $after = $self->{_activity} + $self->{timeout} - $NOW;
328    
329     # now or in the past already?
330     if ($after <= 0) {
331     $self->{_activity} = $NOW;
332    
333     if ($self->{on_timeout}) {
334 root 1.48 $self->{on_timeout}($self);
335 root 1.43 } else {
336     $! = Errno::ETIMEDOUT;
337     $self->error;
338     }
339    
340     # callbakx could have changed timeout value, optimise
341     return unless $self->{timeout};
342    
343     # calculate new after
344     $after = $self->{timeout};
345     }
346    
347     Scalar::Util::weaken $self;
348    
349     $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
350     delete $self->{_tw};
351     $self->_timeout;
352     });
353     } else {
354     delete $self->{_tw};
355     }
356     }
357    
358 root 1.9 #############################################################################
359    
360     =back
361    
362     =head2 WRITE QUEUE
363    
364     AnyEvent::Handle manages two queues per handle, one for writing and one
365     for reading.
366    
367     The write queue is very simple: you can add data to its end, and
368     AnyEvent::Handle will automatically try to get rid of it for you.
369    
370 elmex 1.20 When data could be written and the write buffer is shorter then the low
371 root 1.9 water mark, the C<on_drain> callback will be invoked.
372    
373     =over 4
374    
375 root 1.8 =item $handle->on_drain ($cb)
376    
377     Sets the C<on_drain> callback or clears it (see the description of
378     C<on_drain> in the constructor).
379    
380     =cut
381    
382     sub on_drain {
383 elmex 1.1 my ($self, $cb) = @_;
384    
385 root 1.8 $self->{on_drain} = $cb;
386    
387     $cb->($self)
388     if $cb && $self->{low_water_mark} >= length $self->{wbuf};
389     }
390    
391     =item $handle->push_write ($data)
392    
393     Queues the given scalar to be written. You can push as much data as you
394     want (only limited by the available memory), as C<AnyEvent::Handle>
395     buffers it independently of the kernel.
396    
397     =cut
398    
399 root 1.17 sub _drain_wbuf {
400     my ($self) = @_;
401 root 1.8
402 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
403 root 1.35
404 root 1.8 Scalar::Util::weaken $self;
405 root 1.35
406 root 1.8 my $cb = sub {
407     my $len = syswrite $self->{fh}, $self->{wbuf};
408    
409 root 1.29 if ($len >= 0) {
410 root 1.8 substr $self->{wbuf}, 0, $len, "";
411    
412 root 1.44 $self->{_activity} = AnyEvent->now;
413 root 1.43
414 root 1.8 $self->{on_drain}($self)
415     if $self->{low_water_mark} >= length $self->{wbuf}
416     && $self->{on_drain};
417    
418 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
419 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
420 root 1.8 $self->error;
421 elmex 1.1 }
422 root 1.8 };
423    
424 root 1.35 # try to write data immediately
425     $cb->();
426 root 1.8
427 root 1.35 # if still data left in wbuf, we need to poll
428 root 1.38 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
429 root 1.35 if length $self->{wbuf};
430 root 1.8 };
431     }
432    
433 root 1.30 our %WH;
434    
435     sub register_write_type($$) {
436     $WH{$_[0]} = $_[1];
437     }
438    
439 root 1.17 sub push_write {
440     my $self = shift;
441    
442 root 1.29 if (@_ > 1) {
443     my $type = shift;
444    
445     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
446     ->($self, @_);
447     }
448    
449 root 1.17 if ($self->{filter_w}) {
450 root 1.48 $self->{filter_w}($self, \$_[0]);
451 root 1.17 } else {
452     $self->{wbuf} .= $_[0];
453     $self->_drain_wbuf;
454     }
455     }
456    
457 root 1.29 =item $handle->push_write (type => @args)
458    
459     =item $handle->unshift_write (type => @args)
460    
461     Instead of formatting your data yourself, you can also let this module do
462     the job by specifying a type and type-specific arguments.
463    
464 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
465     drop by and tell us):
466 root 1.29
467     =over 4
468    
469     =item netstring => $string
470    
471     Formats the given value as netstring
472     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
473    
474 root 1.30 =back
475    
476 root 1.29 =cut
477    
478     register_write_type netstring => sub {
479     my ($self, $string) = @_;
480    
481     sprintf "%d:%s,", (length $string), $string
482     };
483    
484 root 1.39 =item json => $array_or_hashref
485    
486 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
487     provide your own JSON object, this means it will be encoded to JSON text
488     in UTF-8.
489    
490     JSON objects (and arrays) are self-delimiting, so you can write JSON at
491     one end of a handle and read them at the other end without using any
492     additional framing.
493    
494 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
495     this module doesn't need delimiters after or between JSON texts to be
496     able to read them, many other languages depend on that.
497    
498     A simple RPC protocol that interoperates easily with others is to send
499     JSON arrays (or objects, although arrays are usually the better choice as
500     they mimic how function argument passing works) and a newline after each
501     JSON text:
502    
503     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
504     $handle->push_write ("\012");
505    
506     An AnyEvent::Handle receiver would simply use the C<json> read type and
507     rely on the fact that the newline will be skipped as leading whitespace:
508    
509     $handle->push_read (json => sub { my $array = $_[1]; ... });
510    
511     Other languages could read single lines terminated by a newline and pass
512     this line into their JSON decoder of choice.
513    
514 root 1.40 =cut
515    
516     register_write_type json => sub {
517     my ($self, $ref) = @_;
518    
519     require JSON;
520    
521     $self->{json} ? $self->{json}->encode ($ref)
522     : JSON::encode_json ($ref)
523     };
524    
525     =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
526 root 1.30
527     This function (not method) lets you add your own types to C<push_write>.
528     Whenever the given C<type> is used, C<push_write> will invoke the code
529     reference with the handle object and the remaining arguments.
530 root 1.29
531 root 1.30 The code reference is supposed to return a single octet string that will
532     be appended to the write buffer.
533 root 1.29
534 root 1.30 Note that this is a function, and all types registered this way will be
535     global, so try to use unique names.
536 root 1.29
537 root 1.30 =cut
538 root 1.29
539 root 1.8 #############################################################################
540    
541 root 1.9 =back
542    
543     =head2 READ QUEUE
544    
545     AnyEvent::Handle manages two queues per handle, one for writing and one
546     for reading.
547    
548     The read queue is more complex than the write queue. It can be used in two
549     ways, the "simple" way, using only C<on_read> and the "complex" way, using
550     a queue.
551    
552     In the simple case, you just install an C<on_read> callback and whenever
553     new data arrives, it will be called. You can then remove some data (if
554     enough is there) from the read buffer (C<< $handle->rbuf >>) if you want
555     or not.
556    
557     In the more complex case, you want to queue multiple callbacks. In this
558     case, AnyEvent::Handle will call the first queued callback each time new
559     data arrives and removes it when it has done its job (see C<push_read>,
560     below).
561    
562     This way you can, for example, push three line-reads, followed by reading
563     a chunk of data, and AnyEvent::Handle will execute them in order.
564    
565     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
566     the specified number of bytes which give an XML datagram.
567    
568     # in the default state, expect some header bytes
569     $handle->on_read (sub {
570     # some data is here, now queue the length-header-read (4 octets)
571     shift->unshift_read_chunk (4, sub {
572     # header arrived, decode
573     my $len = unpack "N", $_[1];
574    
575     # now read the payload
576     shift->unshift_read_chunk ($len, sub {
577     my $xml = $_[1];
578     # handle xml
579     });
580     });
581     });
582    
583     Example 2: Implement a client for a protocol that replies either with
584     "OK" and another line or "ERROR" for one request, and 64 bytes for the
585     second request. Due tot he availability of a full queue, we can just
586     pipeline sending both requests and manipulate the queue as necessary in
587     the callbacks:
588    
589     # request one
590     $handle->push_write ("request 1\015\012");
591    
592     # we expect "ERROR" or "OK" as response, so push a line read
593     $handle->push_read_line (sub {
594     # if we got an "OK", we have to _prepend_ another line,
595     # so it will be read before the second request reads its 64 bytes
596     # which are already in the queue when this callback is called
597     # we don't do this in case we got an error
598     if ($_[1] eq "OK") {
599     $_[0]->unshift_read_line (sub {
600     my $response = $_[1];
601     ...
602     });
603     }
604     });
605    
606     # request two
607     $handle->push_write ("request 2\015\012");
608    
609     # simply read 64 bytes, always
610     $handle->push_read_chunk (64, sub {
611     my $response = $_[1];
612     ...
613     });
614    
615     =over 4
616    
617 root 1.10 =cut
618    
619 root 1.8 sub _drain_rbuf {
620     my ($self) = @_;
621 elmex 1.1
622 root 1.17 if (
623     defined $self->{rbuf_max}
624     && $self->{rbuf_max} < length $self->{rbuf}
625     ) {
626 root 1.37 $! = &Errno::ENOSPC;
627     $self->error;
628 root 1.17 }
629    
630 root 1.11 return if $self->{in_drain};
631 root 1.8 local $self->{in_drain} = 1;
632 elmex 1.1
633 root 1.8 while (my $len = length $self->{rbuf}) {
634     no strict 'refs';
635 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
636 root 1.29 unless ($cb->($self)) {
637 root 1.38 if ($self->{_eof}) {
638 root 1.10 # no progress can be made (not enough data and no data forthcoming)
639 root 1.37 $! = &Errno::EPIPE;
640     $self->error;
641 root 1.10 }
642    
643 root 1.38 unshift @{ $self->{_queue} }, $cb;
644 root 1.8 return;
645     }
646     } elsif ($self->{on_read}) {
647     $self->{on_read}($self);
648    
649     if (
650 root 1.38 $self->{_eof} # if no further data will arrive
651 root 1.8 && $len == length $self->{rbuf} # and no data has been consumed
652 root 1.38 && !@{ $self->{_queue} } # and the queue is still empty
653 root 1.8 && $self->{on_read} # and we still want to read data
654     ) {
655     # then no progress can be made
656 root 1.37 $! = &Errno::EPIPE;
657     $self->error;
658 elmex 1.1 }
659 root 1.8 } else {
660     # read side becomes idle
661 root 1.38 delete $self->{_rw};
662 root 1.8 return;
663     }
664     }
665    
666 root 1.48 $self->{on_eof}($self)
667     if $self->{_eof} && $self->{on_eof};
668 elmex 1.1 }
669    
670 root 1.8 =item $handle->on_read ($cb)
671 elmex 1.1
672 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
673     the new callback is C<undef>). See the description of C<on_read> in the
674     constructor.
675 elmex 1.1
676 root 1.8 =cut
677    
678     sub on_read {
679     my ($self, $cb) = @_;
680 elmex 1.1
681 root 1.8 $self->{on_read} = $cb;
682 elmex 1.1 }
683    
684 root 1.8 =item $handle->rbuf
685    
686     Returns the read buffer (as a modifiable lvalue).
687 elmex 1.1
688 root 1.8 You can access the read buffer directly as the C<< ->{rbuf} >> member, if
689     you want.
690 elmex 1.1
691 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
692     C<push_read> or C<unshift_read> methods are used. The other read methods
693     automatically manage the read buffer.
694 elmex 1.1
695     =cut
696    
697 elmex 1.2 sub rbuf : lvalue {
698 root 1.8 $_[0]{rbuf}
699 elmex 1.2 }
700 elmex 1.1
701 root 1.8 =item $handle->push_read ($cb)
702    
703     =item $handle->unshift_read ($cb)
704    
705     Append the given callback to the end of the queue (C<push_read>) or
706     prepend it (C<unshift_read>).
707    
708     The callback is called each time some additional read data arrives.
709 elmex 1.1
710 elmex 1.20 It must check whether enough data is in the read buffer already.
711 elmex 1.1
712 root 1.8 If not enough data is available, it must return the empty list or a false
713     value, in which case it will be called repeatedly until enough data is
714     available (or an error condition is detected).
715    
716     If enough data was available, then the callback must remove all data it is
717     interested in (which can be none at all) and return a true value. After returning
718     true, it will be removed from the queue.
719 elmex 1.1
720     =cut
721    
722 root 1.30 our %RH;
723    
724     sub register_read_type($$) {
725     $RH{$_[0]} = $_[1];
726     }
727    
728 root 1.8 sub push_read {
729 root 1.28 my $self = shift;
730     my $cb = pop;
731    
732     if (@_) {
733     my $type = shift;
734    
735     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
736     ->($self, $cb, @_);
737     }
738 elmex 1.1
739 root 1.38 push @{ $self->{_queue} }, $cb;
740 root 1.8 $self->_drain_rbuf;
741 elmex 1.1 }
742    
743 root 1.8 sub unshift_read {
744 root 1.28 my $self = shift;
745     my $cb = pop;
746    
747     if (@_) {
748     my $type = shift;
749    
750     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
751     ->($self, $cb, @_);
752     }
753    
754 root 1.8
755 root 1.38 unshift @{ $self->{_queue} }, $cb;
756 root 1.8 $self->_drain_rbuf;
757     }
758 elmex 1.1
759 root 1.28 =item $handle->push_read (type => @args, $cb)
760 elmex 1.1
761 root 1.28 =item $handle->unshift_read (type => @args, $cb)
762 elmex 1.1
763 root 1.28 Instead of providing a callback that parses the data itself you can chose
764     between a number of predefined parsing formats, for chunks of data, lines
765     etc.
766 elmex 1.1
767 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
768     drop by and tell us):
769 root 1.28
770     =over 4
771    
772 root 1.40 =item chunk => $octets, $cb->($handle, $data)
773 root 1.28
774     Invoke the callback only once C<$octets> bytes have been read. Pass the
775     data read to the callback. The callback will never be called with less
776     data.
777    
778     Example: read 2 bytes.
779    
780     $handle->push_read (chunk => 2, sub {
781     warn "yay ", unpack "H*", $_[1];
782     });
783 elmex 1.1
784     =cut
785    
786 root 1.28 register_read_type chunk => sub {
787     my ($self, $cb, $len) = @_;
788 elmex 1.1
789 root 1.8 sub {
790     $len <= length $_[0]{rbuf} or return;
791 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
792 root 1.8 1
793     }
794 root 1.28 };
795 root 1.8
796 root 1.28 # compatibility with older API
797 root 1.8 sub push_read_chunk {
798 root 1.28 $_[0]->push_read (chunk => $_[1], $_[2]);
799 root 1.8 }
800 elmex 1.1
801 root 1.8 sub unshift_read_chunk {
802 root 1.28 $_[0]->unshift_read (chunk => $_[1], $_[2]);
803 elmex 1.1 }
804    
805 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
806 elmex 1.1
807 root 1.8 The callback will be called only once a full line (including the end of
808     line marker, C<$eol>) has been read. This line (excluding the end of line
809     marker) will be passed to the callback as second argument (C<$line>), and
810     the end of line marker as the third argument (C<$eol>).
811 elmex 1.1
812 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
813     will be interpreted as a fixed record end marker, or it can be a regex
814     object (e.g. created by C<qr>), in which case it is interpreted as a
815     regular expression.
816 elmex 1.1
817 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
818     undef), then C<qr|\015?\012|> is used (which is good for most internet
819     protocols).
820 elmex 1.1
821 root 1.8 Partial lines at the end of the stream will never be returned, as they are
822     not marked by the end of line marker.
823 elmex 1.1
824 root 1.8 =cut
825 elmex 1.1
826 root 1.28 register_read_type line => sub {
827     my ($self, $cb, $eol) = @_;
828 elmex 1.1
829 root 1.28 $eol = qr|(\015?\012)| if @_ < 3;
830 root 1.14 $eol = quotemeta $eol unless ref $eol;
831     $eol = qr|^(.*?)($eol)|s;
832 elmex 1.1
833 root 1.8 sub {
834     $_[0]{rbuf} =~ s/$eol// or return;
835 elmex 1.1
836 elmex 1.12 $cb->($_[0], $1, $2);
837 root 1.8 1
838     }
839 root 1.28 };
840 elmex 1.1
841 root 1.28 # compatibility with older API
842 root 1.8 sub push_read_line {
843 root 1.28 my $self = shift;
844     $self->push_read (line => @_);
845 root 1.10 }
846    
847     sub unshift_read_line {
848 root 1.28 my $self = shift;
849     $self->unshift_read (line => @_);
850 root 1.10 }
851    
852 root 1.40 =item netstring => $cb->($handle, $string)
853 root 1.29
854     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
855    
856     Throws an error with C<$!> set to EBADMSG on format violations.
857    
858     =cut
859    
860     register_read_type netstring => sub {
861     my ($self, $cb) = @_;
862    
863     sub {
864     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
865     if ($_[0]{rbuf} =~ /[^0-9]/) {
866     $! = &Errno::EBADMSG;
867     $self->error;
868     }
869     return;
870     }
871    
872     my $len = $1;
873    
874     $self->unshift_read (chunk => $len, sub {
875     my $string = $_[1];
876     $_[0]->unshift_read (chunk => 1, sub {
877     if ($_[1] eq ",") {
878     $cb->($_[0], $string);
879     } else {
880     $! = &Errno::EBADMSG;
881     $self->error;
882     }
883     });
884     });
885    
886     1
887     }
888     };
889    
890 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
891 root 1.36
892     Makes a regex match against the regex object C<$accept> and returns
893     everything up to and including the match.
894    
895     Example: read a single line terminated by '\n'.
896    
897     $handle->push_read (regex => qr<\n>, sub { ... });
898    
899     If C<$reject> is given and not undef, then it determines when the data is
900     to be rejected: it is matched against the data when the C<$accept> regex
901     does not match and generates an C<EBADMSG> error when it matches. This is
902     useful to quickly reject wrong data (to avoid waiting for a timeout or a
903     receive buffer overflow).
904    
905     Example: expect a single decimal number followed by whitespace, reject
906     anything else (not the use of an anchor).
907    
908     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
909    
910     If C<$skip> is given and not C<undef>, then it will be matched against
911     the receive buffer when neither C<$accept> nor C<$reject> match,
912     and everything preceding and including the match will be accepted
913     unconditionally. This is useful to skip large amounts of data that you
914     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
915     have to start matching from the beginning. This is purely an optimisation
916     and is usually worth only when you expect more than a few kilobytes.
917    
918     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
919     expect the header to be very large (it isn't in practise, but...), we use
920     a skip regex to skip initial portions. The skip regex is tricky in that
921     it only accepts something not ending in either \015 or \012, as these are
922     required for the accept regex.
923    
924     $handle->push_read (regex =>
925     qr<\015\012\015\012>,
926     undef, # no reject
927     qr<^.*[^\015\012]>,
928     sub { ... });
929    
930     =cut
931    
932     register_read_type regex => sub {
933     my ($self, $cb, $accept, $reject, $skip) = @_;
934    
935     my $data;
936     my $rbuf = \$self->{rbuf};
937    
938     sub {
939     # accept
940     if ($$rbuf =~ $accept) {
941     $data .= substr $$rbuf, 0, $+[0], "";
942     $cb->($self, $data);
943     return 1;
944     }
945    
946     # reject
947     if ($reject && $$rbuf =~ $reject) {
948     $! = &Errno::EBADMSG;
949     $self->error;
950     }
951    
952     # skip
953     if ($skip && $$rbuf =~ $skip) {
954     $data .= substr $$rbuf, 0, $+[0], "";
955     }
956    
957     ()
958     }
959     };
960    
961 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
962    
963     Reads a JSON object or array, decodes it and passes it to the callback.
964    
965     If a C<json> object was passed to the constructor, then that will be used
966     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
967    
968     This read type uses the incremental parser available with JSON version
969     2.09 (and JSON::XS version 2.2) and above. You have to provide a
970     dependency on your own: this module will load the JSON module, but
971     AnyEvent does not depend on it itself.
972    
973     Since JSON texts are fully self-delimiting, the C<json> read and write
974 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
975     the C<json> write type description, above, for an actual example.
976 root 1.40
977     =cut
978    
979     register_read_type json => sub {
980     my ($self, $cb, $accept, $reject, $skip) = @_;
981    
982     require JSON;
983    
984     my $data;
985     my $rbuf = \$self->{rbuf};
986    
987 root 1.41 my $json = $self->{json} ||= JSON->new->utf8;
988 root 1.40
989     sub {
990     my $ref = $json->incr_parse ($self->{rbuf});
991    
992     if ($ref) {
993     $self->{rbuf} = $json->incr_text;
994     $json->incr_text = "";
995     $cb->($self, $ref);
996    
997     1
998     } else {
999     $self->{rbuf} = "";
1000     ()
1001     }
1002     }
1003     };
1004    
1005 root 1.28 =back
1006    
1007 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1008 root 1.30
1009     This function (not method) lets you add your own types to C<push_read>.
1010    
1011     Whenever the given C<type> is used, C<push_read> will invoke the code
1012     reference with the handle object, the callback and the remaining
1013     arguments.
1014    
1015     The code reference is supposed to return a callback (usually a closure)
1016     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1017    
1018     It should invoke the passed callback when it is done reading (remember to
1019 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1020 root 1.30
1021     Note that this is a function, and all types registered this way will be
1022     global, so try to use unique names.
1023    
1024     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1025     search for C<register_read_type>)).
1026    
1027 root 1.10 =item $handle->stop_read
1028    
1029     =item $handle->start_read
1030    
1031 root 1.18 In rare cases you actually do not want to read anything from the
1032 root 1.10 socket. In this case you can call C<stop_read>. Neither C<on_read> no
1033 root 1.22 any queued callbacks will be executed then. To start reading again, call
1034 root 1.10 C<start_read>.
1035    
1036     =cut
1037    
1038     sub stop_read {
1039     my ($self) = @_;
1040 elmex 1.1
1041 root 1.38 delete $self->{_rw};
1042 root 1.8 }
1043 elmex 1.1
1044 root 1.10 sub start_read {
1045     my ($self) = @_;
1046    
1047 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1048 root 1.10 Scalar::Util::weaken $self;
1049    
1050 root 1.38 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1051 root 1.17 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
1052     my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1053 root 1.10
1054     if ($len > 0) {
1055 root 1.44 $self->{_activity} = AnyEvent->now;
1056 root 1.43
1057 root 1.17 $self->{filter_r}
1058 root 1.48 ? $self->{filter_r}($self, $rbuf)
1059 root 1.17 : $self->_drain_rbuf;
1060 root 1.10
1061     } elsif (defined $len) {
1062 root 1.38 delete $self->{_rw};
1063     $self->{_eof} = 1;
1064 root 1.17 $self->_drain_rbuf;
1065 root 1.10
1066 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1067 root 1.10 return $self->error;
1068     }
1069     });
1070     }
1071 elmex 1.1 }
1072    
1073 root 1.19 sub _dotls {
1074     my ($self) = @_;
1075    
1076 root 1.38 if (length $self->{_tls_wbuf}) {
1077     while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1078     substr $self->{_tls_wbuf}, 0, $len, "";
1079 root 1.22 }
1080 root 1.19 }
1081    
1082 root 1.38 if (defined (my $buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1083 root 1.19 $self->{wbuf} .= $buf;
1084     $self->_drain_wbuf;
1085     }
1086    
1087 root 1.23 while (defined (my $buf = Net::SSLeay::read ($self->{tls}))) {
1088     $self->{rbuf} .= $buf;
1089     $self->_drain_rbuf;
1090     }
1091    
1092 root 1.24 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1093    
1094     if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1095 root 1.23 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1096     $self->error;
1097     } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1098     $! = &Errno::EIO;
1099     $self->error;
1100 root 1.19 }
1101 root 1.23
1102     # all others are fine for our purposes
1103 root 1.19 }
1104     }
1105    
1106 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1107    
1108     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1109     object is created, you can also do that at a later time by calling
1110     C<starttls>.
1111    
1112     The first argument is the same as the C<tls> constructor argument (either
1113     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1114    
1115     The second argument is the optional C<Net::SSLeay::CTX> object that is
1116     used when AnyEvent::Handle has to create its own TLS connection object.
1117    
1118 root 1.38 The TLS connection object will end up in C<< $handle->{tls} >> after this
1119     call and can be used or changed to your liking. Note that the handshake
1120     might have already started when this function returns.
1121    
1122 root 1.25 =cut
1123    
1124 root 1.19 # TODO: maybe document...
1125     sub starttls {
1126     my ($self, $ssl, $ctx) = @_;
1127    
1128 root 1.25 $self->stoptls;
1129    
1130 root 1.19 if ($ssl eq "accept") {
1131     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1132     Net::SSLeay::set_accept_state ($ssl);
1133     } elsif ($ssl eq "connect") {
1134     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1135     Net::SSLeay::set_connect_state ($ssl);
1136     }
1137    
1138     $self->{tls} = $ssl;
1139    
1140 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1141     # but the openssl maintainers basically said: "trust us, it just works".
1142     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1143     # and mismaintained ssleay-module doesn't even offer them).
1144 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1145 root 1.21 Net::SSLeay::CTX_set_mode ($self->{tls},
1146 root 1.34 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1147     | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1148 root 1.21
1149 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1150     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1151 root 1.19
1152 root 1.38 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1153 root 1.19
1154     $self->{filter_w} = sub {
1155 root 1.38 $_[0]{_tls_wbuf} .= ${$_[1]};
1156 root 1.19 &_dotls;
1157     };
1158     $self->{filter_r} = sub {
1159 root 1.38 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1160 root 1.19 &_dotls;
1161     };
1162     }
1163    
1164 root 1.25 =item $handle->stoptls
1165    
1166     Destroys the SSL connection, if any. Partial read or write data will be
1167     lost.
1168    
1169     =cut
1170    
1171     sub stoptls {
1172     my ($self) = @_;
1173    
1174     Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
1175 root 1.38
1176     delete $self->{_rbio};
1177     delete $self->{_wbio};
1178     delete $self->{_tls_wbuf};
1179 root 1.25 delete $self->{filter_r};
1180     delete $self->{filter_w};
1181     }
1182    
1183 root 1.19 sub DESTROY {
1184     my $self = shift;
1185    
1186 root 1.25 $self->stoptls;
1187 root 1.19 }
1188    
1189     =item AnyEvent::Handle::TLS_CTX
1190    
1191     This function creates and returns the Net::SSLeay::CTX object used by
1192     default for TLS mode.
1193    
1194     The context is created like this:
1195    
1196     Net::SSLeay::load_error_strings;
1197     Net::SSLeay::SSLeay_add_ssl_algorithms;
1198     Net::SSLeay::randomize;
1199    
1200     my $CTX = Net::SSLeay::CTX_new;
1201    
1202     Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1203    
1204     =cut
1205    
1206     our $TLS_CTX;
1207    
1208     sub TLS_CTX() {
1209     $TLS_CTX || do {
1210     require Net::SSLeay;
1211    
1212     Net::SSLeay::load_error_strings ();
1213     Net::SSLeay::SSLeay_add_ssl_algorithms ();
1214     Net::SSLeay::randomize ();
1215    
1216     $TLS_CTX = Net::SSLeay::CTX_new ();
1217    
1218     Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1219    
1220     $TLS_CTX
1221     }
1222     }
1223    
1224 elmex 1.1 =back
1225    
1226 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
1227    
1228     In many cases, you might want to subclass AnyEvent::Handle.
1229    
1230     To make this easier, a given version of AnyEvent::Handle uses these
1231     conventions:
1232    
1233     =over 4
1234    
1235     =item * all constructor arguments become object members.
1236    
1237     At least initially, when you pass a C<tls>-argument to the constructor it
1238     will end up in C<< $handle->{tls} >>. Those members might be changes or
1239     mutated later on (for example C<tls> will hold the TLS connection object).
1240    
1241     =item * other object member names are prefixed with an C<_>.
1242    
1243     All object members not explicitly documented (internal use) are prefixed
1244     with an underscore character, so the remaining non-C<_>-namespace is free
1245     for use for subclasses.
1246    
1247     =item * all members not documented here and not prefixed with an underscore
1248     are free to use in subclasses.
1249    
1250     Of course, new versions of AnyEvent::Handle may introduce more "public"
1251     member variables, but thats just life, at least it is documented.
1252    
1253     =back
1254    
1255 elmex 1.1 =head1 AUTHOR
1256    
1257 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1258 elmex 1.1
1259     =cut
1260    
1261     1; # End of AnyEvent::Handle