ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.82
Committed: Thu Aug 21 18:45:16 2008 UTC (15 years, 9 months ago) by root
Branch: MAIN
CVS Tags: rel-4_232
Changes since 1.81: +21 -8 lines
Log Message:
4.232

File Contents

# User Rev Content
1 elmex 1.1 package AnyEvent::Handle;
2    
3 elmex 1.6 no warnings;
4 root 1.79 use strict qw(subs vars);
5 elmex 1.1
6 root 1.8 use AnyEvent ();
7 root 1.42 use AnyEvent::Util qw(WSAEWOULDBLOCK);
8 root 1.8 use Scalar::Util ();
9     use Carp ();
10     use Fcntl ();
11 root 1.43 use Errno qw(EAGAIN EINTR);
12 elmex 1.1
13     =head1 NAME
14    
15 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 elmex 1.1
17     =cut
18    
19 root 1.82 our $VERSION = 4.232;
20 elmex 1.1
21     =head1 SYNOPSIS
22    
23     use AnyEvent;
24     use AnyEvent::Handle;
25    
26     my $cv = AnyEvent->condvar;
27    
28 root 1.31 my $handle =
29 elmex 1.2 AnyEvent::Handle->new (
30     fh => \*STDIN,
31     on_eof => sub {
32     $cv->broadcast;
33     },
34     );
35    
36 root 1.31 # send some request line
37     $handle->push_write ("getinfo\015\012");
38    
39     # read the response line
40     $handle->push_read (line => sub {
41     my ($handle, $line) = @_;
42     warn "read line <$line>\n";
43     $cv->send;
44     });
45    
46     $cv->recv;
47 elmex 1.1
48     =head1 DESCRIPTION
49    
50 root 1.8 This module is a helper module to make it easier to do event-based I/O on
51 elmex 1.13 filehandles. For utility functions for doing non-blocking connects and accepts
52     on sockets see L<AnyEvent::Util>.
53 root 1.8
54     In the following, when the documentation refers to of "bytes" then this
55     means characters. As sysread and syswrite are used for all I/O, their
56     treatment of characters applies to this module as well.
57 elmex 1.1
58 root 1.8 All callbacks will be invoked with the handle object as their first
59     argument.
60 elmex 1.1
61     =head1 METHODS
62    
63     =over 4
64    
65     =item B<new (%args)>
66    
67 root 1.8 The constructor supports these arguments (all as key => value pairs).
68 elmex 1.1
69     =over 4
70    
71 root 1.8 =item fh => $filehandle [MANDATORY]
72 elmex 1.1
73     The filehandle this L<AnyEvent::Handle> object will operate on.
74    
75 root 1.8 NOTE: The filehandle will be set to non-blocking (using
76     AnyEvent::Util::fh_nonblocking).
77    
78 root 1.40 =item on_eof => $cb->($handle)
79 root 1.10
80 root 1.74 Set the callback to be called when an end-of-file condition is detected,
81 root 1.52 i.e. in the case of a socket, when the other side has closed the
82     connection cleanly.
83 root 1.8
84 root 1.82 For sockets, this just means that the other side has stopped sending data,
85     you can still try to write data, and, in fact, one can return from the eof
86     callback and continue writing data, as only the read part has been shut
87     down.
88    
89 root 1.80 While not mandatory, it is I<highly> recommended to set an eof callback,
90 root 1.16 otherwise you might end up with a closed socket while you are still
91     waiting for data.
92    
93 root 1.80 If an EOF condition has been detected but no C<on_eof> callback has been
94     set, then a fatal error will be raised with C<$!> set to <0>.
95    
96 root 1.52 =item on_error => $cb->($handle, $fatal)
97 root 1.10
98 root 1.52 This is the error callback, which is called when, well, some error
99     occured, such as not being able to resolve the hostname, failure to
100     connect or a read error.
101    
102     Some errors are fatal (which is indicated by C<$fatal> being true). On
103 root 1.82 fatal errors the handle object will be shut down and will not be usable
104     (but you are free to look at the current C< ->rbuf >). Examples of fatal
105     errors are an EOF condition with active (but unsatisifable) read watchers
106     (C<EPIPE>) or I/O errors.
107    
108     Non-fatal errors can be retried by simply returning, but it is recommended
109     to simply ignore this parameter and instead abondon the handle object
110     when this callback is invoked. Examples of non-fatal errors are timeouts
111     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
112 root 1.8
113 root 1.10 On callback entrance, the value of C<$!> contains the operating system
114 root 1.43 error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
115 root 1.8
116 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
117     you will not be notified of errors otherwise. The default simply calls
118 root 1.52 C<croak>.
119 root 1.8
120 root 1.40 =item on_read => $cb->($handle)
121 root 1.8
122     This sets the default read callback, which is called when data arrives
123 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
124     callback will only be called when at least one octet of data is in the
125     read buffer).
126 root 1.8
127     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
128 root 1.40 method or access the C<$handle->{rbuf}> member directly.
129 root 1.8
130     When an EOF condition is detected then AnyEvent::Handle will first try to
131     feed all the remaining data to the queued callbacks and C<on_read> before
132     calling the C<on_eof> callback. If no progress can be made, then a fatal
133     error will be raised (with C<$!> set to C<EPIPE>).
134 elmex 1.1
135 root 1.40 =item on_drain => $cb->($handle)
136 elmex 1.1
137 root 1.8 This sets the callback that is called when the write buffer becomes empty
138     (or when the callback is set and the buffer is empty already).
139 elmex 1.1
140 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
141 elmex 1.2
142 root 1.69 This callback is useful when you don't want to put all of your write data
143     into the queue at once, for example, when you want to write the contents
144     of some file to the socket you might not want to read the whole file into
145     memory and push it into the queue, but instead only read more data from
146     the file when the write queue becomes empty.
147    
148 root 1.43 =item timeout => $fractional_seconds
149    
150     If non-zero, then this enables an "inactivity" timeout: whenever this many
151     seconds pass without a successful read or write on the underlying file
152     handle, the C<on_timeout> callback will be invoked (and if that one is
153 root 1.45 missing, an C<ETIMEDOUT> error will be raised).
154 root 1.43
155     Note that timeout processing is also active when you currently do not have
156     any outstanding read or write requests: If you plan to keep the connection
157     idle then you should disable the timout temporarily or ignore the timeout
158     in the C<on_timeout> callback.
159    
160     Zero (the default) disables this timeout.
161    
162     =item on_timeout => $cb->($handle)
163    
164     Called whenever the inactivity timeout passes. If you return from this
165     callback, then the timeout will be reset as if some activity had happened,
166     so this condition is not fatal in any way.
167    
168 root 1.8 =item rbuf_max => <bytes>
169 elmex 1.2
170 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
171     when the read buffer ever (strictly) exceeds this size. This is useful to
172     avoid denial-of-service attacks.
173 elmex 1.2
174 root 1.8 For example, a server accepting connections from untrusted sources should
175     be configured to accept only so-and-so much data that it cannot act on
176     (for example, when expecting a line, an attacker could send an unlimited
177     amount of data without a callback ever being called as long as the line
178     isn't finished).
179 elmex 1.2
180 root 1.70 =item autocork => <boolean>
181    
182     When disabled (the default), then C<push_write> will try to immediately
183     write the data to the handle if possible. This avoids having to register
184     a write watcher and wait for the next event loop iteration, but can be
185     inefficient if you write multiple small chunks (this disadvantage is
186     usually avoided by your kernel's nagle algorithm, see C<low_delay>).
187    
188     When enabled, then writes will always be queued till the next event loop
189     iteration. This is efficient when you do many small writes per iteration,
190     but less efficient when you do a single write only.
191    
192     =item no_delay => <boolean>
193    
194     When doing small writes on sockets, your operating system kernel might
195     wait a bit for more data before actually sending it out. This is called
196     the Nagle algorithm, and usually it is beneficial.
197    
198     In some situations you want as low a delay as possible, which cna be
199     accomplishd by setting this option to true.
200    
201     The default is your opertaing system's default behaviour, this option
202     explicitly enables or disables it, if possible.
203    
204 root 1.8 =item read_size => <bytes>
205 elmex 1.2
206 root 1.8 The default read block size (the amount of bytes this module will try to read
207 root 1.46 during each (loop iteration). Default: C<8192>.
208 root 1.8
209     =item low_water_mark => <bytes>
210    
211     Sets the amount of bytes (default: C<0>) that make up an "empty" write
212     buffer: If the write reaches this size or gets even samller it is
213     considered empty.
214 elmex 1.2
215 root 1.62 =item linger => <seconds>
216    
217     If non-zero (default: C<3600>), then the destructor of the
218     AnyEvent::Handle object will check wether there is still outstanding write
219     data and will install a watcher that will write out this data. No errors
220     will be reported (this mostly matches how the operating system treats
221     outstanding data at socket close time).
222    
223     This will not work for partial TLS data that could not yet been
224     encoded. This data will be lost.
225    
226 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
227    
228     When this parameter is given, it enables TLS (SSL) mode, that means it
229     will start making tls handshake and will transparently encrypt/decrypt
230     data.
231    
232 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
233     automatically when you try to create a TLS handle).
234    
235 root 1.19 For the TLS server side, use C<accept>, and for the TLS client side of a
236     connection, use C<connect> mode.
237    
238     You can also provide your own TLS connection object, but you have
239     to make sure that you call either C<Net::SSLeay::set_connect_state>
240     or C<Net::SSLeay::set_accept_state> on it before you pass it to
241     AnyEvent::Handle.
242    
243 root 1.75 See the C<starttls> method if you need to start TLS negotiation later.
244 root 1.26
245 root 1.19 =item tls_ctx => $ssl_ctx
246    
247     Use the given Net::SSLeay::CTX object to create the new TLS connection
248     (unless a connection object was specified directly). If this parameter is
249     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
250    
251 root 1.40 =item json => JSON or JSON::XS object
252    
253     This is the json coder object used by the C<json> read and write types.
254    
255 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
256     suitable one, which will write and expect UTF-8 encoded JSON texts.
257 root 1.40
258     Note that you are responsible to depend on the JSON module if you want to
259     use this functionality, as AnyEvent does not have a dependency itself.
260    
261 root 1.38 =item filter_r => $cb
262    
263     =item filter_w => $cb
264    
265     These exist, but are undocumented at this time.
266    
267 elmex 1.1 =back
268    
269     =cut
270    
271     sub new {
272 root 1.8 my $class = shift;
273    
274     my $self = bless { @_ }, $class;
275    
276     $self->{fh} or Carp::croak "mandatory argument fh is missing";
277    
278     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
279 elmex 1.1
280 root 1.19 if ($self->{tls}) {
281     require Net::SSLeay;
282     $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
283     }
284    
285 root 1.44 $self->{_activity} = AnyEvent->now;
286 root 1.43 $self->_timeout;
287 elmex 1.1
288 root 1.70 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
289     $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
290 root 1.10
291 root 1.66 $self->start_read
292 root 1.67 if $self->{on_read};
293 root 1.66
294 root 1.8 $self
295     }
296 elmex 1.2
297 root 1.8 sub _shutdown {
298     my ($self) = @_;
299 elmex 1.2
300 root 1.46 delete $self->{_tw};
301 root 1.38 delete $self->{_rw};
302     delete $self->{_ww};
303 root 1.8 delete $self->{fh};
304 root 1.52
305     $self->stoptls;
306 root 1.82
307     delete $self->{on_read};
308     delete $self->{_queue};
309 root 1.8 }
310    
311 root 1.52 sub _error {
312     my ($self, $errno, $fatal) = @_;
313 root 1.8
314 root 1.52 $self->_shutdown
315     if $fatal;
316 elmex 1.1
317 root 1.52 $! = $errno;
318 root 1.37
319 root 1.52 if ($self->{on_error}) {
320     $self->{on_error}($self, $fatal);
321     } else {
322     Carp::croak "AnyEvent::Handle uncaught error: $!";
323     }
324 elmex 1.1 }
325    
326 root 1.8 =item $fh = $handle->fh
327 elmex 1.1
328 root 1.22 This method returns the file handle of the L<AnyEvent::Handle> object.
329 elmex 1.1
330     =cut
331    
332 root 1.38 sub fh { $_[0]{fh} }
333 elmex 1.1
334 root 1.8 =item $handle->on_error ($cb)
335 elmex 1.1
336 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
337 elmex 1.1
338 root 1.8 =cut
339    
340     sub on_error {
341     $_[0]{on_error} = $_[1];
342     }
343    
344     =item $handle->on_eof ($cb)
345    
346     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
347 elmex 1.1
348     =cut
349    
350 root 1.8 sub on_eof {
351     $_[0]{on_eof} = $_[1];
352     }
353    
354 root 1.43 =item $handle->on_timeout ($cb)
355    
356     Replace the current C<on_timeout> callback, or disables the callback
357     (but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
358     argument.
359    
360     =cut
361    
362     sub on_timeout {
363     $_[0]{on_timeout} = $_[1];
364     }
365    
366 root 1.70 =item $handle->autocork ($boolean)
367    
368     Enables or disables the current autocork behaviour (see C<autocork>
369     constructor argument).
370    
371     =cut
372    
373     =item $handle->no_delay ($boolean)
374    
375     Enables or disables the C<no_delay> setting (see constructor argument of
376     the same name for details).
377    
378     =cut
379    
380     sub no_delay {
381     $_[0]{no_delay} = $_[1];
382    
383     eval {
384     local $SIG{__DIE__};
385     setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
386     };
387     }
388    
389 root 1.43 #############################################################################
390    
391     =item $handle->timeout ($seconds)
392    
393     Configures (or disables) the inactivity timeout.
394    
395     =cut
396    
397     sub timeout {
398     my ($self, $timeout) = @_;
399    
400     $self->{timeout} = $timeout;
401     $self->_timeout;
402     }
403    
404     # reset the timeout watcher, as neccessary
405     # also check for time-outs
406     sub _timeout {
407     my ($self) = @_;
408    
409     if ($self->{timeout}) {
410 root 1.44 my $NOW = AnyEvent->now;
411 root 1.43
412     # when would the timeout trigger?
413     my $after = $self->{_activity} + $self->{timeout} - $NOW;
414    
415     # now or in the past already?
416     if ($after <= 0) {
417     $self->{_activity} = $NOW;
418    
419     if ($self->{on_timeout}) {
420 root 1.48 $self->{on_timeout}($self);
421 root 1.43 } else {
422 root 1.52 $self->_error (&Errno::ETIMEDOUT);
423 root 1.43 }
424    
425 root 1.56 # callback could have changed timeout value, optimise
426 root 1.43 return unless $self->{timeout};
427    
428     # calculate new after
429     $after = $self->{timeout};
430     }
431    
432     Scalar::Util::weaken $self;
433 root 1.56 return unless $self; # ->error could have destroyed $self
434 root 1.43
435     $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
436     delete $self->{_tw};
437     $self->_timeout;
438     });
439     } else {
440     delete $self->{_tw};
441     }
442     }
443    
444 root 1.9 #############################################################################
445    
446     =back
447    
448     =head2 WRITE QUEUE
449    
450     AnyEvent::Handle manages two queues per handle, one for writing and one
451     for reading.
452    
453     The write queue is very simple: you can add data to its end, and
454     AnyEvent::Handle will automatically try to get rid of it for you.
455    
456 elmex 1.20 When data could be written and the write buffer is shorter then the low
457 root 1.9 water mark, the C<on_drain> callback will be invoked.
458    
459     =over 4
460    
461 root 1.8 =item $handle->on_drain ($cb)
462    
463     Sets the C<on_drain> callback or clears it (see the description of
464     C<on_drain> in the constructor).
465    
466     =cut
467    
468     sub on_drain {
469 elmex 1.1 my ($self, $cb) = @_;
470    
471 root 1.8 $self->{on_drain} = $cb;
472    
473     $cb->($self)
474     if $cb && $self->{low_water_mark} >= length $self->{wbuf};
475     }
476    
477     =item $handle->push_write ($data)
478    
479     Queues the given scalar to be written. You can push as much data as you
480     want (only limited by the available memory), as C<AnyEvent::Handle>
481     buffers it independently of the kernel.
482    
483     =cut
484    
485 root 1.17 sub _drain_wbuf {
486     my ($self) = @_;
487 root 1.8
488 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
489 root 1.35
490 root 1.8 Scalar::Util::weaken $self;
491 root 1.35
492 root 1.8 my $cb = sub {
493     my $len = syswrite $self->{fh}, $self->{wbuf};
494    
495 root 1.29 if ($len >= 0) {
496 root 1.8 substr $self->{wbuf}, 0, $len, "";
497    
498 root 1.44 $self->{_activity} = AnyEvent->now;
499 root 1.43
500 root 1.8 $self->{on_drain}($self)
501     if $self->{low_water_mark} >= length $self->{wbuf}
502     && $self->{on_drain};
503    
504 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
505 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
506 root 1.52 $self->_error ($!, 1);
507 elmex 1.1 }
508 root 1.8 };
509    
510 root 1.35 # try to write data immediately
511 root 1.70 $cb->() unless $self->{autocork};
512 root 1.8
513 root 1.35 # if still data left in wbuf, we need to poll
514 root 1.38 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
515 root 1.35 if length $self->{wbuf};
516 root 1.8 };
517     }
518    
519 root 1.30 our %WH;
520    
521     sub register_write_type($$) {
522     $WH{$_[0]} = $_[1];
523     }
524    
525 root 1.17 sub push_write {
526     my $self = shift;
527    
528 root 1.29 if (@_ > 1) {
529     my $type = shift;
530    
531     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
532     ->($self, @_);
533     }
534    
535 root 1.17 if ($self->{filter_w}) {
536 root 1.48 $self->{filter_w}($self, \$_[0]);
537 root 1.17 } else {
538     $self->{wbuf} .= $_[0];
539     $self->_drain_wbuf;
540     }
541     }
542    
543 root 1.29 =item $handle->push_write (type => @args)
544    
545     Instead of formatting your data yourself, you can also let this module do
546     the job by specifying a type and type-specific arguments.
547    
548 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
549     drop by and tell us):
550 root 1.29
551     =over 4
552    
553     =item netstring => $string
554    
555     Formats the given value as netstring
556     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
557    
558     =cut
559    
560     register_write_type netstring => sub {
561     my ($self, $string) = @_;
562    
563     sprintf "%d:%s,", (length $string), $string
564     };
565    
566 root 1.61 =item packstring => $format, $data
567    
568     An octet string prefixed with an encoded length. The encoding C<$format>
569     uses the same format as a Perl C<pack> format, but must specify a single
570     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
571     optional C<!>, C<< < >> or C<< > >> modifier).
572    
573     =cut
574    
575     register_write_type packstring => sub {
576     my ($self, $format, $string) = @_;
577    
578 root 1.65 pack "$format/a*", $string
579 root 1.61 };
580    
581 root 1.39 =item json => $array_or_hashref
582    
583 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
584     provide your own JSON object, this means it will be encoded to JSON text
585     in UTF-8.
586    
587     JSON objects (and arrays) are self-delimiting, so you can write JSON at
588     one end of a handle and read them at the other end without using any
589     additional framing.
590    
591 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
592     this module doesn't need delimiters after or between JSON texts to be
593     able to read them, many other languages depend on that.
594    
595     A simple RPC protocol that interoperates easily with others is to send
596     JSON arrays (or objects, although arrays are usually the better choice as
597     they mimic how function argument passing works) and a newline after each
598     JSON text:
599    
600     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
601     $handle->push_write ("\012");
602    
603     An AnyEvent::Handle receiver would simply use the C<json> read type and
604     rely on the fact that the newline will be skipped as leading whitespace:
605    
606     $handle->push_read (json => sub { my $array = $_[1]; ... });
607    
608     Other languages could read single lines terminated by a newline and pass
609     this line into their JSON decoder of choice.
610    
611 root 1.40 =cut
612    
613     register_write_type json => sub {
614     my ($self, $ref) = @_;
615    
616     require JSON;
617    
618     $self->{json} ? $self->{json}->encode ($ref)
619     : JSON::encode_json ($ref)
620     };
621    
622 root 1.63 =item storable => $reference
623    
624     Freezes the given reference using L<Storable> and writes it to the
625     handle. Uses the C<nfreeze> format.
626    
627     =cut
628    
629     register_write_type storable => sub {
630     my ($self, $ref) = @_;
631    
632     require Storable;
633    
634 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
635 root 1.63 };
636    
637 root 1.53 =back
638    
639 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
640 root 1.30
641     This function (not method) lets you add your own types to C<push_write>.
642     Whenever the given C<type> is used, C<push_write> will invoke the code
643     reference with the handle object and the remaining arguments.
644 root 1.29
645 root 1.30 The code reference is supposed to return a single octet string that will
646     be appended to the write buffer.
647 root 1.29
648 root 1.30 Note that this is a function, and all types registered this way will be
649     global, so try to use unique names.
650 root 1.29
651 root 1.30 =cut
652 root 1.29
653 root 1.8 #############################################################################
654    
655 root 1.9 =back
656    
657     =head2 READ QUEUE
658    
659     AnyEvent::Handle manages two queues per handle, one for writing and one
660     for reading.
661    
662     The read queue is more complex than the write queue. It can be used in two
663     ways, the "simple" way, using only C<on_read> and the "complex" way, using
664     a queue.
665    
666     In the simple case, you just install an C<on_read> callback and whenever
667     new data arrives, it will be called. You can then remove some data (if
668 root 1.69 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
669     leave the data there if you want to accumulate more (e.g. when only a
670     partial message has been received so far).
671 root 1.9
672     In the more complex case, you want to queue multiple callbacks. In this
673     case, AnyEvent::Handle will call the first queued callback each time new
674 root 1.61 data arrives (also the first time it is queued) and removes it when it has
675     done its job (see C<push_read>, below).
676 root 1.9
677     This way you can, for example, push three line-reads, followed by reading
678     a chunk of data, and AnyEvent::Handle will execute them in order.
679    
680     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
681     the specified number of bytes which give an XML datagram.
682    
683     # in the default state, expect some header bytes
684     $handle->on_read (sub {
685     # some data is here, now queue the length-header-read (4 octets)
686 root 1.52 shift->unshift_read (chunk => 4, sub {
687 root 1.9 # header arrived, decode
688     my $len = unpack "N", $_[1];
689    
690     # now read the payload
691 root 1.52 shift->unshift_read (chunk => $len, sub {
692 root 1.9 my $xml = $_[1];
693     # handle xml
694     });
695     });
696     });
697    
698 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
699     and another line or "ERROR" for the first request that is sent, and 64
700     bytes for the second request. Due to the availability of a queue, we can
701     just pipeline sending both requests and manipulate the queue as necessary
702     in the callbacks.
703    
704     When the first callback is called and sees an "OK" response, it will
705     C<unshift> another line-read. This line-read will be queued I<before> the
706     64-byte chunk callback.
707 root 1.9
708 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
709 root 1.9 $handle->push_write ("request 1\015\012");
710    
711     # we expect "ERROR" or "OK" as response, so push a line read
712 root 1.52 $handle->push_read (line => sub {
713 root 1.9 # if we got an "OK", we have to _prepend_ another line,
714     # so it will be read before the second request reads its 64 bytes
715     # which are already in the queue when this callback is called
716     # we don't do this in case we got an error
717     if ($_[1] eq "OK") {
718 root 1.52 $_[0]->unshift_read (line => sub {
719 root 1.9 my $response = $_[1];
720     ...
721     });
722     }
723     });
724    
725 root 1.69 # request two, simply returns 64 octets
726 root 1.9 $handle->push_write ("request 2\015\012");
727    
728     # simply read 64 bytes, always
729 root 1.52 $handle->push_read (chunk => 64, sub {
730 root 1.9 my $response = $_[1];
731     ...
732     });
733    
734     =over 4
735    
736 root 1.10 =cut
737    
738 root 1.8 sub _drain_rbuf {
739     my ($self) = @_;
740 elmex 1.1
741 root 1.59 local $self->{_in_drain} = 1;
742    
743 root 1.17 if (
744     defined $self->{rbuf_max}
745     && $self->{rbuf_max} < length $self->{rbuf}
746     ) {
747 root 1.82 $self->_error (&Errno::ENOSPC, 1), return;
748 root 1.17 }
749    
750 root 1.59 while () {
751     my $len = length $self->{rbuf};
752 elmex 1.1
753 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
754 root 1.29 unless ($cb->($self)) {
755 root 1.38 if ($self->{_eof}) {
756 root 1.10 # no progress can be made (not enough data and no data forthcoming)
757 root 1.82 $self->_error (&Errno::EPIPE, 1), return;
758 root 1.10 }
759    
760 root 1.38 unshift @{ $self->{_queue} }, $cb;
761 root 1.55 last;
762 root 1.8 }
763     } elsif ($self->{on_read}) {
764 root 1.61 last unless $len;
765    
766 root 1.8 $self->{on_read}($self);
767    
768     if (
769 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
770     && !@{ $self->{_queue} } # and the queue is still empty
771     && $self->{on_read} # but we still have on_read
772 root 1.8 ) {
773 root 1.55 # no further data will arrive
774     # so no progress can be made
775 root 1.82 $self->_error (&Errno::EPIPE, 1), return
776 root 1.55 if $self->{_eof};
777    
778     last; # more data might arrive
779 elmex 1.1 }
780 root 1.8 } else {
781     # read side becomes idle
782 root 1.38 delete $self->{_rw};
783 root 1.55 last;
784 root 1.8 }
785     }
786    
787 root 1.80 if ($self->{_eof}) {
788     if ($self->{on_eof}) {
789     $self->{on_eof}($self)
790     } else {
791     $self->_error (0, 1);
792     }
793     }
794 root 1.55
795     # may need to restart read watcher
796     unless ($self->{_rw}) {
797     $self->start_read
798     if $self->{on_read} || @{ $self->{_queue} };
799     }
800 elmex 1.1 }
801    
802 root 1.8 =item $handle->on_read ($cb)
803 elmex 1.1
804 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
805     the new callback is C<undef>). See the description of C<on_read> in the
806     constructor.
807 elmex 1.1
808 root 1.8 =cut
809    
810     sub on_read {
811     my ($self, $cb) = @_;
812 elmex 1.1
813 root 1.8 $self->{on_read} = $cb;
814 root 1.59 $self->_drain_rbuf if $cb && !$self->{_in_drain};
815 elmex 1.1 }
816    
817 root 1.8 =item $handle->rbuf
818    
819     Returns the read buffer (as a modifiable lvalue).
820 elmex 1.1
821 root 1.8 You can access the read buffer directly as the C<< ->{rbuf} >> member, if
822     you want.
823 elmex 1.1
824 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
825     C<push_read> or C<unshift_read> methods are used. The other read methods
826     automatically manage the read buffer.
827 elmex 1.1
828     =cut
829    
830 elmex 1.2 sub rbuf : lvalue {
831 root 1.8 $_[0]{rbuf}
832 elmex 1.2 }
833 elmex 1.1
834 root 1.8 =item $handle->push_read ($cb)
835    
836     =item $handle->unshift_read ($cb)
837    
838     Append the given callback to the end of the queue (C<push_read>) or
839     prepend it (C<unshift_read>).
840    
841     The callback is called each time some additional read data arrives.
842 elmex 1.1
843 elmex 1.20 It must check whether enough data is in the read buffer already.
844 elmex 1.1
845 root 1.8 If not enough data is available, it must return the empty list or a false
846     value, in which case it will be called repeatedly until enough data is
847     available (or an error condition is detected).
848    
849     If enough data was available, then the callback must remove all data it is
850     interested in (which can be none at all) and return a true value. After returning
851     true, it will be removed from the queue.
852 elmex 1.1
853     =cut
854    
855 root 1.30 our %RH;
856    
857     sub register_read_type($$) {
858     $RH{$_[0]} = $_[1];
859     }
860    
861 root 1.8 sub push_read {
862 root 1.28 my $self = shift;
863     my $cb = pop;
864    
865     if (@_) {
866     my $type = shift;
867    
868     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
869     ->($self, $cb, @_);
870     }
871 elmex 1.1
872 root 1.38 push @{ $self->{_queue} }, $cb;
873 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
874 elmex 1.1 }
875    
876 root 1.8 sub unshift_read {
877 root 1.28 my $self = shift;
878     my $cb = pop;
879    
880     if (@_) {
881     my $type = shift;
882    
883     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
884     ->($self, $cb, @_);
885     }
886    
887 root 1.8
888 root 1.38 unshift @{ $self->{_queue} }, $cb;
889 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
890 root 1.8 }
891 elmex 1.1
892 root 1.28 =item $handle->push_read (type => @args, $cb)
893 elmex 1.1
894 root 1.28 =item $handle->unshift_read (type => @args, $cb)
895 elmex 1.1
896 root 1.28 Instead of providing a callback that parses the data itself you can chose
897     between a number of predefined parsing formats, for chunks of data, lines
898     etc.
899 elmex 1.1
900 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
901     drop by and tell us):
902 root 1.28
903     =over 4
904    
905 root 1.40 =item chunk => $octets, $cb->($handle, $data)
906 root 1.28
907     Invoke the callback only once C<$octets> bytes have been read. Pass the
908     data read to the callback. The callback will never be called with less
909     data.
910    
911     Example: read 2 bytes.
912    
913     $handle->push_read (chunk => 2, sub {
914     warn "yay ", unpack "H*", $_[1];
915     });
916 elmex 1.1
917     =cut
918    
919 root 1.28 register_read_type chunk => sub {
920     my ($self, $cb, $len) = @_;
921 elmex 1.1
922 root 1.8 sub {
923     $len <= length $_[0]{rbuf} or return;
924 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
925 root 1.8 1
926     }
927 root 1.28 };
928 root 1.8
929 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
930 elmex 1.1
931 root 1.8 The callback will be called only once a full line (including the end of
932     line marker, C<$eol>) has been read. This line (excluding the end of line
933     marker) will be passed to the callback as second argument (C<$line>), and
934     the end of line marker as the third argument (C<$eol>).
935 elmex 1.1
936 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
937     will be interpreted as a fixed record end marker, or it can be a regex
938     object (e.g. created by C<qr>), in which case it is interpreted as a
939     regular expression.
940 elmex 1.1
941 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
942     undef), then C<qr|\015?\012|> is used (which is good for most internet
943     protocols).
944 elmex 1.1
945 root 1.8 Partial lines at the end of the stream will never be returned, as they are
946     not marked by the end of line marker.
947 elmex 1.1
948 root 1.8 =cut
949 elmex 1.1
950 root 1.28 register_read_type line => sub {
951     my ($self, $cb, $eol) = @_;
952 elmex 1.1
953 root 1.76 if (@_ < 3) {
954     # this is more than twice as fast as the generic code below
955     sub {
956     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
957 elmex 1.1
958 root 1.76 $cb->($_[0], $1, $2);
959     1
960     }
961     } else {
962     $eol = quotemeta $eol unless ref $eol;
963     $eol = qr|^(.*?)($eol)|s;
964    
965     sub {
966     $_[0]{rbuf} =~ s/$eol// or return;
967 elmex 1.1
968 root 1.76 $cb->($_[0], $1, $2);
969     1
970     }
971 root 1.8 }
972 root 1.28 };
973 elmex 1.1
974 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
975 root 1.36
976     Makes a regex match against the regex object C<$accept> and returns
977     everything up to and including the match.
978    
979     Example: read a single line terminated by '\n'.
980    
981     $handle->push_read (regex => qr<\n>, sub { ... });
982    
983     If C<$reject> is given and not undef, then it determines when the data is
984     to be rejected: it is matched against the data when the C<$accept> regex
985     does not match and generates an C<EBADMSG> error when it matches. This is
986     useful to quickly reject wrong data (to avoid waiting for a timeout or a
987     receive buffer overflow).
988    
989     Example: expect a single decimal number followed by whitespace, reject
990     anything else (not the use of an anchor).
991    
992     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
993    
994     If C<$skip> is given and not C<undef>, then it will be matched against
995     the receive buffer when neither C<$accept> nor C<$reject> match,
996     and everything preceding and including the match will be accepted
997     unconditionally. This is useful to skip large amounts of data that you
998     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
999     have to start matching from the beginning. This is purely an optimisation
1000     and is usually worth only when you expect more than a few kilobytes.
1001    
1002     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1003     expect the header to be very large (it isn't in practise, but...), we use
1004     a skip regex to skip initial portions. The skip regex is tricky in that
1005     it only accepts something not ending in either \015 or \012, as these are
1006     required for the accept regex.
1007    
1008     $handle->push_read (regex =>
1009     qr<\015\012\015\012>,
1010     undef, # no reject
1011     qr<^.*[^\015\012]>,
1012     sub { ... });
1013    
1014     =cut
1015    
1016     register_read_type regex => sub {
1017     my ($self, $cb, $accept, $reject, $skip) = @_;
1018    
1019     my $data;
1020     my $rbuf = \$self->{rbuf};
1021    
1022     sub {
1023     # accept
1024     if ($$rbuf =~ $accept) {
1025     $data .= substr $$rbuf, 0, $+[0], "";
1026     $cb->($self, $data);
1027     return 1;
1028     }
1029    
1030     # reject
1031     if ($reject && $$rbuf =~ $reject) {
1032 root 1.52 $self->_error (&Errno::EBADMSG);
1033 root 1.36 }
1034    
1035     # skip
1036     if ($skip && $$rbuf =~ $skip) {
1037     $data .= substr $$rbuf, 0, $+[0], "";
1038     }
1039    
1040     ()
1041     }
1042     };
1043    
1044 root 1.61 =item netstring => $cb->($handle, $string)
1045    
1046     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1047    
1048     Throws an error with C<$!> set to EBADMSG on format violations.
1049    
1050     =cut
1051    
1052     register_read_type netstring => sub {
1053     my ($self, $cb) = @_;
1054    
1055     sub {
1056     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1057     if ($_[0]{rbuf} =~ /[^0-9]/) {
1058     $self->_error (&Errno::EBADMSG);
1059     }
1060     return;
1061     }
1062    
1063     my $len = $1;
1064    
1065     $self->unshift_read (chunk => $len, sub {
1066     my $string = $_[1];
1067     $_[0]->unshift_read (chunk => 1, sub {
1068     if ($_[1] eq ",") {
1069     $cb->($_[0], $string);
1070     } else {
1071     $self->_error (&Errno::EBADMSG);
1072     }
1073     });
1074     });
1075    
1076     1
1077     }
1078     };
1079    
1080     =item packstring => $format, $cb->($handle, $string)
1081    
1082     An octet string prefixed with an encoded length. The encoding C<$format>
1083     uses the same format as a Perl C<pack> format, but must specify a single
1084     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1085     optional C<!>, C<< < >> or C<< > >> modifier).
1086    
1087     DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>.
1088    
1089     Example: read a block of data prefixed by its length in BER-encoded
1090     format (very efficient).
1091    
1092     $handle->push_read (packstring => "w", sub {
1093     my ($handle, $data) = @_;
1094     });
1095    
1096     =cut
1097    
1098     register_read_type packstring => sub {
1099     my ($self, $cb, $format) = @_;
1100    
1101     sub {
1102     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1103 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1104 root 1.61 or return;
1105    
1106 root 1.77 $format = length pack $format, $len;
1107 root 1.61
1108 root 1.77 # bypass unshift if we already have the remaining chunk
1109     if ($format + $len <= length $_[0]{rbuf}) {
1110     my $data = substr $_[0]{rbuf}, $format, $len;
1111     substr $_[0]{rbuf}, 0, $format + $len, "";
1112     $cb->($_[0], $data);
1113     } else {
1114     # remove prefix
1115     substr $_[0]{rbuf}, 0, $format, "";
1116    
1117     # read remaining chunk
1118     $_[0]->unshift_read (chunk => $len, $cb);
1119     }
1120 root 1.61
1121     1
1122     }
1123     };
1124    
1125 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1126    
1127     Reads a JSON object or array, decodes it and passes it to the callback.
1128    
1129     If a C<json> object was passed to the constructor, then that will be used
1130     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1131    
1132     This read type uses the incremental parser available with JSON version
1133     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1134     dependency on your own: this module will load the JSON module, but
1135     AnyEvent does not depend on it itself.
1136    
1137     Since JSON texts are fully self-delimiting, the C<json> read and write
1138 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1139     the C<json> write type description, above, for an actual example.
1140 root 1.40
1141     =cut
1142    
1143     register_read_type json => sub {
1144 root 1.63 my ($self, $cb) = @_;
1145 root 1.40
1146     require JSON;
1147    
1148     my $data;
1149     my $rbuf = \$self->{rbuf};
1150    
1151 root 1.41 my $json = $self->{json} ||= JSON->new->utf8;
1152 root 1.40
1153     sub {
1154     my $ref = $json->incr_parse ($self->{rbuf});
1155    
1156     if ($ref) {
1157     $self->{rbuf} = $json->incr_text;
1158     $json->incr_text = "";
1159     $cb->($self, $ref);
1160    
1161     1
1162     } else {
1163     $self->{rbuf} = "";
1164     ()
1165     }
1166     }
1167     };
1168    
1169 root 1.63 =item storable => $cb->($handle, $ref)
1170    
1171     Deserialises a L<Storable> frozen representation as written by the
1172     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1173     data).
1174    
1175     Raises C<EBADMSG> error if the data could not be decoded.
1176    
1177     =cut
1178    
1179     register_read_type storable => sub {
1180     my ($self, $cb) = @_;
1181    
1182     require Storable;
1183    
1184     sub {
1185     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1186 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1187 root 1.63 or return;
1188    
1189 root 1.77 my $format = length pack "w", $len;
1190 root 1.63
1191 root 1.77 # bypass unshift if we already have the remaining chunk
1192     if ($format + $len <= length $_[0]{rbuf}) {
1193     my $data = substr $_[0]{rbuf}, $format, $len;
1194     substr $_[0]{rbuf}, 0, $format + $len, "";
1195     $cb->($_[0], Storable::thaw ($data));
1196     } else {
1197     # remove prefix
1198     substr $_[0]{rbuf}, 0, $format, "";
1199    
1200     # read remaining chunk
1201     $_[0]->unshift_read (chunk => $len, sub {
1202     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1203     $cb->($_[0], $ref);
1204     } else {
1205     $self->_error (&Errno::EBADMSG);
1206     }
1207     });
1208     }
1209    
1210     1
1211 root 1.63 }
1212     };
1213    
1214 root 1.28 =back
1215    
1216 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1217 root 1.30
1218     This function (not method) lets you add your own types to C<push_read>.
1219    
1220     Whenever the given C<type> is used, C<push_read> will invoke the code
1221     reference with the handle object, the callback and the remaining
1222     arguments.
1223    
1224     The code reference is supposed to return a callback (usually a closure)
1225     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1226    
1227     It should invoke the passed callback when it is done reading (remember to
1228 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1229 root 1.30
1230     Note that this is a function, and all types registered this way will be
1231     global, so try to use unique names.
1232    
1233     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1234     search for C<register_read_type>)).
1235    
1236 root 1.10 =item $handle->stop_read
1237    
1238     =item $handle->start_read
1239    
1240 root 1.18 In rare cases you actually do not want to read anything from the
1241 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1242 root 1.22 any queued callbacks will be executed then. To start reading again, call
1243 root 1.10 C<start_read>.
1244    
1245 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1246     you change the C<on_read> callback or push/unshift a read callback, and it
1247     will automatically C<stop_read> for you when neither C<on_read> is set nor
1248     there are any read requests in the queue.
1249    
1250 root 1.10 =cut
1251    
1252     sub stop_read {
1253     my ($self) = @_;
1254 elmex 1.1
1255 root 1.38 delete $self->{_rw};
1256 root 1.8 }
1257 elmex 1.1
1258 root 1.10 sub start_read {
1259     my ($self) = @_;
1260    
1261 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1262 root 1.10 Scalar::Util::weaken $self;
1263    
1264 root 1.38 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1265 root 1.17 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
1266     my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1267 root 1.10
1268     if ($len > 0) {
1269 root 1.44 $self->{_activity} = AnyEvent->now;
1270 root 1.43
1271 root 1.17 $self->{filter_r}
1272 root 1.48 ? $self->{filter_r}($self, $rbuf)
1273 root 1.59 : $self->{_in_drain} || $self->_drain_rbuf;
1274 root 1.10
1275     } elsif (defined $len) {
1276 root 1.38 delete $self->{_rw};
1277     $self->{_eof} = 1;
1278 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1279 root 1.10
1280 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1281 root 1.52 return $self->_error ($!, 1);
1282 root 1.10 }
1283     });
1284     }
1285 elmex 1.1 }
1286    
1287 root 1.19 sub _dotls {
1288     my ($self) = @_;
1289    
1290 root 1.56 my $buf;
1291    
1292 root 1.38 if (length $self->{_tls_wbuf}) {
1293     while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1294     substr $self->{_tls_wbuf}, 0, $len, "";
1295 root 1.22 }
1296 root 1.19 }
1297    
1298 root 1.56 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1299 root 1.19 $self->{wbuf} .= $buf;
1300     $self->_drain_wbuf;
1301     }
1302    
1303 root 1.56 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1304     if (length $buf) {
1305     $self->{rbuf} .= $buf;
1306 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1307 root 1.56 } else {
1308     # let's treat SSL-eof as we treat normal EOF
1309     $self->{_eof} = 1;
1310     $self->_shutdown;
1311     return;
1312     }
1313 root 1.23 }
1314    
1315 root 1.24 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1316    
1317     if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1318 root 1.23 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1319 root 1.52 return $self->_error ($!, 1);
1320 root 1.23 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1321 root 1.52 return $self->_error (&Errno::EIO, 1);
1322 root 1.19 }
1323 root 1.23
1324     # all others are fine for our purposes
1325 root 1.19 }
1326     }
1327    
1328 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1329    
1330     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1331     object is created, you can also do that at a later time by calling
1332     C<starttls>.
1333    
1334     The first argument is the same as the C<tls> constructor argument (either
1335     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1336    
1337     The second argument is the optional C<Net::SSLeay::CTX> object that is
1338     used when AnyEvent::Handle has to create its own TLS connection object.
1339    
1340 root 1.38 The TLS connection object will end up in C<< $handle->{tls} >> after this
1341     call and can be used or changed to your liking. Note that the handshake
1342     might have already started when this function returns.
1343    
1344 root 1.25 =cut
1345    
1346 root 1.19 sub starttls {
1347     my ($self, $ssl, $ctx) = @_;
1348    
1349 root 1.25 $self->stoptls;
1350    
1351 root 1.19 if ($ssl eq "accept") {
1352     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1353     Net::SSLeay::set_accept_state ($ssl);
1354     } elsif ($ssl eq "connect") {
1355     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1356     Net::SSLeay::set_connect_state ($ssl);
1357     }
1358    
1359     $self->{tls} = $ssl;
1360    
1361 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1362     # but the openssl maintainers basically said: "trust us, it just works".
1363     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1364     # and mismaintained ssleay-module doesn't even offer them).
1365 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1366 root 1.21 Net::SSLeay::CTX_set_mode ($self->{tls},
1367 root 1.34 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1368     | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1369 root 1.21
1370 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1371     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1372 root 1.19
1373 root 1.38 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1374 root 1.19
1375     $self->{filter_w} = sub {
1376 root 1.38 $_[0]{_tls_wbuf} .= ${$_[1]};
1377 root 1.19 &_dotls;
1378     };
1379     $self->{filter_r} = sub {
1380 root 1.38 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1381 root 1.19 &_dotls;
1382     };
1383     }
1384    
1385 root 1.25 =item $handle->stoptls
1386    
1387     Destroys the SSL connection, if any. Partial read or write data will be
1388     lost.
1389    
1390     =cut
1391    
1392     sub stoptls {
1393     my ($self) = @_;
1394    
1395     Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
1396 root 1.38
1397     delete $self->{_rbio};
1398     delete $self->{_wbio};
1399     delete $self->{_tls_wbuf};
1400 root 1.25 delete $self->{filter_r};
1401     delete $self->{filter_w};
1402     }
1403    
1404 root 1.19 sub DESTROY {
1405     my $self = shift;
1406    
1407 root 1.25 $self->stoptls;
1408 root 1.62
1409     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1410    
1411     if ($linger && length $self->{wbuf}) {
1412     my $fh = delete $self->{fh};
1413     my $wbuf = delete $self->{wbuf};
1414    
1415     my @linger;
1416    
1417     push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1418     my $len = syswrite $fh, $wbuf, length $wbuf;
1419    
1420     if ($len > 0) {
1421     substr $wbuf, 0, $len, "";
1422     } else {
1423     @linger = (); # end
1424     }
1425     });
1426     push @linger, AnyEvent->timer (after => $linger, cb => sub {
1427     @linger = ();
1428     });
1429     }
1430 root 1.19 }
1431    
1432     =item AnyEvent::Handle::TLS_CTX
1433    
1434     This function creates and returns the Net::SSLeay::CTX object used by
1435     default for TLS mode.
1436    
1437     The context is created like this:
1438    
1439     Net::SSLeay::load_error_strings;
1440     Net::SSLeay::SSLeay_add_ssl_algorithms;
1441     Net::SSLeay::randomize;
1442    
1443     my $CTX = Net::SSLeay::CTX_new;
1444    
1445     Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1446    
1447     =cut
1448    
1449     our $TLS_CTX;
1450    
1451     sub TLS_CTX() {
1452     $TLS_CTX || do {
1453     require Net::SSLeay;
1454    
1455     Net::SSLeay::load_error_strings ();
1456     Net::SSLeay::SSLeay_add_ssl_algorithms ();
1457     Net::SSLeay::randomize ();
1458    
1459     $TLS_CTX = Net::SSLeay::CTX_new ();
1460    
1461     Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1462    
1463     $TLS_CTX
1464     }
1465     }
1466    
1467 elmex 1.1 =back
1468    
1469 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
1470    
1471     In many cases, you might want to subclass AnyEvent::Handle.
1472    
1473     To make this easier, a given version of AnyEvent::Handle uses these
1474     conventions:
1475    
1476     =over 4
1477    
1478     =item * all constructor arguments become object members.
1479    
1480     At least initially, when you pass a C<tls>-argument to the constructor it
1481 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
1482 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
1483    
1484     =item * other object member names are prefixed with an C<_>.
1485    
1486     All object members not explicitly documented (internal use) are prefixed
1487     with an underscore character, so the remaining non-C<_>-namespace is free
1488     for use for subclasses.
1489    
1490     =item * all members not documented here and not prefixed with an underscore
1491     are free to use in subclasses.
1492    
1493     Of course, new versions of AnyEvent::Handle may introduce more "public"
1494     member variables, but thats just life, at least it is documented.
1495    
1496     =back
1497    
1498 elmex 1.1 =head1 AUTHOR
1499    
1500 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1501 elmex 1.1
1502     =cut
1503    
1504     1; # End of AnyEvent::Handle