ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.87
Committed: Thu Aug 21 20:52:39 2008 UTC (15 years, 9 months ago) by root
Branch: MAIN
Changes since 1.86: +8 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 package AnyEvent::Handle;
2    
3 elmex 1.6 no warnings;
4 root 1.79 use strict qw(subs vars);
5 elmex 1.1
6 root 1.8 use AnyEvent ();
7 root 1.42 use AnyEvent::Util qw(WSAEWOULDBLOCK);
8 root 1.8 use Scalar::Util ();
9     use Carp ();
10     use Fcntl ();
11 root 1.43 use Errno qw(EAGAIN EINTR);
12 elmex 1.1
13     =head1 NAME
14    
15 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 elmex 1.1
17     =cut
18    
19 root 1.82 our $VERSION = 4.232;
20 elmex 1.1
21     =head1 SYNOPSIS
22    
23     use AnyEvent;
24     use AnyEvent::Handle;
25    
26     my $cv = AnyEvent->condvar;
27    
28 root 1.31 my $handle =
29 elmex 1.2 AnyEvent::Handle->new (
30     fh => \*STDIN,
31     on_eof => sub {
32     $cv->broadcast;
33     },
34     );
35    
36 root 1.31 # send some request line
37     $handle->push_write ("getinfo\015\012");
38    
39     # read the response line
40     $handle->push_read (line => sub {
41     my ($handle, $line) = @_;
42     warn "read line <$line>\n";
43     $cv->send;
44     });
45    
46     $cv->recv;
47 elmex 1.1
48     =head1 DESCRIPTION
49    
50 root 1.8 This module is a helper module to make it easier to do event-based I/O on
51 elmex 1.13 filehandles. For utility functions for doing non-blocking connects and accepts
52     on sockets see L<AnyEvent::Util>.
53 root 1.8
54 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
55     AnyEvent::Handle examples.
56    
57 root 1.8 In the following, when the documentation refers to of "bytes" then this
58     means characters. As sysread and syswrite are used for all I/O, their
59     treatment of characters applies to this module as well.
60 elmex 1.1
61 root 1.8 All callbacks will be invoked with the handle object as their first
62     argument.
63 elmex 1.1
64     =head1 METHODS
65    
66     =over 4
67    
68     =item B<new (%args)>
69    
70 root 1.8 The constructor supports these arguments (all as key => value pairs).
71 elmex 1.1
72     =over 4
73    
74 root 1.8 =item fh => $filehandle [MANDATORY]
75 elmex 1.1
76     The filehandle this L<AnyEvent::Handle> object will operate on.
77    
78 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
79     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80     that mode.
81 root 1.8
82 root 1.40 =item on_eof => $cb->($handle)
83 root 1.10
84 root 1.74 Set the callback to be called when an end-of-file condition is detected,
85 root 1.52 i.e. in the case of a socket, when the other side has closed the
86     connection cleanly.
87 root 1.8
88 root 1.82 For sockets, this just means that the other side has stopped sending data,
89     you can still try to write data, and, in fact, one can return from the eof
90     callback and continue writing data, as only the read part has been shut
91     down.
92    
93 root 1.80 While not mandatory, it is I<highly> recommended to set an eof callback,
94 root 1.16 otherwise you might end up with a closed socket while you are still
95     waiting for data.
96    
97 root 1.80 If an EOF condition has been detected but no C<on_eof> callback has been
98     set, then a fatal error will be raised with C<$!> set to <0>.
99    
100 root 1.52 =item on_error => $cb->($handle, $fatal)
101 root 1.10
102 root 1.52 This is the error callback, which is called when, well, some error
103     occured, such as not being able to resolve the hostname, failure to
104     connect or a read error.
105    
106     Some errors are fatal (which is indicated by C<$fatal> being true). On
107 root 1.82 fatal errors the handle object will be shut down and will not be usable
108     (but you are free to look at the current C< ->rbuf >). Examples of fatal
109     errors are an EOF condition with active (but unsatisifable) read watchers
110     (C<EPIPE>) or I/O errors.
111    
112     Non-fatal errors can be retried by simply returning, but it is recommended
113     to simply ignore this parameter and instead abondon the handle object
114     when this callback is invoked. Examples of non-fatal errors are timeouts
115     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
116 root 1.8
117 root 1.10 On callback entrance, the value of C<$!> contains the operating system
118 root 1.43 error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
119 root 1.8
120 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
121     you will not be notified of errors otherwise. The default simply calls
122 root 1.52 C<croak>.
123 root 1.8
124 root 1.40 =item on_read => $cb->($handle)
125 root 1.8
126     This sets the default read callback, which is called when data arrives
127 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
128     callback will only be called when at least one octet of data is in the
129     read buffer).
130 root 1.8
131     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
132 root 1.40 method or access the C<$handle->{rbuf}> member directly.
133 root 1.8
134     When an EOF condition is detected then AnyEvent::Handle will first try to
135     feed all the remaining data to the queued callbacks and C<on_read> before
136     calling the C<on_eof> callback. If no progress can be made, then a fatal
137     error will be raised (with C<$!> set to C<EPIPE>).
138 elmex 1.1
139 root 1.40 =item on_drain => $cb->($handle)
140 elmex 1.1
141 root 1.8 This sets the callback that is called when the write buffer becomes empty
142     (or when the callback is set and the buffer is empty already).
143 elmex 1.1
144 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
145 elmex 1.2
146 root 1.69 This callback is useful when you don't want to put all of your write data
147     into the queue at once, for example, when you want to write the contents
148     of some file to the socket you might not want to read the whole file into
149     memory and push it into the queue, but instead only read more data from
150     the file when the write queue becomes empty.
151    
152 root 1.43 =item timeout => $fractional_seconds
153    
154     If non-zero, then this enables an "inactivity" timeout: whenever this many
155     seconds pass without a successful read or write on the underlying file
156     handle, the C<on_timeout> callback will be invoked (and if that one is
157 root 1.45 missing, an C<ETIMEDOUT> error will be raised).
158 root 1.43
159     Note that timeout processing is also active when you currently do not have
160     any outstanding read or write requests: If you plan to keep the connection
161     idle then you should disable the timout temporarily or ignore the timeout
162     in the C<on_timeout> callback.
163    
164     Zero (the default) disables this timeout.
165    
166     =item on_timeout => $cb->($handle)
167    
168     Called whenever the inactivity timeout passes. If you return from this
169     callback, then the timeout will be reset as if some activity had happened,
170     so this condition is not fatal in any way.
171    
172 root 1.8 =item rbuf_max => <bytes>
173 elmex 1.2
174 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
175     when the read buffer ever (strictly) exceeds this size. This is useful to
176     avoid denial-of-service attacks.
177 elmex 1.2
178 root 1.8 For example, a server accepting connections from untrusted sources should
179     be configured to accept only so-and-so much data that it cannot act on
180     (for example, when expecting a line, an attacker could send an unlimited
181     amount of data without a callback ever being called as long as the line
182     isn't finished).
183 elmex 1.2
184 root 1.70 =item autocork => <boolean>
185    
186     When disabled (the default), then C<push_write> will try to immediately
187     write the data to the handle if possible. This avoids having to register
188     a write watcher and wait for the next event loop iteration, but can be
189     inefficient if you write multiple small chunks (this disadvantage is
190     usually avoided by your kernel's nagle algorithm, see C<low_delay>).
191    
192     When enabled, then writes will always be queued till the next event loop
193     iteration. This is efficient when you do many small writes per iteration,
194     but less efficient when you do a single write only.
195    
196     =item no_delay => <boolean>
197    
198     When doing small writes on sockets, your operating system kernel might
199     wait a bit for more data before actually sending it out. This is called
200     the Nagle algorithm, and usually it is beneficial.
201    
202     In some situations you want as low a delay as possible, which cna be
203     accomplishd by setting this option to true.
204    
205     The default is your opertaing system's default behaviour, this option
206     explicitly enables or disables it, if possible.
207    
208 root 1.8 =item read_size => <bytes>
209 elmex 1.2
210 root 1.8 The default read block size (the amount of bytes this module will try to read
211 root 1.46 during each (loop iteration). Default: C<8192>.
212 root 1.8
213     =item low_water_mark => <bytes>
214    
215     Sets the amount of bytes (default: C<0>) that make up an "empty" write
216     buffer: If the write reaches this size or gets even samller it is
217     considered empty.
218 elmex 1.2
219 root 1.62 =item linger => <seconds>
220    
221     If non-zero (default: C<3600>), then the destructor of the
222     AnyEvent::Handle object will check wether there is still outstanding write
223     data and will install a watcher that will write out this data. No errors
224     will be reported (this mostly matches how the operating system treats
225     outstanding data at socket close time).
226    
227     This will not work for partial TLS data that could not yet been
228     encoded. This data will be lost.
229    
230 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
231    
232 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
233     AnyEvent will start a TLS handshake and will transparently encrypt/decrypt
234 root 1.19 data.
235    
236 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
237     automatically when you try to create a TLS handle).
238    
239 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
240     C<accept>, and for the TLS client side of a connection, use C<connect>
241     mode.
242 root 1.19
243     You can also provide your own TLS connection object, but you have
244     to make sure that you call either C<Net::SSLeay::set_connect_state>
245     or C<Net::SSLeay::set_accept_state> on it before you pass it to
246     AnyEvent::Handle.
247    
248 root 1.85 See the C<starttls> method for when need to start TLS negotiation later.
249 root 1.26
250 root 1.19 =item tls_ctx => $ssl_ctx
251    
252     Use the given Net::SSLeay::CTX object to create the new TLS connection
253     (unless a connection object was specified directly). If this parameter is
254     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
255    
256 root 1.40 =item json => JSON or JSON::XS object
257    
258     This is the json coder object used by the C<json> read and write types.
259    
260 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
261 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
262     texts.
263 root 1.40
264     Note that you are responsible to depend on the JSON module if you want to
265     use this functionality, as AnyEvent does not have a dependency itself.
266    
267 root 1.38 =item filter_r => $cb
268    
269     =item filter_w => $cb
270    
271 root 1.87 These exist, but are undocumented at this time. (They are used internally
272     by the TLS code).
273 root 1.38
274 elmex 1.1 =back
275    
276     =cut
277    
278     sub new {
279 root 1.8 my $class = shift;
280    
281     my $self = bless { @_ }, $class;
282    
283     $self->{fh} or Carp::croak "mandatory argument fh is missing";
284    
285     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
286 elmex 1.1
287 root 1.19 if ($self->{tls}) {
288     require Net::SSLeay;
289     $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
290     }
291    
292 root 1.44 $self->{_activity} = AnyEvent->now;
293 root 1.43 $self->_timeout;
294 elmex 1.1
295 root 1.70 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
296     $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
297 root 1.10
298 root 1.66 $self->start_read
299 root 1.67 if $self->{on_read};
300 root 1.66
301 root 1.8 $self
302     }
303 elmex 1.2
304 root 1.8 sub _shutdown {
305     my ($self) = @_;
306 elmex 1.2
307 root 1.46 delete $self->{_tw};
308 root 1.38 delete $self->{_rw};
309     delete $self->{_ww};
310 root 1.8 delete $self->{fh};
311 root 1.52
312     $self->stoptls;
313 root 1.82
314     delete $self->{on_read};
315     delete $self->{_queue};
316 root 1.8 }
317    
318 root 1.52 sub _error {
319     my ($self, $errno, $fatal) = @_;
320 root 1.8
321 root 1.52 $self->_shutdown
322     if $fatal;
323 elmex 1.1
324 root 1.52 $! = $errno;
325 root 1.37
326 root 1.52 if ($self->{on_error}) {
327     $self->{on_error}($self, $fatal);
328     } else {
329     Carp::croak "AnyEvent::Handle uncaught error: $!";
330     }
331 elmex 1.1 }
332    
333 root 1.8 =item $fh = $handle->fh
334 elmex 1.1
335 root 1.22 This method returns the file handle of the L<AnyEvent::Handle> object.
336 elmex 1.1
337     =cut
338    
339 root 1.38 sub fh { $_[0]{fh} }
340 elmex 1.1
341 root 1.8 =item $handle->on_error ($cb)
342 elmex 1.1
343 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
344 elmex 1.1
345 root 1.8 =cut
346    
347     sub on_error {
348     $_[0]{on_error} = $_[1];
349     }
350    
351     =item $handle->on_eof ($cb)
352    
353     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
354 elmex 1.1
355     =cut
356    
357 root 1.8 sub on_eof {
358     $_[0]{on_eof} = $_[1];
359     }
360    
361 root 1.43 =item $handle->on_timeout ($cb)
362    
363     Replace the current C<on_timeout> callback, or disables the callback
364     (but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
365     argument.
366    
367     =cut
368    
369     sub on_timeout {
370     $_[0]{on_timeout} = $_[1];
371     }
372    
373 root 1.70 =item $handle->autocork ($boolean)
374    
375     Enables or disables the current autocork behaviour (see C<autocork>
376     constructor argument).
377    
378     =cut
379    
380     =item $handle->no_delay ($boolean)
381    
382     Enables or disables the C<no_delay> setting (see constructor argument of
383     the same name for details).
384    
385     =cut
386    
387     sub no_delay {
388     $_[0]{no_delay} = $_[1];
389    
390     eval {
391     local $SIG{__DIE__};
392     setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
393     };
394     }
395    
396 root 1.43 #############################################################################
397    
398     =item $handle->timeout ($seconds)
399    
400     Configures (or disables) the inactivity timeout.
401    
402     =cut
403    
404     sub timeout {
405     my ($self, $timeout) = @_;
406    
407     $self->{timeout} = $timeout;
408     $self->_timeout;
409     }
410    
411     # reset the timeout watcher, as neccessary
412     # also check for time-outs
413     sub _timeout {
414     my ($self) = @_;
415    
416     if ($self->{timeout}) {
417 root 1.44 my $NOW = AnyEvent->now;
418 root 1.43
419     # when would the timeout trigger?
420     my $after = $self->{_activity} + $self->{timeout} - $NOW;
421    
422     # now or in the past already?
423     if ($after <= 0) {
424     $self->{_activity} = $NOW;
425    
426     if ($self->{on_timeout}) {
427 root 1.48 $self->{on_timeout}($self);
428 root 1.43 } else {
429 root 1.52 $self->_error (&Errno::ETIMEDOUT);
430 root 1.43 }
431    
432 root 1.56 # callback could have changed timeout value, optimise
433 root 1.43 return unless $self->{timeout};
434    
435     # calculate new after
436     $after = $self->{timeout};
437     }
438    
439     Scalar::Util::weaken $self;
440 root 1.56 return unless $self; # ->error could have destroyed $self
441 root 1.43
442     $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
443     delete $self->{_tw};
444     $self->_timeout;
445     });
446     } else {
447     delete $self->{_tw};
448     }
449     }
450    
451 root 1.9 #############################################################################
452    
453     =back
454    
455     =head2 WRITE QUEUE
456    
457     AnyEvent::Handle manages two queues per handle, one for writing and one
458     for reading.
459    
460     The write queue is very simple: you can add data to its end, and
461     AnyEvent::Handle will automatically try to get rid of it for you.
462    
463 elmex 1.20 When data could be written and the write buffer is shorter then the low
464 root 1.9 water mark, the C<on_drain> callback will be invoked.
465    
466     =over 4
467    
468 root 1.8 =item $handle->on_drain ($cb)
469    
470     Sets the C<on_drain> callback or clears it (see the description of
471     C<on_drain> in the constructor).
472    
473     =cut
474    
475     sub on_drain {
476 elmex 1.1 my ($self, $cb) = @_;
477    
478 root 1.8 $self->{on_drain} = $cb;
479    
480     $cb->($self)
481     if $cb && $self->{low_water_mark} >= length $self->{wbuf};
482     }
483    
484     =item $handle->push_write ($data)
485    
486     Queues the given scalar to be written. You can push as much data as you
487     want (only limited by the available memory), as C<AnyEvent::Handle>
488     buffers it independently of the kernel.
489    
490     =cut
491    
492 root 1.17 sub _drain_wbuf {
493     my ($self) = @_;
494 root 1.8
495 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
496 root 1.35
497 root 1.8 Scalar::Util::weaken $self;
498 root 1.35
499 root 1.8 my $cb = sub {
500     my $len = syswrite $self->{fh}, $self->{wbuf};
501    
502 root 1.29 if ($len >= 0) {
503 root 1.8 substr $self->{wbuf}, 0, $len, "";
504    
505 root 1.44 $self->{_activity} = AnyEvent->now;
506 root 1.43
507 root 1.8 $self->{on_drain}($self)
508     if $self->{low_water_mark} >= length $self->{wbuf}
509     && $self->{on_drain};
510    
511 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
512 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
513 root 1.52 $self->_error ($!, 1);
514 elmex 1.1 }
515 root 1.8 };
516    
517 root 1.35 # try to write data immediately
518 root 1.70 $cb->() unless $self->{autocork};
519 root 1.8
520 root 1.35 # if still data left in wbuf, we need to poll
521 root 1.38 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
522 root 1.35 if length $self->{wbuf};
523 root 1.8 };
524     }
525    
526 root 1.30 our %WH;
527    
528     sub register_write_type($$) {
529     $WH{$_[0]} = $_[1];
530     }
531    
532 root 1.17 sub push_write {
533     my $self = shift;
534    
535 root 1.29 if (@_ > 1) {
536     my $type = shift;
537    
538     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
539     ->($self, @_);
540     }
541    
542 root 1.17 if ($self->{filter_w}) {
543 root 1.48 $self->{filter_w}($self, \$_[0]);
544 root 1.17 } else {
545     $self->{wbuf} .= $_[0];
546     $self->_drain_wbuf;
547     }
548     }
549    
550 root 1.29 =item $handle->push_write (type => @args)
551    
552     Instead of formatting your data yourself, you can also let this module do
553     the job by specifying a type and type-specific arguments.
554    
555 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
556     drop by and tell us):
557 root 1.29
558     =over 4
559    
560     =item netstring => $string
561    
562     Formats the given value as netstring
563     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
564    
565     =cut
566    
567     register_write_type netstring => sub {
568     my ($self, $string) = @_;
569    
570     sprintf "%d:%s,", (length $string), $string
571     };
572    
573 root 1.61 =item packstring => $format, $data
574    
575     An octet string prefixed with an encoded length. The encoding C<$format>
576     uses the same format as a Perl C<pack> format, but must specify a single
577     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
578     optional C<!>, C<< < >> or C<< > >> modifier).
579    
580     =cut
581    
582     register_write_type packstring => sub {
583     my ($self, $format, $string) = @_;
584    
585 root 1.65 pack "$format/a*", $string
586 root 1.61 };
587    
588 root 1.39 =item json => $array_or_hashref
589    
590 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
591     provide your own JSON object, this means it will be encoded to JSON text
592     in UTF-8.
593    
594     JSON objects (and arrays) are self-delimiting, so you can write JSON at
595     one end of a handle and read them at the other end without using any
596     additional framing.
597    
598 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
599     this module doesn't need delimiters after or between JSON texts to be
600     able to read them, many other languages depend on that.
601    
602     A simple RPC protocol that interoperates easily with others is to send
603     JSON arrays (or objects, although arrays are usually the better choice as
604     they mimic how function argument passing works) and a newline after each
605     JSON text:
606    
607     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
608     $handle->push_write ("\012");
609    
610     An AnyEvent::Handle receiver would simply use the C<json> read type and
611     rely on the fact that the newline will be skipped as leading whitespace:
612    
613     $handle->push_read (json => sub { my $array = $_[1]; ... });
614    
615     Other languages could read single lines terminated by a newline and pass
616     this line into their JSON decoder of choice.
617    
618 root 1.40 =cut
619    
620     register_write_type json => sub {
621     my ($self, $ref) = @_;
622    
623     require JSON;
624    
625     $self->{json} ? $self->{json}->encode ($ref)
626     : JSON::encode_json ($ref)
627     };
628    
629 root 1.63 =item storable => $reference
630    
631     Freezes the given reference using L<Storable> and writes it to the
632     handle. Uses the C<nfreeze> format.
633    
634     =cut
635    
636     register_write_type storable => sub {
637     my ($self, $ref) = @_;
638    
639     require Storable;
640    
641 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
642 root 1.63 };
643    
644 root 1.53 =back
645    
646 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
647 root 1.30
648     This function (not method) lets you add your own types to C<push_write>.
649     Whenever the given C<type> is used, C<push_write> will invoke the code
650     reference with the handle object and the remaining arguments.
651 root 1.29
652 root 1.30 The code reference is supposed to return a single octet string that will
653     be appended to the write buffer.
654 root 1.29
655 root 1.30 Note that this is a function, and all types registered this way will be
656     global, so try to use unique names.
657 root 1.29
658 root 1.30 =cut
659 root 1.29
660 root 1.8 #############################################################################
661    
662 root 1.9 =back
663    
664     =head2 READ QUEUE
665    
666     AnyEvent::Handle manages two queues per handle, one for writing and one
667     for reading.
668    
669     The read queue is more complex than the write queue. It can be used in two
670     ways, the "simple" way, using only C<on_read> and the "complex" way, using
671     a queue.
672    
673     In the simple case, you just install an C<on_read> callback and whenever
674     new data arrives, it will be called. You can then remove some data (if
675 root 1.69 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
676     leave the data there if you want to accumulate more (e.g. when only a
677     partial message has been received so far).
678 root 1.9
679     In the more complex case, you want to queue multiple callbacks. In this
680     case, AnyEvent::Handle will call the first queued callback each time new
681 root 1.61 data arrives (also the first time it is queued) and removes it when it has
682     done its job (see C<push_read>, below).
683 root 1.9
684     This way you can, for example, push three line-reads, followed by reading
685     a chunk of data, and AnyEvent::Handle will execute them in order.
686    
687     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
688     the specified number of bytes which give an XML datagram.
689    
690     # in the default state, expect some header bytes
691     $handle->on_read (sub {
692     # some data is here, now queue the length-header-read (4 octets)
693 root 1.52 shift->unshift_read (chunk => 4, sub {
694 root 1.9 # header arrived, decode
695     my $len = unpack "N", $_[1];
696    
697     # now read the payload
698 root 1.52 shift->unshift_read (chunk => $len, sub {
699 root 1.9 my $xml = $_[1];
700     # handle xml
701     });
702     });
703     });
704    
705 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
706     and another line or "ERROR" for the first request that is sent, and 64
707     bytes for the second request. Due to the availability of a queue, we can
708     just pipeline sending both requests and manipulate the queue as necessary
709     in the callbacks.
710    
711     When the first callback is called and sees an "OK" response, it will
712     C<unshift> another line-read. This line-read will be queued I<before> the
713     64-byte chunk callback.
714 root 1.9
715 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
716 root 1.9 $handle->push_write ("request 1\015\012");
717    
718     # we expect "ERROR" or "OK" as response, so push a line read
719 root 1.52 $handle->push_read (line => sub {
720 root 1.9 # if we got an "OK", we have to _prepend_ another line,
721     # so it will be read before the second request reads its 64 bytes
722     # which are already in the queue when this callback is called
723     # we don't do this in case we got an error
724     if ($_[1] eq "OK") {
725 root 1.52 $_[0]->unshift_read (line => sub {
726 root 1.9 my $response = $_[1];
727     ...
728     });
729     }
730     });
731    
732 root 1.69 # request two, simply returns 64 octets
733 root 1.9 $handle->push_write ("request 2\015\012");
734    
735     # simply read 64 bytes, always
736 root 1.52 $handle->push_read (chunk => 64, sub {
737 root 1.9 my $response = $_[1];
738     ...
739     });
740    
741     =over 4
742    
743 root 1.10 =cut
744    
745 root 1.8 sub _drain_rbuf {
746     my ($self) = @_;
747 elmex 1.1
748 root 1.59 local $self->{_in_drain} = 1;
749    
750 root 1.17 if (
751     defined $self->{rbuf_max}
752     && $self->{rbuf_max} < length $self->{rbuf}
753     ) {
754 root 1.82 $self->_error (&Errno::ENOSPC, 1), return;
755 root 1.17 }
756    
757 root 1.59 while () {
758     my $len = length $self->{rbuf};
759 elmex 1.1
760 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
761 root 1.29 unless ($cb->($self)) {
762 root 1.38 if ($self->{_eof}) {
763 root 1.10 # no progress can be made (not enough data and no data forthcoming)
764 root 1.82 $self->_error (&Errno::EPIPE, 1), return;
765 root 1.10 }
766    
767 root 1.38 unshift @{ $self->{_queue} }, $cb;
768 root 1.55 last;
769 root 1.8 }
770     } elsif ($self->{on_read}) {
771 root 1.61 last unless $len;
772    
773 root 1.8 $self->{on_read}($self);
774    
775     if (
776 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
777     && !@{ $self->{_queue} } # and the queue is still empty
778     && $self->{on_read} # but we still have on_read
779 root 1.8 ) {
780 root 1.55 # no further data will arrive
781     # so no progress can be made
782 root 1.82 $self->_error (&Errno::EPIPE, 1), return
783 root 1.55 if $self->{_eof};
784    
785     last; # more data might arrive
786 elmex 1.1 }
787 root 1.8 } else {
788     # read side becomes idle
789 root 1.38 delete $self->{_rw};
790 root 1.55 last;
791 root 1.8 }
792     }
793    
794 root 1.80 if ($self->{_eof}) {
795     if ($self->{on_eof}) {
796     $self->{on_eof}($self)
797     } else {
798     $self->_error (0, 1);
799     }
800     }
801 root 1.55
802     # may need to restart read watcher
803     unless ($self->{_rw}) {
804     $self->start_read
805     if $self->{on_read} || @{ $self->{_queue} };
806     }
807 elmex 1.1 }
808    
809 root 1.8 =item $handle->on_read ($cb)
810 elmex 1.1
811 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
812     the new callback is C<undef>). See the description of C<on_read> in the
813     constructor.
814 elmex 1.1
815 root 1.8 =cut
816    
817     sub on_read {
818     my ($self, $cb) = @_;
819 elmex 1.1
820 root 1.8 $self->{on_read} = $cb;
821 root 1.59 $self->_drain_rbuf if $cb && !$self->{_in_drain};
822 elmex 1.1 }
823    
824 root 1.8 =item $handle->rbuf
825    
826     Returns the read buffer (as a modifiable lvalue).
827 elmex 1.1
828 root 1.8 You can access the read buffer directly as the C<< ->{rbuf} >> member, if
829     you want.
830 elmex 1.1
831 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
832     C<push_read> or C<unshift_read> methods are used. The other read methods
833     automatically manage the read buffer.
834 elmex 1.1
835     =cut
836    
837 elmex 1.2 sub rbuf : lvalue {
838 root 1.8 $_[0]{rbuf}
839 elmex 1.2 }
840 elmex 1.1
841 root 1.8 =item $handle->push_read ($cb)
842    
843     =item $handle->unshift_read ($cb)
844    
845     Append the given callback to the end of the queue (C<push_read>) or
846     prepend it (C<unshift_read>).
847    
848     The callback is called each time some additional read data arrives.
849 elmex 1.1
850 elmex 1.20 It must check whether enough data is in the read buffer already.
851 elmex 1.1
852 root 1.8 If not enough data is available, it must return the empty list or a false
853     value, in which case it will be called repeatedly until enough data is
854     available (or an error condition is detected).
855    
856     If enough data was available, then the callback must remove all data it is
857     interested in (which can be none at all) and return a true value. After returning
858     true, it will be removed from the queue.
859 elmex 1.1
860     =cut
861    
862 root 1.30 our %RH;
863    
864     sub register_read_type($$) {
865     $RH{$_[0]} = $_[1];
866     }
867    
868 root 1.8 sub push_read {
869 root 1.28 my $self = shift;
870     my $cb = pop;
871    
872     if (@_) {
873     my $type = shift;
874    
875     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
876     ->($self, $cb, @_);
877     }
878 elmex 1.1
879 root 1.38 push @{ $self->{_queue} }, $cb;
880 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
881 elmex 1.1 }
882    
883 root 1.8 sub unshift_read {
884 root 1.28 my $self = shift;
885     my $cb = pop;
886    
887     if (@_) {
888     my $type = shift;
889    
890     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
891     ->($self, $cb, @_);
892     }
893    
894 root 1.8
895 root 1.38 unshift @{ $self->{_queue} }, $cb;
896 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
897 root 1.8 }
898 elmex 1.1
899 root 1.28 =item $handle->push_read (type => @args, $cb)
900 elmex 1.1
901 root 1.28 =item $handle->unshift_read (type => @args, $cb)
902 elmex 1.1
903 root 1.28 Instead of providing a callback that parses the data itself you can chose
904     between a number of predefined parsing formats, for chunks of data, lines
905     etc.
906 elmex 1.1
907 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
908     drop by and tell us):
909 root 1.28
910     =over 4
911    
912 root 1.40 =item chunk => $octets, $cb->($handle, $data)
913 root 1.28
914     Invoke the callback only once C<$octets> bytes have been read. Pass the
915     data read to the callback. The callback will never be called with less
916     data.
917    
918     Example: read 2 bytes.
919    
920     $handle->push_read (chunk => 2, sub {
921     warn "yay ", unpack "H*", $_[1];
922     });
923 elmex 1.1
924     =cut
925    
926 root 1.28 register_read_type chunk => sub {
927     my ($self, $cb, $len) = @_;
928 elmex 1.1
929 root 1.8 sub {
930     $len <= length $_[0]{rbuf} or return;
931 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
932 root 1.8 1
933     }
934 root 1.28 };
935 root 1.8
936 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
937 elmex 1.1
938 root 1.8 The callback will be called only once a full line (including the end of
939     line marker, C<$eol>) has been read. This line (excluding the end of line
940     marker) will be passed to the callback as second argument (C<$line>), and
941     the end of line marker as the third argument (C<$eol>).
942 elmex 1.1
943 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
944     will be interpreted as a fixed record end marker, or it can be a regex
945     object (e.g. created by C<qr>), in which case it is interpreted as a
946     regular expression.
947 elmex 1.1
948 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
949     undef), then C<qr|\015?\012|> is used (which is good for most internet
950     protocols).
951 elmex 1.1
952 root 1.8 Partial lines at the end of the stream will never be returned, as they are
953     not marked by the end of line marker.
954 elmex 1.1
955 root 1.8 =cut
956 elmex 1.1
957 root 1.28 register_read_type line => sub {
958     my ($self, $cb, $eol) = @_;
959 elmex 1.1
960 root 1.76 if (@_ < 3) {
961     # this is more than twice as fast as the generic code below
962     sub {
963     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
964 elmex 1.1
965 root 1.76 $cb->($_[0], $1, $2);
966     1
967     }
968     } else {
969     $eol = quotemeta $eol unless ref $eol;
970     $eol = qr|^(.*?)($eol)|s;
971    
972     sub {
973     $_[0]{rbuf} =~ s/$eol// or return;
974 elmex 1.1
975 root 1.76 $cb->($_[0], $1, $2);
976     1
977     }
978 root 1.8 }
979 root 1.28 };
980 elmex 1.1
981 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
982 root 1.36
983     Makes a regex match against the regex object C<$accept> and returns
984     everything up to and including the match.
985    
986     Example: read a single line terminated by '\n'.
987    
988     $handle->push_read (regex => qr<\n>, sub { ... });
989    
990     If C<$reject> is given and not undef, then it determines when the data is
991     to be rejected: it is matched against the data when the C<$accept> regex
992     does not match and generates an C<EBADMSG> error when it matches. This is
993     useful to quickly reject wrong data (to avoid waiting for a timeout or a
994     receive buffer overflow).
995    
996     Example: expect a single decimal number followed by whitespace, reject
997     anything else (not the use of an anchor).
998    
999     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1000    
1001     If C<$skip> is given and not C<undef>, then it will be matched against
1002     the receive buffer when neither C<$accept> nor C<$reject> match,
1003     and everything preceding and including the match will be accepted
1004     unconditionally. This is useful to skip large amounts of data that you
1005     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1006     have to start matching from the beginning. This is purely an optimisation
1007     and is usually worth only when you expect more than a few kilobytes.
1008    
1009     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1010     expect the header to be very large (it isn't in practise, but...), we use
1011     a skip regex to skip initial portions. The skip regex is tricky in that
1012     it only accepts something not ending in either \015 or \012, as these are
1013     required for the accept regex.
1014    
1015     $handle->push_read (regex =>
1016     qr<\015\012\015\012>,
1017     undef, # no reject
1018     qr<^.*[^\015\012]>,
1019     sub { ... });
1020    
1021     =cut
1022    
1023     register_read_type regex => sub {
1024     my ($self, $cb, $accept, $reject, $skip) = @_;
1025    
1026     my $data;
1027     my $rbuf = \$self->{rbuf};
1028    
1029     sub {
1030     # accept
1031     if ($$rbuf =~ $accept) {
1032     $data .= substr $$rbuf, 0, $+[0], "";
1033     $cb->($self, $data);
1034     return 1;
1035     }
1036    
1037     # reject
1038     if ($reject && $$rbuf =~ $reject) {
1039 root 1.52 $self->_error (&Errno::EBADMSG);
1040 root 1.36 }
1041    
1042     # skip
1043     if ($skip && $$rbuf =~ $skip) {
1044     $data .= substr $$rbuf, 0, $+[0], "";
1045     }
1046    
1047     ()
1048     }
1049     };
1050    
1051 root 1.61 =item netstring => $cb->($handle, $string)
1052    
1053     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1054    
1055     Throws an error with C<$!> set to EBADMSG on format violations.
1056    
1057     =cut
1058    
1059     register_read_type netstring => sub {
1060     my ($self, $cb) = @_;
1061    
1062     sub {
1063     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1064     if ($_[0]{rbuf} =~ /[^0-9]/) {
1065     $self->_error (&Errno::EBADMSG);
1066     }
1067     return;
1068     }
1069    
1070     my $len = $1;
1071    
1072     $self->unshift_read (chunk => $len, sub {
1073     my $string = $_[1];
1074     $_[0]->unshift_read (chunk => 1, sub {
1075     if ($_[1] eq ",") {
1076     $cb->($_[0], $string);
1077     } else {
1078     $self->_error (&Errno::EBADMSG);
1079     }
1080     });
1081     });
1082    
1083     1
1084     }
1085     };
1086    
1087     =item packstring => $format, $cb->($handle, $string)
1088    
1089     An octet string prefixed with an encoded length. The encoding C<$format>
1090     uses the same format as a Perl C<pack> format, but must specify a single
1091     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1092     optional C<!>, C<< < >> or C<< > >> modifier).
1093    
1094     DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>.
1095    
1096     Example: read a block of data prefixed by its length in BER-encoded
1097     format (very efficient).
1098    
1099     $handle->push_read (packstring => "w", sub {
1100     my ($handle, $data) = @_;
1101     });
1102    
1103     =cut
1104    
1105     register_read_type packstring => sub {
1106     my ($self, $cb, $format) = @_;
1107    
1108     sub {
1109     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1110 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1111 root 1.61 or return;
1112    
1113 root 1.77 $format = length pack $format, $len;
1114 root 1.61
1115 root 1.77 # bypass unshift if we already have the remaining chunk
1116     if ($format + $len <= length $_[0]{rbuf}) {
1117     my $data = substr $_[0]{rbuf}, $format, $len;
1118     substr $_[0]{rbuf}, 0, $format + $len, "";
1119     $cb->($_[0], $data);
1120     } else {
1121     # remove prefix
1122     substr $_[0]{rbuf}, 0, $format, "";
1123    
1124     # read remaining chunk
1125     $_[0]->unshift_read (chunk => $len, $cb);
1126     }
1127 root 1.61
1128     1
1129     }
1130     };
1131    
1132 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1133    
1134     Reads a JSON object or array, decodes it and passes it to the callback.
1135    
1136     If a C<json> object was passed to the constructor, then that will be used
1137     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1138    
1139     This read type uses the incremental parser available with JSON version
1140     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1141     dependency on your own: this module will load the JSON module, but
1142     AnyEvent does not depend on it itself.
1143    
1144     Since JSON texts are fully self-delimiting, the C<json> read and write
1145 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1146     the C<json> write type description, above, for an actual example.
1147 root 1.40
1148     =cut
1149    
1150     register_read_type json => sub {
1151 root 1.63 my ($self, $cb) = @_;
1152 root 1.40
1153     require JSON;
1154    
1155     my $data;
1156     my $rbuf = \$self->{rbuf};
1157    
1158 root 1.41 my $json = $self->{json} ||= JSON->new->utf8;
1159 root 1.40
1160     sub {
1161     my $ref = $json->incr_parse ($self->{rbuf});
1162    
1163     if ($ref) {
1164     $self->{rbuf} = $json->incr_text;
1165     $json->incr_text = "";
1166     $cb->($self, $ref);
1167    
1168     1
1169     } else {
1170     $self->{rbuf} = "";
1171     ()
1172     }
1173     }
1174     };
1175    
1176 root 1.63 =item storable => $cb->($handle, $ref)
1177    
1178     Deserialises a L<Storable> frozen representation as written by the
1179     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1180     data).
1181    
1182     Raises C<EBADMSG> error if the data could not be decoded.
1183    
1184     =cut
1185    
1186     register_read_type storable => sub {
1187     my ($self, $cb) = @_;
1188    
1189     require Storable;
1190    
1191     sub {
1192     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1193 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1194 root 1.63 or return;
1195    
1196 root 1.77 my $format = length pack "w", $len;
1197 root 1.63
1198 root 1.77 # bypass unshift if we already have the remaining chunk
1199     if ($format + $len <= length $_[0]{rbuf}) {
1200     my $data = substr $_[0]{rbuf}, $format, $len;
1201     substr $_[0]{rbuf}, 0, $format + $len, "";
1202     $cb->($_[0], Storable::thaw ($data));
1203     } else {
1204     # remove prefix
1205     substr $_[0]{rbuf}, 0, $format, "";
1206    
1207     # read remaining chunk
1208     $_[0]->unshift_read (chunk => $len, sub {
1209     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1210     $cb->($_[0], $ref);
1211     } else {
1212     $self->_error (&Errno::EBADMSG);
1213     }
1214     });
1215     }
1216    
1217     1
1218 root 1.63 }
1219     };
1220    
1221 root 1.28 =back
1222    
1223 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1224 root 1.30
1225     This function (not method) lets you add your own types to C<push_read>.
1226    
1227     Whenever the given C<type> is used, C<push_read> will invoke the code
1228     reference with the handle object, the callback and the remaining
1229     arguments.
1230    
1231     The code reference is supposed to return a callback (usually a closure)
1232     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1233    
1234     It should invoke the passed callback when it is done reading (remember to
1235 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1236 root 1.30
1237     Note that this is a function, and all types registered this way will be
1238     global, so try to use unique names.
1239    
1240     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1241     search for C<register_read_type>)).
1242    
1243 root 1.10 =item $handle->stop_read
1244    
1245     =item $handle->start_read
1246    
1247 root 1.18 In rare cases you actually do not want to read anything from the
1248 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1249 root 1.22 any queued callbacks will be executed then. To start reading again, call
1250 root 1.10 C<start_read>.
1251    
1252 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1253     you change the C<on_read> callback or push/unshift a read callback, and it
1254     will automatically C<stop_read> for you when neither C<on_read> is set nor
1255     there are any read requests in the queue.
1256    
1257 root 1.10 =cut
1258    
1259     sub stop_read {
1260     my ($self) = @_;
1261 elmex 1.1
1262 root 1.38 delete $self->{_rw};
1263 root 1.8 }
1264 elmex 1.1
1265 root 1.10 sub start_read {
1266     my ($self) = @_;
1267    
1268 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1269 root 1.10 Scalar::Util::weaken $self;
1270    
1271 root 1.38 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1272 root 1.17 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
1273     my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1274 root 1.10
1275     if ($len > 0) {
1276 root 1.44 $self->{_activity} = AnyEvent->now;
1277 root 1.43
1278 root 1.17 $self->{filter_r}
1279 root 1.48 ? $self->{filter_r}($self, $rbuf)
1280 root 1.59 : $self->{_in_drain} || $self->_drain_rbuf;
1281 root 1.10
1282     } elsif (defined $len) {
1283 root 1.38 delete $self->{_rw};
1284     $self->{_eof} = 1;
1285 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1286 root 1.10
1287 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1288 root 1.52 return $self->_error ($!, 1);
1289 root 1.10 }
1290     });
1291     }
1292 elmex 1.1 }
1293    
1294 root 1.19 sub _dotls {
1295     my ($self) = @_;
1296    
1297 root 1.56 my $buf;
1298    
1299 root 1.38 if (length $self->{_tls_wbuf}) {
1300     while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1301     substr $self->{_tls_wbuf}, 0, $len, "";
1302 root 1.22 }
1303 root 1.19 }
1304    
1305 root 1.56 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1306 root 1.19 $self->{wbuf} .= $buf;
1307     $self->_drain_wbuf;
1308     }
1309    
1310 root 1.56 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1311     if (length $buf) {
1312     $self->{rbuf} .= $buf;
1313 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1314 root 1.56 } else {
1315     # let's treat SSL-eof as we treat normal EOF
1316     $self->{_eof} = 1;
1317     $self->_shutdown;
1318     return;
1319     }
1320 root 1.23 }
1321    
1322 root 1.24 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1323    
1324     if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1325 root 1.23 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1326 root 1.52 return $self->_error ($!, 1);
1327 root 1.23 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1328 root 1.52 return $self->_error (&Errno::EIO, 1);
1329 root 1.19 }
1330 root 1.23
1331     # all others are fine for our purposes
1332 root 1.19 }
1333     }
1334    
1335 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1336    
1337     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1338     object is created, you can also do that at a later time by calling
1339     C<starttls>.
1340    
1341     The first argument is the same as the C<tls> constructor argument (either
1342     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1343    
1344     The second argument is the optional C<Net::SSLeay::CTX> object that is
1345     used when AnyEvent::Handle has to create its own TLS connection object.
1346    
1347 root 1.38 The TLS connection object will end up in C<< $handle->{tls} >> after this
1348     call and can be used or changed to your liking. Note that the handshake
1349     might have already started when this function returns.
1350    
1351 root 1.25 =cut
1352    
1353 root 1.19 sub starttls {
1354     my ($self, $ssl, $ctx) = @_;
1355    
1356 root 1.25 $self->stoptls;
1357    
1358 root 1.19 if ($ssl eq "accept") {
1359     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1360     Net::SSLeay::set_accept_state ($ssl);
1361     } elsif ($ssl eq "connect") {
1362     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1363     Net::SSLeay::set_connect_state ($ssl);
1364     }
1365    
1366     $self->{tls} = $ssl;
1367    
1368 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1369     # but the openssl maintainers basically said: "trust us, it just works".
1370     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1371     # and mismaintained ssleay-module doesn't even offer them).
1372 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1373 root 1.87 #
1374     # in short: this is a mess.
1375     #
1376     # note that we do not try to kepe the length constant between writes as we are required to do.
1377     # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1378     # and we drive openssl fully in blocking mode here.
1379 root 1.21 Net::SSLeay::CTX_set_mode ($self->{tls},
1380 root 1.34 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1381     | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1382 root 1.21
1383 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1384     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1385 root 1.19
1386 root 1.38 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1387 root 1.19
1388     $self->{filter_w} = sub {
1389 root 1.38 $_[0]{_tls_wbuf} .= ${$_[1]};
1390 root 1.19 &_dotls;
1391     };
1392     $self->{filter_r} = sub {
1393 root 1.38 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1394 root 1.19 &_dotls;
1395     };
1396     }
1397    
1398 root 1.25 =item $handle->stoptls
1399    
1400     Destroys the SSL connection, if any. Partial read or write data will be
1401     lost.
1402    
1403     =cut
1404    
1405     sub stoptls {
1406     my ($self) = @_;
1407    
1408     Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
1409 root 1.38
1410     delete $self->{_rbio};
1411     delete $self->{_wbio};
1412     delete $self->{_tls_wbuf};
1413 root 1.25 delete $self->{filter_r};
1414     delete $self->{filter_w};
1415     }
1416    
1417 root 1.19 sub DESTROY {
1418     my $self = shift;
1419    
1420 root 1.25 $self->stoptls;
1421 root 1.62
1422     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1423    
1424     if ($linger && length $self->{wbuf}) {
1425     my $fh = delete $self->{fh};
1426     my $wbuf = delete $self->{wbuf};
1427    
1428     my @linger;
1429    
1430     push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1431     my $len = syswrite $fh, $wbuf, length $wbuf;
1432    
1433     if ($len > 0) {
1434     substr $wbuf, 0, $len, "";
1435     } else {
1436     @linger = (); # end
1437     }
1438     });
1439     push @linger, AnyEvent->timer (after => $linger, cb => sub {
1440     @linger = ();
1441     });
1442     }
1443 root 1.19 }
1444    
1445     =item AnyEvent::Handle::TLS_CTX
1446    
1447     This function creates and returns the Net::SSLeay::CTX object used by
1448     default for TLS mode.
1449    
1450     The context is created like this:
1451    
1452     Net::SSLeay::load_error_strings;
1453     Net::SSLeay::SSLeay_add_ssl_algorithms;
1454     Net::SSLeay::randomize;
1455    
1456     my $CTX = Net::SSLeay::CTX_new;
1457    
1458     Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1459    
1460     =cut
1461    
1462     our $TLS_CTX;
1463    
1464     sub TLS_CTX() {
1465     $TLS_CTX || do {
1466     require Net::SSLeay;
1467    
1468     Net::SSLeay::load_error_strings ();
1469     Net::SSLeay::SSLeay_add_ssl_algorithms ();
1470     Net::SSLeay::randomize ();
1471    
1472     $TLS_CTX = Net::SSLeay::CTX_new ();
1473    
1474     Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1475    
1476     $TLS_CTX
1477     }
1478     }
1479    
1480 elmex 1.1 =back
1481    
1482 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
1483    
1484     In many cases, you might want to subclass AnyEvent::Handle.
1485    
1486     To make this easier, a given version of AnyEvent::Handle uses these
1487     conventions:
1488    
1489     =over 4
1490    
1491     =item * all constructor arguments become object members.
1492    
1493     At least initially, when you pass a C<tls>-argument to the constructor it
1494 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
1495 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
1496    
1497     =item * other object member names are prefixed with an C<_>.
1498    
1499     All object members not explicitly documented (internal use) are prefixed
1500     with an underscore character, so the remaining non-C<_>-namespace is free
1501     for use for subclasses.
1502    
1503     =item * all members not documented here and not prefixed with an underscore
1504     are free to use in subclasses.
1505    
1506     Of course, new versions of AnyEvent::Handle may introduce more "public"
1507     member variables, but thats just life, at least it is documented.
1508    
1509     =back
1510    
1511 elmex 1.1 =head1 AUTHOR
1512    
1513 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1514 elmex 1.1
1515     =cut
1516    
1517     1; # End of AnyEvent::Handle