ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.69
Committed: Sun Jun 15 21:44:56 2008 UTC (15 years, 11 months ago) by root
Branch: MAIN
CVS Tags: rel-4_152
Changes since 1.68: +20 -9 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 package AnyEvent::Handle;
2    
3 elmex 1.6 no warnings;
4 elmex 1.1 use strict;
5    
6 root 1.8 use AnyEvent ();
7 root 1.42 use AnyEvent::Util qw(WSAEWOULDBLOCK);
8 root 1.8 use Scalar::Util ();
9     use Carp ();
10     use Fcntl ();
11 root 1.43 use Errno qw(EAGAIN EINTR);
12 elmex 1.1
13     =head1 NAME
14    
15 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 elmex 1.1
17     =cut
18    
19 root 1.68 our $VERSION = 4.151;
20 elmex 1.1
21     =head1 SYNOPSIS
22    
23     use AnyEvent;
24     use AnyEvent::Handle;
25    
26     my $cv = AnyEvent->condvar;
27    
28 root 1.31 my $handle =
29 elmex 1.2 AnyEvent::Handle->new (
30     fh => \*STDIN,
31     on_eof => sub {
32     $cv->broadcast;
33     },
34     );
35    
36 root 1.31 # send some request line
37     $handle->push_write ("getinfo\015\012");
38    
39     # read the response line
40     $handle->push_read (line => sub {
41     my ($handle, $line) = @_;
42     warn "read line <$line>\n";
43     $cv->send;
44     });
45    
46     $cv->recv;
47 elmex 1.1
48     =head1 DESCRIPTION
49    
50 root 1.8 This module is a helper module to make it easier to do event-based I/O on
51 elmex 1.13 filehandles. For utility functions for doing non-blocking connects and accepts
52     on sockets see L<AnyEvent::Util>.
53 root 1.8
54     In the following, when the documentation refers to of "bytes" then this
55     means characters. As sysread and syswrite are used for all I/O, their
56     treatment of characters applies to this module as well.
57 elmex 1.1
58 root 1.8 All callbacks will be invoked with the handle object as their first
59     argument.
60 elmex 1.1
61     =head1 METHODS
62    
63     =over 4
64    
65     =item B<new (%args)>
66    
67 root 1.8 The constructor supports these arguments (all as key => value pairs).
68 elmex 1.1
69     =over 4
70    
71 root 1.8 =item fh => $filehandle [MANDATORY]
72 elmex 1.1
73     The filehandle this L<AnyEvent::Handle> object will operate on.
74    
75 root 1.8 NOTE: The filehandle will be set to non-blocking (using
76     AnyEvent::Util::fh_nonblocking).
77    
78 root 1.40 =item on_eof => $cb->($handle)
79 root 1.10
80 root 1.52 Set the callback to be called when an end-of-file condition is detcted,
81     i.e. in the case of a socket, when the other side has closed the
82     connection cleanly.
83 root 1.8
84 root 1.16 While not mandatory, it is highly recommended to set an eof callback,
85     otherwise you might end up with a closed socket while you are still
86     waiting for data.
87    
88 root 1.52 =item on_error => $cb->($handle, $fatal)
89 root 1.10
90 root 1.52 This is the error callback, which is called when, well, some error
91     occured, such as not being able to resolve the hostname, failure to
92     connect or a read error.
93    
94     Some errors are fatal (which is indicated by C<$fatal> being true). On
95     fatal errors the handle object will be shut down and will not be
96     usable. Non-fatal errors can be retried by simply returning, but it is
97     recommended to simply ignore this parameter and instead abondon the handle
98     object when this callback is invoked.
99 root 1.8
100 root 1.10 On callback entrance, the value of C<$!> contains the operating system
101 root 1.43 error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
102 root 1.8
103 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
104     you will not be notified of errors otherwise. The default simply calls
105 root 1.52 C<croak>.
106 root 1.8
107 root 1.40 =item on_read => $cb->($handle)
108 root 1.8
109     This sets the default read callback, which is called when data arrives
110 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
111     callback will only be called when at least one octet of data is in the
112     read buffer).
113 root 1.8
114     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
115 root 1.40 method or access the C<$handle->{rbuf}> member directly.
116 root 1.8
117     When an EOF condition is detected then AnyEvent::Handle will first try to
118     feed all the remaining data to the queued callbacks and C<on_read> before
119     calling the C<on_eof> callback. If no progress can be made, then a fatal
120     error will be raised (with C<$!> set to C<EPIPE>).
121 elmex 1.1
122 root 1.40 =item on_drain => $cb->($handle)
123 elmex 1.1
124 root 1.8 This sets the callback that is called when the write buffer becomes empty
125     (or when the callback is set and the buffer is empty already).
126 elmex 1.1
127 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
128 elmex 1.2
129 root 1.69 This callback is useful when you don't want to put all of your write data
130     into the queue at once, for example, when you want to write the contents
131     of some file to the socket you might not want to read the whole file into
132     memory and push it into the queue, but instead only read more data from
133     the file when the write queue becomes empty.
134    
135 root 1.43 =item timeout => $fractional_seconds
136    
137     If non-zero, then this enables an "inactivity" timeout: whenever this many
138     seconds pass without a successful read or write on the underlying file
139     handle, the C<on_timeout> callback will be invoked (and if that one is
140 root 1.45 missing, an C<ETIMEDOUT> error will be raised).
141 root 1.43
142     Note that timeout processing is also active when you currently do not have
143     any outstanding read or write requests: If you plan to keep the connection
144     idle then you should disable the timout temporarily or ignore the timeout
145     in the C<on_timeout> callback.
146    
147     Zero (the default) disables this timeout.
148    
149     =item on_timeout => $cb->($handle)
150    
151     Called whenever the inactivity timeout passes. If you return from this
152     callback, then the timeout will be reset as if some activity had happened,
153     so this condition is not fatal in any way.
154    
155 root 1.8 =item rbuf_max => <bytes>
156 elmex 1.2
157 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
158     when the read buffer ever (strictly) exceeds this size. This is useful to
159     avoid denial-of-service attacks.
160 elmex 1.2
161 root 1.8 For example, a server accepting connections from untrusted sources should
162     be configured to accept only so-and-so much data that it cannot act on
163     (for example, when expecting a line, an attacker could send an unlimited
164     amount of data without a callback ever being called as long as the line
165     isn't finished).
166 elmex 1.2
167 root 1.8 =item read_size => <bytes>
168 elmex 1.2
169 root 1.8 The default read block size (the amount of bytes this module will try to read
170 root 1.46 during each (loop iteration). Default: C<8192>.
171 root 1.8
172     =item low_water_mark => <bytes>
173    
174     Sets the amount of bytes (default: C<0>) that make up an "empty" write
175     buffer: If the write reaches this size or gets even samller it is
176     considered empty.
177 elmex 1.2
178 root 1.62 =item linger => <seconds>
179    
180     If non-zero (default: C<3600>), then the destructor of the
181     AnyEvent::Handle object will check wether there is still outstanding write
182     data and will install a watcher that will write out this data. No errors
183     will be reported (this mostly matches how the operating system treats
184     outstanding data at socket close time).
185    
186     This will not work for partial TLS data that could not yet been
187     encoded. This data will be lost.
188    
189 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
190    
191     When this parameter is given, it enables TLS (SSL) mode, that means it
192     will start making tls handshake and will transparently encrypt/decrypt
193     data.
194    
195 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
196     automatically when you try to create a TLS handle).
197    
198 root 1.19 For the TLS server side, use C<accept>, and for the TLS client side of a
199     connection, use C<connect> mode.
200    
201     You can also provide your own TLS connection object, but you have
202     to make sure that you call either C<Net::SSLeay::set_connect_state>
203     or C<Net::SSLeay::set_accept_state> on it before you pass it to
204     AnyEvent::Handle.
205    
206 root 1.26 See the C<starttls> method if you need to start TLs negotiation later.
207    
208 root 1.19 =item tls_ctx => $ssl_ctx
209    
210     Use the given Net::SSLeay::CTX object to create the new TLS connection
211     (unless a connection object was specified directly). If this parameter is
212     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
213    
214 root 1.40 =item json => JSON or JSON::XS object
215    
216     This is the json coder object used by the C<json> read and write types.
217    
218 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
219     suitable one, which will write and expect UTF-8 encoded JSON texts.
220 root 1.40
221     Note that you are responsible to depend on the JSON module if you want to
222     use this functionality, as AnyEvent does not have a dependency itself.
223    
224 root 1.38 =item filter_r => $cb
225    
226     =item filter_w => $cb
227    
228     These exist, but are undocumented at this time.
229    
230 elmex 1.1 =back
231    
232     =cut
233    
234     sub new {
235 root 1.8 my $class = shift;
236    
237     my $self = bless { @_ }, $class;
238    
239     $self->{fh} or Carp::croak "mandatory argument fh is missing";
240    
241     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
242 elmex 1.1
243 root 1.19 if ($self->{tls}) {
244     require Net::SSLeay;
245     $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
246     }
247    
248 root 1.44 $self->{_activity} = AnyEvent->now;
249 root 1.43 $self->_timeout;
250 elmex 1.1
251 root 1.58 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
252 root 1.10
253 root 1.66 $self->start_read
254 root 1.67 if $self->{on_read};
255 root 1.66
256 root 1.8 $self
257     }
258 elmex 1.2
259 root 1.8 sub _shutdown {
260     my ($self) = @_;
261 elmex 1.2
262 root 1.46 delete $self->{_tw};
263 root 1.38 delete $self->{_rw};
264     delete $self->{_ww};
265 root 1.8 delete $self->{fh};
266 root 1.52
267     $self->stoptls;
268 root 1.8 }
269    
270 root 1.52 sub _error {
271     my ($self, $errno, $fatal) = @_;
272 root 1.8
273 root 1.52 $self->_shutdown
274     if $fatal;
275 elmex 1.1
276 root 1.52 $! = $errno;
277 root 1.37
278 root 1.52 if ($self->{on_error}) {
279     $self->{on_error}($self, $fatal);
280     } else {
281     Carp::croak "AnyEvent::Handle uncaught error: $!";
282     }
283 elmex 1.1 }
284    
285 root 1.8 =item $fh = $handle->fh
286 elmex 1.1
287 root 1.22 This method returns the file handle of the L<AnyEvent::Handle> object.
288 elmex 1.1
289     =cut
290    
291 root 1.38 sub fh { $_[0]{fh} }
292 elmex 1.1
293 root 1.8 =item $handle->on_error ($cb)
294 elmex 1.1
295 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
296 elmex 1.1
297 root 1.8 =cut
298    
299     sub on_error {
300     $_[0]{on_error} = $_[1];
301     }
302    
303     =item $handle->on_eof ($cb)
304    
305     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
306 elmex 1.1
307     =cut
308    
309 root 1.8 sub on_eof {
310     $_[0]{on_eof} = $_[1];
311     }
312    
313 root 1.43 =item $handle->on_timeout ($cb)
314    
315     Replace the current C<on_timeout> callback, or disables the callback
316     (but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
317     argument.
318    
319     =cut
320    
321     sub on_timeout {
322     $_[0]{on_timeout} = $_[1];
323     }
324    
325     #############################################################################
326    
327     =item $handle->timeout ($seconds)
328    
329     Configures (or disables) the inactivity timeout.
330    
331     =cut
332    
333     sub timeout {
334     my ($self, $timeout) = @_;
335    
336     $self->{timeout} = $timeout;
337     $self->_timeout;
338     }
339    
340     # reset the timeout watcher, as neccessary
341     # also check for time-outs
342     sub _timeout {
343     my ($self) = @_;
344    
345     if ($self->{timeout}) {
346 root 1.44 my $NOW = AnyEvent->now;
347 root 1.43
348     # when would the timeout trigger?
349     my $after = $self->{_activity} + $self->{timeout} - $NOW;
350    
351     # now or in the past already?
352     if ($after <= 0) {
353     $self->{_activity} = $NOW;
354    
355     if ($self->{on_timeout}) {
356 root 1.48 $self->{on_timeout}($self);
357 root 1.43 } else {
358 root 1.52 $self->_error (&Errno::ETIMEDOUT);
359 root 1.43 }
360    
361 root 1.56 # callback could have changed timeout value, optimise
362 root 1.43 return unless $self->{timeout};
363    
364     # calculate new after
365     $after = $self->{timeout};
366     }
367    
368     Scalar::Util::weaken $self;
369 root 1.56 return unless $self; # ->error could have destroyed $self
370 root 1.43
371     $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
372     delete $self->{_tw};
373     $self->_timeout;
374     });
375     } else {
376     delete $self->{_tw};
377     }
378     }
379    
380 root 1.9 #############################################################################
381    
382     =back
383    
384     =head2 WRITE QUEUE
385    
386     AnyEvent::Handle manages two queues per handle, one for writing and one
387     for reading.
388    
389     The write queue is very simple: you can add data to its end, and
390     AnyEvent::Handle will automatically try to get rid of it for you.
391    
392 elmex 1.20 When data could be written and the write buffer is shorter then the low
393 root 1.9 water mark, the C<on_drain> callback will be invoked.
394    
395     =over 4
396    
397 root 1.8 =item $handle->on_drain ($cb)
398    
399     Sets the C<on_drain> callback or clears it (see the description of
400     C<on_drain> in the constructor).
401    
402     =cut
403    
404     sub on_drain {
405 elmex 1.1 my ($self, $cb) = @_;
406    
407 root 1.8 $self->{on_drain} = $cb;
408    
409     $cb->($self)
410     if $cb && $self->{low_water_mark} >= length $self->{wbuf};
411     }
412    
413     =item $handle->push_write ($data)
414    
415     Queues the given scalar to be written. You can push as much data as you
416     want (only limited by the available memory), as C<AnyEvent::Handle>
417     buffers it independently of the kernel.
418    
419     =cut
420    
421 root 1.17 sub _drain_wbuf {
422     my ($self) = @_;
423 root 1.8
424 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
425 root 1.35
426 root 1.8 Scalar::Util::weaken $self;
427 root 1.35
428 root 1.8 my $cb = sub {
429     my $len = syswrite $self->{fh}, $self->{wbuf};
430    
431 root 1.29 if ($len >= 0) {
432 root 1.8 substr $self->{wbuf}, 0, $len, "";
433    
434 root 1.44 $self->{_activity} = AnyEvent->now;
435 root 1.43
436 root 1.8 $self->{on_drain}($self)
437     if $self->{low_water_mark} >= length $self->{wbuf}
438     && $self->{on_drain};
439    
440 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
441 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
442 root 1.52 $self->_error ($!, 1);
443 elmex 1.1 }
444 root 1.8 };
445    
446 root 1.35 # try to write data immediately
447     $cb->();
448 root 1.8
449 root 1.35 # if still data left in wbuf, we need to poll
450 root 1.38 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
451 root 1.35 if length $self->{wbuf};
452 root 1.8 };
453     }
454    
455 root 1.30 our %WH;
456    
457     sub register_write_type($$) {
458     $WH{$_[0]} = $_[1];
459     }
460    
461 root 1.17 sub push_write {
462     my $self = shift;
463    
464 root 1.29 if (@_ > 1) {
465     my $type = shift;
466    
467     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
468     ->($self, @_);
469     }
470    
471 root 1.17 if ($self->{filter_w}) {
472 root 1.48 $self->{filter_w}($self, \$_[0]);
473 root 1.17 } else {
474     $self->{wbuf} .= $_[0];
475     $self->_drain_wbuf;
476     }
477     }
478    
479 root 1.29 =item $handle->push_write (type => @args)
480    
481     Instead of formatting your data yourself, you can also let this module do
482     the job by specifying a type and type-specific arguments.
483    
484 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
485     drop by and tell us):
486 root 1.29
487     =over 4
488    
489     =item netstring => $string
490    
491     Formats the given value as netstring
492     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
493    
494     =cut
495    
496     register_write_type netstring => sub {
497     my ($self, $string) = @_;
498    
499     sprintf "%d:%s,", (length $string), $string
500     };
501    
502 root 1.61 =item packstring => $format, $data
503    
504     An octet string prefixed with an encoded length. The encoding C<$format>
505     uses the same format as a Perl C<pack> format, but must specify a single
506     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
507     optional C<!>, C<< < >> or C<< > >> modifier).
508    
509     =cut
510    
511     register_write_type packstring => sub {
512     my ($self, $format, $string) = @_;
513    
514 root 1.65 pack "$format/a*", $string
515 root 1.61 };
516    
517 root 1.39 =item json => $array_or_hashref
518    
519 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
520     provide your own JSON object, this means it will be encoded to JSON text
521     in UTF-8.
522    
523     JSON objects (and arrays) are self-delimiting, so you can write JSON at
524     one end of a handle and read them at the other end without using any
525     additional framing.
526    
527 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
528     this module doesn't need delimiters after or between JSON texts to be
529     able to read them, many other languages depend on that.
530    
531     A simple RPC protocol that interoperates easily with others is to send
532     JSON arrays (or objects, although arrays are usually the better choice as
533     they mimic how function argument passing works) and a newline after each
534     JSON text:
535    
536     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
537     $handle->push_write ("\012");
538    
539     An AnyEvent::Handle receiver would simply use the C<json> read type and
540     rely on the fact that the newline will be skipped as leading whitespace:
541    
542     $handle->push_read (json => sub { my $array = $_[1]; ... });
543    
544     Other languages could read single lines terminated by a newline and pass
545     this line into their JSON decoder of choice.
546    
547 root 1.40 =cut
548    
549     register_write_type json => sub {
550     my ($self, $ref) = @_;
551    
552     require JSON;
553    
554     $self->{json} ? $self->{json}->encode ($ref)
555     : JSON::encode_json ($ref)
556     };
557    
558 root 1.63 =item storable => $reference
559    
560     Freezes the given reference using L<Storable> and writes it to the
561     handle. Uses the C<nfreeze> format.
562    
563     =cut
564    
565     register_write_type storable => sub {
566     my ($self, $ref) = @_;
567    
568     require Storable;
569    
570 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
571 root 1.63 };
572    
573 root 1.53 =back
574    
575 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
576 root 1.30
577     This function (not method) lets you add your own types to C<push_write>.
578     Whenever the given C<type> is used, C<push_write> will invoke the code
579     reference with the handle object and the remaining arguments.
580 root 1.29
581 root 1.30 The code reference is supposed to return a single octet string that will
582     be appended to the write buffer.
583 root 1.29
584 root 1.30 Note that this is a function, and all types registered this way will be
585     global, so try to use unique names.
586 root 1.29
587 root 1.30 =cut
588 root 1.29
589 root 1.8 #############################################################################
590    
591 root 1.9 =back
592    
593     =head2 READ QUEUE
594    
595     AnyEvent::Handle manages two queues per handle, one for writing and one
596     for reading.
597    
598     The read queue is more complex than the write queue. It can be used in two
599     ways, the "simple" way, using only C<on_read> and the "complex" way, using
600     a queue.
601    
602     In the simple case, you just install an C<on_read> callback and whenever
603     new data arrives, it will be called. You can then remove some data (if
604 root 1.69 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
605     leave the data there if you want to accumulate more (e.g. when only a
606     partial message has been received so far).
607 root 1.9
608     In the more complex case, you want to queue multiple callbacks. In this
609     case, AnyEvent::Handle will call the first queued callback each time new
610 root 1.61 data arrives (also the first time it is queued) and removes it when it has
611     done its job (see C<push_read>, below).
612 root 1.9
613     This way you can, for example, push three line-reads, followed by reading
614     a chunk of data, and AnyEvent::Handle will execute them in order.
615    
616     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
617     the specified number of bytes which give an XML datagram.
618    
619     # in the default state, expect some header bytes
620     $handle->on_read (sub {
621     # some data is here, now queue the length-header-read (4 octets)
622 root 1.52 shift->unshift_read (chunk => 4, sub {
623 root 1.9 # header arrived, decode
624     my $len = unpack "N", $_[1];
625    
626     # now read the payload
627 root 1.52 shift->unshift_read (chunk => $len, sub {
628 root 1.9 my $xml = $_[1];
629     # handle xml
630     });
631     });
632     });
633    
634 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
635     and another line or "ERROR" for the first request that is sent, and 64
636     bytes for the second request. Due to the availability of a queue, we can
637     just pipeline sending both requests and manipulate the queue as necessary
638     in the callbacks.
639    
640     When the first callback is called and sees an "OK" response, it will
641     C<unshift> another line-read. This line-read will be queued I<before> the
642     64-byte chunk callback.
643 root 1.9
644 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
645 root 1.9 $handle->push_write ("request 1\015\012");
646    
647     # we expect "ERROR" or "OK" as response, so push a line read
648 root 1.52 $handle->push_read (line => sub {
649 root 1.9 # if we got an "OK", we have to _prepend_ another line,
650     # so it will be read before the second request reads its 64 bytes
651     # which are already in the queue when this callback is called
652     # we don't do this in case we got an error
653     if ($_[1] eq "OK") {
654 root 1.52 $_[0]->unshift_read (line => sub {
655 root 1.9 my $response = $_[1];
656     ...
657     });
658     }
659     });
660    
661 root 1.69 # request two, simply returns 64 octets
662 root 1.9 $handle->push_write ("request 2\015\012");
663    
664     # simply read 64 bytes, always
665 root 1.52 $handle->push_read (chunk => 64, sub {
666 root 1.9 my $response = $_[1];
667     ...
668     });
669    
670     =over 4
671    
672 root 1.10 =cut
673    
674 root 1.8 sub _drain_rbuf {
675     my ($self) = @_;
676 elmex 1.1
677 root 1.59 local $self->{_in_drain} = 1;
678    
679 root 1.17 if (
680     defined $self->{rbuf_max}
681     && $self->{rbuf_max} < length $self->{rbuf}
682     ) {
683 root 1.52 return $self->_error (&Errno::ENOSPC, 1);
684 root 1.17 }
685    
686 root 1.59 while () {
687     no strict 'refs';
688    
689     my $len = length $self->{rbuf};
690 elmex 1.1
691 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
692 root 1.29 unless ($cb->($self)) {
693 root 1.38 if ($self->{_eof}) {
694 root 1.10 # no progress can be made (not enough data and no data forthcoming)
695 root 1.61 $self->_error (&Errno::EPIPE, 1), last;
696 root 1.10 }
697    
698 root 1.38 unshift @{ $self->{_queue} }, $cb;
699 root 1.55 last;
700 root 1.8 }
701     } elsif ($self->{on_read}) {
702 root 1.61 last unless $len;
703    
704 root 1.8 $self->{on_read}($self);
705    
706     if (
707 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
708     && !@{ $self->{_queue} } # and the queue is still empty
709     && $self->{on_read} # but we still have on_read
710 root 1.8 ) {
711 root 1.55 # no further data will arrive
712     # so no progress can be made
713 root 1.61 $self->_error (&Errno::EPIPE, 1), last
714 root 1.55 if $self->{_eof};
715    
716     last; # more data might arrive
717 elmex 1.1 }
718 root 1.8 } else {
719     # read side becomes idle
720 root 1.38 delete $self->{_rw};
721 root 1.55 last;
722 root 1.8 }
723     }
724    
725 root 1.48 $self->{on_eof}($self)
726     if $self->{_eof} && $self->{on_eof};
727 root 1.55
728     # may need to restart read watcher
729     unless ($self->{_rw}) {
730     $self->start_read
731     if $self->{on_read} || @{ $self->{_queue} };
732     }
733 elmex 1.1 }
734    
735 root 1.8 =item $handle->on_read ($cb)
736 elmex 1.1
737 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
738     the new callback is C<undef>). See the description of C<on_read> in the
739     constructor.
740 elmex 1.1
741 root 1.8 =cut
742    
743     sub on_read {
744     my ($self, $cb) = @_;
745 elmex 1.1
746 root 1.8 $self->{on_read} = $cb;
747 root 1.59 $self->_drain_rbuf if $cb && !$self->{_in_drain};
748 elmex 1.1 }
749    
750 root 1.8 =item $handle->rbuf
751    
752     Returns the read buffer (as a modifiable lvalue).
753 elmex 1.1
754 root 1.8 You can access the read buffer directly as the C<< ->{rbuf} >> member, if
755     you want.
756 elmex 1.1
757 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
758     C<push_read> or C<unshift_read> methods are used. The other read methods
759     automatically manage the read buffer.
760 elmex 1.1
761     =cut
762    
763 elmex 1.2 sub rbuf : lvalue {
764 root 1.8 $_[0]{rbuf}
765 elmex 1.2 }
766 elmex 1.1
767 root 1.8 =item $handle->push_read ($cb)
768    
769     =item $handle->unshift_read ($cb)
770    
771     Append the given callback to the end of the queue (C<push_read>) or
772     prepend it (C<unshift_read>).
773    
774     The callback is called each time some additional read data arrives.
775 elmex 1.1
776 elmex 1.20 It must check whether enough data is in the read buffer already.
777 elmex 1.1
778 root 1.8 If not enough data is available, it must return the empty list or a false
779     value, in which case it will be called repeatedly until enough data is
780     available (or an error condition is detected).
781    
782     If enough data was available, then the callback must remove all data it is
783     interested in (which can be none at all) and return a true value. After returning
784     true, it will be removed from the queue.
785 elmex 1.1
786     =cut
787    
788 root 1.30 our %RH;
789    
790     sub register_read_type($$) {
791     $RH{$_[0]} = $_[1];
792     }
793    
794 root 1.8 sub push_read {
795 root 1.28 my $self = shift;
796     my $cb = pop;
797    
798     if (@_) {
799     my $type = shift;
800    
801     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
802     ->($self, $cb, @_);
803     }
804 elmex 1.1
805 root 1.38 push @{ $self->{_queue} }, $cb;
806 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
807 elmex 1.1 }
808    
809 root 1.8 sub unshift_read {
810 root 1.28 my $self = shift;
811     my $cb = pop;
812    
813     if (@_) {
814     my $type = shift;
815    
816     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
817     ->($self, $cb, @_);
818     }
819    
820 root 1.8
821 root 1.38 unshift @{ $self->{_queue} }, $cb;
822 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
823 root 1.8 }
824 elmex 1.1
825 root 1.28 =item $handle->push_read (type => @args, $cb)
826 elmex 1.1
827 root 1.28 =item $handle->unshift_read (type => @args, $cb)
828 elmex 1.1
829 root 1.28 Instead of providing a callback that parses the data itself you can chose
830     between a number of predefined parsing formats, for chunks of data, lines
831     etc.
832 elmex 1.1
833 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
834     drop by and tell us):
835 root 1.28
836     =over 4
837    
838 root 1.40 =item chunk => $octets, $cb->($handle, $data)
839 root 1.28
840     Invoke the callback only once C<$octets> bytes have been read. Pass the
841     data read to the callback. The callback will never be called with less
842     data.
843    
844     Example: read 2 bytes.
845    
846     $handle->push_read (chunk => 2, sub {
847     warn "yay ", unpack "H*", $_[1];
848     });
849 elmex 1.1
850     =cut
851    
852 root 1.28 register_read_type chunk => sub {
853     my ($self, $cb, $len) = @_;
854 elmex 1.1
855 root 1.8 sub {
856     $len <= length $_[0]{rbuf} or return;
857 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
858 root 1.8 1
859     }
860 root 1.28 };
861 root 1.8
862 root 1.28 # compatibility with older API
863 root 1.8 sub push_read_chunk {
864 root 1.28 $_[0]->push_read (chunk => $_[1], $_[2]);
865 root 1.8 }
866 elmex 1.1
867 root 1.8 sub unshift_read_chunk {
868 root 1.28 $_[0]->unshift_read (chunk => $_[1], $_[2]);
869 elmex 1.1 }
870    
871 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
872 elmex 1.1
873 root 1.8 The callback will be called only once a full line (including the end of
874     line marker, C<$eol>) has been read. This line (excluding the end of line
875     marker) will be passed to the callback as second argument (C<$line>), and
876     the end of line marker as the third argument (C<$eol>).
877 elmex 1.1
878 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
879     will be interpreted as a fixed record end marker, or it can be a regex
880     object (e.g. created by C<qr>), in which case it is interpreted as a
881     regular expression.
882 elmex 1.1
883 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
884     undef), then C<qr|\015?\012|> is used (which is good for most internet
885     protocols).
886 elmex 1.1
887 root 1.8 Partial lines at the end of the stream will never be returned, as they are
888     not marked by the end of line marker.
889 elmex 1.1
890 root 1.8 =cut
891 elmex 1.1
892 root 1.28 register_read_type line => sub {
893     my ($self, $cb, $eol) = @_;
894 elmex 1.1
895 root 1.28 $eol = qr|(\015?\012)| if @_ < 3;
896 root 1.14 $eol = quotemeta $eol unless ref $eol;
897     $eol = qr|^(.*?)($eol)|s;
898 elmex 1.1
899 root 1.8 sub {
900     $_[0]{rbuf} =~ s/$eol// or return;
901 elmex 1.1
902 elmex 1.12 $cb->($_[0], $1, $2);
903 root 1.8 1
904     }
905 root 1.28 };
906 elmex 1.1
907 root 1.28 # compatibility with older API
908 root 1.8 sub push_read_line {
909 root 1.28 my $self = shift;
910     $self->push_read (line => @_);
911 root 1.10 }
912    
913     sub unshift_read_line {
914 root 1.28 my $self = shift;
915     $self->unshift_read (line => @_);
916 root 1.10 }
917    
918 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
919 root 1.36
920     Makes a regex match against the regex object C<$accept> and returns
921     everything up to and including the match.
922    
923     Example: read a single line terminated by '\n'.
924    
925     $handle->push_read (regex => qr<\n>, sub { ... });
926    
927     If C<$reject> is given and not undef, then it determines when the data is
928     to be rejected: it is matched against the data when the C<$accept> regex
929     does not match and generates an C<EBADMSG> error when it matches. This is
930     useful to quickly reject wrong data (to avoid waiting for a timeout or a
931     receive buffer overflow).
932    
933     Example: expect a single decimal number followed by whitespace, reject
934     anything else (not the use of an anchor).
935    
936     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
937    
938     If C<$skip> is given and not C<undef>, then it will be matched against
939     the receive buffer when neither C<$accept> nor C<$reject> match,
940     and everything preceding and including the match will be accepted
941     unconditionally. This is useful to skip large amounts of data that you
942     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
943     have to start matching from the beginning. This is purely an optimisation
944     and is usually worth only when you expect more than a few kilobytes.
945    
946     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
947     expect the header to be very large (it isn't in practise, but...), we use
948     a skip regex to skip initial portions. The skip regex is tricky in that
949     it only accepts something not ending in either \015 or \012, as these are
950     required for the accept regex.
951    
952     $handle->push_read (regex =>
953     qr<\015\012\015\012>,
954     undef, # no reject
955     qr<^.*[^\015\012]>,
956     sub { ... });
957    
958     =cut
959    
960     register_read_type regex => sub {
961     my ($self, $cb, $accept, $reject, $skip) = @_;
962    
963     my $data;
964     my $rbuf = \$self->{rbuf};
965    
966     sub {
967     # accept
968     if ($$rbuf =~ $accept) {
969     $data .= substr $$rbuf, 0, $+[0], "";
970     $cb->($self, $data);
971     return 1;
972     }
973    
974     # reject
975     if ($reject && $$rbuf =~ $reject) {
976 root 1.52 $self->_error (&Errno::EBADMSG);
977 root 1.36 }
978    
979     # skip
980     if ($skip && $$rbuf =~ $skip) {
981     $data .= substr $$rbuf, 0, $+[0], "";
982     }
983    
984     ()
985     }
986     };
987    
988 root 1.61 =item netstring => $cb->($handle, $string)
989    
990     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
991    
992     Throws an error with C<$!> set to EBADMSG on format violations.
993    
994     =cut
995    
996     register_read_type netstring => sub {
997     my ($self, $cb) = @_;
998    
999     sub {
1000     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1001     if ($_[0]{rbuf} =~ /[^0-9]/) {
1002     $self->_error (&Errno::EBADMSG);
1003     }
1004     return;
1005     }
1006    
1007     my $len = $1;
1008    
1009     $self->unshift_read (chunk => $len, sub {
1010     my $string = $_[1];
1011     $_[0]->unshift_read (chunk => 1, sub {
1012     if ($_[1] eq ",") {
1013     $cb->($_[0], $string);
1014     } else {
1015     $self->_error (&Errno::EBADMSG);
1016     }
1017     });
1018     });
1019    
1020     1
1021     }
1022     };
1023    
1024     =item packstring => $format, $cb->($handle, $string)
1025    
1026     An octet string prefixed with an encoded length. The encoding C<$format>
1027     uses the same format as a Perl C<pack> format, but must specify a single
1028     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1029     optional C<!>, C<< < >> or C<< > >> modifier).
1030    
1031     DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>.
1032    
1033     Example: read a block of data prefixed by its length in BER-encoded
1034     format (very efficient).
1035    
1036     $handle->push_read (packstring => "w", sub {
1037     my ($handle, $data) = @_;
1038     });
1039    
1040     =cut
1041    
1042     register_read_type packstring => sub {
1043     my ($self, $cb, $format) = @_;
1044    
1045     sub {
1046     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1047     defined (my $len = eval { unpack $format, $_[0]->{rbuf} })
1048     or return;
1049    
1050     # remove prefix
1051     substr $_[0]->{rbuf}, 0, (length pack $format, $len), "";
1052    
1053     # read rest
1054     $_[0]->unshift_read (chunk => $len, $cb);
1055    
1056     1
1057     }
1058     };
1059    
1060 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1061    
1062     Reads a JSON object or array, decodes it and passes it to the callback.
1063    
1064     If a C<json> object was passed to the constructor, then that will be used
1065     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1066    
1067     This read type uses the incremental parser available with JSON version
1068     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1069     dependency on your own: this module will load the JSON module, but
1070     AnyEvent does not depend on it itself.
1071    
1072     Since JSON texts are fully self-delimiting, the C<json> read and write
1073 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1074     the C<json> write type description, above, for an actual example.
1075 root 1.40
1076     =cut
1077    
1078     register_read_type json => sub {
1079 root 1.63 my ($self, $cb) = @_;
1080 root 1.40
1081     require JSON;
1082    
1083     my $data;
1084     my $rbuf = \$self->{rbuf};
1085    
1086 root 1.41 my $json = $self->{json} ||= JSON->new->utf8;
1087 root 1.40
1088     sub {
1089     my $ref = $json->incr_parse ($self->{rbuf});
1090    
1091     if ($ref) {
1092     $self->{rbuf} = $json->incr_text;
1093     $json->incr_text = "";
1094     $cb->($self, $ref);
1095    
1096     1
1097     } else {
1098     $self->{rbuf} = "";
1099     ()
1100     }
1101     }
1102     };
1103    
1104 root 1.63 =item storable => $cb->($handle, $ref)
1105    
1106     Deserialises a L<Storable> frozen representation as written by the
1107     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1108     data).
1109    
1110     Raises C<EBADMSG> error if the data could not be decoded.
1111    
1112     =cut
1113    
1114     register_read_type storable => sub {
1115     my ($self, $cb) = @_;
1116    
1117     require Storable;
1118    
1119     sub {
1120     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1121     defined (my $len = eval { unpack "w", $_[0]->{rbuf} })
1122     or return;
1123    
1124     # remove prefix
1125     substr $_[0]->{rbuf}, 0, (length pack "w", $len), "";
1126    
1127     # read rest
1128     $_[0]->unshift_read (chunk => $len, sub {
1129     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1130     $cb->($_[0], $ref);
1131     } else {
1132     $self->_error (&Errno::EBADMSG);
1133     }
1134     });
1135     }
1136     };
1137    
1138 root 1.28 =back
1139    
1140 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1141 root 1.30
1142     This function (not method) lets you add your own types to C<push_read>.
1143    
1144     Whenever the given C<type> is used, C<push_read> will invoke the code
1145     reference with the handle object, the callback and the remaining
1146     arguments.
1147    
1148     The code reference is supposed to return a callback (usually a closure)
1149     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1150    
1151     It should invoke the passed callback when it is done reading (remember to
1152 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1153 root 1.30
1154     Note that this is a function, and all types registered this way will be
1155     global, so try to use unique names.
1156    
1157     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1158     search for C<register_read_type>)).
1159    
1160 root 1.10 =item $handle->stop_read
1161    
1162     =item $handle->start_read
1163    
1164 root 1.18 In rare cases you actually do not want to read anything from the
1165 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1166 root 1.22 any queued callbacks will be executed then. To start reading again, call
1167 root 1.10 C<start_read>.
1168    
1169 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1170     you change the C<on_read> callback or push/unshift a read callback, and it
1171     will automatically C<stop_read> for you when neither C<on_read> is set nor
1172     there are any read requests in the queue.
1173    
1174 root 1.10 =cut
1175    
1176     sub stop_read {
1177     my ($self) = @_;
1178 elmex 1.1
1179 root 1.38 delete $self->{_rw};
1180 root 1.8 }
1181 elmex 1.1
1182 root 1.10 sub start_read {
1183     my ($self) = @_;
1184    
1185 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1186 root 1.10 Scalar::Util::weaken $self;
1187    
1188 root 1.38 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1189 root 1.17 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
1190     my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1191 root 1.10
1192     if ($len > 0) {
1193 root 1.44 $self->{_activity} = AnyEvent->now;
1194 root 1.43
1195 root 1.17 $self->{filter_r}
1196 root 1.48 ? $self->{filter_r}($self, $rbuf)
1197 root 1.59 : $self->{_in_drain} || $self->_drain_rbuf;
1198 root 1.10
1199     } elsif (defined $len) {
1200 root 1.38 delete $self->{_rw};
1201     $self->{_eof} = 1;
1202 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1203 root 1.10
1204 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1205 root 1.52 return $self->_error ($!, 1);
1206 root 1.10 }
1207     });
1208     }
1209 elmex 1.1 }
1210    
1211 root 1.19 sub _dotls {
1212     my ($self) = @_;
1213    
1214 root 1.56 my $buf;
1215    
1216 root 1.38 if (length $self->{_tls_wbuf}) {
1217     while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1218     substr $self->{_tls_wbuf}, 0, $len, "";
1219 root 1.22 }
1220 root 1.19 }
1221    
1222 root 1.56 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1223 root 1.19 $self->{wbuf} .= $buf;
1224     $self->_drain_wbuf;
1225     }
1226    
1227 root 1.56 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1228     if (length $buf) {
1229     $self->{rbuf} .= $buf;
1230 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1231 root 1.56 } else {
1232     # let's treat SSL-eof as we treat normal EOF
1233     $self->{_eof} = 1;
1234     $self->_shutdown;
1235     return;
1236     }
1237 root 1.23 }
1238    
1239 root 1.24 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1240    
1241     if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1242 root 1.23 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1243 root 1.52 return $self->_error ($!, 1);
1244 root 1.23 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1245 root 1.52 return $self->_error (&Errno::EIO, 1);
1246 root 1.19 }
1247 root 1.23
1248     # all others are fine for our purposes
1249 root 1.19 }
1250     }
1251    
1252 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1253    
1254     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1255     object is created, you can also do that at a later time by calling
1256     C<starttls>.
1257    
1258     The first argument is the same as the C<tls> constructor argument (either
1259     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1260    
1261     The second argument is the optional C<Net::SSLeay::CTX> object that is
1262     used when AnyEvent::Handle has to create its own TLS connection object.
1263    
1264 root 1.38 The TLS connection object will end up in C<< $handle->{tls} >> after this
1265     call and can be used or changed to your liking. Note that the handshake
1266     might have already started when this function returns.
1267    
1268 root 1.25 =cut
1269    
1270 root 1.19 sub starttls {
1271     my ($self, $ssl, $ctx) = @_;
1272    
1273 root 1.25 $self->stoptls;
1274    
1275 root 1.19 if ($ssl eq "accept") {
1276     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1277     Net::SSLeay::set_accept_state ($ssl);
1278     } elsif ($ssl eq "connect") {
1279     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1280     Net::SSLeay::set_connect_state ($ssl);
1281     }
1282    
1283     $self->{tls} = $ssl;
1284    
1285 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1286     # but the openssl maintainers basically said: "trust us, it just works".
1287     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1288     # and mismaintained ssleay-module doesn't even offer them).
1289 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1290 root 1.21 Net::SSLeay::CTX_set_mode ($self->{tls},
1291 root 1.34 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1292     | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1293 root 1.21
1294 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1295     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1296 root 1.19
1297 root 1.38 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1298 root 1.19
1299     $self->{filter_w} = sub {
1300 root 1.38 $_[0]{_tls_wbuf} .= ${$_[1]};
1301 root 1.19 &_dotls;
1302     };
1303     $self->{filter_r} = sub {
1304 root 1.38 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1305 root 1.19 &_dotls;
1306     };
1307     }
1308    
1309 root 1.25 =item $handle->stoptls
1310    
1311     Destroys the SSL connection, if any. Partial read or write data will be
1312     lost.
1313    
1314     =cut
1315    
1316     sub stoptls {
1317     my ($self) = @_;
1318    
1319     Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
1320 root 1.38
1321     delete $self->{_rbio};
1322     delete $self->{_wbio};
1323     delete $self->{_tls_wbuf};
1324 root 1.25 delete $self->{filter_r};
1325     delete $self->{filter_w};
1326     }
1327    
1328 root 1.19 sub DESTROY {
1329     my $self = shift;
1330    
1331 root 1.25 $self->stoptls;
1332 root 1.62
1333     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1334    
1335     if ($linger && length $self->{wbuf}) {
1336     my $fh = delete $self->{fh};
1337     my $wbuf = delete $self->{wbuf};
1338    
1339     my @linger;
1340    
1341     push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1342     my $len = syswrite $fh, $wbuf, length $wbuf;
1343    
1344     if ($len > 0) {
1345     substr $wbuf, 0, $len, "";
1346     } else {
1347     @linger = (); # end
1348     }
1349     });
1350     push @linger, AnyEvent->timer (after => $linger, cb => sub {
1351     @linger = ();
1352     });
1353     }
1354 root 1.19 }
1355    
1356     =item AnyEvent::Handle::TLS_CTX
1357    
1358     This function creates and returns the Net::SSLeay::CTX object used by
1359     default for TLS mode.
1360    
1361     The context is created like this:
1362    
1363     Net::SSLeay::load_error_strings;
1364     Net::SSLeay::SSLeay_add_ssl_algorithms;
1365     Net::SSLeay::randomize;
1366    
1367     my $CTX = Net::SSLeay::CTX_new;
1368    
1369     Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1370    
1371     =cut
1372    
1373     our $TLS_CTX;
1374    
1375     sub TLS_CTX() {
1376     $TLS_CTX || do {
1377     require Net::SSLeay;
1378    
1379     Net::SSLeay::load_error_strings ();
1380     Net::SSLeay::SSLeay_add_ssl_algorithms ();
1381     Net::SSLeay::randomize ();
1382    
1383     $TLS_CTX = Net::SSLeay::CTX_new ();
1384    
1385     Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1386    
1387     $TLS_CTX
1388     }
1389     }
1390    
1391 elmex 1.1 =back
1392    
1393 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
1394    
1395     In many cases, you might want to subclass AnyEvent::Handle.
1396    
1397     To make this easier, a given version of AnyEvent::Handle uses these
1398     conventions:
1399    
1400     =over 4
1401    
1402     =item * all constructor arguments become object members.
1403    
1404     At least initially, when you pass a C<tls>-argument to the constructor it
1405     will end up in C<< $handle->{tls} >>. Those members might be changes or
1406     mutated later on (for example C<tls> will hold the TLS connection object).
1407    
1408     =item * other object member names are prefixed with an C<_>.
1409    
1410     All object members not explicitly documented (internal use) are prefixed
1411     with an underscore character, so the remaining non-C<_>-namespace is free
1412     for use for subclasses.
1413    
1414     =item * all members not documented here and not prefixed with an underscore
1415     are free to use in subclasses.
1416    
1417     Of course, new versions of AnyEvent::Handle may introduce more "public"
1418     member variables, but thats just life, at least it is documented.
1419    
1420     =back
1421    
1422 elmex 1.1 =head1 AUTHOR
1423    
1424 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1425 elmex 1.1
1426     =cut
1427    
1428     1; # End of AnyEvent::Handle