ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.85
Committed: Thu Aug 21 19:53:19 2008 UTC (15 years, 9 months ago) by root
Branch: MAIN
Changes since 1.84: +6 -5 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 package AnyEvent::Handle;
2    
3 elmex 1.6 no warnings;
4 root 1.79 use strict qw(subs vars);
5 elmex 1.1
6 root 1.8 use AnyEvent ();
7 root 1.42 use AnyEvent::Util qw(WSAEWOULDBLOCK);
8 root 1.8 use Scalar::Util ();
9     use Carp ();
10     use Fcntl ();
11 root 1.43 use Errno qw(EAGAIN EINTR);
12 elmex 1.1
13     =head1 NAME
14    
15 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 elmex 1.1
17     =cut
18    
19 root 1.82 our $VERSION = 4.232;
20 elmex 1.1
21     =head1 SYNOPSIS
22    
23     use AnyEvent;
24     use AnyEvent::Handle;
25    
26     my $cv = AnyEvent->condvar;
27    
28 root 1.31 my $handle =
29 elmex 1.2 AnyEvent::Handle->new (
30     fh => \*STDIN,
31     on_eof => sub {
32     $cv->broadcast;
33     },
34     );
35    
36 root 1.31 # send some request line
37     $handle->push_write ("getinfo\015\012");
38    
39     # read the response line
40     $handle->push_read (line => sub {
41     my ($handle, $line) = @_;
42     warn "read line <$line>\n";
43     $cv->send;
44     });
45    
46     $cv->recv;
47 elmex 1.1
48     =head1 DESCRIPTION
49    
50 root 1.8 This module is a helper module to make it easier to do event-based I/O on
51 elmex 1.13 filehandles. For utility functions for doing non-blocking connects and accepts
52     on sockets see L<AnyEvent::Util>.
53 root 1.8
54 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
55     AnyEvent::Handle examples.
56    
57 root 1.8 In the following, when the documentation refers to of "bytes" then this
58     means characters. As sysread and syswrite are used for all I/O, their
59     treatment of characters applies to this module as well.
60 elmex 1.1
61 root 1.8 All callbacks will be invoked with the handle object as their first
62     argument.
63 elmex 1.1
64     =head1 METHODS
65    
66     =over 4
67    
68     =item B<new (%args)>
69    
70 root 1.8 The constructor supports these arguments (all as key => value pairs).
71 elmex 1.1
72     =over 4
73    
74 root 1.8 =item fh => $filehandle [MANDATORY]
75 elmex 1.1
76     The filehandle this L<AnyEvent::Handle> object will operate on.
77    
78 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
79     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80     that mode.
81 root 1.8
82 root 1.40 =item on_eof => $cb->($handle)
83 root 1.10
84 root 1.74 Set the callback to be called when an end-of-file condition is detected,
85 root 1.52 i.e. in the case of a socket, when the other side has closed the
86     connection cleanly.
87 root 1.8
88 root 1.82 For sockets, this just means that the other side has stopped sending data,
89     you can still try to write data, and, in fact, one can return from the eof
90     callback and continue writing data, as only the read part has been shut
91     down.
92    
93 root 1.80 While not mandatory, it is I<highly> recommended to set an eof callback,
94 root 1.16 otherwise you might end up with a closed socket while you are still
95     waiting for data.
96    
97 root 1.80 If an EOF condition has been detected but no C<on_eof> callback has been
98     set, then a fatal error will be raised with C<$!> set to <0>.
99    
100 root 1.52 =item on_error => $cb->($handle, $fatal)
101 root 1.10
102 root 1.52 This is the error callback, which is called when, well, some error
103     occured, such as not being able to resolve the hostname, failure to
104     connect or a read error.
105    
106     Some errors are fatal (which is indicated by C<$fatal> being true). On
107 root 1.82 fatal errors the handle object will be shut down and will not be usable
108     (but you are free to look at the current C< ->rbuf >). Examples of fatal
109     errors are an EOF condition with active (but unsatisifable) read watchers
110     (C<EPIPE>) or I/O errors.
111    
112     Non-fatal errors can be retried by simply returning, but it is recommended
113     to simply ignore this parameter and instead abondon the handle object
114     when this callback is invoked. Examples of non-fatal errors are timeouts
115     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
116 root 1.8
117 root 1.10 On callback entrance, the value of C<$!> contains the operating system
118 root 1.43 error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
119 root 1.8
120 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
121     you will not be notified of errors otherwise. The default simply calls
122 root 1.52 C<croak>.
123 root 1.8
124 root 1.40 =item on_read => $cb->($handle)
125 root 1.8
126     This sets the default read callback, which is called when data arrives
127 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
128     callback will only be called when at least one octet of data is in the
129     read buffer).
130 root 1.8
131     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
132 root 1.40 method or access the C<$handle->{rbuf}> member directly.
133 root 1.8
134     When an EOF condition is detected then AnyEvent::Handle will first try to
135     feed all the remaining data to the queued callbacks and C<on_read> before
136     calling the C<on_eof> callback. If no progress can be made, then a fatal
137     error will be raised (with C<$!> set to C<EPIPE>).
138 elmex 1.1
139 root 1.40 =item on_drain => $cb->($handle)
140 elmex 1.1
141 root 1.8 This sets the callback that is called when the write buffer becomes empty
142     (or when the callback is set and the buffer is empty already).
143 elmex 1.1
144 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
145 elmex 1.2
146 root 1.69 This callback is useful when you don't want to put all of your write data
147     into the queue at once, for example, when you want to write the contents
148     of some file to the socket you might not want to read the whole file into
149     memory and push it into the queue, but instead only read more data from
150     the file when the write queue becomes empty.
151    
152 root 1.43 =item timeout => $fractional_seconds
153    
154     If non-zero, then this enables an "inactivity" timeout: whenever this many
155     seconds pass without a successful read or write on the underlying file
156     handle, the C<on_timeout> callback will be invoked (and if that one is
157 root 1.45 missing, an C<ETIMEDOUT> error will be raised).
158 root 1.43
159     Note that timeout processing is also active when you currently do not have
160     any outstanding read or write requests: If you plan to keep the connection
161     idle then you should disable the timout temporarily or ignore the timeout
162     in the C<on_timeout> callback.
163    
164     Zero (the default) disables this timeout.
165    
166     =item on_timeout => $cb->($handle)
167    
168     Called whenever the inactivity timeout passes. If you return from this
169     callback, then the timeout will be reset as if some activity had happened,
170     so this condition is not fatal in any way.
171    
172 root 1.8 =item rbuf_max => <bytes>
173 elmex 1.2
174 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
175     when the read buffer ever (strictly) exceeds this size. This is useful to
176     avoid denial-of-service attacks.
177 elmex 1.2
178 root 1.8 For example, a server accepting connections from untrusted sources should
179     be configured to accept only so-and-so much data that it cannot act on
180     (for example, when expecting a line, an attacker could send an unlimited
181     amount of data without a callback ever being called as long as the line
182     isn't finished).
183 elmex 1.2
184 root 1.70 =item autocork => <boolean>
185    
186     When disabled (the default), then C<push_write> will try to immediately
187     write the data to the handle if possible. This avoids having to register
188     a write watcher and wait for the next event loop iteration, but can be
189     inefficient if you write multiple small chunks (this disadvantage is
190     usually avoided by your kernel's nagle algorithm, see C<low_delay>).
191    
192     When enabled, then writes will always be queued till the next event loop
193     iteration. This is efficient when you do many small writes per iteration,
194     but less efficient when you do a single write only.
195    
196     =item no_delay => <boolean>
197    
198     When doing small writes on sockets, your operating system kernel might
199     wait a bit for more data before actually sending it out. This is called
200     the Nagle algorithm, and usually it is beneficial.
201    
202     In some situations you want as low a delay as possible, which cna be
203     accomplishd by setting this option to true.
204    
205     The default is your opertaing system's default behaviour, this option
206     explicitly enables or disables it, if possible.
207    
208 root 1.8 =item read_size => <bytes>
209 elmex 1.2
210 root 1.8 The default read block size (the amount of bytes this module will try to read
211 root 1.46 during each (loop iteration). Default: C<8192>.
212 root 1.8
213     =item low_water_mark => <bytes>
214    
215     Sets the amount of bytes (default: C<0>) that make up an "empty" write
216     buffer: If the write reaches this size or gets even samller it is
217     considered empty.
218 elmex 1.2
219 root 1.62 =item linger => <seconds>
220    
221     If non-zero (default: C<3600>), then the destructor of the
222     AnyEvent::Handle object will check wether there is still outstanding write
223     data and will install a watcher that will write out this data. No errors
224     will be reported (this mostly matches how the operating system treats
225     outstanding data at socket close time).
226    
227     This will not work for partial TLS data that could not yet been
228     encoded. This data will be lost.
229    
230 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
231    
232 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
233     AnyEvent will start a TLS handshake and will transparently encrypt/decrypt
234 root 1.19 data.
235    
236 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
237     automatically when you try to create a TLS handle).
238    
239 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
240     C<accept>, and for the TLS client side of a connection, use C<connect>
241     mode.
242 root 1.19
243     You can also provide your own TLS connection object, but you have
244     to make sure that you call either C<Net::SSLeay::set_connect_state>
245     or C<Net::SSLeay::set_accept_state> on it before you pass it to
246     AnyEvent::Handle.
247    
248 root 1.85 See the C<starttls> method for when need to start TLS negotiation later.
249 root 1.26
250 root 1.19 =item tls_ctx => $ssl_ctx
251    
252     Use the given Net::SSLeay::CTX object to create the new TLS connection
253     (unless a connection object was specified directly). If this parameter is
254     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
255    
256 root 1.40 =item json => JSON or JSON::XS object
257    
258     This is the json coder object used by the C<json> read and write types.
259    
260 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
261     suitable one, which will write and expect UTF-8 encoded JSON texts.
262 root 1.40
263     Note that you are responsible to depend on the JSON module if you want to
264     use this functionality, as AnyEvent does not have a dependency itself.
265    
266 root 1.38 =item filter_r => $cb
267    
268     =item filter_w => $cb
269    
270     These exist, but are undocumented at this time.
271    
272 elmex 1.1 =back
273    
274     =cut
275    
276     sub new {
277 root 1.8 my $class = shift;
278    
279     my $self = bless { @_ }, $class;
280    
281     $self->{fh} or Carp::croak "mandatory argument fh is missing";
282    
283     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
284 elmex 1.1
285 root 1.19 if ($self->{tls}) {
286     require Net::SSLeay;
287     $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
288     }
289    
290 root 1.44 $self->{_activity} = AnyEvent->now;
291 root 1.43 $self->_timeout;
292 elmex 1.1
293 root 1.70 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
294     $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
295 root 1.10
296 root 1.66 $self->start_read
297 root 1.67 if $self->{on_read};
298 root 1.66
299 root 1.8 $self
300     }
301 elmex 1.2
302 root 1.8 sub _shutdown {
303     my ($self) = @_;
304 elmex 1.2
305 root 1.46 delete $self->{_tw};
306 root 1.38 delete $self->{_rw};
307     delete $self->{_ww};
308 root 1.8 delete $self->{fh};
309 root 1.52
310     $self->stoptls;
311 root 1.82
312     delete $self->{on_read};
313     delete $self->{_queue};
314 root 1.8 }
315    
316 root 1.52 sub _error {
317     my ($self, $errno, $fatal) = @_;
318 root 1.8
319 root 1.52 $self->_shutdown
320     if $fatal;
321 elmex 1.1
322 root 1.52 $! = $errno;
323 root 1.37
324 root 1.52 if ($self->{on_error}) {
325     $self->{on_error}($self, $fatal);
326     } else {
327     Carp::croak "AnyEvent::Handle uncaught error: $!";
328     }
329 elmex 1.1 }
330    
331 root 1.8 =item $fh = $handle->fh
332 elmex 1.1
333 root 1.22 This method returns the file handle of the L<AnyEvent::Handle> object.
334 elmex 1.1
335     =cut
336    
337 root 1.38 sub fh { $_[0]{fh} }
338 elmex 1.1
339 root 1.8 =item $handle->on_error ($cb)
340 elmex 1.1
341 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
342 elmex 1.1
343 root 1.8 =cut
344    
345     sub on_error {
346     $_[0]{on_error} = $_[1];
347     }
348    
349     =item $handle->on_eof ($cb)
350    
351     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
352 elmex 1.1
353     =cut
354    
355 root 1.8 sub on_eof {
356     $_[0]{on_eof} = $_[1];
357     }
358    
359 root 1.43 =item $handle->on_timeout ($cb)
360    
361     Replace the current C<on_timeout> callback, or disables the callback
362     (but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
363     argument.
364    
365     =cut
366    
367     sub on_timeout {
368     $_[0]{on_timeout} = $_[1];
369     }
370    
371 root 1.70 =item $handle->autocork ($boolean)
372    
373     Enables or disables the current autocork behaviour (see C<autocork>
374     constructor argument).
375    
376     =cut
377    
378     =item $handle->no_delay ($boolean)
379    
380     Enables or disables the C<no_delay> setting (see constructor argument of
381     the same name for details).
382    
383     =cut
384    
385     sub no_delay {
386     $_[0]{no_delay} = $_[1];
387    
388     eval {
389     local $SIG{__DIE__};
390     setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
391     };
392     }
393    
394 root 1.43 #############################################################################
395    
396     =item $handle->timeout ($seconds)
397    
398     Configures (or disables) the inactivity timeout.
399    
400     =cut
401    
402     sub timeout {
403     my ($self, $timeout) = @_;
404    
405     $self->{timeout} = $timeout;
406     $self->_timeout;
407     }
408    
409     # reset the timeout watcher, as neccessary
410     # also check for time-outs
411     sub _timeout {
412     my ($self) = @_;
413    
414     if ($self->{timeout}) {
415 root 1.44 my $NOW = AnyEvent->now;
416 root 1.43
417     # when would the timeout trigger?
418     my $after = $self->{_activity} + $self->{timeout} - $NOW;
419    
420     # now or in the past already?
421     if ($after <= 0) {
422     $self->{_activity} = $NOW;
423    
424     if ($self->{on_timeout}) {
425 root 1.48 $self->{on_timeout}($self);
426 root 1.43 } else {
427 root 1.52 $self->_error (&Errno::ETIMEDOUT);
428 root 1.43 }
429    
430 root 1.56 # callback could have changed timeout value, optimise
431 root 1.43 return unless $self->{timeout};
432    
433     # calculate new after
434     $after = $self->{timeout};
435     }
436    
437     Scalar::Util::weaken $self;
438 root 1.56 return unless $self; # ->error could have destroyed $self
439 root 1.43
440     $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
441     delete $self->{_tw};
442     $self->_timeout;
443     });
444     } else {
445     delete $self->{_tw};
446     }
447     }
448    
449 root 1.9 #############################################################################
450    
451     =back
452    
453     =head2 WRITE QUEUE
454    
455     AnyEvent::Handle manages two queues per handle, one for writing and one
456     for reading.
457    
458     The write queue is very simple: you can add data to its end, and
459     AnyEvent::Handle will automatically try to get rid of it for you.
460    
461 elmex 1.20 When data could be written and the write buffer is shorter then the low
462 root 1.9 water mark, the C<on_drain> callback will be invoked.
463    
464     =over 4
465    
466 root 1.8 =item $handle->on_drain ($cb)
467    
468     Sets the C<on_drain> callback or clears it (see the description of
469     C<on_drain> in the constructor).
470    
471     =cut
472    
473     sub on_drain {
474 elmex 1.1 my ($self, $cb) = @_;
475    
476 root 1.8 $self->{on_drain} = $cb;
477    
478     $cb->($self)
479     if $cb && $self->{low_water_mark} >= length $self->{wbuf};
480     }
481    
482     =item $handle->push_write ($data)
483    
484     Queues the given scalar to be written. You can push as much data as you
485     want (only limited by the available memory), as C<AnyEvent::Handle>
486     buffers it independently of the kernel.
487    
488     =cut
489    
490 root 1.17 sub _drain_wbuf {
491     my ($self) = @_;
492 root 1.8
493 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
494 root 1.35
495 root 1.8 Scalar::Util::weaken $self;
496 root 1.35
497 root 1.8 my $cb = sub {
498     my $len = syswrite $self->{fh}, $self->{wbuf};
499    
500 root 1.29 if ($len >= 0) {
501 root 1.8 substr $self->{wbuf}, 0, $len, "";
502    
503 root 1.44 $self->{_activity} = AnyEvent->now;
504 root 1.43
505 root 1.8 $self->{on_drain}($self)
506     if $self->{low_water_mark} >= length $self->{wbuf}
507     && $self->{on_drain};
508    
509 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
510 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
511 root 1.52 $self->_error ($!, 1);
512 elmex 1.1 }
513 root 1.8 };
514    
515 root 1.35 # try to write data immediately
516 root 1.70 $cb->() unless $self->{autocork};
517 root 1.8
518 root 1.35 # if still data left in wbuf, we need to poll
519 root 1.38 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
520 root 1.35 if length $self->{wbuf};
521 root 1.8 };
522     }
523    
524 root 1.30 our %WH;
525    
526     sub register_write_type($$) {
527     $WH{$_[0]} = $_[1];
528     }
529    
530 root 1.17 sub push_write {
531     my $self = shift;
532    
533 root 1.29 if (@_ > 1) {
534     my $type = shift;
535    
536     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
537     ->($self, @_);
538     }
539    
540 root 1.17 if ($self->{filter_w}) {
541 root 1.48 $self->{filter_w}($self, \$_[0]);
542 root 1.17 } else {
543     $self->{wbuf} .= $_[0];
544     $self->_drain_wbuf;
545     }
546     }
547    
548 root 1.29 =item $handle->push_write (type => @args)
549    
550     Instead of formatting your data yourself, you can also let this module do
551     the job by specifying a type and type-specific arguments.
552    
553 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
554     drop by and tell us):
555 root 1.29
556     =over 4
557    
558     =item netstring => $string
559    
560     Formats the given value as netstring
561     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
562    
563     =cut
564    
565     register_write_type netstring => sub {
566     my ($self, $string) = @_;
567    
568     sprintf "%d:%s,", (length $string), $string
569     };
570    
571 root 1.61 =item packstring => $format, $data
572    
573     An octet string prefixed with an encoded length. The encoding C<$format>
574     uses the same format as a Perl C<pack> format, but must specify a single
575     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
576     optional C<!>, C<< < >> or C<< > >> modifier).
577    
578     =cut
579    
580     register_write_type packstring => sub {
581     my ($self, $format, $string) = @_;
582    
583 root 1.65 pack "$format/a*", $string
584 root 1.61 };
585    
586 root 1.39 =item json => $array_or_hashref
587    
588 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
589     provide your own JSON object, this means it will be encoded to JSON text
590     in UTF-8.
591    
592     JSON objects (and arrays) are self-delimiting, so you can write JSON at
593     one end of a handle and read them at the other end without using any
594     additional framing.
595    
596 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
597     this module doesn't need delimiters after or between JSON texts to be
598     able to read them, many other languages depend on that.
599    
600     A simple RPC protocol that interoperates easily with others is to send
601     JSON arrays (or objects, although arrays are usually the better choice as
602     they mimic how function argument passing works) and a newline after each
603     JSON text:
604    
605     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
606     $handle->push_write ("\012");
607    
608     An AnyEvent::Handle receiver would simply use the C<json> read type and
609     rely on the fact that the newline will be skipped as leading whitespace:
610    
611     $handle->push_read (json => sub { my $array = $_[1]; ... });
612    
613     Other languages could read single lines terminated by a newline and pass
614     this line into their JSON decoder of choice.
615    
616 root 1.40 =cut
617    
618     register_write_type json => sub {
619     my ($self, $ref) = @_;
620    
621     require JSON;
622    
623     $self->{json} ? $self->{json}->encode ($ref)
624     : JSON::encode_json ($ref)
625     };
626    
627 root 1.63 =item storable => $reference
628    
629     Freezes the given reference using L<Storable> and writes it to the
630     handle. Uses the C<nfreeze> format.
631    
632     =cut
633    
634     register_write_type storable => sub {
635     my ($self, $ref) = @_;
636    
637     require Storable;
638    
639 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
640 root 1.63 };
641    
642 root 1.53 =back
643    
644 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
645 root 1.30
646     This function (not method) lets you add your own types to C<push_write>.
647     Whenever the given C<type> is used, C<push_write> will invoke the code
648     reference with the handle object and the remaining arguments.
649 root 1.29
650 root 1.30 The code reference is supposed to return a single octet string that will
651     be appended to the write buffer.
652 root 1.29
653 root 1.30 Note that this is a function, and all types registered this way will be
654     global, so try to use unique names.
655 root 1.29
656 root 1.30 =cut
657 root 1.29
658 root 1.8 #############################################################################
659    
660 root 1.9 =back
661    
662     =head2 READ QUEUE
663    
664     AnyEvent::Handle manages two queues per handle, one for writing and one
665     for reading.
666    
667     The read queue is more complex than the write queue. It can be used in two
668     ways, the "simple" way, using only C<on_read> and the "complex" way, using
669     a queue.
670    
671     In the simple case, you just install an C<on_read> callback and whenever
672     new data arrives, it will be called. You can then remove some data (if
673 root 1.69 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
674     leave the data there if you want to accumulate more (e.g. when only a
675     partial message has been received so far).
676 root 1.9
677     In the more complex case, you want to queue multiple callbacks. In this
678     case, AnyEvent::Handle will call the first queued callback each time new
679 root 1.61 data arrives (also the first time it is queued) and removes it when it has
680     done its job (see C<push_read>, below).
681 root 1.9
682     This way you can, for example, push three line-reads, followed by reading
683     a chunk of data, and AnyEvent::Handle will execute them in order.
684    
685     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
686     the specified number of bytes which give an XML datagram.
687    
688     # in the default state, expect some header bytes
689     $handle->on_read (sub {
690     # some data is here, now queue the length-header-read (4 octets)
691 root 1.52 shift->unshift_read (chunk => 4, sub {
692 root 1.9 # header arrived, decode
693     my $len = unpack "N", $_[1];
694    
695     # now read the payload
696 root 1.52 shift->unshift_read (chunk => $len, sub {
697 root 1.9 my $xml = $_[1];
698     # handle xml
699     });
700     });
701     });
702    
703 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
704     and another line or "ERROR" for the first request that is sent, and 64
705     bytes for the second request. Due to the availability of a queue, we can
706     just pipeline sending both requests and manipulate the queue as necessary
707     in the callbacks.
708    
709     When the first callback is called and sees an "OK" response, it will
710     C<unshift> another line-read. This line-read will be queued I<before> the
711     64-byte chunk callback.
712 root 1.9
713 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
714 root 1.9 $handle->push_write ("request 1\015\012");
715    
716     # we expect "ERROR" or "OK" as response, so push a line read
717 root 1.52 $handle->push_read (line => sub {
718 root 1.9 # if we got an "OK", we have to _prepend_ another line,
719     # so it will be read before the second request reads its 64 bytes
720     # which are already in the queue when this callback is called
721     # we don't do this in case we got an error
722     if ($_[1] eq "OK") {
723 root 1.52 $_[0]->unshift_read (line => sub {
724 root 1.9 my $response = $_[1];
725     ...
726     });
727     }
728     });
729    
730 root 1.69 # request two, simply returns 64 octets
731 root 1.9 $handle->push_write ("request 2\015\012");
732    
733     # simply read 64 bytes, always
734 root 1.52 $handle->push_read (chunk => 64, sub {
735 root 1.9 my $response = $_[1];
736     ...
737     });
738    
739     =over 4
740    
741 root 1.10 =cut
742    
743 root 1.8 sub _drain_rbuf {
744     my ($self) = @_;
745 elmex 1.1
746 root 1.59 local $self->{_in_drain} = 1;
747    
748 root 1.17 if (
749     defined $self->{rbuf_max}
750     && $self->{rbuf_max} < length $self->{rbuf}
751     ) {
752 root 1.82 $self->_error (&Errno::ENOSPC, 1), return;
753 root 1.17 }
754    
755 root 1.59 while () {
756     my $len = length $self->{rbuf};
757 elmex 1.1
758 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
759 root 1.29 unless ($cb->($self)) {
760 root 1.38 if ($self->{_eof}) {
761 root 1.10 # no progress can be made (not enough data and no data forthcoming)
762 root 1.82 $self->_error (&Errno::EPIPE, 1), return;
763 root 1.10 }
764    
765 root 1.38 unshift @{ $self->{_queue} }, $cb;
766 root 1.55 last;
767 root 1.8 }
768     } elsif ($self->{on_read}) {
769 root 1.61 last unless $len;
770    
771 root 1.8 $self->{on_read}($self);
772    
773     if (
774 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
775     && !@{ $self->{_queue} } # and the queue is still empty
776     && $self->{on_read} # but we still have on_read
777 root 1.8 ) {
778 root 1.55 # no further data will arrive
779     # so no progress can be made
780 root 1.82 $self->_error (&Errno::EPIPE, 1), return
781 root 1.55 if $self->{_eof};
782    
783     last; # more data might arrive
784 elmex 1.1 }
785 root 1.8 } else {
786     # read side becomes idle
787 root 1.38 delete $self->{_rw};
788 root 1.55 last;
789 root 1.8 }
790     }
791    
792 root 1.80 if ($self->{_eof}) {
793     if ($self->{on_eof}) {
794     $self->{on_eof}($self)
795     } else {
796     $self->_error (0, 1);
797     }
798     }
799 root 1.55
800     # may need to restart read watcher
801     unless ($self->{_rw}) {
802     $self->start_read
803     if $self->{on_read} || @{ $self->{_queue} };
804     }
805 elmex 1.1 }
806    
807 root 1.8 =item $handle->on_read ($cb)
808 elmex 1.1
809 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
810     the new callback is C<undef>). See the description of C<on_read> in the
811     constructor.
812 elmex 1.1
813 root 1.8 =cut
814    
815     sub on_read {
816     my ($self, $cb) = @_;
817 elmex 1.1
818 root 1.8 $self->{on_read} = $cb;
819 root 1.59 $self->_drain_rbuf if $cb && !$self->{_in_drain};
820 elmex 1.1 }
821    
822 root 1.8 =item $handle->rbuf
823    
824     Returns the read buffer (as a modifiable lvalue).
825 elmex 1.1
826 root 1.8 You can access the read buffer directly as the C<< ->{rbuf} >> member, if
827     you want.
828 elmex 1.1
829 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
830     C<push_read> or C<unshift_read> methods are used. The other read methods
831     automatically manage the read buffer.
832 elmex 1.1
833     =cut
834    
835 elmex 1.2 sub rbuf : lvalue {
836 root 1.8 $_[0]{rbuf}
837 elmex 1.2 }
838 elmex 1.1
839 root 1.8 =item $handle->push_read ($cb)
840    
841     =item $handle->unshift_read ($cb)
842    
843     Append the given callback to the end of the queue (C<push_read>) or
844     prepend it (C<unshift_read>).
845    
846     The callback is called each time some additional read data arrives.
847 elmex 1.1
848 elmex 1.20 It must check whether enough data is in the read buffer already.
849 elmex 1.1
850 root 1.8 If not enough data is available, it must return the empty list or a false
851     value, in which case it will be called repeatedly until enough data is
852     available (or an error condition is detected).
853    
854     If enough data was available, then the callback must remove all data it is
855     interested in (which can be none at all) and return a true value. After returning
856     true, it will be removed from the queue.
857 elmex 1.1
858     =cut
859    
860 root 1.30 our %RH;
861    
862     sub register_read_type($$) {
863     $RH{$_[0]} = $_[1];
864     }
865    
866 root 1.8 sub push_read {
867 root 1.28 my $self = shift;
868     my $cb = pop;
869    
870     if (@_) {
871     my $type = shift;
872    
873     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
874     ->($self, $cb, @_);
875     }
876 elmex 1.1
877 root 1.38 push @{ $self->{_queue} }, $cb;
878 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
879 elmex 1.1 }
880    
881 root 1.8 sub unshift_read {
882 root 1.28 my $self = shift;
883     my $cb = pop;
884    
885     if (@_) {
886     my $type = shift;
887    
888     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
889     ->($self, $cb, @_);
890     }
891    
892 root 1.8
893 root 1.38 unshift @{ $self->{_queue} }, $cb;
894 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
895 root 1.8 }
896 elmex 1.1
897 root 1.28 =item $handle->push_read (type => @args, $cb)
898 elmex 1.1
899 root 1.28 =item $handle->unshift_read (type => @args, $cb)
900 elmex 1.1
901 root 1.28 Instead of providing a callback that parses the data itself you can chose
902     between a number of predefined parsing formats, for chunks of data, lines
903     etc.
904 elmex 1.1
905 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
906     drop by and tell us):
907 root 1.28
908     =over 4
909    
910 root 1.40 =item chunk => $octets, $cb->($handle, $data)
911 root 1.28
912     Invoke the callback only once C<$octets> bytes have been read. Pass the
913     data read to the callback. The callback will never be called with less
914     data.
915    
916     Example: read 2 bytes.
917    
918     $handle->push_read (chunk => 2, sub {
919     warn "yay ", unpack "H*", $_[1];
920     });
921 elmex 1.1
922     =cut
923    
924 root 1.28 register_read_type chunk => sub {
925     my ($self, $cb, $len) = @_;
926 elmex 1.1
927 root 1.8 sub {
928     $len <= length $_[0]{rbuf} or return;
929 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
930 root 1.8 1
931     }
932 root 1.28 };
933 root 1.8
934 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
935 elmex 1.1
936 root 1.8 The callback will be called only once a full line (including the end of
937     line marker, C<$eol>) has been read. This line (excluding the end of line
938     marker) will be passed to the callback as second argument (C<$line>), and
939     the end of line marker as the third argument (C<$eol>).
940 elmex 1.1
941 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
942     will be interpreted as a fixed record end marker, or it can be a regex
943     object (e.g. created by C<qr>), in which case it is interpreted as a
944     regular expression.
945 elmex 1.1
946 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
947     undef), then C<qr|\015?\012|> is used (which is good for most internet
948     protocols).
949 elmex 1.1
950 root 1.8 Partial lines at the end of the stream will never be returned, as they are
951     not marked by the end of line marker.
952 elmex 1.1
953 root 1.8 =cut
954 elmex 1.1
955 root 1.28 register_read_type line => sub {
956     my ($self, $cb, $eol) = @_;
957 elmex 1.1
958 root 1.76 if (@_ < 3) {
959     # this is more than twice as fast as the generic code below
960     sub {
961     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
962 elmex 1.1
963 root 1.76 $cb->($_[0], $1, $2);
964     1
965     }
966     } else {
967     $eol = quotemeta $eol unless ref $eol;
968     $eol = qr|^(.*?)($eol)|s;
969    
970     sub {
971     $_[0]{rbuf} =~ s/$eol// or return;
972 elmex 1.1
973 root 1.76 $cb->($_[0], $1, $2);
974     1
975     }
976 root 1.8 }
977 root 1.28 };
978 elmex 1.1
979 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
980 root 1.36
981     Makes a regex match against the regex object C<$accept> and returns
982     everything up to and including the match.
983    
984     Example: read a single line terminated by '\n'.
985    
986     $handle->push_read (regex => qr<\n>, sub { ... });
987    
988     If C<$reject> is given and not undef, then it determines when the data is
989     to be rejected: it is matched against the data when the C<$accept> regex
990     does not match and generates an C<EBADMSG> error when it matches. This is
991     useful to quickly reject wrong data (to avoid waiting for a timeout or a
992     receive buffer overflow).
993    
994     Example: expect a single decimal number followed by whitespace, reject
995     anything else (not the use of an anchor).
996    
997     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
998    
999     If C<$skip> is given and not C<undef>, then it will be matched against
1000     the receive buffer when neither C<$accept> nor C<$reject> match,
1001     and everything preceding and including the match will be accepted
1002     unconditionally. This is useful to skip large amounts of data that you
1003     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1004     have to start matching from the beginning. This is purely an optimisation
1005     and is usually worth only when you expect more than a few kilobytes.
1006    
1007     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1008     expect the header to be very large (it isn't in practise, but...), we use
1009     a skip regex to skip initial portions. The skip regex is tricky in that
1010     it only accepts something not ending in either \015 or \012, as these are
1011     required for the accept regex.
1012    
1013     $handle->push_read (regex =>
1014     qr<\015\012\015\012>,
1015     undef, # no reject
1016     qr<^.*[^\015\012]>,
1017     sub { ... });
1018    
1019     =cut
1020    
1021     register_read_type regex => sub {
1022     my ($self, $cb, $accept, $reject, $skip) = @_;
1023    
1024     my $data;
1025     my $rbuf = \$self->{rbuf};
1026    
1027     sub {
1028     # accept
1029     if ($$rbuf =~ $accept) {
1030     $data .= substr $$rbuf, 0, $+[0], "";
1031     $cb->($self, $data);
1032     return 1;
1033     }
1034    
1035     # reject
1036     if ($reject && $$rbuf =~ $reject) {
1037 root 1.52 $self->_error (&Errno::EBADMSG);
1038 root 1.36 }
1039    
1040     # skip
1041     if ($skip && $$rbuf =~ $skip) {
1042     $data .= substr $$rbuf, 0, $+[0], "";
1043     }
1044    
1045     ()
1046     }
1047     };
1048    
1049 root 1.61 =item netstring => $cb->($handle, $string)
1050    
1051     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1052    
1053     Throws an error with C<$!> set to EBADMSG on format violations.
1054    
1055     =cut
1056    
1057     register_read_type netstring => sub {
1058     my ($self, $cb) = @_;
1059    
1060     sub {
1061     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1062     if ($_[0]{rbuf} =~ /[^0-9]/) {
1063     $self->_error (&Errno::EBADMSG);
1064     }
1065     return;
1066     }
1067    
1068     my $len = $1;
1069    
1070     $self->unshift_read (chunk => $len, sub {
1071     my $string = $_[1];
1072     $_[0]->unshift_read (chunk => 1, sub {
1073     if ($_[1] eq ",") {
1074     $cb->($_[0], $string);
1075     } else {
1076     $self->_error (&Errno::EBADMSG);
1077     }
1078     });
1079     });
1080    
1081     1
1082     }
1083     };
1084    
1085     =item packstring => $format, $cb->($handle, $string)
1086    
1087     An octet string prefixed with an encoded length. The encoding C<$format>
1088     uses the same format as a Perl C<pack> format, but must specify a single
1089     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1090     optional C<!>, C<< < >> or C<< > >> modifier).
1091    
1092     DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>.
1093    
1094     Example: read a block of data prefixed by its length in BER-encoded
1095     format (very efficient).
1096    
1097     $handle->push_read (packstring => "w", sub {
1098     my ($handle, $data) = @_;
1099     });
1100    
1101     =cut
1102    
1103     register_read_type packstring => sub {
1104     my ($self, $cb, $format) = @_;
1105    
1106     sub {
1107     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1108 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1109 root 1.61 or return;
1110    
1111 root 1.77 $format = length pack $format, $len;
1112 root 1.61
1113 root 1.77 # bypass unshift if we already have the remaining chunk
1114     if ($format + $len <= length $_[0]{rbuf}) {
1115     my $data = substr $_[0]{rbuf}, $format, $len;
1116     substr $_[0]{rbuf}, 0, $format + $len, "";
1117     $cb->($_[0], $data);
1118     } else {
1119     # remove prefix
1120     substr $_[0]{rbuf}, 0, $format, "";
1121    
1122     # read remaining chunk
1123     $_[0]->unshift_read (chunk => $len, $cb);
1124     }
1125 root 1.61
1126     1
1127     }
1128     };
1129    
1130 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1131    
1132     Reads a JSON object or array, decodes it and passes it to the callback.
1133    
1134     If a C<json> object was passed to the constructor, then that will be used
1135     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1136    
1137     This read type uses the incremental parser available with JSON version
1138     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1139     dependency on your own: this module will load the JSON module, but
1140     AnyEvent does not depend on it itself.
1141    
1142     Since JSON texts are fully self-delimiting, the C<json> read and write
1143 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1144     the C<json> write type description, above, for an actual example.
1145 root 1.40
1146     =cut
1147    
1148     register_read_type json => sub {
1149 root 1.63 my ($self, $cb) = @_;
1150 root 1.40
1151     require JSON;
1152    
1153     my $data;
1154     my $rbuf = \$self->{rbuf};
1155    
1156 root 1.41 my $json = $self->{json} ||= JSON->new->utf8;
1157 root 1.40
1158     sub {
1159     my $ref = $json->incr_parse ($self->{rbuf});
1160    
1161     if ($ref) {
1162     $self->{rbuf} = $json->incr_text;
1163     $json->incr_text = "";
1164     $cb->($self, $ref);
1165    
1166     1
1167     } else {
1168     $self->{rbuf} = "";
1169     ()
1170     }
1171     }
1172     };
1173    
1174 root 1.63 =item storable => $cb->($handle, $ref)
1175    
1176     Deserialises a L<Storable> frozen representation as written by the
1177     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1178     data).
1179    
1180     Raises C<EBADMSG> error if the data could not be decoded.
1181    
1182     =cut
1183    
1184     register_read_type storable => sub {
1185     my ($self, $cb) = @_;
1186    
1187     require Storable;
1188    
1189     sub {
1190     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1191 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1192 root 1.63 or return;
1193    
1194 root 1.77 my $format = length pack "w", $len;
1195 root 1.63
1196 root 1.77 # bypass unshift if we already have the remaining chunk
1197     if ($format + $len <= length $_[0]{rbuf}) {
1198     my $data = substr $_[0]{rbuf}, $format, $len;
1199     substr $_[0]{rbuf}, 0, $format + $len, "";
1200     $cb->($_[0], Storable::thaw ($data));
1201     } else {
1202     # remove prefix
1203     substr $_[0]{rbuf}, 0, $format, "";
1204    
1205     # read remaining chunk
1206     $_[0]->unshift_read (chunk => $len, sub {
1207     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1208     $cb->($_[0], $ref);
1209     } else {
1210     $self->_error (&Errno::EBADMSG);
1211     }
1212     });
1213     }
1214    
1215     1
1216 root 1.63 }
1217     };
1218    
1219 root 1.28 =back
1220    
1221 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1222 root 1.30
1223     This function (not method) lets you add your own types to C<push_read>.
1224    
1225     Whenever the given C<type> is used, C<push_read> will invoke the code
1226     reference with the handle object, the callback and the remaining
1227     arguments.
1228    
1229     The code reference is supposed to return a callback (usually a closure)
1230     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1231    
1232     It should invoke the passed callback when it is done reading (remember to
1233 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1234 root 1.30
1235     Note that this is a function, and all types registered this way will be
1236     global, so try to use unique names.
1237    
1238     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1239     search for C<register_read_type>)).
1240    
1241 root 1.10 =item $handle->stop_read
1242    
1243     =item $handle->start_read
1244    
1245 root 1.18 In rare cases you actually do not want to read anything from the
1246 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1247 root 1.22 any queued callbacks will be executed then. To start reading again, call
1248 root 1.10 C<start_read>.
1249    
1250 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1251     you change the C<on_read> callback or push/unshift a read callback, and it
1252     will automatically C<stop_read> for you when neither C<on_read> is set nor
1253     there are any read requests in the queue.
1254    
1255 root 1.10 =cut
1256    
1257     sub stop_read {
1258     my ($self) = @_;
1259 elmex 1.1
1260 root 1.38 delete $self->{_rw};
1261 root 1.8 }
1262 elmex 1.1
1263 root 1.10 sub start_read {
1264     my ($self) = @_;
1265    
1266 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1267 root 1.10 Scalar::Util::weaken $self;
1268    
1269 root 1.38 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1270 root 1.17 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
1271     my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1272 root 1.10
1273     if ($len > 0) {
1274 root 1.44 $self->{_activity} = AnyEvent->now;
1275 root 1.43
1276 root 1.17 $self->{filter_r}
1277 root 1.48 ? $self->{filter_r}($self, $rbuf)
1278 root 1.59 : $self->{_in_drain} || $self->_drain_rbuf;
1279 root 1.10
1280     } elsif (defined $len) {
1281 root 1.38 delete $self->{_rw};
1282     $self->{_eof} = 1;
1283 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1284 root 1.10
1285 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1286 root 1.52 return $self->_error ($!, 1);
1287 root 1.10 }
1288     });
1289     }
1290 elmex 1.1 }
1291    
1292 root 1.19 sub _dotls {
1293     my ($self) = @_;
1294    
1295 root 1.56 my $buf;
1296    
1297 root 1.38 if (length $self->{_tls_wbuf}) {
1298     while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1299     substr $self->{_tls_wbuf}, 0, $len, "";
1300 root 1.22 }
1301 root 1.19 }
1302    
1303 root 1.56 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1304 root 1.19 $self->{wbuf} .= $buf;
1305     $self->_drain_wbuf;
1306     }
1307    
1308 root 1.56 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1309     if (length $buf) {
1310     $self->{rbuf} .= $buf;
1311 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1312 root 1.56 } else {
1313     # let's treat SSL-eof as we treat normal EOF
1314     $self->{_eof} = 1;
1315     $self->_shutdown;
1316     return;
1317     }
1318 root 1.23 }
1319    
1320 root 1.24 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1321    
1322     if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1323 root 1.23 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1324 root 1.52 return $self->_error ($!, 1);
1325 root 1.23 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1326 root 1.52 return $self->_error (&Errno::EIO, 1);
1327 root 1.19 }
1328 root 1.23
1329     # all others are fine for our purposes
1330 root 1.19 }
1331     }
1332    
1333 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1334    
1335     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1336     object is created, you can also do that at a later time by calling
1337     C<starttls>.
1338    
1339     The first argument is the same as the C<tls> constructor argument (either
1340     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1341    
1342     The second argument is the optional C<Net::SSLeay::CTX> object that is
1343     used when AnyEvent::Handle has to create its own TLS connection object.
1344    
1345 root 1.38 The TLS connection object will end up in C<< $handle->{tls} >> after this
1346     call and can be used or changed to your liking. Note that the handshake
1347     might have already started when this function returns.
1348    
1349 root 1.25 =cut
1350    
1351 root 1.19 sub starttls {
1352     my ($self, $ssl, $ctx) = @_;
1353    
1354 root 1.25 $self->stoptls;
1355    
1356 root 1.19 if ($ssl eq "accept") {
1357     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1358     Net::SSLeay::set_accept_state ($ssl);
1359     } elsif ($ssl eq "connect") {
1360     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1361     Net::SSLeay::set_connect_state ($ssl);
1362     }
1363    
1364     $self->{tls} = $ssl;
1365    
1366 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1367     # but the openssl maintainers basically said: "trust us, it just works".
1368     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1369     # and mismaintained ssleay-module doesn't even offer them).
1370 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1371 root 1.21 Net::SSLeay::CTX_set_mode ($self->{tls},
1372 root 1.34 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1373     | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1374 root 1.21
1375 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1376     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1377 root 1.19
1378 root 1.38 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1379 root 1.19
1380     $self->{filter_w} = sub {
1381 root 1.38 $_[0]{_tls_wbuf} .= ${$_[1]};
1382 root 1.19 &_dotls;
1383     };
1384     $self->{filter_r} = sub {
1385 root 1.38 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1386 root 1.19 &_dotls;
1387     };
1388     }
1389    
1390 root 1.25 =item $handle->stoptls
1391    
1392     Destroys the SSL connection, if any. Partial read or write data will be
1393     lost.
1394    
1395     =cut
1396    
1397     sub stoptls {
1398     my ($self) = @_;
1399    
1400     Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
1401 root 1.38
1402     delete $self->{_rbio};
1403     delete $self->{_wbio};
1404     delete $self->{_tls_wbuf};
1405 root 1.25 delete $self->{filter_r};
1406     delete $self->{filter_w};
1407     }
1408    
1409 root 1.19 sub DESTROY {
1410     my $self = shift;
1411    
1412 root 1.25 $self->stoptls;
1413 root 1.62
1414     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1415    
1416     if ($linger && length $self->{wbuf}) {
1417     my $fh = delete $self->{fh};
1418     my $wbuf = delete $self->{wbuf};
1419    
1420     my @linger;
1421    
1422     push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1423     my $len = syswrite $fh, $wbuf, length $wbuf;
1424    
1425     if ($len > 0) {
1426     substr $wbuf, 0, $len, "";
1427     } else {
1428     @linger = (); # end
1429     }
1430     });
1431     push @linger, AnyEvent->timer (after => $linger, cb => sub {
1432     @linger = ();
1433     });
1434     }
1435 root 1.19 }
1436    
1437     =item AnyEvent::Handle::TLS_CTX
1438    
1439     This function creates and returns the Net::SSLeay::CTX object used by
1440     default for TLS mode.
1441    
1442     The context is created like this:
1443    
1444     Net::SSLeay::load_error_strings;
1445     Net::SSLeay::SSLeay_add_ssl_algorithms;
1446     Net::SSLeay::randomize;
1447    
1448     my $CTX = Net::SSLeay::CTX_new;
1449    
1450     Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1451    
1452     =cut
1453    
1454     our $TLS_CTX;
1455    
1456     sub TLS_CTX() {
1457     $TLS_CTX || do {
1458     require Net::SSLeay;
1459    
1460     Net::SSLeay::load_error_strings ();
1461     Net::SSLeay::SSLeay_add_ssl_algorithms ();
1462     Net::SSLeay::randomize ();
1463    
1464     $TLS_CTX = Net::SSLeay::CTX_new ();
1465    
1466     Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1467    
1468     $TLS_CTX
1469     }
1470     }
1471    
1472 elmex 1.1 =back
1473    
1474 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
1475    
1476     In many cases, you might want to subclass AnyEvent::Handle.
1477    
1478     To make this easier, a given version of AnyEvent::Handle uses these
1479     conventions:
1480    
1481     =over 4
1482    
1483     =item * all constructor arguments become object members.
1484    
1485     At least initially, when you pass a C<tls>-argument to the constructor it
1486 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
1487 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
1488    
1489     =item * other object member names are prefixed with an C<_>.
1490    
1491     All object members not explicitly documented (internal use) are prefixed
1492     with an underscore character, so the remaining non-C<_>-namespace is free
1493     for use for subclasses.
1494    
1495     =item * all members not documented here and not prefixed with an underscore
1496     are free to use in subclasses.
1497    
1498     Of course, new versions of AnyEvent::Handle may introduce more "public"
1499     member variables, but thats just life, at least it is documented.
1500    
1501     =back
1502    
1503 elmex 1.1 =head1 AUTHOR
1504    
1505 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1506 elmex 1.1
1507     =cut
1508    
1509     1; # End of AnyEvent::Handle