ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.63
Committed: Fri Jun 6 11:00:32 2008 UTC (16 years ago) by root
Branch: MAIN
Changes since 1.62: +50 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 package AnyEvent::Handle;
2    
3 elmex 1.6 no warnings;
4 elmex 1.1 use strict;
5    
6 root 1.8 use AnyEvent ();
7 root 1.42 use AnyEvent::Util qw(WSAEWOULDBLOCK);
8 root 1.8 use Scalar::Util ();
9     use Carp ();
10     use Fcntl ();
11 root 1.43 use Errno qw(EAGAIN EINTR);
12 elmex 1.1
13     =head1 NAME
14    
15 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 elmex 1.1
17     =cut
18    
19 root 1.60 our $VERSION = 4.14;
20 elmex 1.1
21     =head1 SYNOPSIS
22    
23     use AnyEvent;
24     use AnyEvent::Handle;
25    
26     my $cv = AnyEvent->condvar;
27    
28 root 1.31 my $handle =
29 elmex 1.2 AnyEvent::Handle->new (
30     fh => \*STDIN,
31     on_eof => sub {
32     $cv->broadcast;
33     },
34     );
35    
36 root 1.31 # send some request line
37     $handle->push_write ("getinfo\015\012");
38    
39     # read the response line
40     $handle->push_read (line => sub {
41     my ($handle, $line) = @_;
42     warn "read line <$line>\n";
43     $cv->send;
44     });
45    
46     $cv->recv;
47 elmex 1.1
48     =head1 DESCRIPTION
49    
50 root 1.8 This module is a helper module to make it easier to do event-based I/O on
51 elmex 1.13 filehandles. For utility functions for doing non-blocking connects and accepts
52     on sockets see L<AnyEvent::Util>.
53 root 1.8
54     In the following, when the documentation refers to of "bytes" then this
55     means characters. As sysread and syswrite are used for all I/O, their
56     treatment of characters applies to this module as well.
57 elmex 1.1
58 root 1.8 All callbacks will be invoked with the handle object as their first
59     argument.
60 elmex 1.1
61     =head1 METHODS
62    
63     =over 4
64    
65     =item B<new (%args)>
66    
67 root 1.8 The constructor supports these arguments (all as key => value pairs).
68 elmex 1.1
69     =over 4
70    
71 root 1.8 =item fh => $filehandle [MANDATORY]
72 elmex 1.1
73     The filehandle this L<AnyEvent::Handle> object will operate on.
74    
75 root 1.8 NOTE: The filehandle will be set to non-blocking (using
76     AnyEvent::Util::fh_nonblocking).
77    
78 root 1.40 =item on_eof => $cb->($handle)
79 root 1.10
80 root 1.52 Set the callback to be called when an end-of-file condition is detcted,
81     i.e. in the case of a socket, when the other side has closed the
82     connection cleanly.
83 root 1.8
84 root 1.16 While not mandatory, it is highly recommended to set an eof callback,
85     otherwise you might end up with a closed socket while you are still
86     waiting for data.
87    
88 root 1.52 =item on_error => $cb->($handle, $fatal)
89 root 1.10
90 root 1.52 This is the error callback, which is called when, well, some error
91     occured, such as not being able to resolve the hostname, failure to
92     connect or a read error.
93    
94     Some errors are fatal (which is indicated by C<$fatal> being true). On
95     fatal errors the handle object will be shut down and will not be
96     usable. Non-fatal errors can be retried by simply returning, but it is
97     recommended to simply ignore this parameter and instead abondon the handle
98     object when this callback is invoked.
99 root 1.8
100 root 1.10 On callback entrance, the value of C<$!> contains the operating system
101 root 1.43 error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
102 root 1.8
103 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
104     you will not be notified of errors otherwise. The default simply calls
105 root 1.52 C<croak>.
106 root 1.8
107 root 1.40 =item on_read => $cb->($handle)
108 root 1.8
109     This sets the default read callback, which is called when data arrives
110 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
111     callback will only be called when at least one octet of data is in the
112     read buffer).
113 root 1.8
114     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
115 root 1.40 method or access the C<$handle->{rbuf}> member directly.
116 root 1.8
117     When an EOF condition is detected then AnyEvent::Handle will first try to
118     feed all the remaining data to the queued callbacks and C<on_read> before
119     calling the C<on_eof> callback. If no progress can be made, then a fatal
120     error will be raised (with C<$!> set to C<EPIPE>).
121 elmex 1.1
122 root 1.40 =item on_drain => $cb->($handle)
123 elmex 1.1
124 root 1.8 This sets the callback that is called when the write buffer becomes empty
125     (or when the callback is set and the buffer is empty already).
126 elmex 1.1
127 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
128 elmex 1.2
129 root 1.43 =item timeout => $fractional_seconds
130    
131     If non-zero, then this enables an "inactivity" timeout: whenever this many
132     seconds pass without a successful read or write on the underlying file
133     handle, the C<on_timeout> callback will be invoked (and if that one is
134 root 1.45 missing, an C<ETIMEDOUT> error will be raised).
135 root 1.43
136     Note that timeout processing is also active when you currently do not have
137     any outstanding read or write requests: If you plan to keep the connection
138     idle then you should disable the timout temporarily or ignore the timeout
139     in the C<on_timeout> callback.
140    
141     Zero (the default) disables this timeout.
142    
143     =item on_timeout => $cb->($handle)
144    
145     Called whenever the inactivity timeout passes. If you return from this
146     callback, then the timeout will be reset as if some activity had happened,
147     so this condition is not fatal in any way.
148    
149 root 1.8 =item rbuf_max => <bytes>
150 elmex 1.2
151 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
152     when the read buffer ever (strictly) exceeds this size. This is useful to
153     avoid denial-of-service attacks.
154 elmex 1.2
155 root 1.8 For example, a server accepting connections from untrusted sources should
156     be configured to accept only so-and-so much data that it cannot act on
157     (for example, when expecting a line, an attacker could send an unlimited
158     amount of data without a callback ever being called as long as the line
159     isn't finished).
160 elmex 1.2
161 root 1.8 =item read_size => <bytes>
162 elmex 1.2
163 root 1.8 The default read block size (the amount of bytes this module will try to read
164 root 1.46 during each (loop iteration). Default: C<8192>.
165 root 1.8
166     =item low_water_mark => <bytes>
167    
168     Sets the amount of bytes (default: C<0>) that make up an "empty" write
169     buffer: If the write reaches this size or gets even samller it is
170     considered empty.
171 elmex 1.2
172 root 1.62 =item linger => <seconds>
173    
174     If non-zero (default: C<3600>), then the destructor of the
175     AnyEvent::Handle object will check wether there is still outstanding write
176     data and will install a watcher that will write out this data. No errors
177     will be reported (this mostly matches how the operating system treats
178     outstanding data at socket close time).
179    
180     This will not work for partial TLS data that could not yet been
181     encoded. This data will be lost.
182    
183 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
184    
185     When this parameter is given, it enables TLS (SSL) mode, that means it
186     will start making tls handshake and will transparently encrypt/decrypt
187     data.
188    
189 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
190     automatically when you try to create a TLS handle).
191    
192 root 1.19 For the TLS server side, use C<accept>, and for the TLS client side of a
193     connection, use C<connect> mode.
194    
195     You can also provide your own TLS connection object, but you have
196     to make sure that you call either C<Net::SSLeay::set_connect_state>
197     or C<Net::SSLeay::set_accept_state> on it before you pass it to
198     AnyEvent::Handle.
199    
200 root 1.26 See the C<starttls> method if you need to start TLs negotiation later.
201    
202 root 1.19 =item tls_ctx => $ssl_ctx
203    
204     Use the given Net::SSLeay::CTX object to create the new TLS connection
205     (unless a connection object was specified directly). If this parameter is
206     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
207    
208 root 1.40 =item json => JSON or JSON::XS object
209    
210     This is the json coder object used by the C<json> read and write types.
211    
212 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
213     suitable one, which will write and expect UTF-8 encoded JSON texts.
214 root 1.40
215     Note that you are responsible to depend on the JSON module if you want to
216     use this functionality, as AnyEvent does not have a dependency itself.
217    
218 root 1.38 =item filter_r => $cb
219    
220     =item filter_w => $cb
221    
222     These exist, but are undocumented at this time.
223    
224 elmex 1.1 =back
225    
226     =cut
227    
228     sub new {
229 root 1.8 my $class = shift;
230    
231     my $self = bless { @_ }, $class;
232    
233     $self->{fh} or Carp::croak "mandatory argument fh is missing";
234    
235     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
236 elmex 1.1
237 root 1.19 if ($self->{tls}) {
238     require Net::SSLeay;
239     $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
240     }
241    
242 root 1.44 $self->{_activity} = AnyEvent->now;
243 root 1.43 $self->_timeout;
244 elmex 1.1
245 root 1.58 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
246 root 1.10
247 root 1.8 $self
248     }
249 elmex 1.2
250 root 1.8 sub _shutdown {
251     my ($self) = @_;
252 elmex 1.2
253 root 1.46 delete $self->{_tw};
254 root 1.38 delete $self->{_rw};
255     delete $self->{_ww};
256 root 1.8 delete $self->{fh};
257 root 1.52
258     $self->stoptls;
259 root 1.8 }
260    
261 root 1.52 sub _error {
262     my ($self, $errno, $fatal) = @_;
263 root 1.8
264 root 1.52 $self->_shutdown
265     if $fatal;
266 elmex 1.1
267 root 1.52 $! = $errno;
268 root 1.37
269 root 1.52 if ($self->{on_error}) {
270     $self->{on_error}($self, $fatal);
271     } else {
272     Carp::croak "AnyEvent::Handle uncaught error: $!";
273     }
274 elmex 1.1 }
275    
276 root 1.8 =item $fh = $handle->fh
277 elmex 1.1
278 root 1.22 This method returns the file handle of the L<AnyEvent::Handle> object.
279 elmex 1.1
280     =cut
281    
282 root 1.38 sub fh { $_[0]{fh} }
283 elmex 1.1
284 root 1.8 =item $handle->on_error ($cb)
285 elmex 1.1
286 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
287 elmex 1.1
288 root 1.8 =cut
289    
290     sub on_error {
291     $_[0]{on_error} = $_[1];
292     }
293    
294     =item $handle->on_eof ($cb)
295    
296     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
297 elmex 1.1
298     =cut
299    
300 root 1.8 sub on_eof {
301     $_[0]{on_eof} = $_[1];
302     }
303    
304 root 1.43 =item $handle->on_timeout ($cb)
305    
306     Replace the current C<on_timeout> callback, or disables the callback
307     (but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
308     argument.
309    
310     =cut
311    
312     sub on_timeout {
313     $_[0]{on_timeout} = $_[1];
314     }
315    
316     #############################################################################
317    
318     =item $handle->timeout ($seconds)
319    
320     Configures (or disables) the inactivity timeout.
321    
322     =cut
323    
324     sub timeout {
325     my ($self, $timeout) = @_;
326    
327     $self->{timeout} = $timeout;
328     $self->_timeout;
329     }
330    
331     # reset the timeout watcher, as neccessary
332     # also check for time-outs
333     sub _timeout {
334     my ($self) = @_;
335    
336     if ($self->{timeout}) {
337 root 1.44 my $NOW = AnyEvent->now;
338 root 1.43
339     # when would the timeout trigger?
340     my $after = $self->{_activity} + $self->{timeout} - $NOW;
341    
342     # now or in the past already?
343     if ($after <= 0) {
344     $self->{_activity} = $NOW;
345    
346     if ($self->{on_timeout}) {
347 root 1.48 $self->{on_timeout}($self);
348 root 1.43 } else {
349 root 1.52 $self->_error (&Errno::ETIMEDOUT);
350 root 1.43 }
351    
352 root 1.56 # callback could have changed timeout value, optimise
353 root 1.43 return unless $self->{timeout};
354    
355     # calculate new after
356     $after = $self->{timeout};
357     }
358    
359     Scalar::Util::weaken $self;
360 root 1.56 return unless $self; # ->error could have destroyed $self
361 root 1.43
362     $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
363     delete $self->{_tw};
364     $self->_timeout;
365     });
366     } else {
367     delete $self->{_tw};
368     }
369     }
370    
371 root 1.9 #############################################################################
372    
373     =back
374    
375     =head2 WRITE QUEUE
376    
377     AnyEvent::Handle manages two queues per handle, one for writing and one
378     for reading.
379    
380     The write queue is very simple: you can add data to its end, and
381     AnyEvent::Handle will automatically try to get rid of it for you.
382    
383 elmex 1.20 When data could be written and the write buffer is shorter then the low
384 root 1.9 water mark, the C<on_drain> callback will be invoked.
385    
386     =over 4
387    
388 root 1.8 =item $handle->on_drain ($cb)
389    
390     Sets the C<on_drain> callback or clears it (see the description of
391     C<on_drain> in the constructor).
392    
393     =cut
394    
395     sub on_drain {
396 elmex 1.1 my ($self, $cb) = @_;
397    
398 root 1.8 $self->{on_drain} = $cb;
399    
400     $cb->($self)
401     if $cb && $self->{low_water_mark} >= length $self->{wbuf};
402     }
403    
404     =item $handle->push_write ($data)
405    
406     Queues the given scalar to be written. You can push as much data as you
407     want (only limited by the available memory), as C<AnyEvent::Handle>
408     buffers it independently of the kernel.
409    
410     =cut
411    
412 root 1.17 sub _drain_wbuf {
413     my ($self) = @_;
414 root 1.8
415 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
416 root 1.35
417 root 1.8 Scalar::Util::weaken $self;
418 root 1.35
419 root 1.8 my $cb = sub {
420     my $len = syswrite $self->{fh}, $self->{wbuf};
421    
422 root 1.29 if ($len >= 0) {
423 root 1.8 substr $self->{wbuf}, 0, $len, "";
424    
425 root 1.44 $self->{_activity} = AnyEvent->now;
426 root 1.43
427 root 1.8 $self->{on_drain}($self)
428     if $self->{low_water_mark} >= length $self->{wbuf}
429     && $self->{on_drain};
430    
431 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
432 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
433 root 1.52 $self->_error ($!, 1);
434 elmex 1.1 }
435 root 1.8 };
436    
437 root 1.35 # try to write data immediately
438     $cb->();
439 root 1.8
440 root 1.35 # if still data left in wbuf, we need to poll
441 root 1.38 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
442 root 1.35 if length $self->{wbuf};
443 root 1.8 };
444     }
445    
446 root 1.30 our %WH;
447    
448     sub register_write_type($$) {
449     $WH{$_[0]} = $_[1];
450     }
451    
452 root 1.17 sub push_write {
453     my $self = shift;
454    
455 root 1.29 if (@_ > 1) {
456     my $type = shift;
457    
458     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
459     ->($self, @_);
460     }
461    
462 root 1.17 if ($self->{filter_w}) {
463 root 1.48 $self->{filter_w}($self, \$_[0]);
464 root 1.17 } else {
465     $self->{wbuf} .= $_[0];
466     $self->_drain_wbuf;
467     }
468     }
469    
470 root 1.29 =item $handle->push_write (type => @args)
471    
472     Instead of formatting your data yourself, you can also let this module do
473     the job by specifying a type and type-specific arguments.
474    
475 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
476     drop by and tell us):
477 root 1.29
478     =over 4
479    
480     =item netstring => $string
481    
482     Formats the given value as netstring
483     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
484    
485     =cut
486    
487     register_write_type netstring => sub {
488     my ($self, $string) = @_;
489    
490     sprintf "%d:%s,", (length $string), $string
491     };
492    
493 root 1.61 =item packstring => $format, $data
494    
495     An octet string prefixed with an encoded length. The encoding C<$format>
496     uses the same format as a Perl C<pack> format, but must specify a single
497     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
498     optional C<!>, C<< < >> or C<< > >> modifier).
499    
500     =cut
501    
502     register_write_type packstring => sub {
503     my ($self, $format, $string) = @_;
504    
505     pack "$format/a", $string
506     };
507    
508 root 1.39 =item json => $array_or_hashref
509    
510 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
511     provide your own JSON object, this means it will be encoded to JSON text
512     in UTF-8.
513    
514     JSON objects (and arrays) are self-delimiting, so you can write JSON at
515     one end of a handle and read them at the other end without using any
516     additional framing.
517    
518 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
519     this module doesn't need delimiters after or between JSON texts to be
520     able to read them, many other languages depend on that.
521    
522     A simple RPC protocol that interoperates easily with others is to send
523     JSON arrays (or objects, although arrays are usually the better choice as
524     they mimic how function argument passing works) and a newline after each
525     JSON text:
526    
527     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
528     $handle->push_write ("\012");
529    
530     An AnyEvent::Handle receiver would simply use the C<json> read type and
531     rely on the fact that the newline will be skipped as leading whitespace:
532    
533     $handle->push_read (json => sub { my $array = $_[1]; ... });
534    
535     Other languages could read single lines terminated by a newline and pass
536     this line into their JSON decoder of choice.
537    
538 root 1.40 =cut
539    
540     register_write_type json => sub {
541     my ($self, $ref) = @_;
542    
543     require JSON;
544    
545     $self->{json} ? $self->{json}->encode ($ref)
546     : JSON::encode_json ($ref)
547     };
548    
549 root 1.63 =item storable => $reference
550    
551     Freezes the given reference using L<Storable> and writes it to the
552     handle. Uses the C<nfreeze> format.
553    
554     =cut
555    
556     register_write_type storable => sub {
557     my ($self, $ref) = @_;
558    
559     require Storable;
560    
561     pack "w/a", Storable::nfreeze ($ref)
562     };
563    
564 root 1.53 =back
565    
566 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
567 root 1.30
568     This function (not method) lets you add your own types to C<push_write>.
569     Whenever the given C<type> is used, C<push_write> will invoke the code
570     reference with the handle object and the remaining arguments.
571 root 1.29
572 root 1.30 The code reference is supposed to return a single octet string that will
573     be appended to the write buffer.
574 root 1.29
575 root 1.30 Note that this is a function, and all types registered this way will be
576     global, so try to use unique names.
577 root 1.29
578 root 1.30 =cut
579 root 1.29
580 root 1.8 #############################################################################
581    
582 root 1.9 =back
583    
584     =head2 READ QUEUE
585    
586     AnyEvent::Handle manages two queues per handle, one for writing and one
587     for reading.
588    
589     The read queue is more complex than the write queue. It can be used in two
590     ways, the "simple" way, using only C<on_read> and the "complex" way, using
591     a queue.
592    
593     In the simple case, you just install an C<on_read> callback and whenever
594     new data arrives, it will be called. You can then remove some data (if
595     enough is there) from the read buffer (C<< $handle->rbuf >>) if you want
596     or not.
597    
598     In the more complex case, you want to queue multiple callbacks. In this
599     case, AnyEvent::Handle will call the first queued callback each time new
600 root 1.61 data arrives (also the first time it is queued) and removes it when it has
601     done its job (see C<push_read>, below).
602 root 1.9
603     This way you can, for example, push three line-reads, followed by reading
604     a chunk of data, and AnyEvent::Handle will execute them in order.
605    
606     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
607     the specified number of bytes which give an XML datagram.
608    
609     # in the default state, expect some header bytes
610     $handle->on_read (sub {
611     # some data is here, now queue the length-header-read (4 octets)
612 root 1.52 shift->unshift_read (chunk => 4, sub {
613 root 1.9 # header arrived, decode
614     my $len = unpack "N", $_[1];
615    
616     # now read the payload
617 root 1.52 shift->unshift_read (chunk => $len, sub {
618 root 1.9 my $xml = $_[1];
619     # handle xml
620     });
621     });
622     });
623    
624     Example 2: Implement a client for a protocol that replies either with
625     "OK" and another line or "ERROR" for one request, and 64 bytes for the
626     second request. Due tot he availability of a full queue, we can just
627     pipeline sending both requests and manipulate the queue as necessary in
628     the callbacks:
629    
630     # request one
631     $handle->push_write ("request 1\015\012");
632    
633     # we expect "ERROR" or "OK" as response, so push a line read
634 root 1.52 $handle->push_read (line => sub {
635 root 1.9 # if we got an "OK", we have to _prepend_ another line,
636     # so it will be read before the second request reads its 64 bytes
637     # which are already in the queue when this callback is called
638     # we don't do this in case we got an error
639     if ($_[1] eq "OK") {
640 root 1.52 $_[0]->unshift_read (line => sub {
641 root 1.9 my $response = $_[1];
642     ...
643     });
644     }
645     });
646    
647     # request two
648     $handle->push_write ("request 2\015\012");
649    
650     # simply read 64 bytes, always
651 root 1.52 $handle->push_read (chunk => 64, sub {
652 root 1.9 my $response = $_[1];
653     ...
654     });
655    
656     =over 4
657    
658 root 1.10 =cut
659    
660 root 1.8 sub _drain_rbuf {
661     my ($self) = @_;
662 elmex 1.1
663 root 1.59 local $self->{_in_drain} = 1;
664    
665 root 1.17 if (
666     defined $self->{rbuf_max}
667     && $self->{rbuf_max} < length $self->{rbuf}
668     ) {
669 root 1.52 return $self->_error (&Errno::ENOSPC, 1);
670 root 1.17 }
671    
672 root 1.59 while () {
673     no strict 'refs';
674    
675     my $len = length $self->{rbuf};
676 elmex 1.1
677 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
678 root 1.29 unless ($cb->($self)) {
679 root 1.38 if ($self->{_eof}) {
680 root 1.10 # no progress can be made (not enough data and no data forthcoming)
681 root 1.61 $self->_error (&Errno::EPIPE, 1), last;
682 root 1.10 }
683    
684 root 1.38 unshift @{ $self->{_queue} }, $cb;
685 root 1.55 last;
686 root 1.8 }
687     } elsif ($self->{on_read}) {
688 root 1.61 last unless $len;
689    
690 root 1.8 $self->{on_read}($self);
691    
692     if (
693 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
694     && !@{ $self->{_queue} } # and the queue is still empty
695     && $self->{on_read} # but we still have on_read
696 root 1.8 ) {
697 root 1.55 # no further data will arrive
698     # so no progress can be made
699 root 1.61 $self->_error (&Errno::EPIPE, 1), last
700 root 1.55 if $self->{_eof};
701    
702     last; # more data might arrive
703 elmex 1.1 }
704 root 1.8 } else {
705     # read side becomes idle
706 root 1.38 delete $self->{_rw};
707 root 1.55 last;
708 root 1.8 }
709     }
710    
711 root 1.48 $self->{on_eof}($self)
712     if $self->{_eof} && $self->{on_eof};
713 root 1.55
714     # may need to restart read watcher
715     unless ($self->{_rw}) {
716     $self->start_read
717     if $self->{on_read} || @{ $self->{_queue} };
718     }
719 elmex 1.1 }
720    
721 root 1.8 =item $handle->on_read ($cb)
722 elmex 1.1
723 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
724     the new callback is C<undef>). See the description of C<on_read> in the
725     constructor.
726 elmex 1.1
727 root 1.8 =cut
728    
729     sub on_read {
730     my ($self, $cb) = @_;
731 elmex 1.1
732 root 1.8 $self->{on_read} = $cb;
733 root 1.59 $self->_drain_rbuf if $cb && !$self->{_in_drain};
734 elmex 1.1 }
735    
736 root 1.8 =item $handle->rbuf
737    
738     Returns the read buffer (as a modifiable lvalue).
739 elmex 1.1
740 root 1.8 You can access the read buffer directly as the C<< ->{rbuf} >> member, if
741     you want.
742 elmex 1.1
743 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
744     C<push_read> or C<unshift_read> methods are used. The other read methods
745     automatically manage the read buffer.
746 elmex 1.1
747     =cut
748    
749 elmex 1.2 sub rbuf : lvalue {
750 root 1.8 $_[0]{rbuf}
751 elmex 1.2 }
752 elmex 1.1
753 root 1.8 =item $handle->push_read ($cb)
754    
755     =item $handle->unshift_read ($cb)
756    
757     Append the given callback to the end of the queue (C<push_read>) or
758     prepend it (C<unshift_read>).
759    
760     The callback is called each time some additional read data arrives.
761 elmex 1.1
762 elmex 1.20 It must check whether enough data is in the read buffer already.
763 elmex 1.1
764 root 1.8 If not enough data is available, it must return the empty list or a false
765     value, in which case it will be called repeatedly until enough data is
766     available (or an error condition is detected).
767    
768     If enough data was available, then the callback must remove all data it is
769     interested in (which can be none at all) and return a true value. After returning
770     true, it will be removed from the queue.
771 elmex 1.1
772     =cut
773    
774 root 1.30 our %RH;
775    
776     sub register_read_type($$) {
777     $RH{$_[0]} = $_[1];
778     }
779    
780 root 1.8 sub push_read {
781 root 1.28 my $self = shift;
782     my $cb = pop;
783    
784     if (@_) {
785     my $type = shift;
786    
787     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
788     ->($self, $cb, @_);
789     }
790 elmex 1.1
791 root 1.38 push @{ $self->{_queue} }, $cb;
792 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
793 elmex 1.1 }
794    
795 root 1.8 sub unshift_read {
796 root 1.28 my $self = shift;
797     my $cb = pop;
798    
799     if (@_) {
800     my $type = shift;
801    
802     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
803     ->($self, $cb, @_);
804     }
805    
806 root 1.8
807 root 1.38 unshift @{ $self->{_queue} }, $cb;
808 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
809 root 1.8 }
810 elmex 1.1
811 root 1.28 =item $handle->push_read (type => @args, $cb)
812 elmex 1.1
813 root 1.28 =item $handle->unshift_read (type => @args, $cb)
814 elmex 1.1
815 root 1.28 Instead of providing a callback that parses the data itself you can chose
816     between a number of predefined parsing formats, for chunks of data, lines
817     etc.
818 elmex 1.1
819 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
820     drop by and tell us):
821 root 1.28
822     =over 4
823    
824 root 1.40 =item chunk => $octets, $cb->($handle, $data)
825 root 1.28
826     Invoke the callback only once C<$octets> bytes have been read. Pass the
827     data read to the callback. The callback will never be called with less
828     data.
829    
830     Example: read 2 bytes.
831    
832     $handle->push_read (chunk => 2, sub {
833     warn "yay ", unpack "H*", $_[1];
834     });
835 elmex 1.1
836     =cut
837    
838 root 1.28 register_read_type chunk => sub {
839     my ($self, $cb, $len) = @_;
840 elmex 1.1
841 root 1.8 sub {
842     $len <= length $_[0]{rbuf} or return;
843 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
844 root 1.8 1
845     }
846 root 1.28 };
847 root 1.8
848 root 1.28 # compatibility with older API
849 root 1.8 sub push_read_chunk {
850 root 1.28 $_[0]->push_read (chunk => $_[1], $_[2]);
851 root 1.8 }
852 elmex 1.1
853 root 1.8 sub unshift_read_chunk {
854 root 1.28 $_[0]->unshift_read (chunk => $_[1], $_[2]);
855 elmex 1.1 }
856    
857 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
858 elmex 1.1
859 root 1.8 The callback will be called only once a full line (including the end of
860     line marker, C<$eol>) has been read. This line (excluding the end of line
861     marker) will be passed to the callback as second argument (C<$line>), and
862     the end of line marker as the third argument (C<$eol>).
863 elmex 1.1
864 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
865     will be interpreted as a fixed record end marker, or it can be a regex
866     object (e.g. created by C<qr>), in which case it is interpreted as a
867     regular expression.
868 elmex 1.1
869 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
870     undef), then C<qr|\015?\012|> is used (which is good for most internet
871     protocols).
872 elmex 1.1
873 root 1.8 Partial lines at the end of the stream will never be returned, as they are
874     not marked by the end of line marker.
875 elmex 1.1
876 root 1.8 =cut
877 elmex 1.1
878 root 1.28 register_read_type line => sub {
879     my ($self, $cb, $eol) = @_;
880 elmex 1.1
881 root 1.28 $eol = qr|(\015?\012)| if @_ < 3;
882 root 1.14 $eol = quotemeta $eol unless ref $eol;
883     $eol = qr|^(.*?)($eol)|s;
884 elmex 1.1
885 root 1.8 sub {
886     $_[0]{rbuf} =~ s/$eol// or return;
887 elmex 1.1
888 elmex 1.12 $cb->($_[0], $1, $2);
889 root 1.8 1
890     }
891 root 1.28 };
892 elmex 1.1
893 root 1.28 # compatibility with older API
894 root 1.8 sub push_read_line {
895 root 1.28 my $self = shift;
896     $self->push_read (line => @_);
897 root 1.10 }
898    
899     sub unshift_read_line {
900 root 1.28 my $self = shift;
901     $self->unshift_read (line => @_);
902 root 1.10 }
903    
904 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
905 root 1.36
906     Makes a regex match against the regex object C<$accept> and returns
907     everything up to and including the match.
908    
909     Example: read a single line terminated by '\n'.
910    
911     $handle->push_read (regex => qr<\n>, sub { ... });
912    
913     If C<$reject> is given and not undef, then it determines when the data is
914     to be rejected: it is matched against the data when the C<$accept> regex
915     does not match and generates an C<EBADMSG> error when it matches. This is
916     useful to quickly reject wrong data (to avoid waiting for a timeout or a
917     receive buffer overflow).
918    
919     Example: expect a single decimal number followed by whitespace, reject
920     anything else (not the use of an anchor).
921    
922     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
923    
924     If C<$skip> is given and not C<undef>, then it will be matched against
925     the receive buffer when neither C<$accept> nor C<$reject> match,
926     and everything preceding and including the match will be accepted
927     unconditionally. This is useful to skip large amounts of data that you
928     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
929     have to start matching from the beginning. This is purely an optimisation
930     and is usually worth only when you expect more than a few kilobytes.
931    
932     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
933     expect the header to be very large (it isn't in practise, but...), we use
934     a skip regex to skip initial portions. The skip regex is tricky in that
935     it only accepts something not ending in either \015 or \012, as these are
936     required for the accept regex.
937    
938     $handle->push_read (regex =>
939     qr<\015\012\015\012>,
940     undef, # no reject
941     qr<^.*[^\015\012]>,
942     sub { ... });
943    
944     =cut
945    
946     register_read_type regex => sub {
947     my ($self, $cb, $accept, $reject, $skip) = @_;
948    
949     my $data;
950     my $rbuf = \$self->{rbuf};
951    
952     sub {
953     # accept
954     if ($$rbuf =~ $accept) {
955     $data .= substr $$rbuf, 0, $+[0], "";
956     $cb->($self, $data);
957     return 1;
958     }
959    
960     # reject
961     if ($reject && $$rbuf =~ $reject) {
962 root 1.52 $self->_error (&Errno::EBADMSG);
963 root 1.36 }
964    
965     # skip
966     if ($skip && $$rbuf =~ $skip) {
967     $data .= substr $$rbuf, 0, $+[0], "";
968     }
969    
970     ()
971     }
972     };
973    
974 root 1.61 =item netstring => $cb->($handle, $string)
975    
976     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
977    
978     Throws an error with C<$!> set to EBADMSG on format violations.
979    
980     =cut
981    
982     register_read_type netstring => sub {
983     my ($self, $cb) = @_;
984    
985     sub {
986     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
987     if ($_[0]{rbuf} =~ /[^0-9]/) {
988     $self->_error (&Errno::EBADMSG);
989     }
990     return;
991     }
992    
993     my $len = $1;
994    
995     $self->unshift_read (chunk => $len, sub {
996     my $string = $_[1];
997     $_[0]->unshift_read (chunk => 1, sub {
998     if ($_[1] eq ",") {
999     $cb->($_[0], $string);
1000     } else {
1001     $self->_error (&Errno::EBADMSG);
1002     }
1003     });
1004     });
1005    
1006     1
1007     }
1008     };
1009    
1010     =item packstring => $format, $cb->($handle, $string)
1011    
1012     An octet string prefixed with an encoded length. The encoding C<$format>
1013     uses the same format as a Perl C<pack> format, but must specify a single
1014     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1015     optional C<!>, C<< < >> or C<< > >> modifier).
1016    
1017     DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>.
1018    
1019     Example: read a block of data prefixed by its length in BER-encoded
1020     format (very efficient).
1021    
1022     $handle->push_read (packstring => "w", sub {
1023     my ($handle, $data) = @_;
1024     });
1025    
1026     =cut
1027    
1028     register_read_type packstring => sub {
1029     my ($self, $cb, $format) = @_;
1030    
1031     sub {
1032     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1033     defined (my $len = eval { unpack $format, $_[0]->{rbuf} })
1034     or return;
1035    
1036     # remove prefix
1037     substr $_[0]->{rbuf}, 0, (length pack $format, $len), "";
1038    
1039     # read rest
1040     $_[0]->unshift_read (chunk => $len, $cb);
1041    
1042     1
1043     }
1044     };
1045    
1046 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1047    
1048     Reads a JSON object or array, decodes it and passes it to the callback.
1049    
1050     If a C<json> object was passed to the constructor, then that will be used
1051     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1052    
1053     This read type uses the incremental parser available with JSON version
1054     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1055     dependency on your own: this module will load the JSON module, but
1056     AnyEvent does not depend on it itself.
1057    
1058     Since JSON texts are fully self-delimiting, the C<json> read and write
1059 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1060     the C<json> write type description, above, for an actual example.
1061 root 1.40
1062     =cut
1063    
1064     register_read_type json => sub {
1065 root 1.63 my ($self, $cb) = @_;
1066 root 1.40
1067     require JSON;
1068    
1069     my $data;
1070     my $rbuf = \$self->{rbuf};
1071    
1072 root 1.41 my $json = $self->{json} ||= JSON->new->utf8;
1073 root 1.40
1074     sub {
1075     my $ref = $json->incr_parse ($self->{rbuf});
1076    
1077     if ($ref) {
1078     $self->{rbuf} = $json->incr_text;
1079     $json->incr_text = "";
1080     $cb->($self, $ref);
1081    
1082     1
1083     } else {
1084     $self->{rbuf} = "";
1085     ()
1086     }
1087     }
1088     };
1089    
1090 root 1.63 =item storable => $cb->($handle, $ref)
1091    
1092     Deserialises a L<Storable> frozen representation as written by the
1093     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1094     data).
1095    
1096     Raises C<EBADMSG> error if the data could not be decoded.
1097    
1098     =cut
1099    
1100     register_read_type storable => sub {
1101     my ($self, $cb) = @_;
1102    
1103     require Storable;
1104    
1105     sub {
1106     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1107     defined (my $len = eval { unpack "w", $_[0]->{rbuf} })
1108     or return;
1109    
1110     # remove prefix
1111     substr $_[0]->{rbuf}, 0, (length pack "w", $len), "";
1112    
1113     # read rest
1114     $_[0]->unshift_read (chunk => $len, sub {
1115     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1116     $cb->($_[0], $ref);
1117     } else {
1118     $self->_error (&Errno::EBADMSG);
1119     }
1120     });
1121     }
1122     };
1123    
1124 root 1.28 =back
1125    
1126 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1127 root 1.30
1128     This function (not method) lets you add your own types to C<push_read>.
1129    
1130     Whenever the given C<type> is used, C<push_read> will invoke the code
1131     reference with the handle object, the callback and the remaining
1132     arguments.
1133    
1134     The code reference is supposed to return a callback (usually a closure)
1135     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1136    
1137     It should invoke the passed callback when it is done reading (remember to
1138 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1139 root 1.30
1140     Note that this is a function, and all types registered this way will be
1141     global, so try to use unique names.
1142    
1143     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1144     search for C<register_read_type>)).
1145    
1146 root 1.10 =item $handle->stop_read
1147    
1148     =item $handle->start_read
1149    
1150 root 1.18 In rare cases you actually do not want to read anything from the
1151 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1152 root 1.22 any queued callbacks will be executed then. To start reading again, call
1153 root 1.10 C<start_read>.
1154    
1155 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1156     you change the C<on_read> callback or push/unshift a read callback, and it
1157     will automatically C<stop_read> for you when neither C<on_read> is set nor
1158     there are any read requests in the queue.
1159    
1160 root 1.10 =cut
1161    
1162     sub stop_read {
1163     my ($self) = @_;
1164 elmex 1.1
1165 root 1.38 delete $self->{_rw};
1166 root 1.8 }
1167 elmex 1.1
1168 root 1.10 sub start_read {
1169     my ($self) = @_;
1170    
1171 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1172 root 1.10 Scalar::Util::weaken $self;
1173    
1174 root 1.38 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1175 root 1.17 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
1176     my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1177 root 1.10
1178     if ($len > 0) {
1179 root 1.44 $self->{_activity} = AnyEvent->now;
1180 root 1.43
1181 root 1.17 $self->{filter_r}
1182 root 1.48 ? $self->{filter_r}($self, $rbuf)
1183 root 1.59 : $self->{_in_drain} || $self->_drain_rbuf;
1184 root 1.10
1185     } elsif (defined $len) {
1186 root 1.38 delete $self->{_rw};
1187     $self->{_eof} = 1;
1188 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1189 root 1.10
1190 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1191 root 1.52 return $self->_error ($!, 1);
1192 root 1.10 }
1193     });
1194     }
1195 elmex 1.1 }
1196    
1197 root 1.19 sub _dotls {
1198     my ($self) = @_;
1199    
1200 root 1.56 my $buf;
1201    
1202 root 1.38 if (length $self->{_tls_wbuf}) {
1203     while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1204     substr $self->{_tls_wbuf}, 0, $len, "";
1205 root 1.22 }
1206 root 1.19 }
1207    
1208 root 1.56 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1209 root 1.19 $self->{wbuf} .= $buf;
1210     $self->_drain_wbuf;
1211     }
1212    
1213 root 1.56 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1214     if (length $buf) {
1215     $self->{rbuf} .= $buf;
1216 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1217 root 1.56 } else {
1218     # let's treat SSL-eof as we treat normal EOF
1219     $self->{_eof} = 1;
1220     $self->_shutdown;
1221     return;
1222     }
1223 root 1.23 }
1224    
1225 root 1.24 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1226    
1227     if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1228 root 1.23 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1229 root 1.52 return $self->_error ($!, 1);
1230 root 1.23 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1231 root 1.52 return $self->_error (&Errno::EIO, 1);
1232 root 1.19 }
1233 root 1.23
1234     # all others are fine for our purposes
1235 root 1.19 }
1236     }
1237    
1238 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1239    
1240     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1241     object is created, you can also do that at a later time by calling
1242     C<starttls>.
1243    
1244     The first argument is the same as the C<tls> constructor argument (either
1245     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1246    
1247     The second argument is the optional C<Net::SSLeay::CTX> object that is
1248     used when AnyEvent::Handle has to create its own TLS connection object.
1249    
1250 root 1.38 The TLS connection object will end up in C<< $handle->{tls} >> after this
1251     call and can be used or changed to your liking. Note that the handshake
1252     might have already started when this function returns.
1253    
1254 root 1.25 =cut
1255    
1256 root 1.19 sub starttls {
1257     my ($self, $ssl, $ctx) = @_;
1258    
1259 root 1.25 $self->stoptls;
1260    
1261 root 1.19 if ($ssl eq "accept") {
1262     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1263     Net::SSLeay::set_accept_state ($ssl);
1264     } elsif ($ssl eq "connect") {
1265     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1266     Net::SSLeay::set_connect_state ($ssl);
1267     }
1268    
1269     $self->{tls} = $ssl;
1270    
1271 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1272     # but the openssl maintainers basically said: "trust us, it just works".
1273     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1274     # and mismaintained ssleay-module doesn't even offer them).
1275 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1276 root 1.21 Net::SSLeay::CTX_set_mode ($self->{tls},
1277 root 1.34 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1278     | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1279 root 1.21
1280 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1281     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1282 root 1.19
1283 root 1.38 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1284 root 1.19
1285     $self->{filter_w} = sub {
1286 root 1.38 $_[0]{_tls_wbuf} .= ${$_[1]};
1287 root 1.19 &_dotls;
1288     };
1289     $self->{filter_r} = sub {
1290 root 1.38 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1291 root 1.19 &_dotls;
1292     };
1293     }
1294    
1295 root 1.25 =item $handle->stoptls
1296    
1297     Destroys the SSL connection, if any. Partial read or write data will be
1298     lost.
1299    
1300     =cut
1301    
1302     sub stoptls {
1303     my ($self) = @_;
1304    
1305     Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
1306 root 1.38
1307     delete $self->{_rbio};
1308     delete $self->{_wbio};
1309     delete $self->{_tls_wbuf};
1310 root 1.25 delete $self->{filter_r};
1311     delete $self->{filter_w};
1312     }
1313    
1314 root 1.19 sub DESTROY {
1315     my $self = shift;
1316    
1317 root 1.25 $self->stoptls;
1318 root 1.62
1319     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1320    
1321     if ($linger && length $self->{wbuf}) {
1322     my $fh = delete $self->{fh};
1323     my $wbuf = delete $self->{wbuf};
1324    
1325     my @linger;
1326    
1327     push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1328     my $len = syswrite $fh, $wbuf, length $wbuf;
1329    
1330     if ($len > 0) {
1331     substr $wbuf, 0, $len, "";
1332     } else {
1333     @linger = (); # end
1334     }
1335     });
1336     push @linger, AnyEvent->timer (after => $linger, cb => sub {
1337     @linger = ();
1338     });
1339     }
1340 root 1.19 }
1341    
1342     =item AnyEvent::Handle::TLS_CTX
1343    
1344     This function creates and returns the Net::SSLeay::CTX object used by
1345     default for TLS mode.
1346    
1347     The context is created like this:
1348    
1349     Net::SSLeay::load_error_strings;
1350     Net::SSLeay::SSLeay_add_ssl_algorithms;
1351     Net::SSLeay::randomize;
1352    
1353     my $CTX = Net::SSLeay::CTX_new;
1354    
1355     Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1356    
1357     =cut
1358    
1359     our $TLS_CTX;
1360    
1361     sub TLS_CTX() {
1362     $TLS_CTX || do {
1363     require Net::SSLeay;
1364    
1365     Net::SSLeay::load_error_strings ();
1366     Net::SSLeay::SSLeay_add_ssl_algorithms ();
1367     Net::SSLeay::randomize ();
1368    
1369     $TLS_CTX = Net::SSLeay::CTX_new ();
1370    
1371     Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1372    
1373     $TLS_CTX
1374     }
1375     }
1376    
1377 elmex 1.1 =back
1378    
1379 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
1380    
1381     In many cases, you might want to subclass AnyEvent::Handle.
1382    
1383     To make this easier, a given version of AnyEvent::Handle uses these
1384     conventions:
1385    
1386     =over 4
1387    
1388     =item * all constructor arguments become object members.
1389    
1390     At least initially, when you pass a C<tls>-argument to the constructor it
1391     will end up in C<< $handle->{tls} >>. Those members might be changes or
1392     mutated later on (for example C<tls> will hold the TLS connection object).
1393    
1394     =item * other object member names are prefixed with an C<_>.
1395    
1396     All object members not explicitly documented (internal use) are prefixed
1397     with an underscore character, so the remaining non-C<_>-namespace is free
1398     for use for subclasses.
1399    
1400     =item * all members not documented here and not prefixed with an underscore
1401     are free to use in subclasses.
1402    
1403     Of course, new versions of AnyEvent::Handle may introduce more "public"
1404     member variables, but thats just life, at least it is documented.
1405    
1406     =back
1407    
1408 elmex 1.1 =head1 AUTHOR
1409    
1410 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1411 elmex 1.1
1412     =cut
1413    
1414     1; # End of AnyEvent::Handle