ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.62
Committed: Fri Jun 6 10:49:20 2008 UTC (16 years ago) by root
Branch: MAIN
Changes since 1.61: +33 -0 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 package AnyEvent::Handle;
2    
3 elmex 1.6 no warnings;
4 elmex 1.1 use strict;
5    
6 root 1.8 use AnyEvent ();
7 root 1.42 use AnyEvent::Util qw(WSAEWOULDBLOCK);
8 root 1.8 use Scalar::Util ();
9     use Carp ();
10     use Fcntl ();
11 root 1.43 use Errno qw(EAGAIN EINTR);
12 elmex 1.1
13     =head1 NAME
14    
15 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 elmex 1.1
17     =cut
18    
19 root 1.60 our $VERSION = 4.14;
20 elmex 1.1
21     =head1 SYNOPSIS
22    
23     use AnyEvent;
24     use AnyEvent::Handle;
25    
26     my $cv = AnyEvent->condvar;
27    
28 root 1.31 my $handle =
29 elmex 1.2 AnyEvent::Handle->new (
30     fh => \*STDIN,
31     on_eof => sub {
32     $cv->broadcast;
33     },
34     );
35    
36 root 1.31 # send some request line
37     $handle->push_write ("getinfo\015\012");
38    
39     # read the response line
40     $handle->push_read (line => sub {
41     my ($handle, $line) = @_;
42     warn "read line <$line>\n";
43     $cv->send;
44     });
45    
46     $cv->recv;
47 elmex 1.1
48     =head1 DESCRIPTION
49    
50 root 1.8 This module is a helper module to make it easier to do event-based I/O on
51 elmex 1.13 filehandles. For utility functions for doing non-blocking connects and accepts
52     on sockets see L<AnyEvent::Util>.
53 root 1.8
54     In the following, when the documentation refers to of "bytes" then this
55     means characters. As sysread and syswrite are used for all I/O, their
56     treatment of characters applies to this module as well.
57 elmex 1.1
58 root 1.8 All callbacks will be invoked with the handle object as their first
59     argument.
60 elmex 1.1
61     =head1 METHODS
62    
63     =over 4
64    
65     =item B<new (%args)>
66    
67 root 1.8 The constructor supports these arguments (all as key => value pairs).
68 elmex 1.1
69     =over 4
70    
71 root 1.8 =item fh => $filehandle [MANDATORY]
72 elmex 1.1
73     The filehandle this L<AnyEvent::Handle> object will operate on.
74    
75 root 1.8 NOTE: The filehandle will be set to non-blocking (using
76     AnyEvent::Util::fh_nonblocking).
77    
78 root 1.40 =item on_eof => $cb->($handle)
79 root 1.10
80 root 1.52 Set the callback to be called when an end-of-file condition is detcted,
81     i.e. in the case of a socket, when the other side has closed the
82     connection cleanly.
83 root 1.8
84 root 1.16 While not mandatory, it is highly recommended to set an eof callback,
85     otherwise you might end up with a closed socket while you are still
86     waiting for data.
87    
88 root 1.52 =item on_error => $cb->($handle, $fatal)
89 root 1.10
90 root 1.52 This is the error callback, which is called when, well, some error
91     occured, such as not being able to resolve the hostname, failure to
92     connect or a read error.
93    
94     Some errors are fatal (which is indicated by C<$fatal> being true). On
95     fatal errors the handle object will be shut down and will not be
96     usable. Non-fatal errors can be retried by simply returning, but it is
97     recommended to simply ignore this parameter and instead abondon the handle
98     object when this callback is invoked.
99 root 1.8
100 root 1.10 On callback entrance, the value of C<$!> contains the operating system
101 root 1.43 error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
102 root 1.8
103 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
104     you will not be notified of errors otherwise. The default simply calls
105 root 1.52 C<croak>.
106 root 1.8
107 root 1.40 =item on_read => $cb->($handle)
108 root 1.8
109     This sets the default read callback, which is called when data arrives
110 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
111     callback will only be called when at least one octet of data is in the
112     read buffer).
113 root 1.8
114     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
115 root 1.40 method or access the C<$handle->{rbuf}> member directly.
116 root 1.8
117     When an EOF condition is detected then AnyEvent::Handle will first try to
118     feed all the remaining data to the queued callbacks and C<on_read> before
119     calling the C<on_eof> callback. If no progress can be made, then a fatal
120     error will be raised (with C<$!> set to C<EPIPE>).
121 elmex 1.1
122 root 1.40 =item on_drain => $cb->($handle)
123 elmex 1.1
124 root 1.8 This sets the callback that is called when the write buffer becomes empty
125     (or when the callback is set and the buffer is empty already).
126 elmex 1.1
127 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
128 elmex 1.2
129 root 1.43 =item timeout => $fractional_seconds
130    
131     If non-zero, then this enables an "inactivity" timeout: whenever this many
132     seconds pass without a successful read or write on the underlying file
133     handle, the C<on_timeout> callback will be invoked (and if that one is
134 root 1.45 missing, an C<ETIMEDOUT> error will be raised).
135 root 1.43
136     Note that timeout processing is also active when you currently do not have
137     any outstanding read or write requests: If you plan to keep the connection
138     idle then you should disable the timout temporarily or ignore the timeout
139     in the C<on_timeout> callback.
140    
141     Zero (the default) disables this timeout.
142    
143     =item on_timeout => $cb->($handle)
144    
145     Called whenever the inactivity timeout passes. If you return from this
146     callback, then the timeout will be reset as if some activity had happened,
147     so this condition is not fatal in any way.
148    
149 root 1.8 =item rbuf_max => <bytes>
150 elmex 1.2
151 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
152     when the read buffer ever (strictly) exceeds this size. This is useful to
153     avoid denial-of-service attacks.
154 elmex 1.2
155 root 1.8 For example, a server accepting connections from untrusted sources should
156     be configured to accept only so-and-so much data that it cannot act on
157     (for example, when expecting a line, an attacker could send an unlimited
158     amount of data without a callback ever being called as long as the line
159     isn't finished).
160 elmex 1.2
161 root 1.8 =item read_size => <bytes>
162 elmex 1.2
163 root 1.8 The default read block size (the amount of bytes this module will try to read
164 root 1.46 during each (loop iteration). Default: C<8192>.
165 root 1.8
166     =item low_water_mark => <bytes>
167    
168     Sets the amount of bytes (default: C<0>) that make up an "empty" write
169     buffer: If the write reaches this size or gets even samller it is
170     considered empty.
171 elmex 1.2
172 root 1.62 =item linger => <seconds>
173    
174     If non-zero (default: C<3600>), then the destructor of the
175     AnyEvent::Handle object will check wether there is still outstanding write
176     data and will install a watcher that will write out this data. No errors
177     will be reported (this mostly matches how the operating system treats
178     outstanding data at socket close time).
179    
180     This will not work for partial TLS data that could not yet been
181     encoded. This data will be lost.
182    
183 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
184    
185     When this parameter is given, it enables TLS (SSL) mode, that means it
186     will start making tls handshake and will transparently encrypt/decrypt
187     data.
188    
189 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
190     automatically when you try to create a TLS handle).
191    
192 root 1.19 For the TLS server side, use C<accept>, and for the TLS client side of a
193     connection, use C<connect> mode.
194    
195     You can also provide your own TLS connection object, but you have
196     to make sure that you call either C<Net::SSLeay::set_connect_state>
197     or C<Net::SSLeay::set_accept_state> on it before you pass it to
198     AnyEvent::Handle.
199    
200 root 1.26 See the C<starttls> method if you need to start TLs negotiation later.
201    
202 root 1.19 =item tls_ctx => $ssl_ctx
203    
204     Use the given Net::SSLeay::CTX object to create the new TLS connection
205     (unless a connection object was specified directly). If this parameter is
206     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
207    
208 root 1.40 =item json => JSON or JSON::XS object
209    
210     This is the json coder object used by the C<json> read and write types.
211    
212 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
213     suitable one, which will write and expect UTF-8 encoded JSON texts.
214 root 1.40
215     Note that you are responsible to depend on the JSON module if you want to
216     use this functionality, as AnyEvent does not have a dependency itself.
217    
218 root 1.38 =item filter_r => $cb
219    
220     =item filter_w => $cb
221    
222     These exist, but are undocumented at this time.
223    
224 elmex 1.1 =back
225    
226     =cut
227    
228     sub new {
229 root 1.8 my $class = shift;
230    
231     my $self = bless { @_ }, $class;
232    
233     $self->{fh} or Carp::croak "mandatory argument fh is missing";
234    
235     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
236 elmex 1.1
237 root 1.19 if ($self->{tls}) {
238     require Net::SSLeay;
239     $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
240     }
241    
242 root 1.44 $self->{_activity} = AnyEvent->now;
243 root 1.43 $self->_timeout;
244 elmex 1.1
245 root 1.58 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
246 root 1.10
247 root 1.8 $self
248     }
249 elmex 1.2
250 root 1.8 sub _shutdown {
251     my ($self) = @_;
252 elmex 1.2
253 root 1.46 delete $self->{_tw};
254 root 1.38 delete $self->{_rw};
255     delete $self->{_ww};
256 root 1.8 delete $self->{fh};
257 root 1.52
258     $self->stoptls;
259 root 1.8 }
260    
261 root 1.52 sub _error {
262     my ($self, $errno, $fatal) = @_;
263 root 1.8
264 root 1.52 $self->_shutdown
265     if $fatal;
266 elmex 1.1
267 root 1.52 $! = $errno;
268 root 1.37
269 root 1.52 if ($self->{on_error}) {
270     $self->{on_error}($self, $fatal);
271     } else {
272     Carp::croak "AnyEvent::Handle uncaught error: $!";
273     }
274 elmex 1.1 }
275    
276 root 1.8 =item $fh = $handle->fh
277 elmex 1.1
278 root 1.22 This method returns the file handle of the L<AnyEvent::Handle> object.
279 elmex 1.1
280     =cut
281    
282 root 1.38 sub fh { $_[0]{fh} }
283 elmex 1.1
284 root 1.8 =item $handle->on_error ($cb)
285 elmex 1.1
286 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
287 elmex 1.1
288 root 1.8 =cut
289    
290     sub on_error {
291     $_[0]{on_error} = $_[1];
292     }
293    
294     =item $handle->on_eof ($cb)
295    
296     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
297 elmex 1.1
298     =cut
299    
300 root 1.8 sub on_eof {
301     $_[0]{on_eof} = $_[1];
302     }
303    
304 root 1.43 =item $handle->on_timeout ($cb)
305    
306     Replace the current C<on_timeout> callback, or disables the callback
307     (but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
308     argument.
309    
310     =cut
311    
312     sub on_timeout {
313     $_[0]{on_timeout} = $_[1];
314     }
315    
316     #############################################################################
317    
318     =item $handle->timeout ($seconds)
319    
320     Configures (or disables) the inactivity timeout.
321    
322     =cut
323    
324     sub timeout {
325     my ($self, $timeout) = @_;
326    
327     $self->{timeout} = $timeout;
328     $self->_timeout;
329     }
330    
331     # reset the timeout watcher, as neccessary
332     # also check for time-outs
333     sub _timeout {
334     my ($self) = @_;
335    
336     if ($self->{timeout}) {
337 root 1.44 my $NOW = AnyEvent->now;
338 root 1.43
339     # when would the timeout trigger?
340     my $after = $self->{_activity} + $self->{timeout} - $NOW;
341    
342     # now or in the past already?
343     if ($after <= 0) {
344     $self->{_activity} = $NOW;
345    
346     if ($self->{on_timeout}) {
347 root 1.48 $self->{on_timeout}($self);
348 root 1.43 } else {
349 root 1.52 $self->_error (&Errno::ETIMEDOUT);
350 root 1.43 }
351    
352 root 1.56 # callback could have changed timeout value, optimise
353 root 1.43 return unless $self->{timeout};
354    
355     # calculate new after
356     $after = $self->{timeout};
357     }
358    
359     Scalar::Util::weaken $self;
360 root 1.56 return unless $self; # ->error could have destroyed $self
361 root 1.43
362     $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
363     delete $self->{_tw};
364     $self->_timeout;
365     });
366     } else {
367     delete $self->{_tw};
368     }
369     }
370    
371 root 1.9 #############################################################################
372    
373     =back
374    
375     =head2 WRITE QUEUE
376    
377     AnyEvent::Handle manages two queues per handle, one for writing and one
378     for reading.
379    
380     The write queue is very simple: you can add data to its end, and
381     AnyEvent::Handle will automatically try to get rid of it for you.
382    
383 elmex 1.20 When data could be written and the write buffer is shorter then the low
384 root 1.9 water mark, the C<on_drain> callback will be invoked.
385    
386     =over 4
387    
388 root 1.8 =item $handle->on_drain ($cb)
389    
390     Sets the C<on_drain> callback or clears it (see the description of
391     C<on_drain> in the constructor).
392    
393     =cut
394    
395     sub on_drain {
396 elmex 1.1 my ($self, $cb) = @_;
397    
398 root 1.8 $self->{on_drain} = $cb;
399    
400     $cb->($self)
401     if $cb && $self->{low_water_mark} >= length $self->{wbuf};
402     }
403    
404     =item $handle->push_write ($data)
405    
406     Queues the given scalar to be written. You can push as much data as you
407     want (only limited by the available memory), as C<AnyEvent::Handle>
408     buffers it independently of the kernel.
409    
410     =cut
411    
412 root 1.17 sub _drain_wbuf {
413     my ($self) = @_;
414 root 1.8
415 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
416 root 1.35
417 root 1.8 Scalar::Util::weaken $self;
418 root 1.35
419 root 1.8 my $cb = sub {
420     my $len = syswrite $self->{fh}, $self->{wbuf};
421    
422 root 1.29 if ($len >= 0) {
423 root 1.8 substr $self->{wbuf}, 0, $len, "";
424    
425 root 1.44 $self->{_activity} = AnyEvent->now;
426 root 1.43
427 root 1.8 $self->{on_drain}($self)
428     if $self->{low_water_mark} >= length $self->{wbuf}
429     && $self->{on_drain};
430    
431 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
432 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
433 root 1.52 $self->_error ($!, 1);
434 elmex 1.1 }
435 root 1.8 };
436    
437 root 1.35 # try to write data immediately
438     $cb->();
439 root 1.8
440 root 1.35 # if still data left in wbuf, we need to poll
441 root 1.38 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
442 root 1.35 if length $self->{wbuf};
443 root 1.8 };
444     }
445    
446 root 1.30 our %WH;
447    
448     sub register_write_type($$) {
449     $WH{$_[0]} = $_[1];
450     }
451    
452 root 1.17 sub push_write {
453     my $self = shift;
454    
455 root 1.29 if (@_ > 1) {
456     my $type = shift;
457    
458     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
459     ->($self, @_);
460     }
461    
462 root 1.17 if ($self->{filter_w}) {
463 root 1.48 $self->{filter_w}($self, \$_[0]);
464 root 1.17 } else {
465     $self->{wbuf} .= $_[0];
466     $self->_drain_wbuf;
467     }
468     }
469    
470 root 1.29 =item $handle->push_write (type => @args)
471    
472     Instead of formatting your data yourself, you can also let this module do
473     the job by specifying a type and type-specific arguments.
474    
475 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
476     drop by and tell us):
477 root 1.29
478     =over 4
479    
480     =item netstring => $string
481    
482     Formats the given value as netstring
483     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
484    
485     =cut
486    
487     register_write_type netstring => sub {
488     my ($self, $string) = @_;
489    
490     sprintf "%d:%s,", (length $string), $string
491     };
492    
493 root 1.61 =item packstring => $format, $data
494    
495     An octet string prefixed with an encoded length. The encoding C<$format>
496     uses the same format as a Perl C<pack> format, but must specify a single
497     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
498     optional C<!>, C<< < >> or C<< > >> modifier).
499    
500     =cut
501    
502     register_write_type packstring => sub {
503     my ($self, $format, $string) = @_;
504    
505     pack "$format/a", $string
506     };
507    
508 root 1.39 =item json => $array_or_hashref
509    
510 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
511     provide your own JSON object, this means it will be encoded to JSON text
512     in UTF-8.
513    
514     JSON objects (and arrays) are self-delimiting, so you can write JSON at
515     one end of a handle and read them at the other end without using any
516     additional framing.
517    
518 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
519     this module doesn't need delimiters after or between JSON texts to be
520     able to read them, many other languages depend on that.
521    
522     A simple RPC protocol that interoperates easily with others is to send
523     JSON arrays (or objects, although arrays are usually the better choice as
524     they mimic how function argument passing works) and a newline after each
525     JSON text:
526    
527     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
528     $handle->push_write ("\012");
529    
530     An AnyEvent::Handle receiver would simply use the C<json> read type and
531     rely on the fact that the newline will be skipped as leading whitespace:
532    
533     $handle->push_read (json => sub { my $array = $_[1]; ... });
534    
535     Other languages could read single lines terminated by a newline and pass
536     this line into their JSON decoder of choice.
537    
538 root 1.40 =cut
539    
540     register_write_type json => sub {
541     my ($self, $ref) = @_;
542    
543     require JSON;
544    
545     $self->{json} ? $self->{json}->encode ($ref)
546     : JSON::encode_json ($ref)
547     };
548    
549 root 1.53 =back
550    
551 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
552 root 1.30
553     This function (not method) lets you add your own types to C<push_write>.
554     Whenever the given C<type> is used, C<push_write> will invoke the code
555     reference with the handle object and the remaining arguments.
556 root 1.29
557 root 1.30 The code reference is supposed to return a single octet string that will
558     be appended to the write buffer.
559 root 1.29
560 root 1.30 Note that this is a function, and all types registered this way will be
561     global, so try to use unique names.
562 root 1.29
563 root 1.30 =cut
564 root 1.29
565 root 1.8 #############################################################################
566    
567 root 1.9 =back
568    
569     =head2 READ QUEUE
570    
571     AnyEvent::Handle manages two queues per handle, one for writing and one
572     for reading.
573    
574     The read queue is more complex than the write queue. It can be used in two
575     ways, the "simple" way, using only C<on_read> and the "complex" way, using
576     a queue.
577    
578     In the simple case, you just install an C<on_read> callback and whenever
579     new data arrives, it will be called. You can then remove some data (if
580     enough is there) from the read buffer (C<< $handle->rbuf >>) if you want
581     or not.
582    
583     In the more complex case, you want to queue multiple callbacks. In this
584     case, AnyEvent::Handle will call the first queued callback each time new
585 root 1.61 data arrives (also the first time it is queued) and removes it when it has
586     done its job (see C<push_read>, below).
587 root 1.9
588     This way you can, for example, push three line-reads, followed by reading
589     a chunk of data, and AnyEvent::Handle will execute them in order.
590    
591     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
592     the specified number of bytes which give an XML datagram.
593    
594     # in the default state, expect some header bytes
595     $handle->on_read (sub {
596     # some data is here, now queue the length-header-read (4 octets)
597 root 1.52 shift->unshift_read (chunk => 4, sub {
598 root 1.9 # header arrived, decode
599     my $len = unpack "N", $_[1];
600    
601     # now read the payload
602 root 1.52 shift->unshift_read (chunk => $len, sub {
603 root 1.9 my $xml = $_[1];
604     # handle xml
605     });
606     });
607     });
608    
609     Example 2: Implement a client for a protocol that replies either with
610     "OK" and another line or "ERROR" for one request, and 64 bytes for the
611     second request. Due tot he availability of a full queue, we can just
612     pipeline sending both requests and manipulate the queue as necessary in
613     the callbacks:
614    
615     # request one
616     $handle->push_write ("request 1\015\012");
617    
618     # we expect "ERROR" or "OK" as response, so push a line read
619 root 1.52 $handle->push_read (line => sub {
620 root 1.9 # if we got an "OK", we have to _prepend_ another line,
621     # so it will be read before the second request reads its 64 bytes
622     # which are already in the queue when this callback is called
623     # we don't do this in case we got an error
624     if ($_[1] eq "OK") {
625 root 1.52 $_[0]->unshift_read (line => sub {
626 root 1.9 my $response = $_[1];
627     ...
628     });
629     }
630     });
631    
632     # request two
633     $handle->push_write ("request 2\015\012");
634    
635     # simply read 64 bytes, always
636 root 1.52 $handle->push_read (chunk => 64, sub {
637 root 1.9 my $response = $_[1];
638     ...
639     });
640    
641     =over 4
642    
643 root 1.10 =cut
644    
645 root 1.8 sub _drain_rbuf {
646     my ($self) = @_;
647 elmex 1.1
648 root 1.59 local $self->{_in_drain} = 1;
649    
650 root 1.17 if (
651     defined $self->{rbuf_max}
652     && $self->{rbuf_max} < length $self->{rbuf}
653     ) {
654 root 1.52 return $self->_error (&Errno::ENOSPC, 1);
655 root 1.17 }
656    
657 root 1.59 while () {
658     no strict 'refs';
659    
660     my $len = length $self->{rbuf};
661 elmex 1.1
662 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
663 root 1.29 unless ($cb->($self)) {
664 root 1.38 if ($self->{_eof}) {
665 root 1.10 # no progress can be made (not enough data and no data forthcoming)
666 root 1.61 $self->_error (&Errno::EPIPE, 1), last;
667 root 1.10 }
668    
669 root 1.38 unshift @{ $self->{_queue} }, $cb;
670 root 1.55 last;
671 root 1.8 }
672     } elsif ($self->{on_read}) {
673 root 1.61 last unless $len;
674    
675 root 1.8 $self->{on_read}($self);
676    
677     if (
678 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
679     && !@{ $self->{_queue} } # and the queue is still empty
680     && $self->{on_read} # but we still have on_read
681 root 1.8 ) {
682 root 1.55 # no further data will arrive
683     # so no progress can be made
684 root 1.61 $self->_error (&Errno::EPIPE, 1), last
685 root 1.55 if $self->{_eof};
686    
687     last; # more data might arrive
688 elmex 1.1 }
689 root 1.8 } else {
690     # read side becomes idle
691 root 1.38 delete $self->{_rw};
692 root 1.55 last;
693 root 1.8 }
694     }
695    
696 root 1.48 $self->{on_eof}($self)
697     if $self->{_eof} && $self->{on_eof};
698 root 1.55
699     # may need to restart read watcher
700     unless ($self->{_rw}) {
701     $self->start_read
702     if $self->{on_read} || @{ $self->{_queue} };
703     }
704 elmex 1.1 }
705    
706 root 1.8 =item $handle->on_read ($cb)
707 elmex 1.1
708 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
709     the new callback is C<undef>). See the description of C<on_read> in the
710     constructor.
711 elmex 1.1
712 root 1.8 =cut
713    
714     sub on_read {
715     my ($self, $cb) = @_;
716 elmex 1.1
717 root 1.8 $self->{on_read} = $cb;
718 root 1.59 $self->_drain_rbuf if $cb && !$self->{_in_drain};
719 elmex 1.1 }
720    
721 root 1.8 =item $handle->rbuf
722    
723     Returns the read buffer (as a modifiable lvalue).
724 elmex 1.1
725 root 1.8 You can access the read buffer directly as the C<< ->{rbuf} >> member, if
726     you want.
727 elmex 1.1
728 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
729     C<push_read> or C<unshift_read> methods are used. The other read methods
730     automatically manage the read buffer.
731 elmex 1.1
732     =cut
733    
734 elmex 1.2 sub rbuf : lvalue {
735 root 1.8 $_[0]{rbuf}
736 elmex 1.2 }
737 elmex 1.1
738 root 1.8 =item $handle->push_read ($cb)
739    
740     =item $handle->unshift_read ($cb)
741    
742     Append the given callback to the end of the queue (C<push_read>) or
743     prepend it (C<unshift_read>).
744    
745     The callback is called each time some additional read data arrives.
746 elmex 1.1
747 elmex 1.20 It must check whether enough data is in the read buffer already.
748 elmex 1.1
749 root 1.8 If not enough data is available, it must return the empty list or a false
750     value, in which case it will be called repeatedly until enough data is
751     available (or an error condition is detected).
752    
753     If enough data was available, then the callback must remove all data it is
754     interested in (which can be none at all) and return a true value. After returning
755     true, it will be removed from the queue.
756 elmex 1.1
757     =cut
758    
759 root 1.30 our %RH;
760    
761     sub register_read_type($$) {
762     $RH{$_[0]} = $_[1];
763     }
764    
765 root 1.8 sub push_read {
766 root 1.28 my $self = shift;
767     my $cb = pop;
768    
769     if (@_) {
770     my $type = shift;
771    
772     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
773     ->($self, $cb, @_);
774     }
775 elmex 1.1
776 root 1.38 push @{ $self->{_queue} }, $cb;
777 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
778 elmex 1.1 }
779    
780 root 1.8 sub unshift_read {
781 root 1.28 my $self = shift;
782     my $cb = pop;
783    
784     if (@_) {
785     my $type = shift;
786    
787     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
788     ->($self, $cb, @_);
789     }
790    
791 root 1.8
792 root 1.38 unshift @{ $self->{_queue} }, $cb;
793 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
794 root 1.8 }
795 elmex 1.1
796 root 1.28 =item $handle->push_read (type => @args, $cb)
797 elmex 1.1
798 root 1.28 =item $handle->unshift_read (type => @args, $cb)
799 elmex 1.1
800 root 1.28 Instead of providing a callback that parses the data itself you can chose
801     between a number of predefined parsing formats, for chunks of data, lines
802     etc.
803 elmex 1.1
804 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
805     drop by and tell us):
806 root 1.28
807     =over 4
808    
809 root 1.40 =item chunk => $octets, $cb->($handle, $data)
810 root 1.28
811     Invoke the callback only once C<$octets> bytes have been read. Pass the
812     data read to the callback. The callback will never be called with less
813     data.
814    
815     Example: read 2 bytes.
816    
817     $handle->push_read (chunk => 2, sub {
818     warn "yay ", unpack "H*", $_[1];
819     });
820 elmex 1.1
821     =cut
822    
823 root 1.28 register_read_type chunk => sub {
824     my ($self, $cb, $len) = @_;
825 elmex 1.1
826 root 1.8 sub {
827     $len <= length $_[0]{rbuf} or return;
828 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
829 root 1.8 1
830     }
831 root 1.28 };
832 root 1.8
833 root 1.28 # compatibility with older API
834 root 1.8 sub push_read_chunk {
835 root 1.28 $_[0]->push_read (chunk => $_[1], $_[2]);
836 root 1.8 }
837 elmex 1.1
838 root 1.8 sub unshift_read_chunk {
839 root 1.28 $_[0]->unshift_read (chunk => $_[1], $_[2]);
840 elmex 1.1 }
841    
842 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
843 elmex 1.1
844 root 1.8 The callback will be called only once a full line (including the end of
845     line marker, C<$eol>) has been read. This line (excluding the end of line
846     marker) will be passed to the callback as second argument (C<$line>), and
847     the end of line marker as the third argument (C<$eol>).
848 elmex 1.1
849 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
850     will be interpreted as a fixed record end marker, or it can be a regex
851     object (e.g. created by C<qr>), in which case it is interpreted as a
852     regular expression.
853 elmex 1.1
854 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
855     undef), then C<qr|\015?\012|> is used (which is good for most internet
856     protocols).
857 elmex 1.1
858 root 1.8 Partial lines at the end of the stream will never be returned, as they are
859     not marked by the end of line marker.
860 elmex 1.1
861 root 1.8 =cut
862 elmex 1.1
863 root 1.28 register_read_type line => sub {
864     my ($self, $cb, $eol) = @_;
865 elmex 1.1
866 root 1.28 $eol = qr|(\015?\012)| if @_ < 3;
867 root 1.14 $eol = quotemeta $eol unless ref $eol;
868     $eol = qr|^(.*?)($eol)|s;
869 elmex 1.1
870 root 1.8 sub {
871     $_[0]{rbuf} =~ s/$eol// or return;
872 elmex 1.1
873 elmex 1.12 $cb->($_[0], $1, $2);
874 root 1.8 1
875     }
876 root 1.28 };
877 elmex 1.1
878 root 1.28 # compatibility with older API
879 root 1.8 sub push_read_line {
880 root 1.28 my $self = shift;
881     $self->push_read (line => @_);
882 root 1.10 }
883    
884     sub unshift_read_line {
885 root 1.28 my $self = shift;
886     $self->unshift_read (line => @_);
887 root 1.10 }
888    
889 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
890 root 1.36
891     Makes a regex match against the regex object C<$accept> and returns
892     everything up to and including the match.
893    
894     Example: read a single line terminated by '\n'.
895    
896     $handle->push_read (regex => qr<\n>, sub { ... });
897    
898     If C<$reject> is given and not undef, then it determines when the data is
899     to be rejected: it is matched against the data when the C<$accept> regex
900     does not match and generates an C<EBADMSG> error when it matches. This is
901     useful to quickly reject wrong data (to avoid waiting for a timeout or a
902     receive buffer overflow).
903    
904     Example: expect a single decimal number followed by whitespace, reject
905     anything else (not the use of an anchor).
906    
907     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
908    
909     If C<$skip> is given and not C<undef>, then it will be matched against
910     the receive buffer when neither C<$accept> nor C<$reject> match,
911     and everything preceding and including the match will be accepted
912     unconditionally. This is useful to skip large amounts of data that you
913     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
914     have to start matching from the beginning. This is purely an optimisation
915     and is usually worth only when you expect more than a few kilobytes.
916    
917     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
918     expect the header to be very large (it isn't in practise, but...), we use
919     a skip regex to skip initial portions. The skip regex is tricky in that
920     it only accepts something not ending in either \015 or \012, as these are
921     required for the accept regex.
922    
923     $handle->push_read (regex =>
924     qr<\015\012\015\012>,
925     undef, # no reject
926     qr<^.*[^\015\012]>,
927     sub { ... });
928    
929     =cut
930    
931     register_read_type regex => sub {
932     my ($self, $cb, $accept, $reject, $skip) = @_;
933    
934     my $data;
935     my $rbuf = \$self->{rbuf};
936    
937     sub {
938     # accept
939     if ($$rbuf =~ $accept) {
940     $data .= substr $$rbuf, 0, $+[0], "";
941     $cb->($self, $data);
942     return 1;
943     }
944    
945     # reject
946     if ($reject && $$rbuf =~ $reject) {
947 root 1.52 $self->_error (&Errno::EBADMSG);
948 root 1.36 }
949    
950     # skip
951     if ($skip && $$rbuf =~ $skip) {
952     $data .= substr $$rbuf, 0, $+[0], "";
953     }
954    
955     ()
956     }
957     };
958    
959 root 1.61 =item netstring => $cb->($handle, $string)
960    
961     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
962    
963     Throws an error with C<$!> set to EBADMSG on format violations.
964    
965     =cut
966    
967     register_read_type netstring => sub {
968     my ($self, $cb) = @_;
969    
970     sub {
971     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
972     if ($_[0]{rbuf} =~ /[^0-9]/) {
973     $self->_error (&Errno::EBADMSG);
974     }
975     return;
976     }
977    
978     my $len = $1;
979    
980     $self->unshift_read (chunk => $len, sub {
981     my $string = $_[1];
982     $_[0]->unshift_read (chunk => 1, sub {
983     if ($_[1] eq ",") {
984     $cb->($_[0], $string);
985     } else {
986     $self->_error (&Errno::EBADMSG);
987     }
988     });
989     });
990    
991     1
992     }
993     };
994    
995     =item packstring => $format, $cb->($handle, $string)
996    
997     An octet string prefixed with an encoded length. The encoding C<$format>
998     uses the same format as a Perl C<pack> format, but must specify a single
999     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1000     optional C<!>, C<< < >> or C<< > >> modifier).
1001    
1002     DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>.
1003    
1004     Example: read a block of data prefixed by its length in BER-encoded
1005     format (very efficient).
1006    
1007     $handle->push_read (packstring => "w", sub {
1008     my ($handle, $data) = @_;
1009     });
1010    
1011     =cut
1012    
1013     register_read_type packstring => sub {
1014     my ($self, $cb, $format) = @_;
1015    
1016     sub {
1017     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1018     defined (my $len = eval { unpack $format, $_[0]->{rbuf} })
1019     or return;
1020    
1021     # remove prefix
1022     substr $_[0]->{rbuf}, 0, (length pack $format, $len), "";
1023    
1024     # read rest
1025     $_[0]->unshift_read (chunk => $len, $cb);
1026    
1027     1
1028     }
1029     };
1030    
1031 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1032    
1033     Reads a JSON object or array, decodes it and passes it to the callback.
1034    
1035     If a C<json> object was passed to the constructor, then that will be used
1036     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1037    
1038     This read type uses the incremental parser available with JSON version
1039     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1040     dependency on your own: this module will load the JSON module, but
1041     AnyEvent does not depend on it itself.
1042    
1043     Since JSON texts are fully self-delimiting, the C<json> read and write
1044 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1045     the C<json> write type description, above, for an actual example.
1046 root 1.40
1047     =cut
1048    
1049     register_read_type json => sub {
1050     my ($self, $cb, $accept, $reject, $skip) = @_;
1051    
1052     require JSON;
1053    
1054     my $data;
1055     my $rbuf = \$self->{rbuf};
1056    
1057 root 1.41 my $json = $self->{json} ||= JSON->new->utf8;
1058 root 1.40
1059     sub {
1060     my $ref = $json->incr_parse ($self->{rbuf});
1061    
1062     if ($ref) {
1063     $self->{rbuf} = $json->incr_text;
1064     $json->incr_text = "";
1065     $cb->($self, $ref);
1066    
1067     1
1068     } else {
1069     $self->{rbuf} = "";
1070     ()
1071     }
1072     }
1073     };
1074    
1075 root 1.28 =back
1076    
1077 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1078 root 1.30
1079     This function (not method) lets you add your own types to C<push_read>.
1080    
1081     Whenever the given C<type> is used, C<push_read> will invoke the code
1082     reference with the handle object, the callback and the remaining
1083     arguments.
1084    
1085     The code reference is supposed to return a callback (usually a closure)
1086     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1087    
1088     It should invoke the passed callback when it is done reading (remember to
1089 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1090 root 1.30
1091     Note that this is a function, and all types registered this way will be
1092     global, so try to use unique names.
1093    
1094     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1095     search for C<register_read_type>)).
1096    
1097 root 1.10 =item $handle->stop_read
1098    
1099     =item $handle->start_read
1100    
1101 root 1.18 In rare cases you actually do not want to read anything from the
1102 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1103 root 1.22 any queued callbacks will be executed then. To start reading again, call
1104 root 1.10 C<start_read>.
1105    
1106 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1107     you change the C<on_read> callback or push/unshift a read callback, and it
1108     will automatically C<stop_read> for you when neither C<on_read> is set nor
1109     there are any read requests in the queue.
1110    
1111 root 1.10 =cut
1112    
1113     sub stop_read {
1114     my ($self) = @_;
1115 elmex 1.1
1116 root 1.38 delete $self->{_rw};
1117 root 1.8 }
1118 elmex 1.1
1119 root 1.10 sub start_read {
1120     my ($self) = @_;
1121    
1122 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1123 root 1.10 Scalar::Util::weaken $self;
1124    
1125 root 1.38 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1126 root 1.17 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
1127     my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1128 root 1.10
1129     if ($len > 0) {
1130 root 1.44 $self->{_activity} = AnyEvent->now;
1131 root 1.43
1132 root 1.17 $self->{filter_r}
1133 root 1.48 ? $self->{filter_r}($self, $rbuf)
1134 root 1.59 : $self->{_in_drain} || $self->_drain_rbuf;
1135 root 1.10
1136     } elsif (defined $len) {
1137 root 1.38 delete $self->{_rw};
1138     $self->{_eof} = 1;
1139 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1140 root 1.10
1141 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1142 root 1.52 return $self->_error ($!, 1);
1143 root 1.10 }
1144     });
1145     }
1146 elmex 1.1 }
1147    
1148 root 1.19 sub _dotls {
1149     my ($self) = @_;
1150    
1151 root 1.56 my $buf;
1152    
1153 root 1.38 if (length $self->{_tls_wbuf}) {
1154     while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1155     substr $self->{_tls_wbuf}, 0, $len, "";
1156 root 1.22 }
1157 root 1.19 }
1158    
1159 root 1.56 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1160 root 1.19 $self->{wbuf} .= $buf;
1161     $self->_drain_wbuf;
1162     }
1163    
1164 root 1.56 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1165     if (length $buf) {
1166     $self->{rbuf} .= $buf;
1167 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1168 root 1.56 } else {
1169     # let's treat SSL-eof as we treat normal EOF
1170     $self->{_eof} = 1;
1171     $self->_shutdown;
1172     return;
1173     }
1174 root 1.23 }
1175    
1176 root 1.24 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1177    
1178     if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1179 root 1.23 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1180 root 1.52 return $self->_error ($!, 1);
1181 root 1.23 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1182 root 1.52 return $self->_error (&Errno::EIO, 1);
1183 root 1.19 }
1184 root 1.23
1185     # all others are fine for our purposes
1186 root 1.19 }
1187     }
1188    
1189 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1190    
1191     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1192     object is created, you can also do that at a later time by calling
1193     C<starttls>.
1194    
1195     The first argument is the same as the C<tls> constructor argument (either
1196     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1197    
1198     The second argument is the optional C<Net::SSLeay::CTX> object that is
1199     used when AnyEvent::Handle has to create its own TLS connection object.
1200    
1201 root 1.38 The TLS connection object will end up in C<< $handle->{tls} >> after this
1202     call and can be used or changed to your liking. Note that the handshake
1203     might have already started when this function returns.
1204    
1205 root 1.25 =cut
1206    
1207 root 1.19 sub starttls {
1208     my ($self, $ssl, $ctx) = @_;
1209    
1210 root 1.25 $self->stoptls;
1211    
1212 root 1.19 if ($ssl eq "accept") {
1213     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1214     Net::SSLeay::set_accept_state ($ssl);
1215     } elsif ($ssl eq "connect") {
1216     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1217     Net::SSLeay::set_connect_state ($ssl);
1218     }
1219    
1220     $self->{tls} = $ssl;
1221    
1222 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1223     # but the openssl maintainers basically said: "trust us, it just works".
1224     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1225     # and mismaintained ssleay-module doesn't even offer them).
1226 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1227 root 1.21 Net::SSLeay::CTX_set_mode ($self->{tls},
1228 root 1.34 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1229     | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1230 root 1.21
1231 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1232     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1233 root 1.19
1234 root 1.38 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1235 root 1.19
1236     $self->{filter_w} = sub {
1237 root 1.38 $_[0]{_tls_wbuf} .= ${$_[1]};
1238 root 1.19 &_dotls;
1239     };
1240     $self->{filter_r} = sub {
1241 root 1.38 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1242 root 1.19 &_dotls;
1243     };
1244     }
1245    
1246 root 1.25 =item $handle->stoptls
1247    
1248     Destroys the SSL connection, if any. Partial read or write data will be
1249     lost.
1250    
1251     =cut
1252    
1253     sub stoptls {
1254     my ($self) = @_;
1255    
1256     Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
1257 root 1.38
1258     delete $self->{_rbio};
1259     delete $self->{_wbio};
1260     delete $self->{_tls_wbuf};
1261 root 1.25 delete $self->{filter_r};
1262     delete $self->{filter_w};
1263     }
1264    
1265 root 1.19 sub DESTROY {
1266     my $self = shift;
1267    
1268 root 1.25 $self->stoptls;
1269 root 1.62
1270     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1271    
1272     if ($linger && length $self->{wbuf}) {
1273     my $fh = delete $self->{fh};
1274     my $wbuf = delete $self->{wbuf};
1275    
1276     my @linger;
1277    
1278     push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1279     my $len = syswrite $fh, $wbuf, length $wbuf;
1280    
1281     if ($len > 0) {
1282     substr $wbuf, 0, $len, "";
1283     } else {
1284     @linger = (); # end
1285     }
1286     });
1287     push @linger, AnyEvent->timer (after => $linger, cb => sub {
1288     @linger = ();
1289     });
1290     }
1291 root 1.19 }
1292    
1293     =item AnyEvent::Handle::TLS_CTX
1294    
1295     This function creates and returns the Net::SSLeay::CTX object used by
1296     default for TLS mode.
1297    
1298     The context is created like this:
1299    
1300     Net::SSLeay::load_error_strings;
1301     Net::SSLeay::SSLeay_add_ssl_algorithms;
1302     Net::SSLeay::randomize;
1303    
1304     my $CTX = Net::SSLeay::CTX_new;
1305    
1306     Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1307    
1308     =cut
1309    
1310     our $TLS_CTX;
1311    
1312     sub TLS_CTX() {
1313     $TLS_CTX || do {
1314     require Net::SSLeay;
1315    
1316     Net::SSLeay::load_error_strings ();
1317     Net::SSLeay::SSLeay_add_ssl_algorithms ();
1318     Net::SSLeay::randomize ();
1319    
1320     $TLS_CTX = Net::SSLeay::CTX_new ();
1321    
1322     Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1323    
1324     $TLS_CTX
1325     }
1326     }
1327    
1328 elmex 1.1 =back
1329    
1330 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
1331    
1332     In many cases, you might want to subclass AnyEvent::Handle.
1333    
1334     To make this easier, a given version of AnyEvent::Handle uses these
1335     conventions:
1336    
1337     =over 4
1338    
1339     =item * all constructor arguments become object members.
1340    
1341     At least initially, when you pass a C<tls>-argument to the constructor it
1342     will end up in C<< $handle->{tls} >>. Those members might be changes or
1343     mutated later on (for example C<tls> will hold the TLS connection object).
1344    
1345     =item * other object member names are prefixed with an C<_>.
1346    
1347     All object members not explicitly documented (internal use) are prefixed
1348     with an underscore character, so the remaining non-C<_>-namespace is free
1349     for use for subclasses.
1350    
1351     =item * all members not documented here and not prefixed with an underscore
1352     are free to use in subclasses.
1353    
1354     Of course, new versions of AnyEvent::Handle may introduce more "public"
1355     member variables, but thats just life, at least it is documented.
1356    
1357     =back
1358    
1359 elmex 1.1 =head1 AUTHOR
1360    
1361 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1362 elmex 1.1
1363     =cut
1364    
1365     1; # End of AnyEvent::Handle