ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.57
Committed: Wed Jun 4 11:45:21 2008 UTC (16 years ago) by root
Branch: MAIN
Changes since 1.56: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 package AnyEvent::Handle;
2    
3 elmex 1.6 no warnings;
4 elmex 1.1 use strict;
5    
6 root 1.8 use AnyEvent ();
7 root 1.42 use AnyEvent::Util qw(WSAEWOULDBLOCK);
8 root 1.8 use Scalar::Util ();
9     use Carp ();
10     use Fcntl ();
11 root 1.43 use Errno qw(EAGAIN EINTR);
12 elmex 1.1
13     =head1 NAME
14    
15 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 elmex 1.1
17     =cut
18    
19 root 1.57 our $VERSION = 4.13;
20 elmex 1.1
21     =head1 SYNOPSIS
22    
23     use AnyEvent;
24     use AnyEvent::Handle;
25    
26     my $cv = AnyEvent->condvar;
27    
28 root 1.31 my $handle =
29 elmex 1.2 AnyEvent::Handle->new (
30     fh => \*STDIN,
31     on_eof => sub {
32     $cv->broadcast;
33     },
34     );
35    
36 root 1.31 # send some request line
37     $handle->push_write ("getinfo\015\012");
38    
39     # read the response line
40     $handle->push_read (line => sub {
41     my ($handle, $line) = @_;
42     warn "read line <$line>\n";
43     $cv->send;
44     });
45    
46     $cv->recv;
47 elmex 1.1
48     =head1 DESCRIPTION
49    
50 root 1.8 This module is a helper module to make it easier to do event-based I/O on
51 elmex 1.13 filehandles. For utility functions for doing non-blocking connects and accepts
52     on sockets see L<AnyEvent::Util>.
53 root 1.8
54     In the following, when the documentation refers to of "bytes" then this
55     means characters. As sysread and syswrite are used for all I/O, their
56     treatment of characters applies to this module as well.
57 elmex 1.1
58 root 1.8 All callbacks will be invoked with the handle object as their first
59     argument.
60 elmex 1.1
61     =head1 METHODS
62    
63     =over 4
64    
65     =item B<new (%args)>
66    
67 root 1.8 The constructor supports these arguments (all as key => value pairs).
68 elmex 1.1
69     =over 4
70    
71 root 1.8 =item fh => $filehandle [MANDATORY]
72 elmex 1.1
73     The filehandle this L<AnyEvent::Handle> object will operate on.
74    
75 root 1.8 NOTE: The filehandle will be set to non-blocking (using
76     AnyEvent::Util::fh_nonblocking).
77    
78 root 1.40 =item on_eof => $cb->($handle)
79 root 1.10
80 root 1.52 Set the callback to be called when an end-of-file condition is detcted,
81     i.e. in the case of a socket, when the other side has closed the
82     connection cleanly.
83 root 1.8
84 root 1.16 While not mandatory, it is highly recommended to set an eof callback,
85     otherwise you might end up with a closed socket while you are still
86     waiting for data.
87    
88 root 1.52 =item on_error => $cb->($handle, $fatal)
89 root 1.10
90 root 1.52 This is the error callback, which is called when, well, some error
91     occured, such as not being able to resolve the hostname, failure to
92     connect or a read error.
93    
94     Some errors are fatal (which is indicated by C<$fatal> being true). On
95     fatal errors the handle object will be shut down and will not be
96     usable. Non-fatal errors can be retried by simply returning, but it is
97     recommended to simply ignore this parameter and instead abondon the handle
98     object when this callback is invoked.
99 root 1.8
100 root 1.10 On callback entrance, the value of C<$!> contains the operating system
101 root 1.43 error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
102 root 1.8
103 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
104     you will not be notified of errors otherwise. The default simply calls
105 root 1.52 C<croak>.
106 root 1.8
107 root 1.40 =item on_read => $cb->($handle)
108 root 1.8
109     This sets the default read callback, which is called when data arrives
110 root 1.10 and no read request is in the queue.
111 root 1.8
112     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
113 root 1.40 method or access the C<$handle->{rbuf}> member directly.
114 root 1.8
115     When an EOF condition is detected then AnyEvent::Handle will first try to
116     feed all the remaining data to the queued callbacks and C<on_read> before
117     calling the C<on_eof> callback. If no progress can be made, then a fatal
118     error will be raised (with C<$!> set to C<EPIPE>).
119 elmex 1.1
120 root 1.40 =item on_drain => $cb->($handle)
121 elmex 1.1
122 root 1.8 This sets the callback that is called when the write buffer becomes empty
123     (or when the callback is set and the buffer is empty already).
124 elmex 1.1
125 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
126 elmex 1.2
127 root 1.43 =item timeout => $fractional_seconds
128    
129     If non-zero, then this enables an "inactivity" timeout: whenever this many
130     seconds pass without a successful read or write on the underlying file
131     handle, the C<on_timeout> callback will be invoked (and if that one is
132 root 1.45 missing, an C<ETIMEDOUT> error will be raised).
133 root 1.43
134     Note that timeout processing is also active when you currently do not have
135     any outstanding read or write requests: If you plan to keep the connection
136     idle then you should disable the timout temporarily or ignore the timeout
137     in the C<on_timeout> callback.
138    
139     Zero (the default) disables this timeout.
140    
141     =item on_timeout => $cb->($handle)
142    
143     Called whenever the inactivity timeout passes. If you return from this
144     callback, then the timeout will be reset as if some activity had happened,
145     so this condition is not fatal in any way.
146    
147 root 1.8 =item rbuf_max => <bytes>
148 elmex 1.2
149 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
150     when the read buffer ever (strictly) exceeds this size. This is useful to
151     avoid denial-of-service attacks.
152 elmex 1.2
153 root 1.8 For example, a server accepting connections from untrusted sources should
154     be configured to accept only so-and-so much data that it cannot act on
155     (for example, when expecting a line, an attacker could send an unlimited
156     amount of data without a callback ever being called as long as the line
157     isn't finished).
158 elmex 1.2
159 root 1.8 =item read_size => <bytes>
160 elmex 1.2
161 root 1.8 The default read block size (the amount of bytes this module will try to read
162 root 1.46 during each (loop iteration). Default: C<8192>.
163 root 1.8
164     =item low_water_mark => <bytes>
165    
166     Sets the amount of bytes (default: C<0>) that make up an "empty" write
167     buffer: If the write reaches this size or gets even samller it is
168     considered empty.
169 elmex 1.2
170 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
171    
172     When this parameter is given, it enables TLS (SSL) mode, that means it
173     will start making tls handshake and will transparently encrypt/decrypt
174     data.
175    
176 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
177     automatically when you try to create a TLS handle).
178    
179 root 1.19 For the TLS server side, use C<accept>, and for the TLS client side of a
180     connection, use C<connect> mode.
181    
182     You can also provide your own TLS connection object, but you have
183     to make sure that you call either C<Net::SSLeay::set_connect_state>
184     or C<Net::SSLeay::set_accept_state> on it before you pass it to
185     AnyEvent::Handle.
186    
187 root 1.26 See the C<starttls> method if you need to start TLs negotiation later.
188    
189 root 1.19 =item tls_ctx => $ssl_ctx
190    
191     Use the given Net::SSLeay::CTX object to create the new TLS connection
192     (unless a connection object was specified directly). If this parameter is
193     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
194    
195 root 1.40 =item json => JSON or JSON::XS object
196    
197     This is the json coder object used by the C<json> read and write types.
198    
199 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
200     suitable one, which will write and expect UTF-8 encoded JSON texts.
201 root 1.40
202     Note that you are responsible to depend on the JSON module if you want to
203     use this functionality, as AnyEvent does not have a dependency itself.
204    
205 root 1.38 =item filter_r => $cb
206    
207     =item filter_w => $cb
208    
209     These exist, but are undocumented at this time.
210    
211 elmex 1.1 =back
212    
213     =cut
214    
215     sub new {
216 root 1.8 my $class = shift;
217    
218     my $self = bless { @_ }, $class;
219    
220     $self->{fh} or Carp::croak "mandatory argument fh is missing";
221    
222     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
223 elmex 1.1
224 root 1.19 if ($self->{tls}) {
225     require Net::SSLeay;
226     $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
227     }
228    
229 root 1.43 # $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; # nop
230     # $self->on_error (delete $self->{on_error}) if $self->{on_error}; # nop
231     # $self->on_read (delete $self->{on_read} ) if $self->{on_read}; # nop
232 root 1.8 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
233 root 1.43
234 root 1.44 $self->{_activity} = AnyEvent->now;
235 root 1.43 $self->_timeout;
236 elmex 1.1
237 root 1.10 $self->start_read;
238    
239 root 1.8 $self
240     }
241 elmex 1.2
242 root 1.8 sub _shutdown {
243     my ($self) = @_;
244 elmex 1.2
245 root 1.46 delete $self->{_tw};
246 root 1.38 delete $self->{_rw};
247     delete $self->{_ww};
248 root 1.8 delete $self->{fh};
249 root 1.52
250     $self->stoptls;
251 root 1.8 }
252    
253 root 1.52 sub _error {
254     my ($self, $errno, $fatal) = @_;
255 root 1.8
256 root 1.52 $self->_shutdown
257     if $fatal;
258 elmex 1.1
259 root 1.52 $! = $errno;
260 root 1.37
261 root 1.52 if ($self->{on_error}) {
262     $self->{on_error}($self, $fatal);
263     } else {
264     Carp::croak "AnyEvent::Handle uncaught error: $!";
265     }
266 elmex 1.1 }
267    
268 root 1.8 =item $fh = $handle->fh
269 elmex 1.1
270 root 1.22 This method returns the file handle of the L<AnyEvent::Handle> object.
271 elmex 1.1
272     =cut
273    
274 root 1.38 sub fh { $_[0]{fh} }
275 elmex 1.1
276 root 1.8 =item $handle->on_error ($cb)
277 elmex 1.1
278 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
279 elmex 1.1
280 root 1.8 =cut
281    
282     sub on_error {
283     $_[0]{on_error} = $_[1];
284     }
285    
286     =item $handle->on_eof ($cb)
287    
288     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
289 elmex 1.1
290     =cut
291    
292 root 1.8 sub on_eof {
293     $_[0]{on_eof} = $_[1];
294     }
295    
296 root 1.43 =item $handle->on_timeout ($cb)
297    
298     Replace the current C<on_timeout> callback, or disables the callback
299     (but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
300     argument.
301    
302     =cut
303    
304     sub on_timeout {
305     $_[0]{on_timeout} = $_[1];
306     }
307    
308     #############################################################################
309    
310     =item $handle->timeout ($seconds)
311    
312     Configures (or disables) the inactivity timeout.
313    
314     =cut
315    
316     sub timeout {
317     my ($self, $timeout) = @_;
318    
319     $self->{timeout} = $timeout;
320     $self->_timeout;
321     }
322    
323     # reset the timeout watcher, as neccessary
324     # also check for time-outs
325     sub _timeout {
326     my ($self) = @_;
327    
328     if ($self->{timeout}) {
329 root 1.44 my $NOW = AnyEvent->now;
330 root 1.43
331     # when would the timeout trigger?
332     my $after = $self->{_activity} + $self->{timeout} - $NOW;
333    
334     # now or in the past already?
335     if ($after <= 0) {
336     $self->{_activity} = $NOW;
337    
338     if ($self->{on_timeout}) {
339 root 1.48 $self->{on_timeout}($self);
340 root 1.43 } else {
341 root 1.52 $self->_error (&Errno::ETIMEDOUT);
342 root 1.43 }
343    
344 root 1.56 # callback could have changed timeout value, optimise
345 root 1.43 return unless $self->{timeout};
346    
347     # calculate new after
348     $after = $self->{timeout};
349     }
350    
351     Scalar::Util::weaken $self;
352 root 1.56 return unless $self; # ->error could have destroyed $self
353 root 1.43
354     $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
355     delete $self->{_tw};
356     $self->_timeout;
357     });
358     } else {
359     delete $self->{_tw};
360     }
361     }
362    
363 root 1.9 #############################################################################
364    
365     =back
366    
367     =head2 WRITE QUEUE
368    
369     AnyEvent::Handle manages two queues per handle, one for writing and one
370     for reading.
371    
372     The write queue is very simple: you can add data to its end, and
373     AnyEvent::Handle will automatically try to get rid of it for you.
374    
375 elmex 1.20 When data could be written and the write buffer is shorter then the low
376 root 1.9 water mark, the C<on_drain> callback will be invoked.
377    
378     =over 4
379    
380 root 1.8 =item $handle->on_drain ($cb)
381    
382     Sets the C<on_drain> callback or clears it (see the description of
383     C<on_drain> in the constructor).
384    
385     =cut
386    
387     sub on_drain {
388 elmex 1.1 my ($self, $cb) = @_;
389    
390 root 1.8 $self->{on_drain} = $cb;
391    
392     $cb->($self)
393     if $cb && $self->{low_water_mark} >= length $self->{wbuf};
394     }
395    
396     =item $handle->push_write ($data)
397    
398     Queues the given scalar to be written. You can push as much data as you
399     want (only limited by the available memory), as C<AnyEvent::Handle>
400     buffers it independently of the kernel.
401    
402     =cut
403    
404 root 1.17 sub _drain_wbuf {
405     my ($self) = @_;
406 root 1.8
407 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
408 root 1.35
409 root 1.8 Scalar::Util::weaken $self;
410 root 1.35
411 root 1.8 my $cb = sub {
412     my $len = syswrite $self->{fh}, $self->{wbuf};
413    
414 root 1.29 if ($len >= 0) {
415 root 1.8 substr $self->{wbuf}, 0, $len, "";
416    
417 root 1.44 $self->{_activity} = AnyEvent->now;
418 root 1.43
419 root 1.8 $self->{on_drain}($self)
420     if $self->{low_water_mark} >= length $self->{wbuf}
421     && $self->{on_drain};
422    
423 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
424 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
425 root 1.52 $self->_error ($!, 1);
426 elmex 1.1 }
427 root 1.8 };
428    
429 root 1.35 # try to write data immediately
430     $cb->();
431 root 1.8
432 root 1.35 # if still data left in wbuf, we need to poll
433 root 1.38 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
434 root 1.35 if length $self->{wbuf};
435 root 1.8 };
436     }
437    
438 root 1.30 our %WH;
439    
440     sub register_write_type($$) {
441     $WH{$_[0]} = $_[1];
442     }
443    
444 root 1.17 sub push_write {
445     my $self = shift;
446    
447 root 1.29 if (@_ > 1) {
448     my $type = shift;
449    
450     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
451     ->($self, @_);
452     }
453    
454 root 1.17 if ($self->{filter_w}) {
455 root 1.48 $self->{filter_w}($self, \$_[0]);
456 root 1.17 } else {
457     $self->{wbuf} .= $_[0];
458     $self->_drain_wbuf;
459     }
460     }
461    
462 root 1.29 =item $handle->push_write (type => @args)
463    
464     Instead of formatting your data yourself, you can also let this module do
465     the job by specifying a type and type-specific arguments.
466    
467 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
468     drop by and tell us):
469 root 1.29
470     =over 4
471    
472     =item netstring => $string
473    
474     Formats the given value as netstring
475     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
476    
477     =cut
478    
479     register_write_type netstring => sub {
480     my ($self, $string) = @_;
481    
482     sprintf "%d:%s,", (length $string), $string
483     };
484    
485 root 1.39 =item json => $array_or_hashref
486    
487 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
488     provide your own JSON object, this means it will be encoded to JSON text
489     in UTF-8.
490    
491     JSON objects (and arrays) are self-delimiting, so you can write JSON at
492     one end of a handle and read them at the other end without using any
493     additional framing.
494    
495 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
496     this module doesn't need delimiters after or between JSON texts to be
497     able to read them, many other languages depend on that.
498    
499     A simple RPC protocol that interoperates easily with others is to send
500     JSON arrays (or objects, although arrays are usually the better choice as
501     they mimic how function argument passing works) and a newline after each
502     JSON text:
503    
504     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
505     $handle->push_write ("\012");
506    
507     An AnyEvent::Handle receiver would simply use the C<json> read type and
508     rely on the fact that the newline will be skipped as leading whitespace:
509    
510     $handle->push_read (json => sub { my $array = $_[1]; ... });
511    
512     Other languages could read single lines terminated by a newline and pass
513     this line into their JSON decoder of choice.
514    
515 root 1.40 =cut
516    
517     register_write_type json => sub {
518     my ($self, $ref) = @_;
519    
520     require JSON;
521    
522     $self->{json} ? $self->{json}->encode ($ref)
523     : JSON::encode_json ($ref)
524     };
525    
526 root 1.53 =back
527    
528 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
529 root 1.30
530     This function (not method) lets you add your own types to C<push_write>.
531     Whenever the given C<type> is used, C<push_write> will invoke the code
532     reference with the handle object and the remaining arguments.
533 root 1.29
534 root 1.30 The code reference is supposed to return a single octet string that will
535     be appended to the write buffer.
536 root 1.29
537 root 1.30 Note that this is a function, and all types registered this way will be
538     global, so try to use unique names.
539 root 1.29
540 root 1.30 =cut
541 root 1.29
542 root 1.8 #############################################################################
543    
544 root 1.9 =back
545    
546     =head2 READ QUEUE
547    
548     AnyEvent::Handle manages two queues per handle, one for writing and one
549     for reading.
550    
551     The read queue is more complex than the write queue. It can be used in two
552     ways, the "simple" way, using only C<on_read> and the "complex" way, using
553     a queue.
554    
555     In the simple case, you just install an C<on_read> callback and whenever
556     new data arrives, it will be called. You can then remove some data (if
557     enough is there) from the read buffer (C<< $handle->rbuf >>) if you want
558     or not.
559    
560     In the more complex case, you want to queue multiple callbacks. In this
561     case, AnyEvent::Handle will call the first queued callback each time new
562     data arrives and removes it when it has done its job (see C<push_read>,
563     below).
564    
565     This way you can, for example, push three line-reads, followed by reading
566     a chunk of data, and AnyEvent::Handle will execute them in order.
567    
568     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
569     the specified number of bytes which give an XML datagram.
570    
571     # in the default state, expect some header bytes
572     $handle->on_read (sub {
573     # some data is here, now queue the length-header-read (4 octets)
574 root 1.52 shift->unshift_read (chunk => 4, sub {
575 root 1.9 # header arrived, decode
576     my $len = unpack "N", $_[1];
577    
578     # now read the payload
579 root 1.52 shift->unshift_read (chunk => $len, sub {
580 root 1.9 my $xml = $_[1];
581     # handle xml
582     });
583     });
584     });
585    
586     Example 2: Implement a client for a protocol that replies either with
587     "OK" and another line or "ERROR" for one request, and 64 bytes for the
588     second request. Due tot he availability of a full queue, we can just
589     pipeline sending both requests and manipulate the queue as necessary in
590     the callbacks:
591    
592     # request one
593     $handle->push_write ("request 1\015\012");
594    
595     # we expect "ERROR" or "OK" as response, so push a line read
596 root 1.52 $handle->push_read (line => sub {
597 root 1.9 # if we got an "OK", we have to _prepend_ another line,
598     # so it will be read before the second request reads its 64 bytes
599     # which are already in the queue when this callback is called
600     # we don't do this in case we got an error
601     if ($_[1] eq "OK") {
602 root 1.52 $_[0]->unshift_read (line => sub {
603 root 1.9 my $response = $_[1];
604     ...
605     });
606     }
607     });
608    
609     # request two
610     $handle->push_write ("request 2\015\012");
611    
612     # simply read 64 bytes, always
613 root 1.52 $handle->push_read (chunk => 64, sub {
614 root 1.9 my $response = $_[1];
615     ...
616     });
617    
618     =over 4
619    
620 root 1.10 =cut
621    
622 root 1.8 sub _drain_rbuf {
623     my ($self) = @_;
624 elmex 1.1
625 root 1.17 if (
626     defined $self->{rbuf_max}
627     && $self->{rbuf_max} < length $self->{rbuf}
628     ) {
629 root 1.52 return $self->_error (&Errno::ENOSPC, 1);
630 root 1.17 }
631    
632 root 1.11 return if $self->{in_drain};
633 root 1.8 local $self->{in_drain} = 1;
634 elmex 1.1
635 root 1.8 while (my $len = length $self->{rbuf}) {
636     no strict 'refs';
637 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
638 root 1.29 unless ($cb->($self)) {
639 root 1.38 if ($self->{_eof}) {
640 root 1.10 # no progress can be made (not enough data and no data forthcoming)
641 root 1.52 return $self->_error (&Errno::EPIPE, 1);
642 root 1.10 }
643    
644 root 1.38 unshift @{ $self->{_queue} }, $cb;
645 root 1.55 last;
646 root 1.8 }
647     } elsif ($self->{on_read}) {
648     $self->{on_read}($self);
649    
650     if (
651 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
652     && !@{ $self->{_queue} } # and the queue is still empty
653     && $self->{on_read} # but we still have on_read
654 root 1.8 ) {
655 root 1.55 # no further data will arrive
656     # so no progress can be made
657     return $self->_error (&Errno::EPIPE, 1)
658     if $self->{_eof};
659    
660     last; # more data might arrive
661 elmex 1.1 }
662 root 1.8 } else {
663     # read side becomes idle
664 root 1.38 delete $self->{_rw};
665 root 1.55 last;
666 root 1.8 }
667     }
668    
669 root 1.48 $self->{on_eof}($self)
670     if $self->{_eof} && $self->{on_eof};
671 root 1.55
672     # may need to restart read watcher
673     unless ($self->{_rw}) {
674     $self->start_read
675     if $self->{on_read} || @{ $self->{_queue} };
676     }
677 elmex 1.1 }
678    
679 root 1.8 =item $handle->on_read ($cb)
680 elmex 1.1
681 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
682     the new callback is C<undef>). See the description of C<on_read> in the
683     constructor.
684 elmex 1.1
685 root 1.8 =cut
686    
687     sub on_read {
688     my ($self, $cb) = @_;
689 elmex 1.1
690 root 1.8 $self->{on_read} = $cb;
691 elmex 1.1 }
692    
693 root 1.8 =item $handle->rbuf
694    
695     Returns the read buffer (as a modifiable lvalue).
696 elmex 1.1
697 root 1.8 You can access the read buffer directly as the C<< ->{rbuf} >> member, if
698     you want.
699 elmex 1.1
700 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
701     C<push_read> or C<unshift_read> methods are used. The other read methods
702     automatically manage the read buffer.
703 elmex 1.1
704     =cut
705    
706 elmex 1.2 sub rbuf : lvalue {
707 root 1.8 $_[0]{rbuf}
708 elmex 1.2 }
709 elmex 1.1
710 root 1.8 =item $handle->push_read ($cb)
711    
712     =item $handle->unshift_read ($cb)
713    
714     Append the given callback to the end of the queue (C<push_read>) or
715     prepend it (C<unshift_read>).
716    
717     The callback is called each time some additional read data arrives.
718 elmex 1.1
719 elmex 1.20 It must check whether enough data is in the read buffer already.
720 elmex 1.1
721 root 1.8 If not enough data is available, it must return the empty list or a false
722     value, in which case it will be called repeatedly until enough data is
723     available (or an error condition is detected).
724    
725     If enough data was available, then the callback must remove all data it is
726     interested in (which can be none at all) and return a true value. After returning
727     true, it will be removed from the queue.
728 elmex 1.1
729     =cut
730    
731 root 1.30 our %RH;
732    
733     sub register_read_type($$) {
734     $RH{$_[0]} = $_[1];
735     }
736    
737 root 1.8 sub push_read {
738 root 1.28 my $self = shift;
739     my $cb = pop;
740    
741     if (@_) {
742     my $type = shift;
743    
744     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
745     ->($self, $cb, @_);
746     }
747 elmex 1.1
748 root 1.38 push @{ $self->{_queue} }, $cb;
749 root 1.8 $self->_drain_rbuf;
750 elmex 1.1 }
751    
752 root 1.8 sub unshift_read {
753 root 1.28 my $self = shift;
754     my $cb = pop;
755    
756     if (@_) {
757     my $type = shift;
758    
759     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
760     ->($self, $cb, @_);
761     }
762    
763 root 1.8
764 root 1.38 unshift @{ $self->{_queue} }, $cb;
765 root 1.8 $self->_drain_rbuf;
766     }
767 elmex 1.1
768 root 1.28 =item $handle->push_read (type => @args, $cb)
769 elmex 1.1
770 root 1.28 =item $handle->unshift_read (type => @args, $cb)
771 elmex 1.1
772 root 1.28 Instead of providing a callback that parses the data itself you can chose
773     between a number of predefined parsing formats, for chunks of data, lines
774     etc.
775 elmex 1.1
776 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
777     drop by and tell us):
778 root 1.28
779     =over 4
780    
781 root 1.40 =item chunk => $octets, $cb->($handle, $data)
782 root 1.28
783     Invoke the callback only once C<$octets> bytes have been read. Pass the
784     data read to the callback. The callback will never be called with less
785     data.
786    
787     Example: read 2 bytes.
788    
789     $handle->push_read (chunk => 2, sub {
790     warn "yay ", unpack "H*", $_[1];
791     });
792 elmex 1.1
793     =cut
794    
795 root 1.28 register_read_type chunk => sub {
796     my ($self, $cb, $len) = @_;
797 elmex 1.1
798 root 1.8 sub {
799     $len <= length $_[0]{rbuf} or return;
800 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
801 root 1.8 1
802     }
803 root 1.28 };
804 root 1.8
805 root 1.28 # compatibility with older API
806 root 1.8 sub push_read_chunk {
807 root 1.28 $_[0]->push_read (chunk => $_[1], $_[2]);
808 root 1.8 }
809 elmex 1.1
810 root 1.8 sub unshift_read_chunk {
811 root 1.28 $_[0]->unshift_read (chunk => $_[1], $_[2]);
812 elmex 1.1 }
813    
814 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
815 elmex 1.1
816 root 1.8 The callback will be called only once a full line (including the end of
817     line marker, C<$eol>) has been read. This line (excluding the end of line
818     marker) will be passed to the callback as second argument (C<$line>), and
819     the end of line marker as the third argument (C<$eol>).
820 elmex 1.1
821 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
822     will be interpreted as a fixed record end marker, or it can be a regex
823     object (e.g. created by C<qr>), in which case it is interpreted as a
824     regular expression.
825 elmex 1.1
826 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
827     undef), then C<qr|\015?\012|> is used (which is good for most internet
828     protocols).
829 elmex 1.1
830 root 1.8 Partial lines at the end of the stream will never be returned, as they are
831     not marked by the end of line marker.
832 elmex 1.1
833 root 1.8 =cut
834 elmex 1.1
835 root 1.28 register_read_type line => sub {
836     my ($self, $cb, $eol) = @_;
837 elmex 1.1
838 root 1.28 $eol = qr|(\015?\012)| if @_ < 3;
839 root 1.14 $eol = quotemeta $eol unless ref $eol;
840     $eol = qr|^(.*?)($eol)|s;
841 elmex 1.1
842 root 1.8 sub {
843     $_[0]{rbuf} =~ s/$eol// or return;
844 elmex 1.1
845 elmex 1.12 $cb->($_[0], $1, $2);
846 root 1.8 1
847     }
848 root 1.28 };
849 elmex 1.1
850 root 1.28 # compatibility with older API
851 root 1.8 sub push_read_line {
852 root 1.28 my $self = shift;
853     $self->push_read (line => @_);
854 root 1.10 }
855    
856     sub unshift_read_line {
857 root 1.28 my $self = shift;
858     $self->unshift_read (line => @_);
859 root 1.10 }
860    
861 root 1.40 =item netstring => $cb->($handle, $string)
862 root 1.29
863     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
864    
865     Throws an error with C<$!> set to EBADMSG on format violations.
866    
867     =cut
868    
869     register_read_type netstring => sub {
870     my ($self, $cb) = @_;
871    
872     sub {
873     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
874     if ($_[0]{rbuf} =~ /[^0-9]/) {
875 root 1.52 $self->_error (&Errno::EBADMSG);
876 root 1.29 }
877     return;
878     }
879    
880     my $len = $1;
881    
882     $self->unshift_read (chunk => $len, sub {
883     my $string = $_[1];
884     $_[0]->unshift_read (chunk => 1, sub {
885     if ($_[1] eq ",") {
886     $cb->($_[0], $string);
887     } else {
888 root 1.52 $self->_error (&Errno::EBADMSG);
889 root 1.29 }
890     });
891     });
892    
893     1
894     }
895     };
896    
897 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
898 root 1.36
899     Makes a regex match against the regex object C<$accept> and returns
900     everything up to and including the match.
901    
902     Example: read a single line terminated by '\n'.
903    
904     $handle->push_read (regex => qr<\n>, sub { ... });
905    
906     If C<$reject> is given and not undef, then it determines when the data is
907     to be rejected: it is matched against the data when the C<$accept> regex
908     does not match and generates an C<EBADMSG> error when it matches. This is
909     useful to quickly reject wrong data (to avoid waiting for a timeout or a
910     receive buffer overflow).
911    
912     Example: expect a single decimal number followed by whitespace, reject
913     anything else (not the use of an anchor).
914    
915     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
916    
917     If C<$skip> is given and not C<undef>, then it will be matched against
918     the receive buffer when neither C<$accept> nor C<$reject> match,
919     and everything preceding and including the match will be accepted
920     unconditionally. This is useful to skip large amounts of data that you
921     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
922     have to start matching from the beginning. This is purely an optimisation
923     and is usually worth only when you expect more than a few kilobytes.
924    
925     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
926     expect the header to be very large (it isn't in practise, but...), we use
927     a skip regex to skip initial portions. The skip regex is tricky in that
928     it only accepts something not ending in either \015 or \012, as these are
929     required for the accept regex.
930    
931     $handle->push_read (regex =>
932     qr<\015\012\015\012>,
933     undef, # no reject
934     qr<^.*[^\015\012]>,
935     sub { ... });
936    
937     =cut
938    
939     register_read_type regex => sub {
940     my ($self, $cb, $accept, $reject, $skip) = @_;
941    
942     my $data;
943     my $rbuf = \$self->{rbuf};
944    
945     sub {
946     # accept
947     if ($$rbuf =~ $accept) {
948     $data .= substr $$rbuf, 0, $+[0], "";
949     $cb->($self, $data);
950     return 1;
951     }
952    
953     # reject
954     if ($reject && $$rbuf =~ $reject) {
955 root 1.52 $self->_error (&Errno::EBADMSG);
956 root 1.36 }
957    
958     # skip
959     if ($skip && $$rbuf =~ $skip) {
960     $data .= substr $$rbuf, 0, $+[0], "";
961     }
962    
963     ()
964     }
965     };
966    
967 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
968    
969     Reads a JSON object or array, decodes it and passes it to the callback.
970    
971     If a C<json> object was passed to the constructor, then that will be used
972     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
973    
974     This read type uses the incremental parser available with JSON version
975     2.09 (and JSON::XS version 2.2) and above. You have to provide a
976     dependency on your own: this module will load the JSON module, but
977     AnyEvent does not depend on it itself.
978    
979     Since JSON texts are fully self-delimiting, the C<json> read and write
980 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
981     the C<json> write type description, above, for an actual example.
982 root 1.40
983     =cut
984    
985     register_read_type json => sub {
986     my ($self, $cb, $accept, $reject, $skip) = @_;
987    
988     require JSON;
989    
990     my $data;
991     my $rbuf = \$self->{rbuf};
992    
993 root 1.41 my $json = $self->{json} ||= JSON->new->utf8;
994 root 1.40
995     sub {
996     my $ref = $json->incr_parse ($self->{rbuf});
997    
998     if ($ref) {
999     $self->{rbuf} = $json->incr_text;
1000     $json->incr_text = "";
1001     $cb->($self, $ref);
1002    
1003     1
1004     } else {
1005     $self->{rbuf} = "";
1006     ()
1007     }
1008     }
1009     };
1010    
1011 root 1.28 =back
1012    
1013 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1014 root 1.30
1015     This function (not method) lets you add your own types to C<push_read>.
1016    
1017     Whenever the given C<type> is used, C<push_read> will invoke the code
1018     reference with the handle object, the callback and the remaining
1019     arguments.
1020    
1021     The code reference is supposed to return a callback (usually a closure)
1022     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1023    
1024     It should invoke the passed callback when it is done reading (remember to
1025 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1026 root 1.30
1027     Note that this is a function, and all types registered this way will be
1028     global, so try to use unique names.
1029    
1030     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1031     search for C<register_read_type>)).
1032    
1033 root 1.10 =item $handle->stop_read
1034    
1035     =item $handle->start_read
1036    
1037 root 1.18 In rare cases you actually do not want to read anything from the
1038 root 1.10 socket. In this case you can call C<stop_read>. Neither C<on_read> no
1039 root 1.22 any queued callbacks will be executed then. To start reading again, call
1040 root 1.10 C<start_read>.
1041    
1042 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1043     you change the C<on_read> callback or push/unshift a read callback, and it
1044     will automatically C<stop_read> for you when neither C<on_read> is set nor
1045     there are any read requests in the queue.
1046    
1047 root 1.10 =cut
1048    
1049     sub stop_read {
1050     my ($self) = @_;
1051 elmex 1.1
1052 root 1.38 delete $self->{_rw};
1053 root 1.8 }
1054 elmex 1.1
1055 root 1.10 sub start_read {
1056     my ($self) = @_;
1057    
1058 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1059 root 1.10 Scalar::Util::weaken $self;
1060    
1061 root 1.38 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1062 root 1.17 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
1063     my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1064 root 1.10
1065     if ($len > 0) {
1066 root 1.44 $self->{_activity} = AnyEvent->now;
1067 root 1.43
1068 root 1.17 $self->{filter_r}
1069 root 1.48 ? $self->{filter_r}($self, $rbuf)
1070 root 1.17 : $self->_drain_rbuf;
1071 root 1.10
1072     } elsif (defined $len) {
1073 root 1.38 delete $self->{_rw};
1074     $self->{_eof} = 1;
1075 root 1.17 $self->_drain_rbuf;
1076 root 1.10
1077 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1078 root 1.52 return $self->_error ($!, 1);
1079 root 1.10 }
1080     });
1081     }
1082 elmex 1.1 }
1083    
1084 root 1.19 sub _dotls {
1085     my ($self) = @_;
1086    
1087 root 1.56 my $buf;
1088    
1089 root 1.38 if (length $self->{_tls_wbuf}) {
1090     while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1091     substr $self->{_tls_wbuf}, 0, $len, "";
1092 root 1.22 }
1093 root 1.19 }
1094    
1095 root 1.56 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1096 root 1.19 $self->{wbuf} .= $buf;
1097     $self->_drain_wbuf;
1098     }
1099    
1100 root 1.56 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1101     if (length $buf) {
1102     $self->{rbuf} .= $buf;
1103     $self->_drain_rbuf;
1104     } else {
1105     # let's treat SSL-eof as we treat normal EOF
1106     $self->{_eof} = 1;
1107     $self->_shutdown;
1108     return;
1109     }
1110 root 1.23 }
1111    
1112 root 1.24 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1113    
1114     if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1115 root 1.23 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1116 root 1.52 return $self->_error ($!, 1);
1117 root 1.23 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1118 root 1.52 return $self->_error (&Errno::EIO, 1);
1119 root 1.19 }
1120 root 1.23
1121     # all others are fine for our purposes
1122 root 1.19 }
1123     }
1124    
1125 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1126    
1127     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1128     object is created, you can also do that at a later time by calling
1129     C<starttls>.
1130    
1131     The first argument is the same as the C<tls> constructor argument (either
1132     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1133    
1134     The second argument is the optional C<Net::SSLeay::CTX> object that is
1135     used when AnyEvent::Handle has to create its own TLS connection object.
1136    
1137 root 1.38 The TLS connection object will end up in C<< $handle->{tls} >> after this
1138     call and can be used or changed to your liking. Note that the handshake
1139     might have already started when this function returns.
1140    
1141 root 1.25 =cut
1142    
1143 root 1.19 sub starttls {
1144     my ($self, $ssl, $ctx) = @_;
1145    
1146 root 1.25 $self->stoptls;
1147    
1148 root 1.19 if ($ssl eq "accept") {
1149     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1150     Net::SSLeay::set_accept_state ($ssl);
1151     } elsif ($ssl eq "connect") {
1152     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1153     Net::SSLeay::set_connect_state ($ssl);
1154     }
1155    
1156     $self->{tls} = $ssl;
1157    
1158 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1159     # but the openssl maintainers basically said: "trust us, it just works".
1160     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1161     # and mismaintained ssleay-module doesn't even offer them).
1162 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1163 root 1.21 Net::SSLeay::CTX_set_mode ($self->{tls},
1164 root 1.34 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1165     | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1166 root 1.21
1167 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1168     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1169 root 1.19
1170 root 1.38 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1171 root 1.19
1172     $self->{filter_w} = sub {
1173 root 1.38 $_[0]{_tls_wbuf} .= ${$_[1]};
1174 root 1.19 &_dotls;
1175     };
1176     $self->{filter_r} = sub {
1177 root 1.38 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1178 root 1.19 &_dotls;
1179     };
1180     }
1181    
1182 root 1.25 =item $handle->stoptls
1183    
1184     Destroys the SSL connection, if any. Partial read or write data will be
1185     lost.
1186    
1187     =cut
1188    
1189     sub stoptls {
1190     my ($self) = @_;
1191    
1192     Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
1193 root 1.38
1194     delete $self->{_rbio};
1195     delete $self->{_wbio};
1196     delete $self->{_tls_wbuf};
1197 root 1.25 delete $self->{filter_r};
1198     delete $self->{filter_w};
1199     }
1200    
1201 root 1.19 sub DESTROY {
1202     my $self = shift;
1203    
1204 root 1.25 $self->stoptls;
1205 root 1.19 }
1206    
1207     =item AnyEvent::Handle::TLS_CTX
1208    
1209     This function creates and returns the Net::SSLeay::CTX object used by
1210     default for TLS mode.
1211    
1212     The context is created like this:
1213    
1214     Net::SSLeay::load_error_strings;
1215     Net::SSLeay::SSLeay_add_ssl_algorithms;
1216     Net::SSLeay::randomize;
1217    
1218     my $CTX = Net::SSLeay::CTX_new;
1219    
1220     Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1221    
1222     =cut
1223    
1224     our $TLS_CTX;
1225    
1226     sub TLS_CTX() {
1227     $TLS_CTX || do {
1228     require Net::SSLeay;
1229    
1230     Net::SSLeay::load_error_strings ();
1231     Net::SSLeay::SSLeay_add_ssl_algorithms ();
1232     Net::SSLeay::randomize ();
1233    
1234     $TLS_CTX = Net::SSLeay::CTX_new ();
1235    
1236     Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1237    
1238     $TLS_CTX
1239     }
1240     }
1241    
1242 elmex 1.1 =back
1243    
1244 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
1245    
1246     In many cases, you might want to subclass AnyEvent::Handle.
1247    
1248     To make this easier, a given version of AnyEvent::Handle uses these
1249     conventions:
1250    
1251     =over 4
1252    
1253     =item * all constructor arguments become object members.
1254    
1255     At least initially, when you pass a C<tls>-argument to the constructor it
1256     will end up in C<< $handle->{tls} >>. Those members might be changes or
1257     mutated later on (for example C<tls> will hold the TLS connection object).
1258    
1259     =item * other object member names are prefixed with an C<_>.
1260    
1261     All object members not explicitly documented (internal use) are prefixed
1262     with an underscore character, so the remaining non-C<_>-namespace is free
1263     for use for subclasses.
1264    
1265     =item * all members not documented here and not prefixed with an underscore
1266     are free to use in subclasses.
1267    
1268     Of course, new versions of AnyEvent::Handle may introduce more "public"
1269     member variables, but thats just life, at least it is documented.
1270    
1271     =back
1272    
1273 elmex 1.1 =head1 AUTHOR
1274    
1275 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1276 elmex 1.1
1277     =cut
1278    
1279     1; # End of AnyEvent::Handle