ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.58
Committed: Wed Jun 4 22:51:15 2008 UTC (16 years ago) by root
Branch: MAIN
CVS Tags: rel-4_13
Changes since 1.57: +4 -7 lines
Log Message:
4.13

File Contents

# User Rev Content
1 elmex 1.1 package AnyEvent::Handle;
2    
3 elmex 1.6 no warnings;
4 elmex 1.1 use strict;
5    
6 root 1.8 use AnyEvent ();
7 root 1.42 use AnyEvent::Util qw(WSAEWOULDBLOCK);
8 root 1.8 use Scalar::Util ();
9     use Carp ();
10     use Fcntl ();
11 root 1.43 use Errno qw(EAGAIN EINTR);
12 elmex 1.1
13     =head1 NAME
14    
15 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 elmex 1.1
17     =cut
18    
19 root 1.57 our $VERSION = 4.13;
20 elmex 1.1
21     =head1 SYNOPSIS
22    
23     use AnyEvent;
24     use AnyEvent::Handle;
25    
26     my $cv = AnyEvent->condvar;
27    
28 root 1.31 my $handle =
29 elmex 1.2 AnyEvent::Handle->new (
30     fh => \*STDIN,
31     on_eof => sub {
32     $cv->broadcast;
33     },
34     );
35    
36 root 1.31 # send some request line
37     $handle->push_write ("getinfo\015\012");
38    
39     # read the response line
40     $handle->push_read (line => sub {
41     my ($handle, $line) = @_;
42     warn "read line <$line>\n";
43     $cv->send;
44     });
45    
46     $cv->recv;
47 elmex 1.1
48     =head1 DESCRIPTION
49    
50 root 1.8 This module is a helper module to make it easier to do event-based I/O on
51 elmex 1.13 filehandles. For utility functions for doing non-blocking connects and accepts
52     on sockets see L<AnyEvent::Util>.
53 root 1.8
54     In the following, when the documentation refers to of "bytes" then this
55     means characters. As sysread and syswrite are used for all I/O, their
56     treatment of characters applies to this module as well.
57 elmex 1.1
58 root 1.8 All callbacks will be invoked with the handle object as their first
59     argument.
60 elmex 1.1
61     =head1 METHODS
62    
63     =over 4
64    
65     =item B<new (%args)>
66    
67 root 1.8 The constructor supports these arguments (all as key => value pairs).
68 elmex 1.1
69     =over 4
70    
71 root 1.8 =item fh => $filehandle [MANDATORY]
72 elmex 1.1
73     The filehandle this L<AnyEvent::Handle> object will operate on.
74    
75 root 1.8 NOTE: The filehandle will be set to non-blocking (using
76     AnyEvent::Util::fh_nonblocking).
77    
78 root 1.40 =item on_eof => $cb->($handle)
79 root 1.10
80 root 1.52 Set the callback to be called when an end-of-file condition is detcted,
81     i.e. in the case of a socket, when the other side has closed the
82     connection cleanly.
83 root 1.8
84 root 1.16 While not mandatory, it is highly recommended to set an eof callback,
85     otherwise you might end up with a closed socket while you are still
86     waiting for data.
87    
88 root 1.52 =item on_error => $cb->($handle, $fatal)
89 root 1.10
90 root 1.52 This is the error callback, which is called when, well, some error
91     occured, such as not being able to resolve the hostname, failure to
92     connect or a read error.
93    
94     Some errors are fatal (which is indicated by C<$fatal> being true). On
95     fatal errors the handle object will be shut down and will not be
96     usable. Non-fatal errors can be retried by simply returning, but it is
97     recommended to simply ignore this parameter and instead abondon the handle
98     object when this callback is invoked.
99 root 1.8
100 root 1.10 On callback entrance, the value of C<$!> contains the operating system
101 root 1.43 error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
102 root 1.8
103 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
104     you will not be notified of errors otherwise. The default simply calls
105 root 1.52 C<croak>.
106 root 1.8
107 root 1.40 =item on_read => $cb->($handle)
108 root 1.8
109     This sets the default read callback, which is called when data arrives
110 root 1.10 and no read request is in the queue.
111 root 1.8
112     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
113 root 1.40 method or access the C<$handle->{rbuf}> member directly.
114 root 1.8
115     When an EOF condition is detected then AnyEvent::Handle will first try to
116     feed all the remaining data to the queued callbacks and C<on_read> before
117     calling the C<on_eof> callback. If no progress can be made, then a fatal
118     error will be raised (with C<$!> set to C<EPIPE>).
119 elmex 1.1
120 root 1.40 =item on_drain => $cb->($handle)
121 elmex 1.1
122 root 1.8 This sets the callback that is called when the write buffer becomes empty
123     (or when the callback is set and the buffer is empty already).
124 elmex 1.1
125 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
126 elmex 1.2
127 root 1.43 =item timeout => $fractional_seconds
128    
129     If non-zero, then this enables an "inactivity" timeout: whenever this many
130     seconds pass without a successful read or write on the underlying file
131     handle, the C<on_timeout> callback will be invoked (and if that one is
132 root 1.45 missing, an C<ETIMEDOUT> error will be raised).
133 root 1.43
134     Note that timeout processing is also active when you currently do not have
135     any outstanding read or write requests: If you plan to keep the connection
136     idle then you should disable the timout temporarily or ignore the timeout
137     in the C<on_timeout> callback.
138    
139     Zero (the default) disables this timeout.
140    
141     =item on_timeout => $cb->($handle)
142    
143     Called whenever the inactivity timeout passes. If you return from this
144     callback, then the timeout will be reset as if some activity had happened,
145     so this condition is not fatal in any way.
146    
147 root 1.8 =item rbuf_max => <bytes>
148 elmex 1.2
149 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
150     when the read buffer ever (strictly) exceeds this size. This is useful to
151     avoid denial-of-service attacks.
152 elmex 1.2
153 root 1.8 For example, a server accepting connections from untrusted sources should
154     be configured to accept only so-and-so much data that it cannot act on
155     (for example, when expecting a line, an attacker could send an unlimited
156     amount of data without a callback ever being called as long as the line
157     isn't finished).
158 elmex 1.2
159 root 1.8 =item read_size => <bytes>
160 elmex 1.2
161 root 1.8 The default read block size (the amount of bytes this module will try to read
162 root 1.46 during each (loop iteration). Default: C<8192>.
163 root 1.8
164     =item low_water_mark => <bytes>
165    
166     Sets the amount of bytes (default: C<0>) that make up an "empty" write
167     buffer: If the write reaches this size or gets even samller it is
168     considered empty.
169 elmex 1.2
170 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
171    
172     When this parameter is given, it enables TLS (SSL) mode, that means it
173     will start making tls handshake and will transparently encrypt/decrypt
174     data.
175    
176 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
177     automatically when you try to create a TLS handle).
178    
179 root 1.19 For the TLS server side, use C<accept>, and for the TLS client side of a
180     connection, use C<connect> mode.
181    
182     You can also provide your own TLS connection object, but you have
183     to make sure that you call either C<Net::SSLeay::set_connect_state>
184     or C<Net::SSLeay::set_accept_state> on it before you pass it to
185     AnyEvent::Handle.
186    
187 root 1.26 See the C<starttls> method if you need to start TLs negotiation later.
188    
189 root 1.19 =item tls_ctx => $ssl_ctx
190    
191     Use the given Net::SSLeay::CTX object to create the new TLS connection
192     (unless a connection object was specified directly). If this parameter is
193     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
194    
195 root 1.40 =item json => JSON or JSON::XS object
196    
197     This is the json coder object used by the C<json> read and write types.
198    
199 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
200     suitable one, which will write and expect UTF-8 encoded JSON texts.
201 root 1.40
202     Note that you are responsible to depend on the JSON module if you want to
203     use this functionality, as AnyEvent does not have a dependency itself.
204    
205 root 1.38 =item filter_r => $cb
206    
207     =item filter_w => $cb
208    
209     These exist, but are undocumented at this time.
210    
211 elmex 1.1 =back
212    
213     =cut
214    
215     sub new {
216 root 1.8 my $class = shift;
217    
218     my $self = bless { @_ }, $class;
219    
220     $self->{fh} or Carp::croak "mandatory argument fh is missing";
221    
222     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
223 elmex 1.1
224 root 1.19 if ($self->{tls}) {
225     require Net::SSLeay;
226     $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
227     }
228    
229 root 1.44 $self->{_activity} = AnyEvent->now;
230 root 1.43 $self->_timeout;
231 elmex 1.1
232 root 1.58 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
233     $self->on_read (delete $self->{on_read} ) if $self->{on_read};
234 root 1.10
235 root 1.8 $self
236     }
237 elmex 1.2
238 root 1.8 sub _shutdown {
239     my ($self) = @_;
240 elmex 1.2
241 root 1.46 delete $self->{_tw};
242 root 1.38 delete $self->{_rw};
243     delete $self->{_ww};
244 root 1.8 delete $self->{fh};
245 root 1.52
246     $self->stoptls;
247 root 1.8 }
248    
249 root 1.52 sub _error {
250     my ($self, $errno, $fatal) = @_;
251 root 1.8
252 root 1.52 $self->_shutdown
253     if $fatal;
254 elmex 1.1
255 root 1.52 $! = $errno;
256 root 1.37
257 root 1.52 if ($self->{on_error}) {
258     $self->{on_error}($self, $fatal);
259     } else {
260     Carp::croak "AnyEvent::Handle uncaught error: $!";
261     }
262 elmex 1.1 }
263    
264 root 1.8 =item $fh = $handle->fh
265 elmex 1.1
266 root 1.22 This method returns the file handle of the L<AnyEvent::Handle> object.
267 elmex 1.1
268     =cut
269    
270 root 1.38 sub fh { $_[0]{fh} }
271 elmex 1.1
272 root 1.8 =item $handle->on_error ($cb)
273 elmex 1.1
274 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
275 elmex 1.1
276 root 1.8 =cut
277    
278     sub on_error {
279     $_[0]{on_error} = $_[1];
280     }
281    
282     =item $handle->on_eof ($cb)
283    
284     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
285 elmex 1.1
286     =cut
287    
288 root 1.8 sub on_eof {
289     $_[0]{on_eof} = $_[1];
290     }
291    
292 root 1.43 =item $handle->on_timeout ($cb)
293    
294     Replace the current C<on_timeout> callback, or disables the callback
295     (but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
296     argument.
297    
298     =cut
299    
300     sub on_timeout {
301     $_[0]{on_timeout} = $_[1];
302     }
303    
304     #############################################################################
305    
306     =item $handle->timeout ($seconds)
307    
308     Configures (or disables) the inactivity timeout.
309    
310     =cut
311    
312     sub timeout {
313     my ($self, $timeout) = @_;
314    
315     $self->{timeout} = $timeout;
316     $self->_timeout;
317     }
318    
319     # reset the timeout watcher, as neccessary
320     # also check for time-outs
321     sub _timeout {
322     my ($self) = @_;
323    
324     if ($self->{timeout}) {
325 root 1.44 my $NOW = AnyEvent->now;
326 root 1.43
327     # when would the timeout trigger?
328     my $after = $self->{_activity} + $self->{timeout} - $NOW;
329    
330     # now or in the past already?
331     if ($after <= 0) {
332     $self->{_activity} = $NOW;
333    
334     if ($self->{on_timeout}) {
335 root 1.48 $self->{on_timeout}($self);
336 root 1.43 } else {
337 root 1.52 $self->_error (&Errno::ETIMEDOUT);
338 root 1.43 }
339    
340 root 1.56 # callback could have changed timeout value, optimise
341 root 1.43 return unless $self->{timeout};
342    
343     # calculate new after
344     $after = $self->{timeout};
345     }
346    
347     Scalar::Util::weaken $self;
348 root 1.56 return unless $self; # ->error could have destroyed $self
349 root 1.43
350     $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
351     delete $self->{_tw};
352     $self->_timeout;
353     });
354     } else {
355     delete $self->{_tw};
356     }
357     }
358    
359 root 1.9 #############################################################################
360    
361     =back
362    
363     =head2 WRITE QUEUE
364    
365     AnyEvent::Handle manages two queues per handle, one for writing and one
366     for reading.
367    
368     The write queue is very simple: you can add data to its end, and
369     AnyEvent::Handle will automatically try to get rid of it for you.
370    
371 elmex 1.20 When data could be written and the write buffer is shorter then the low
372 root 1.9 water mark, the C<on_drain> callback will be invoked.
373    
374     =over 4
375    
376 root 1.8 =item $handle->on_drain ($cb)
377    
378     Sets the C<on_drain> callback or clears it (see the description of
379     C<on_drain> in the constructor).
380    
381     =cut
382    
383     sub on_drain {
384 elmex 1.1 my ($self, $cb) = @_;
385    
386 root 1.8 $self->{on_drain} = $cb;
387    
388     $cb->($self)
389     if $cb && $self->{low_water_mark} >= length $self->{wbuf};
390     }
391    
392     =item $handle->push_write ($data)
393    
394     Queues the given scalar to be written. You can push as much data as you
395     want (only limited by the available memory), as C<AnyEvent::Handle>
396     buffers it independently of the kernel.
397    
398     =cut
399    
400 root 1.17 sub _drain_wbuf {
401     my ($self) = @_;
402 root 1.8
403 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
404 root 1.35
405 root 1.8 Scalar::Util::weaken $self;
406 root 1.35
407 root 1.8 my $cb = sub {
408     my $len = syswrite $self->{fh}, $self->{wbuf};
409    
410 root 1.29 if ($len >= 0) {
411 root 1.8 substr $self->{wbuf}, 0, $len, "";
412    
413 root 1.44 $self->{_activity} = AnyEvent->now;
414 root 1.43
415 root 1.8 $self->{on_drain}($self)
416     if $self->{low_water_mark} >= length $self->{wbuf}
417     && $self->{on_drain};
418    
419 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
420 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
421 root 1.52 $self->_error ($!, 1);
422 elmex 1.1 }
423 root 1.8 };
424    
425 root 1.35 # try to write data immediately
426     $cb->();
427 root 1.8
428 root 1.35 # if still data left in wbuf, we need to poll
429 root 1.38 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
430 root 1.35 if length $self->{wbuf};
431 root 1.8 };
432     }
433    
434 root 1.30 our %WH;
435    
436     sub register_write_type($$) {
437     $WH{$_[0]} = $_[1];
438     }
439    
440 root 1.17 sub push_write {
441     my $self = shift;
442    
443 root 1.29 if (@_ > 1) {
444     my $type = shift;
445    
446     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
447     ->($self, @_);
448     }
449    
450 root 1.17 if ($self->{filter_w}) {
451 root 1.48 $self->{filter_w}($self, \$_[0]);
452 root 1.17 } else {
453     $self->{wbuf} .= $_[0];
454     $self->_drain_wbuf;
455     }
456     }
457    
458 root 1.29 =item $handle->push_write (type => @args)
459    
460     Instead of formatting your data yourself, you can also let this module do
461     the job by specifying a type and type-specific arguments.
462    
463 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
464     drop by and tell us):
465 root 1.29
466     =over 4
467    
468     =item netstring => $string
469    
470     Formats the given value as netstring
471     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
472    
473     =cut
474    
475     register_write_type netstring => sub {
476     my ($self, $string) = @_;
477    
478     sprintf "%d:%s,", (length $string), $string
479     };
480    
481 root 1.39 =item json => $array_or_hashref
482    
483 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
484     provide your own JSON object, this means it will be encoded to JSON text
485     in UTF-8.
486    
487     JSON objects (and arrays) are self-delimiting, so you can write JSON at
488     one end of a handle and read them at the other end without using any
489     additional framing.
490    
491 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
492     this module doesn't need delimiters after or between JSON texts to be
493     able to read them, many other languages depend on that.
494    
495     A simple RPC protocol that interoperates easily with others is to send
496     JSON arrays (or objects, although arrays are usually the better choice as
497     they mimic how function argument passing works) and a newline after each
498     JSON text:
499    
500     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
501     $handle->push_write ("\012");
502    
503     An AnyEvent::Handle receiver would simply use the C<json> read type and
504     rely on the fact that the newline will be skipped as leading whitespace:
505    
506     $handle->push_read (json => sub { my $array = $_[1]; ... });
507    
508     Other languages could read single lines terminated by a newline and pass
509     this line into their JSON decoder of choice.
510    
511 root 1.40 =cut
512    
513     register_write_type json => sub {
514     my ($self, $ref) = @_;
515    
516     require JSON;
517    
518     $self->{json} ? $self->{json}->encode ($ref)
519     : JSON::encode_json ($ref)
520     };
521    
522 root 1.53 =back
523    
524 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
525 root 1.30
526     This function (not method) lets you add your own types to C<push_write>.
527     Whenever the given C<type> is used, C<push_write> will invoke the code
528     reference with the handle object and the remaining arguments.
529 root 1.29
530 root 1.30 The code reference is supposed to return a single octet string that will
531     be appended to the write buffer.
532 root 1.29
533 root 1.30 Note that this is a function, and all types registered this way will be
534     global, so try to use unique names.
535 root 1.29
536 root 1.30 =cut
537 root 1.29
538 root 1.8 #############################################################################
539    
540 root 1.9 =back
541    
542     =head2 READ QUEUE
543    
544     AnyEvent::Handle manages two queues per handle, one for writing and one
545     for reading.
546    
547     The read queue is more complex than the write queue. It can be used in two
548     ways, the "simple" way, using only C<on_read> and the "complex" way, using
549     a queue.
550    
551     In the simple case, you just install an C<on_read> callback and whenever
552     new data arrives, it will be called. You can then remove some data (if
553     enough is there) from the read buffer (C<< $handle->rbuf >>) if you want
554     or not.
555    
556     In the more complex case, you want to queue multiple callbacks. In this
557     case, AnyEvent::Handle will call the first queued callback each time new
558     data arrives and removes it when it has done its job (see C<push_read>,
559     below).
560    
561     This way you can, for example, push three line-reads, followed by reading
562     a chunk of data, and AnyEvent::Handle will execute them in order.
563    
564     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
565     the specified number of bytes which give an XML datagram.
566    
567     # in the default state, expect some header bytes
568     $handle->on_read (sub {
569     # some data is here, now queue the length-header-read (4 octets)
570 root 1.52 shift->unshift_read (chunk => 4, sub {
571 root 1.9 # header arrived, decode
572     my $len = unpack "N", $_[1];
573    
574     # now read the payload
575 root 1.52 shift->unshift_read (chunk => $len, sub {
576 root 1.9 my $xml = $_[1];
577     # handle xml
578     });
579     });
580     });
581    
582     Example 2: Implement a client for a protocol that replies either with
583     "OK" and another line or "ERROR" for one request, and 64 bytes for the
584     second request. Due tot he availability of a full queue, we can just
585     pipeline sending both requests and manipulate the queue as necessary in
586     the callbacks:
587    
588     # request one
589     $handle->push_write ("request 1\015\012");
590    
591     # we expect "ERROR" or "OK" as response, so push a line read
592 root 1.52 $handle->push_read (line => sub {
593 root 1.9 # if we got an "OK", we have to _prepend_ another line,
594     # so it will be read before the second request reads its 64 bytes
595     # which are already in the queue when this callback is called
596     # we don't do this in case we got an error
597     if ($_[1] eq "OK") {
598 root 1.52 $_[0]->unshift_read (line => sub {
599 root 1.9 my $response = $_[1];
600     ...
601     });
602     }
603     });
604    
605     # request two
606     $handle->push_write ("request 2\015\012");
607    
608     # simply read 64 bytes, always
609 root 1.52 $handle->push_read (chunk => 64, sub {
610 root 1.9 my $response = $_[1];
611     ...
612     });
613    
614     =over 4
615    
616 root 1.10 =cut
617    
618 root 1.8 sub _drain_rbuf {
619     my ($self) = @_;
620 elmex 1.1
621 root 1.17 if (
622     defined $self->{rbuf_max}
623     && $self->{rbuf_max} < length $self->{rbuf}
624     ) {
625 root 1.52 return $self->_error (&Errno::ENOSPC, 1);
626 root 1.17 }
627    
628 root 1.11 return if $self->{in_drain};
629 root 1.8 local $self->{in_drain} = 1;
630 elmex 1.1
631 root 1.8 while (my $len = length $self->{rbuf}) {
632     no strict 'refs';
633 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
634 root 1.29 unless ($cb->($self)) {
635 root 1.38 if ($self->{_eof}) {
636 root 1.10 # no progress can be made (not enough data and no data forthcoming)
637 root 1.52 return $self->_error (&Errno::EPIPE, 1);
638 root 1.10 }
639    
640 root 1.38 unshift @{ $self->{_queue} }, $cb;
641 root 1.55 last;
642 root 1.8 }
643     } elsif ($self->{on_read}) {
644     $self->{on_read}($self);
645    
646     if (
647 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
648     && !@{ $self->{_queue} } # and the queue is still empty
649     && $self->{on_read} # but we still have on_read
650 root 1.8 ) {
651 root 1.55 # no further data will arrive
652     # so no progress can be made
653     return $self->_error (&Errno::EPIPE, 1)
654     if $self->{_eof};
655    
656     last; # more data might arrive
657 elmex 1.1 }
658 root 1.8 } else {
659     # read side becomes idle
660 root 1.38 delete $self->{_rw};
661 root 1.55 last;
662 root 1.8 }
663     }
664    
665 root 1.48 $self->{on_eof}($self)
666     if $self->{_eof} && $self->{on_eof};
667 root 1.55
668     # may need to restart read watcher
669     unless ($self->{_rw}) {
670     $self->start_read
671     if $self->{on_read} || @{ $self->{_queue} };
672     }
673 elmex 1.1 }
674    
675 root 1.8 =item $handle->on_read ($cb)
676 elmex 1.1
677 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
678     the new callback is C<undef>). See the description of C<on_read> in the
679     constructor.
680 elmex 1.1
681 root 1.8 =cut
682    
683     sub on_read {
684     my ($self, $cb) = @_;
685 elmex 1.1
686 root 1.8 $self->{on_read} = $cb;
687 root 1.58 $self->_drain_rbuf if $cb;
688 elmex 1.1 }
689    
690 root 1.8 =item $handle->rbuf
691    
692     Returns the read buffer (as a modifiable lvalue).
693 elmex 1.1
694 root 1.8 You can access the read buffer directly as the C<< ->{rbuf} >> member, if
695     you want.
696 elmex 1.1
697 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
698     C<push_read> or C<unshift_read> methods are used. The other read methods
699     automatically manage the read buffer.
700 elmex 1.1
701     =cut
702    
703 elmex 1.2 sub rbuf : lvalue {
704 root 1.8 $_[0]{rbuf}
705 elmex 1.2 }
706 elmex 1.1
707 root 1.8 =item $handle->push_read ($cb)
708    
709     =item $handle->unshift_read ($cb)
710    
711     Append the given callback to the end of the queue (C<push_read>) or
712     prepend it (C<unshift_read>).
713    
714     The callback is called each time some additional read data arrives.
715 elmex 1.1
716 elmex 1.20 It must check whether enough data is in the read buffer already.
717 elmex 1.1
718 root 1.8 If not enough data is available, it must return the empty list or a false
719     value, in which case it will be called repeatedly until enough data is
720     available (or an error condition is detected).
721    
722     If enough data was available, then the callback must remove all data it is
723     interested in (which can be none at all) and return a true value. After returning
724     true, it will be removed from the queue.
725 elmex 1.1
726     =cut
727    
728 root 1.30 our %RH;
729    
730     sub register_read_type($$) {
731     $RH{$_[0]} = $_[1];
732     }
733    
734 root 1.8 sub push_read {
735 root 1.28 my $self = shift;
736     my $cb = pop;
737    
738     if (@_) {
739     my $type = shift;
740    
741     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
742     ->($self, $cb, @_);
743     }
744 elmex 1.1
745 root 1.38 push @{ $self->{_queue} }, $cb;
746 root 1.8 $self->_drain_rbuf;
747 elmex 1.1 }
748    
749 root 1.8 sub unshift_read {
750 root 1.28 my $self = shift;
751     my $cb = pop;
752    
753     if (@_) {
754     my $type = shift;
755    
756     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
757     ->($self, $cb, @_);
758     }
759    
760 root 1.8
761 root 1.38 unshift @{ $self->{_queue} }, $cb;
762 root 1.8 $self->_drain_rbuf;
763     }
764 elmex 1.1
765 root 1.28 =item $handle->push_read (type => @args, $cb)
766 elmex 1.1
767 root 1.28 =item $handle->unshift_read (type => @args, $cb)
768 elmex 1.1
769 root 1.28 Instead of providing a callback that parses the data itself you can chose
770     between a number of predefined parsing formats, for chunks of data, lines
771     etc.
772 elmex 1.1
773 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
774     drop by and tell us):
775 root 1.28
776     =over 4
777    
778 root 1.40 =item chunk => $octets, $cb->($handle, $data)
779 root 1.28
780     Invoke the callback only once C<$octets> bytes have been read. Pass the
781     data read to the callback. The callback will never be called with less
782     data.
783    
784     Example: read 2 bytes.
785    
786     $handle->push_read (chunk => 2, sub {
787     warn "yay ", unpack "H*", $_[1];
788     });
789 elmex 1.1
790     =cut
791    
792 root 1.28 register_read_type chunk => sub {
793     my ($self, $cb, $len) = @_;
794 elmex 1.1
795 root 1.8 sub {
796     $len <= length $_[0]{rbuf} or return;
797 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
798 root 1.8 1
799     }
800 root 1.28 };
801 root 1.8
802 root 1.28 # compatibility with older API
803 root 1.8 sub push_read_chunk {
804 root 1.28 $_[0]->push_read (chunk => $_[1], $_[2]);
805 root 1.8 }
806 elmex 1.1
807 root 1.8 sub unshift_read_chunk {
808 root 1.28 $_[0]->unshift_read (chunk => $_[1], $_[2]);
809 elmex 1.1 }
810    
811 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
812 elmex 1.1
813 root 1.8 The callback will be called only once a full line (including the end of
814     line marker, C<$eol>) has been read. This line (excluding the end of line
815     marker) will be passed to the callback as second argument (C<$line>), and
816     the end of line marker as the third argument (C<$eol>).
817 elmex 1.1
818 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
819     will be interpreted as a fixed record end marker, or it can be a regex
820     object (e.g. created by C<qr>), in which case it is interpreted as a
821     regular expression.
822 elmex 1.1
823 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
824     undef), then C<qr|\015?\012|> is used (which is good for most internet
825     protocols).
826 elmex 1.1
827 root 1.8 Partial lines at the end of the stream will never be returned, as they are
828     not marked by the end of line marker.
829 elmex 1.1
830 root 1.8 =cut
831 elmex 1.1
832 root 1.28 register_read_type line => sub {
833     my ($self, $cb, $eol) = @_;
834 elmex 1.1
835 root 1.28 $eol = qr|(\015?\012)| if @_ < 3;
836 root 1.14 $eol = quotemeta $eol unless ref $eol;
837     $eol = qr|^(.*?)($eol)|s;
838 elmex 1.1
839 root 1.8 sub {
840     $_[0]{rbuf} =~ s/$eol// or return;
841 elmex 1.1
842 elmex 1.12 $cb->($_[0], $1, $2);
843 root 1.8 1
844     }
845 root 1.28 };
846 elmex 1.1
847 root 1.28 # compatibility with older API
848 root 1.8 sub push_read_line {
849 root 1.28 my $self = shift;
850     $self->push_read (line => @_);
851 root 1.10 }
852    
853     sub unshift_read_line {
854 root 1.28 my $self = shift;
855     $self->unshift_read (line => @_);
856 root 1.10 }
857    
858 root 1.40 =item netstring => $cb->($handle, $string)
859 root 1.29
860     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
861    
862     Throws an error with C<$!> set to EBADMSG on format violations.
863    
864     =cut
865    
866     register_read_type netstring => sub {
867     my ($self, $cb) = @_;
868    
869     sub {
870     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
871     if ($_[0]{rbuf} =~ /[^0-9]/) {
872 root 1.52 $self->_error (&Errno::EBADMSG);
873 root 1.29 }
874     return;
875     }
876    
877     my $len = $1;
878    
879     $self->unshift_read (chunk => $len, sub {
880     my $string = $_[1];
881     $_[0]->unshift_read (chunk => 1, sub {
882     if ($_[1] eq ",") {
883     $cb->($_[0], $string);
884     } else {
885 root 1.52 $self->_error (&Errno::EBADMSG);
886 root 1.29 }
887     });
888     });
889    
890     1
891     }
892     };
893    
894 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
895 root 1.36
896     Makes a regex match against the regex object C<$accept> and returns
897     everything up to and including the match.
898    
899     Example: read a single line terminated by '\n'.
900    
901     $handle->push_read (regex => qr<\n>, sub { ... });
902    
903     If C<$reject> is given and not undef, then it determines when the data is
904     to be rejected: it is matched against the data when the C<$accept> regex
905     does not match and generates an C<EBADMSG> error when it matches. This is
906     useful to quickly reject wrong data (to avoid waiting for a timeout or a
907     receive buffer overflow).
908    
909     Example: expect a single decimal number followed by whitespace, reject
910     anything else (not the use of an anchor).
911    
912     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
913    
914     If C<$skip> is given and not C<undef>, then it will be matched against
915     the receive buffer when neither C<$accept> nor C<$reject> match,
916     and everything preceding and including the match will be accepted
917     unconditionally. This is useful to skip large amounts of data that you
918     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
919     have to start matching from the beginning. This is purely an optimisation
920     and is usually worth only when you expect more than a few kilobytes.
921    
922     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
923     expect the header to be very large (it isn't in practise, but...), we use
924     a skip regex to skip initial portions. The skip regex is tricky in that
925     it only accepts something not ending in either \015 or \012, as these are
926     required for the accept regex.
927    
928     $handle->push_read (regex =>
929     qr<\015\012\015\012>,
930     undef, # no reject
931     qr<^.*[^\015\012]>,
932     sub { ... });
933    
934     =cut
935    
936     register_read_type regex => sub {
937     my ($self, $cb, $accept, $reject, $skip) = @_;
938    
939     my $data;
940     my $rbuf = \$self->{rbuf};
941    
942     sub {
943     # accept
944     if ($$rbuf =~ $accept) {
945     $data .= substr $$rbuf, 0, $+[0], "";
946     $cb->($self, $data);
947     return 1;
948     }
949    
950     # reject
951     if ($reject && $$rbuf =~ $reject) {
952 root 1.52 $self->_error (&Errno::EBADMSG);
953 root 1.36 }
954    
955     # skip
956     if ($skip && $$rbuf =~ $skip) {
957     $data .= substr $$rbuf, 0, $+[0], "";
958     }
959    
960     ()
961     }
962     };
963    
964 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
965    
966     Reads a JSON object or array, decodes it and passes it to the callback.
967    
968     If a C<json> object was passed to the constructor, then that will be used
969     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
970    
971     This read type uses the incremental parser available with JSON version
972     2.09 (and JSON::XS version 2.2) and above. You have to provide a
973     dependency on your own: this module will load the JSON module, but
974     AnyEvent does not depend on it itself.
975    
976     Since JSON texts are fully self-delimiting, the C<json> read and write
977 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
978     the C<json> write type description, above, for an actual example.
979 root 1.40
980     =cut
981    
982     register_read_type json => sub {
983     my ($self, $cb, $accept, $reject, $skip) = @_;
984    
985     require JSON;
986    
987     my $data;
988     my $rbuf = \$self->{rbuf};
989    
990 root 1.41 my $json = $self->{json} ||= JSON->new->utf8;
991 root 1.40
992     sub {
993     my $ref = $json->incr_parse ($self->{rbuf});
994    
995     if ($ref) {
996     $self->{rbuf} = $json->incr_text;
997     $json->incr_text = "";
998     $cb->($self, $ref);
999    
1000     1
1001     } else {
1002     $self->{rbuf} = "";
1003     ()
1004     }
1005     }
1006     };
1007    
1008 root 1.28 =back
1009    
1010 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1011 root 1.30
1012     This function (not method) lets you add your own types to C<push_read>.
1013    
1014     Whenever the given C<type> is used, C<push_read> will invoke the code
1015     reference with the handle object, the callback and the remaining
1016     arguments.
1017    
1018     The code reference is supposed to return a callback (usually a closure)
1019     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1020    
1021     It should invoke the passed callback when it is done reading (remember to
1022 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1023 root 1.30
1024     Note that this is a function, and all types registered this way will be
1025     global, so try to use unique names.
1026    
1027     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1028     search for C<register_read_type>)).
1029    
1030 root 1.10 =item $handle->stop_read
1031    
1032     =item $handle->start_read
1033    
1034 root 1.18 In rare cases you actually do not want to read anything from the
1035 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1036 root 1.22 any queued callbacks will be executed then. To start reading again, call
1037 root 1.10 C<start_read>.
1038    
1039 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1040     you change the C<on_read> callback or push/unshift a read callback, and it
1041     will automatically C<stop_read> for you when neither C<on_read> is set nor
1042     there are any read requests in the queue.
1043    
1044 root 1.10 =cut
1045    
1046     sub stop_read {
1047     my ($self) = @_;
1048 elmex 1.1
1049 root 1.38 delete $self->{_rw};
1050 root 1.8 }
1051 elmex 1.1
1052 root 1.10 sub start_read {
1053     my ($self) = @_;
1054    
1055 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1056 root 1.10 Scalar::Util::weaken $self;
1057    
1058 root 1.38 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1059 root 1.17 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
1060     my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1061 root 1.10
1062     if ($len > 0) {
1063 root 1.44 $self->{_activity} = AnyEvent->now;
1064 root 1.43
1065 root 1.17 $self->{filter_r}
1066 root 1.48 ? $self->{filter_r}($self, $rbuf)
1067 root 1.17 : $self->_drain_rbuf;
1068 root 1.10
1069     } elsif (defined $len) {
1070 root 1.38 delete $self->{_rw};
1071     $self->{_eof} = 1;
1072 root 1.17 $self->_drain_rbuf;
1073 root 1.10
1074 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1075 root 1.52 return $self->_error ($!, 1);
1076 root 1.10 }
1077     });
1078     }
1079 elmex 1.1 }
1080    
1081 root 1.19 sub _dotls {
1082     my ($self) = @_;
1083    
1084 root 1.56 my $buf;
1085    
1086 root 1.38 if (length $self->{_tls_wbuf}) {
1087     while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1088     substr $self->{_tls_wbuf}, 0, $len, "";
1089 root 1.22 }
1090 root 1.19 }
1091    
1092 root 1.56 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1093 root 1.19 $self->{wbuf} .= $buf;
1094     $self->_drain_wbuf;
1095     }
1096    
1097 root 1.56 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1098     if (length $buf) {
1099     $self->{rbuf} .= $buf;
1100     $self->_drain_rbuf;
1101     } else {
1102     # let's treat SSL-eof as we treat normal EOF
1103     $self->{_eof} = 1;
1104     $self->_shutdown;
1105     return;
1106     }
1107 root 1.23 }
1108    
1109 root 1.24 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1110    
1111     if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1112 root 1.23 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1113 root 1.52 return $self->_error ($!, 1);
1114 root 1.23 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1115 root 1.52 return $self->_error (&Errno::EIO, 1);
1116 root 1.19 }
1117 root 1.23
1118     # all others are fine for our purposes
1119 root 1.19 }
1120     }
1121    
1122 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1123    
1124     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1125     object is created, you can also do that at a later time by calling
1126     C<starttls>.
1127    
1128     The first argument is the same as the C<tls> constructor argument (either
1129     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1130    
1131     The second argument is the optional C<Net::SSLeay::CTX> object that is
1132     used when AnyEvent::Handle has to create its own TLS connection object.
1133    
1134 root 1.38 The TLS connection object will end up in C<< $handle->{tls} >> after this
1135     call and can be used or changed to your liking. Note that the handshake
1136     might have already started when this function returns.
1137    
1138 root 1.25 =cut
1139    
1140 root 1.19 sub starttls {
1141     my ($self, $ssl, $ctx) = @_;
1142    
1143 root 1.25 $self->stoptls;
1144    
1145 root 1.19 if ($ssl eq "accept") {
1146     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1147     Net::SSLeay::set_accept_state ($ssl);
1148     } elsif ($ssl eq "connect") {
1149     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1150     Net::SSLeay::set_connect_state ($ssl);
1151     }
1152    
1153     $self->{tls} = $ssl;
1154    
1155 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1156     # but the openssl maintainers basically said: "trust us, it just works".
1157     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1158     # and mismaintained ssleay-module doesn't even offer them).
1159 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1160 root 1.21 Net::SSLeay::CTX_set_mode ($self->{tls},
1161 root 1.34 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1162     | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1163 root 1.21
1164 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1165     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1166 root 1.19
1167 root 1.38 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1168 root 1.19
1169     $self->{filter_w} = sub {
1170 root 1.38 $_[0]{_tls_wbuf} .= ${$_[1]};
1171 root 1.19 &_dotls;
1172     };
1173     $self->{filter_r} = sub {
1174 root 1.38 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1175 root 1.19 &_dotls;
1176     };
1177     }
1178    
1179 root 1.25 =item $handle->stoptls
1180    
1181     Destroys the SSL connection, if any. Partial read or write data will be
1182     lost.
1183    
1184     =cut
1185    
1186     sub stoptls {
1187     my ($self) = @_;
1188    
1189     Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
1190 root 1.38
1191     delete $self->{_rbio};
1192     delete $self->{_wbio};
1193     delete $self->{_tls_wbuf};
1194 root 1.25 delete $self->{filter_r};
1195     delete $self->{filter_w};
1196     }
1197    
1198 root 1.19 sub DESTROY {
1199     my $self = shift;
1200    
1201 root 1.25 $self->stoptls;
1202 root 1.19 }
1203    
1204     =item AnyEvent::Handle::TLS_CTX
1205    
1206     This function creates and returns the Net::SSLeay::CTX object used by
1207     default for TLS mode.
1208    
1209     The context is created like this:
1210    
1211     Net::SSLeay::load_error_strings;
1212     Net::SSLeay::SSLeay_add_ssl_algorithms;
1213     Net::SSLeay::randomize;
1214    
1215     my $CTX = Net::SSLeay::CTX_new;
1216    
1217     Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1218    
1219     =cut
1220    
1221     our $TLS_CTX;
1222    
1223     sub TLS_CTX() {
1224     $TLS_CTX || do {
1225     require Net::SSLeay;
1226    
1227     Net::SSLeay::load_error_strings ();
1228     Net::SSLeay::SSLeay_add_ssl_algorithms ();
1229     Net::SSLeay::randomize ();
1230    
1231     $TLS_CTX = Net::SSLeay::CTX_new ();
1232    
1233     Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1234    
1235     $TLS_CTX
1236     }
1237     }
1238    
1239 elmex 1.1 =back
1240    
1241 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
1242    
1243     In many cases, you might want to subclass AnyEvent::Handle.
1244    
1245     To make this easier, a given version of AnyEvent::Handle uses these
1246     conventions:
1247    
1248     =over 4
1249    
1250     =item * all constructor arguments become object members.
1251    
1252     At least initially, when you pass a C<tls>-argument to the constructor it
1253     will end up in C<< $handle->{tls} >>. Those members might be changes or
1254     mutated later on (for example C<tls> will hold the TLS connection object).
1255    
1256     =item * other object member names are prefixed with an C<_>.
1257    
1258     All object members not explicitly documented (internal use) are prefixed
1259     with an underscore character, so the remaining non-C<_>-namespace is free
1260     for use for subclasses.
1261    
1262     =item * all members not documented here and not prefixed with an underscore
1263     are free to use in subclasses.
1264    
1265     Of course, new versions of AnyEvent::Handle may introduce more "public"
1266     member variables, but thats just life, at least it is documented.
1267    
1268     =back
1269    
1270 elmex 1.1 =head1 AUTHOR
1271    
1272 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1273 elmex 1.1
1274     =cut
1275    
1276     1; # End of AnyEvent::Handle