ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.91
Committed: Wed Oct 1 07:40:39 2008 UTC (15 years, 8 months ago) by root
Branch: MAIN
Changes since 1.90: +15 -12 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 package AnyEvent::Handle;
2    
3 elmex 1.6 no warnings;
4 root 1.79 use strict qw(subs vars);
5 elmex 1.1
6 root 1.8 use AnyEvent ();
7 root 1.42 use AnyEvent::Util qw(WSAEWOULDBLOCK);
8 root 1.8 use Scalar::Util ();
9     use Carp ();
10     use Fcntl ();
11 root 1.43 use Errno qw(EAGAIN EINTR);
12 elmex 1.1
13     =head1 NAME
14    
15 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 elmex 1.1
17     =cut
18    
19 root 1.91 our $VERSION = 4.3;
20 elmex 1.1
21     =head1 SYNOPSIS
22    
23     use AnyEvent;
24     use AnyEvent::Handle;
25    
26     my $cv = AnyEvent->condvar;
27    
28 root 1.31 my $handle =
29 elmex 1.2 AnyEvent::Handle->new (
30     fh => \*STDIN,
31     on_eof => sub {
32     $cv->broadcast;
33     },
34     );
35    
36 root 1.31 # send some request line
37     $handle->push_write ("getinfo\015\012");
38    
39     # read the response line
40     $handle->push_read (line => sub {
41     my ($handle, $line) = @_;
42     warn "read line <$line>\n";
43     $cv->send;
44     });
45    
46     $cv->recv;
47 elmex 1.1
48     =head1 DESCRIPTION
49    
50 root 1.8 This module is a helper module to make it easier to do event-based I/O on
51 elmex 1.13 filehandles. For utility functions for doing non-blocking connects and accepts
52     on sockets see L<AnyEvent::Util>.
53 root 1.8
54 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
55     AnyEvent::Handle examples.
56    
57 root 1.8 In the following, when the documentation refers to of "bytes" then this
58     means characters. As sysread and syswrite are used for all I/O, their
59     treatment of characters applies to this module as well.
60 elmex 1.1
61 root 1.8 All callbacks will be invoked with the handle object as their first
62     argument.
63 elmex 1.1
64 root 1.90 =head2 SIGPIPE is not handled by this module
65    
66     SIGPIPE is not handled by this module, so one of the practical
67     requirements of using it is to ignore SIGPIPE (C<$SIG{PIPE} =
68     'IGNORE'>). At least, this is highly recommend in a networked program: If
69     you use AnyEvent::Handle in a filter program (like sort), exiting on
70     SIGPIPE is probably the right thing to do.
71    
72 elmex 1.1 =head1 METHODS
73    
74     =over 4
75    
76     =item B<new (%args)>
77    
78 root 1.8 The constructor supports these arguments (all as key => value pairs).
79 elmex 1.1
80     =over 4
81    
82 root 1.8 =item fh => $filehandle [MANDATORY]
83 elmex 1.1
84     The filehandle this L<AnyEvent::Handle> object will operate on.
85    
86 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
87     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
88     that mode.
89 root 1.8
90 root 1.40 =item on_eof => $cb->($handle)
91 root 1.10
92 root 1.74 Set the callback to be called when an end-of-file condition is detected,
93 root 1.52 i.e. in the case of a socket, when the other side has closed the
94     connection cleanly.
95 root 1.8
96 root 1.82 For sockets, this just means that the other side has stopped sending data,
97     you can still try to write data, and, in fact, one can return from the eof
98     callback and continue writing data, as only the read part has been shut
99     down.
100    
101 root 1.80 While not mandatory, it is I<highly> recommended to set an eof callback,
102 root 1.16 otherwise you might end up with a closed socket while you are still
103     waiting for data.
104    
105 root 1.80 If an EOF condition has been detected but no C<on_eof> callback has been
106     set, then a fatal error will be raised with C<$!> set to <0>.
107    
108 root 1.52 =item on_error => $cb->($handle, $fatal)
109 root 1.10
110 root 1.52 This is the error callback, which is called when, well, some error
111     occured, such as not being able to resolve the hostname, failure to
112     connect or a read error.
113    
114     Some errors are fatal (which is indicated by C<$fatal> being true). On
115 root 1.82 fatal errors the handle object will be shut down and will not be usable
116 root 1.88 (but you are free to look at the current C<< ->rbuf >>). Examples of fatal
117 root 1.82 errors are an EOF condition with active (but unsatisifable) read watchers
118     (C<EPIPE>) or I/O errors.
119    
120     Non-fatal errors can be retried by simply returning, but it is recommended
121     to simply ignore this parameter and instead abondon the handle object
122     when this callback is invoked. Examples of non-fatal errors are timeouts
123     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
124 root 1.8
125 root 1.10 On callback entrance, the value of C<$!> contains the operating system
126 root 1.43 error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
127 root 1.8
128 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
129     you will not be notified of errors otherwise. The default simply calls
130 root 1.52 C<croak>.
131 root 1.8
132 root 1.40 =item on_read => $cb->($handle)
133 root 1.8
134     This sets the default read callback, which is called when data arrives
135 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
136     callback will only be called when at least one octet of data is in the
137     read buffer).
138 root 1.8
139     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
140 root 1.40 method or access the C<$handle->{rbuf}> member directly.
141 root 1.8
142     When an EOF condition is detected then AnyEvent::Handle will first try to
143     feed all the remaining data to the queued callbacks and C<on_read> before
144     calling the C<on_eof> callback. If no progress can be made, then a fatal
145     error will be raised (with C<$!> set to C<EPIPE>).
146 elmex 1.1
147 root 1.40 =item on_drain => $cb->($handle)
148 elmex 1.1
149 root 1.8 This sets the callback that is called when the write buffer becomes empty
150     (or when the callback is set and the buffer is empty already).
151 elmex 1.1
152 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
153 elmex 1.2
154 root 1.69 This callback is useful when you don't want to put all of your write data
155     into the queue at once, for example, when you want to write the contents
156     of some file to the socket you might not want to read the whole file into
157     memory and push it into the queue, but instead only read more data from
158     the file when the write queue becomes empty.
159    
160 root 1.43 =item timeout => $fractional_seconds
161    
162     If non-zero, then this enables an "inactivity" timeout: whenever this many
163     seconds pass without a successful read or write on the underlying file
164     handle, the C<on_timeout> callback will be invoked (and if that one is
165 root 1.88 missing, a non-fatal C<ETIMEDOUT> error will be raised).
166 root 1.43
167     Note that timeout processing is also active when you currently do not have
168     any outstanding read or write requests: If you plan to keep the connection
169     idle then you should disable the timout temporarily or ignore the timeout
170 root 1.88 in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
171     restart the timeout.
172 root 1.43
173     Zero (the default) disables this timeout.
174    
175     =item on_timeout => $cb->($handle)
176    
177     Called whenever the inactivity timeout passes. If you return from this
178     callback, then the timeout will be reset as if some activity had happened,
179     so this condition is not fatal in any way.
180    
181 root 1.8 =item rbuf_max => <bytes>
182 elmex 1.2
183 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
184     when the read buffer ever (strictly) exceeds this size. This is useful to
185 root 1.88 avoid some forms of denial-of-service attacks.
186 elmex 1.2
187 root 1.8 For example, a server accepting connections from untrusted sources should
188     be configured to accept only so-and-so much data that it cannot act on
189     (for example, when expecting a line, an attacker could send an unlimited
190     amount of data without a callback ever being called as long as the line
191     isn't finished).
192 elmex 1.2
193 root 1.70 =item autocork => <boolean>
194    
195     When disabled (the default), then C<push_write> will try to immediately
196 root 1.88 write the data to the handle, if possible. This avoids having to register
197     a write watcher and wait for the next event loop iteration, but can
198     be inefficient if you write multiple small chunks (on the wire, this
199     disadvantage is usually avoided by your kernel's nagle algorithm, see
200     C<no_delay>, but this option can save costly syscalls).
201 root 1.70
202     When enabled, then writes will always be queued till the next event loop
203     iteration. This is efficient when you do many small writes per iteration,
204 root 1.88 but less efficient when you do a single write only per iteration (or when
205     the write buffer often is full). It also increases write latency.
206 root 1.70
207     =item no_delay => <boolean>
208    
209     When doing small writes on sockets, your operating system kernel might
210     wait a bit for more data before actually sending it out. This is called
211     the Nagle algorithm, and usually it is beneficial.
212    
213 root 1.88 In some situations you want as low a delay as possible, which can be
214     accomplishd by setting this option to a true value.
215 root 1.70
216 root 1.88 The default is your opertaing system's default behaviour (most likely
217     enabled), this option explicitly enables or disables it, if possible.
218 root 1.70
219 root 1.8 =item read_size => <bytes>
220 elmex 1.2
221 root 1.88 The default read block size (the amount of bytes this module will
222     try to read during each loop iteration, which affects memory
223     requirements). Default: C<8192>.
224 root 1.8
225     =item low_water_mark => <bytes>
226    
227     Sets the amount of bytes (default: C<0>) that make up an "empty" write
228     buffer: If the write reaches this size or gets even samller it is
229     considered empty.
230 elmex 1.2
231 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
232     the write buffer before it is fully drained, but this is a rare case, as
233     the operating system kernel usually buffers data as well, so the default
234     is good in almost all cases.
235    
236 root 1.62 =item linger => <seconds>
237    
238     If non-zero (default: C<3600>), then the destructor of the
239 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
240     write data and will install a watcher that will write this data to the
241     socket. No errors will be reported (this mostly matches how the operating
242     system treats outstanding data at socket close time).
243 root 1.62
244 root 1.88 This will not work for partial TLS data that could not be encoded
245     yet. This data will be lost.
246 root 1.62
247 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
248    
249 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
250 root 1.88 AnyEvent will start a TLS handshake as soon as the conenction has been
251     established and will transparently encrypt/decrypt data afterwards.
252 root 1.19
253 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
254 root 1.88 automatically when you try to create a TLS handle): this module doesn't
255     have a dependency on that module, so if your module requires it, you have
256     to add the dependency yourself.
257 root 1.26
258 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
259     C<accept>, and for the TLS client side of a connection, use C<connect>
260     mode.
261 root 1.19
262     You can also provide your own TLS connection object, but you have
263     to make sure that you call either C<Net::SSLeay::set_connect_state>
264     or C<Net::SSLeay::set_accept_state> on it before you pass it to
265     AnyEvent::Handle.
266    
267 root 1.88 See the C<< ->starttls >> method for when need to start TLS negotiation later.
268 root 1.26
269 root 1.19 =item tls_ctx => $ssl_ctx
270    
271 root 1.88 Use the given C<Net::SSLeay::CTX> object to create the new TLS connection
272 root 1.19 (unless a connection object was specified directly). If this parameter is
273     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
274    
275 root 1.40 =item json => JSON or JSON::XS object
276    
277     This is the json coder object used by the C<json> read and write types.
278    
279 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
280 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
281     texts.
282 root 1.40
283     Note that you are responsible to depend on the JSON module if you want to
284     use this functionality, as AnyEvent does not have a dependency itself.
285    
286 root 1.38 =item filter_r => $cb
287    
288     =item filter_w => $cb
289    
290 root 1.87 These exist, but are undocumented at this time. (They are used internally
291     by the TLS code).
292 root 1.38
293 elmex 1.1 =back
294    
295     =cut
296    
297     sub new {
298 root 1.8 my $class = shift;
299    
300     my $self = bless { @_ }, $class;
301    
302     $self->{fh} or Carp::croak "mandatory argument fh is missing";
303    
304     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
305 elmex 1.1
306 root 1.19 if ($self->{tls}) {
307     require Net::SSLeay;
308     $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
309     }
310    
311 root 1.44 $self->{_activity} = AnyEvent->now;
312 root 1.43 $self->_timeout;
313 elmex 1.1
314 root 1.70 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
315     $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
316 root 1.10
317 root 1.66 $self->start_read
318 root 1.67 if $self->{on_read};
319 root 1.66
320 root 1.8 $self
321     }
322 elmex 1.2
323 root 1.8 sub _shutdown {
324     my ($self) = @_;
325 elmex 1.2
326 root 1.46 delete $self->{_tw};
327 root 1.38 delete $self->{_rw};
328     delete $self->{_ww};
329 root 1.8 delete $self->{fh};
330 root 1.52
331     $self->stoptls;
332 root 1.82
333     delete $self->{on_read};
334     delete $self->{_queue};
335 root 1.8 }
336    
337 root 1.52 sub _error {
338     my ($self, $errno, $fatal) = @_;
339 root 1.8
340 root 1.52 $self->_shutdown
341     if $fatal;
342 elmex 1.1
343 root 1.52 $! = $errno;
344 root 1.37
345 root 1.52 if ($self->{on_error}) {
346     $self->{on_error}($self, $fatal);
347     } else {
348     Carp::croak "AnyEvent::Handle uncaught error: $!";
349     }
350 elmex 1.1 }
351    
352 root 1.8 =item $fh = $handle->fh
353 elmex 1.1
354 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
355 elmex 1.1
356     =cut
357    
358 root 1.38 sub fh { $_[0]{fh} }
359 elmex 1.1
360 root 1.8 =item $handle->on_error ($cb)
361 elmex 1.1
362 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
363 elmex 1.1
364 root 1.8 =cut
365    
366     sub on_error {
367     $_[0]{on_error} = $_[1];
368     }
369    
370     =item $handle->on_eof ($cb)
371    
372     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
373 elmex 1.1
374     =cut
375    
376 root 1.8 sub on_eof {
377     $_[0]{on_eof} = $_[1];
378     }
379    
380 root 1.43 =item $handle->on_timeout ($cb)
381    
382 root 1.88 Replace the current C<on_timeout> callback, or disables the callback (but
383     not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
384     argument and method.
385 root 1.43
386     =cut
387    
388     sub on_timeout {
389     $_[0]{on_timeout} = $_[1];
390     }
391    
392 root 1.70 =item $handle->autocork ($boolean)
393    
394     Enables or disables the current autocork behaviour (see C<autocork>
395     constructor argument).
396    
397     =cut
398    
399     =item $handle->no_delay ($boolean)
400    
401     Enables or disables the C<no_delay> setting (see constructor argument of
402     the same name for details).
403    
404     =cut
405    
406     sub no_delay {
407     $_[0]{no_delay} = $_[1];
408    
409     eval {
410     local $SIG{__DIE__};
411     setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
412     };
413     }
414    
415 root 1.43 #############################################################################
416    
417     =item $handle->timeout ($seconds)
418    
419     Configures (or disables) the inactivity timeout.
420    
421     =cut
422    
423     sub timeout {
424     my ($self, $timeout) = @_;
425    
426     $self->{timeout} = $timeout;
427     $self->_timeout;
428     }
429    
430     # reset the timeout watcher, as neccessary
431     # also check for time-outs
432     sub _timeout {
433     my ($self) = @_;
434    
435     if ($self->{timeout}) {
436 root 1.44 my $NOW = AnyEvent->now;
437 root 1.43
438     # when would the timeout trigger?
439     my $after = $self->{_activity} + $self->{timeout} - $NOW;
440    
441     # now or in the past already?
442     if ($after <= 0) {
443     $self->{_activity} = $NOW;
444    
445     if ($self->{on_timeout}) {
446 root 1.48 $self->{on_timeout}($self);
447 root 1.43 } else {
448 root 1.52 $self->_error (&Errno::ETIMEDOUT);
449 root 1.43 }
450    
451 root 1.56 # callback could have changed timeout value, optimise
452 root 1.43 return unless $self->{timeout};
453    
454     # calculate new after
455     $after = $self->{timeout};
456     }
457    
458     Scalar::Util::weaken $self;
459 root 1.56 return unless $self; # ->error could have destroyed $self
460 root 1.43
461     $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
462     delete $self->{_tw};
463     $self->_timeout;
464     });
465     } else {
466     delete $self->{_tw};
467     }
468     }
469    
470 root 1.9 #############################################################################
471    
472     =back
473    
474     =head2 WRITE QUEUE
475    
476     AnyEvent::Handle manages two queues per handle, one for writing and one
477     for reading.
478    
479     The write queue is very simple: you can add data to its end, and
480     AnyEvent::Handle will automatically try to get rid of it for you.
481    
482 elmex 1.20 When data could be written and the write buffer is shorter then the low
483 root 1.9 water mark, the C<on_drain> callback will be invoked.
484    
485     =over 4
486    
487 root 1.8 =item $handle->on_drain ($cb)
488    
489     Sets the C<on_drain> callback or clears it (see the description of
490     C<on_drain> in the constructor).
491    
492     =cut
493    
494     sub on_drain {
495 elmex 1.1 my ($self, $cb) = @_;
496    
497 root 1.8 $self->{on_drain} = $cb;
498    
499     $cb->($self)
500     if $cb && $self->{low_water_mark} >= length $self->{wbuf};
501     }
502    
503     =item $handle->push_write ($data)
504    
505     Queues the given scalar to be written. You can push as much data as you
506     want (only limited by the available memory), as C<AnyEvent::Handle>
507     buffers it independently of the kernel.
508    
509     =cut
510    
511 root 1.17 sub _drain_wbuf {
512     my ($self) = @_;
513 root 1.8
514 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
515 root 1.35
516 root 1.8 Scalar::Util::weaken $self;
517 root 1.35
518 root 1.8 my $cb = sub {
519     my $len = syswrite $self->{fh}, $self->{wbuf};
520    
521 root 1.29 if ($len >= 0) {
522 root 1.8 substr $self->{wbuf}, 0, $len, "";
523    
524 root 1.44 $self->{_activity} = AnyEvent->now;
525 root 1.43
526 root 1.8 $self->{on_drain}($self)
527     if $self->{low_water_mark} >= length $self->{wbuf}
528     && $self->{on_drain};
529    
530 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
531 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
532 root 1.52 $self->_error ($!, 1);
533 elmex 1.1 }
534 root 1.8 };
535    
536 root 1.35 # try to write data immediately
537 root 1.70 $cb->() unless $self->{autocork};
538 root 1.8
539 root 1.35 # if still data left in wbuf, we need to poll
540 root 1.38 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
541 root 1.35 if length $self->{wbuf};
542 root 1.8 };
543     }
544    
545 root 1.30 our %WH;
546    
547     sub register_write_type($$) {
548     $WH{$_[0]} = $_[1];
549     }
550    
551 root 1.17 sub push_write {
552     my $self = shift;
553    
554 root 1.29 if (@_ > 1) {
555     my $type = shift;
556    
557     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
558     ->($self, @_);
559     }
560    
561 root 1.17 if ($self->{filter_w}) {
562 root 1.48 $self->{filter_w}($self, \$_[0]);
563 root 1.17 } else {
564     $self->{wbuf} .= $_[0];
565     $self->_drain_wbuf;
566     }
567     }
568    
569 root 1.29 =item $handle->push_write (type => @args)
570    
571     Instead of formatting your data yourself, you can also let this module do
572     the job by specifying a type and type-specific arguments.
573    
574 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
575     drop by and tell us):
576 root 1.29
577     =over 4
578    
579     =item netstring => $string
580    
581     Formats the given value as netstring
582     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
583    
584     =cut
585    
586     register_write_type netstring => sub {
587     my ($self, $string) = @_;
588    
589     sprintf "%d:%s,", (length $string), $string
590     };
591    
592 root 1.61 =item packstring => $format, $data
593    
594     An octet string prefixed with an encoded length. The encoding C<$format>
595     uses the same format as a Perl C<pack> format, but must specify a single
596     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
597     optional C<!>, C<< < >> or C<< > >> modifier).
598    
599     =cut
600    
601     register_write_type packstring => sub {
602     my ($self, $format, $string) = @_;
603    
604 root 1.65 pack "$format/a*", $string
605 root 1.61 };
606    
607 root 1.39 =item json => $array_or_hashref
608    
609 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
610     provide your own JSON object, this means it will be encoded to JSON text
611     in UTF-8.
612    
613     JSON objects (and arrays) are self-delimiting, so you can write JSON at
614     one end of a handle and read them at the other end without using any
615     additional framing.
616    
617 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
618     this module doesn't need delimiters after or between JSON texts to be
619     able to read them, many other languages depend on that.
620    
621     A simple RPC protocol that interoperates easily with others is to send
622     JSON arrays (or objects, although arrays are usually the better choice as
623     they mimic how function argument passing works) and a newline after each
624     JSON text:
625    
626     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
627     $handle->push_write ("\012");
628    
629     An AnyEvent::Handle receiver would simply use the C<json> read type and
630     rely on the fact that the newline will be skipped as leading whitespace:
631    
632     $handle->push_read (json => sub { my $array = $_[1]; ... });
633    
634     Other languages could read single lines terminated by a newline and pass
635     this line into their JSON decoder of choice.
636    
637 root 1.40 =cut
638    
639     register_write_type json => sub {
640     my ($self, $ref) = @_;
641    
642     require JSON;
643    
644     $self->{json} ? $self->{json}->encode ($ref)
645     : JSON::encode_json ($ref)
646     };
647    
648 root 1.63 =item storable => $reference
649    
650     Freezes the given reference using L<Storable> and writes it to the
651     handle. Uses the C<nfreeze> format.
652    
653     =cut
654    
655     register_write_type storable => sub {
656     my ($self, $ref) = @_;
657    
658     require Storable;
659    
660 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
661 root 1.63 };
662    
663 root 1.53 =back
664    
665 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
666 root 1.30
667     This function (not method) lets you add your own types to C<push_write>.
668     Whenever the given C<type> is used, C<push_write> will invoke the code
669     reference with the handle object and the remaining arguments.
670 root 1.29
671 root 1.30 The code reference is supposed to return a single octet string that will
672     be appended to the write buffer.
673 root 1.29
674 root 1.30 Note that this is a function, and all types registered this way will be
675     global, so try to use unique names.
676 root 1.29
677 root 1.30 =cut
678 root 1.29
679 root 1.8 #############################################################################
680    
681 root 1.9 =back
682    
683     =head2 READ QUEUE
684    
685     AnyEvent::Handle manages two queues per handle, one for writing and one
686     for reading.
687    
688     The read queue is more complex than the write queue. It can be used in two
689     ways, the "simple" way, using only C<on_read> and the "complex" way, using
690     a queue.
691    
692     In the simple case, you just install an C<on_read> callback and whenever
693     new data arrives, it will be called. You can then remove some data (if
694 root 1.69 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
695     leave the data there if you want to accumulate more (e.g. when only a
696     partial message has been received so far).
697 root 1.9
698     In the more complex case, you want to queue multiple callbacks. In this
699     case, AnyEvent::Handle will call the first queued callback each time new
700 root 1.61 data arrives (also the first time it is queued) and removes it when it has
701     done its job (see C<push_read>, below).
702 root 1.9
703     This way you can, for example, push three line-reads, followed by reading
704     a chunk of data, and AnyEvent::Handle will execute them in order.
705    
706     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
707     the specified number of bytes which give an XML datagram.
708    
709     # in the default state, expect some header bytes
710     $handle->on_read (sub {
711     # some data is here, now queue the length-header-read (4 octets)
712 root 1.52 shift->unshift_read (chunk => 4, sub {
713 root 1.9 # header arrived, decode
714     my $len = unpack "N", $_[1];
715    
716     # now read the payload
717 root 1.52 shift->unshift_read (chunk => $len, sub {
718 root 1.9 my $xml = $_[1];
719     # handle xml
720     });
721     });
722     });
723    
724 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
725     and another line or "ERROR" for the first request that is sent, and 64
726     bytes for the second request. Due to the availability of a queue, we can
727     just pipeline sending both requests and manipulate the queue as necessary
728     in the callbacks.
729    
730     When the first callback is called and sees an "OK" response, it will
731     C<unshift> another line-read. This line-read will be queued I<before> the
732     64-byte chunk callback.
733 root 1.9
734 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
735 root 1.9 $handle->push_write ("request 1\015\012");
736    
737     # we expect "ERROR" or "OK" as response, so push a line read
738 root 1.52 $handle->push_read (line => sub {
739 root 1.9 # if we got an "OK", we have to _prepend_ another line,
740     # so it will be read before the second request reads its 64 bytes
741     # which are already in the queue when this callback is called
742     # we don't do this in case we got an error
743     if ($_[1] eq "OK") {
744 root 1.52 $_[0]->unshift_read (line => sub {
745 root 1.9 my $response = $_[1];
746     ...
747     });
748     }
749     });
750    
751 root 1.69 # request two, simply returns 64 octets
752 root 1.9 $handle->push_write ("request 2\015\012");
753    
754     # simply read 64 bytes, always
755 root 1.52 $handle->push_read (chunk => 64, sub {
756 root 1.9 my $response = $_[1];
757     ...
758     });
759    
760     =over 4
761    
762 root 1.10 =cut
763    
764 root 1.8 sub _drain_rbuf {
765     my ($self) = @_;
766 elmex 1.1
767 root 1.59 local $self->{_in_drain} = 1;
768    
769 root 1.17 if (
770     defined $self->{rbuf_max}
771     && $self->{rbuf_max} < length $self->{rbuf}
772     ) {
773 root 1.82 $self->_error (&Errno::ENOSPC, 1), return;
774 root 1.17 }
775    
776 root 1.59 while () {
777     my $len = length $self->{rbuf};
778 elmex 1.1
779 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
780 root 1.29 unless ($cb->($self)) {
781 root 1.38 if ($self->{_eof}) {
782 root 1.10 # no progress can be made (not enough data and no data forthcoming)
783 root 1.82 $self->_error (&Errno::EPIPE, 1), return;
784 root 1.10 }
785    
786 root 1.38 unshift @{ $self->{_queue} }, $cb;
787 root 1.55 last;
788 root 1.8 }
789     } elsif ($self->{on_read}) {
790 root 1.61 last unless $len;
791    
792 root 1.8 $self->{on_read}($self);
793    
794     if (
795 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
796     && !@{ $self->{_queue} } # and the queue is still empty
797     && $self->{on_read} # but we still have on_read
798 root 1.8 ) {
799 root 1.55 # no further data will arrive
800     # so no progress can be made
801 root 1.82 $self->_error (&Errno::EPIPE, 1), return
802 root 1.55 if $self->{_eof};
803    
804     last; # more data might arrive
805 elmex 1.1 }
806 root 1.8 } else {
807     # read side becomes idle
808 root 1.38 delete $self->{_rw};
809 root 1.55 last;
810 root 1.8 }
811     }
812    
813 root 1.80 if ($self->{_eof}) {
814     if ($self->{on_eof}) {
815     $self->{on_eof}($self)
816     } else {
817     $self->_error (0, 1);
818     }
819     }
820 root 1.55
821     # may need to restart read watcher
822     unless ($self->{_rw}) {
823     $self->start_read
824     if $self->{on_read} || @{ $self->{_queue} };
825     }
826 elmex 1.1 }
827    
828 root 1.8 =item $handle->on_read ($cb)
829 elmex 1.1
830 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
831     the new callback is C<undef>). See the description of C<on_read> in the
832     constructor.
833 elmex 1.1
834 root 1.8 =cut
835    
836     sub on_read {
837     my ($self, $cb) = @_;
838 elmex 1.1
839 root 1.8 $self->{on_read} = $cb;
840 root 1.59 $self->_drain_rbuf if $cb && !$self->{_in_drain};
841 elmex 1.1 }
842    
843 root 1.8 =item $handle->rbuf
844    
845     Returns the read buffer (as a modifiable lvalue).
846 elmex 1.1
847 root 1.8 You can access the read buffer directly as the C<< ->{rbuf} >> member, if
848     you want.
849 elmex 1.1
850 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
851     C<push_read> or C<unshift_read> methods are used. The other read methods
852     automatically manage the read buffer.
853 elmex 1.1
854     =cut
855    
856 elmex 1.2 sub rbuf : lvalue {
857 root 1.8 $_[0]{rbuf}
858 elmex 1.2 }
859 elmex 1.1
860 root 1.8 =item $handle->push_read ($cb)
861    
862     =item $handle->unshift_read ($cb)
863    
864     Append the given callback to the end of the queue (C<push_read>) or
865     prepend it (C<unshift_read>).
866    
867     The callback is called each time some additional read data arrives.
868 elmex 1.1
869 elmex 1.20 It must check whether enough data is in the read buffer already.
870 elmex 1.1
871 root 1.8 If not enough data is available, it must return the empty list or a false
872     value, in which case it will be called repeatedly until enough data is
873     available (or an error condition is detected).
874    
875     If enough data was available, then the callback must remove all data it is
876     interested in (which can be none at all) and return a true value. After returning
877     true, it will be removed from the queue.
878 elmex 1.1
879     =cut
880    
881 root 1.30 our %RH;
882    
883     sub register_read_type($$) {
884     $RH{$_[0]} = $_[1];
885     }
886    
887 root 1.8 sub push_read {
888 root 1.28 my $self = shift;
889     my $cb = pop;
890    
891     if (@_) {
892     my $type = shift;
893    
894     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
895     ->($self, $cb, @_);
896     }
897 elmex 1.1
898 root 1.38 push @{ $self->{_queue} }, $cb;
899 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
900 elmex 1.1 }
901    
902 root 1.8 sub unshift_read {
903 root 1.28 my $self = shift;
904     my $cb = pop;
905    
906     if (@_) {
907     my $type = shift;
908    
909     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
910     ->($self, $cb, @_);
911     }
912    
913 root 1.8
914 root 1.38 unshift @{ $self->{_queue} }, $cb;
915 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
916 root 1.8 }
917 elmex 1.1
918 root 1.28 =item $handle->push_read (type => @args, $cb)
919 elmex 1.1
920 root 1.28 =item $handle->unshift_read (type => @args, $cb)
921 elmex 1.1
922 root 1.28 Instead of providing a callback that parses the data itself you can chose
923     between a number of predefined parsing formats, for chunks of data, lines
924     etc.
925 elmex 1.1
926 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
927     drop by and tell us):
928 root 1.28
929     =over 4
930    
931 root 1.40 =item chunk => $octets, $cb->($handle, $data)
932 root 1.28
933     Invoke the callback only once C<$octets> bytes have been read. Pass the
934     data read to the callback. The callback will never be called with less
935     data.
936    
937     Example: read 2 bytes.
938    
939     $handle->push_read (chunk => 2, sub {
940     warn "yay ", unpack "H*", $_[1];
941     });
942 elmex 1.1
943     =cut
944    
945 root 1.28 register_read_type chunk => sub {
946     my ($self, $cb, $len) = @_;
947 elmex 1.1
948 root 1.8 sub {
949     $len <= length $_[0]{rbuf} or return;
950 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
951 root 1.8 1
952     }
953 root 1.28 };
954 root 1.8
955 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
956 elmex 1.1
957 root 1.8 The callback will be called only once a full line (including the end of
958     line marker, C<$eol>) has been read. This line (excluding the end of line
959     marker) will be passed to the callback as second argument (C<$line>), and
960     the end of line marker as the third argument (C<$eol>).
961 elmex 1.1
962 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
963     will be interpreted as a fixed record end marker, or it can be a regex
964     object (e.g. created by C<qr>), in which case it is interpreted as a
965     regular expression.
966 elmex 1.1
967 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
968     undef), then C<qr|\015?\012|> is used (which is good for most internet
969     protocols).
970 elmex 1.1
971 root 1.8 Partial lines at the end of the stream will never be returned, as they are
972     not marked by the end of line marker.
973 elmex 1.1
974 root 1.8 =cut
975 elmex 1.1
976 root 1.28 register_read_type line => sub {
977     my ($self, $cb, $eol) = @_;
978 elmex 1.1
979 root 1.76 if (@_ < 3) {
980     # this is more than twice as fast as the generic code below
981     sub {
982     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
983 elmex 1.1
984 root 1.76 $cb->($_[0], $1, $2);
985     1
986     }
987     } else {
988     $eol = quotemeta $eol unless ref $eol;
989     $eol = qr|^(.*?)($eol)|s;
990    
991     sub {
992     $_[0]{rbuf} =~ s/$eol// or return;
993 elmex 1.1
994 root 1.76 $cb->($_[0], $1, $2);
995     1
996     }
997 root 1.8 }
998 root 1.28 };
999 elmex 1.1
1000 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1001 root 1.36
1002     Makes a regex match against the regex object C<$accept> and returns
1003     everything up to and including the match.
1004    
1005     Example: read a single line terminated by '\n'.
1006    
1007     $handle->push_read (regex => qr<\n>, sub { ... });
1008    
1009     If C<$reject> is given and not undef, then it determines when the data is
1010     to be rejected: it is matched against the data when the C<$accept> regex
1011     does not match and generates an C<EBADMSG> error when it matches. This is
1012     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1013     receive buffer overflow).
1014    
1015     Example: expect a single decimal number followed by whitespace, reject
1016     anything else (not the use of an anchor).
1017    
1018     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1019    
1020     If C<$skip> is given and not C<undef>, then it will be matched against
1021     the receive buffer when neither C<$accept> nor C<$reject> match,
1022     and everything preceding and including the match will be accepted
1023     unconditionally. This is useful to skip large amounts of data that you
1024     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1025     have to start matching from the beginning. This is purely an optimisation
1026     and is usually worth only when you expect more than a few kilobytes.
1027    
1028     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1029     expect the header to be very large (it isn't in practise, but...), we use
1030     a skip regex to skip initial portions. The skip regex is tricky in that
1031     it only accepts something not ending in either \015 or \012, as these are
1032     required for the accept regex.
1033    
1034     $handle->push_read (regex =>
1035     qr<\015\012\015\012>,
1036     undef, # no reject
1037     qr<^.*[^\015\012]>,
1038     sub { ... });
1039    
1040     =cut
1041    
1042     register_read_type regex => sub {
1043     my ($self, $cb, $accept, $reject, $skip) = @_;
1044    
1045     my $data;
1046     my $rbuf = \$self->{rbuf};
1047    
1048     sub {
1049     # accept
1050     if ($$rbuf =~ $accept) {
1051     $data .= substr $$rbuf, 0, $+[0], "";
1052     $cb->($self, $data);
1053     return 1;
1054     }
1055    
1056     # reject
1057     if ($reject && $$rbuf =~ $reject) {
1058 root 1.52 $self->_error (&Errno::EBADMSG);
1059 root 1.36 }
1060    
1061     # skip
1062     if ($skip && $$rbuf =~ $skip) {
1063     $data .= substr $$rbuf, 0, $+[0], "";
1064     }
1065    
1066     ()
1067     }
1068     };
1069    
1070 root 1.61 =item netstring => $cb->($handle, $string)
1071    
1072     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1073    
1074     Throws an error with C<$!> set to EBADMSG on format violations.
1075    
1076     =cut
1077    
1078     register_read_type netstring => sub {
1079     my ($self, $cb) = @_;
1080    
1081     sub {
1082     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1083     if ($_[0]{rbuf} =~ /[^0-9]/) {
1084     $self->_error (&Errno::EBADMSG);
1085     }
1086     return;
1087     }
1088    
1089     my $len = $1;
1090    
1091     $self->unshift_read (chunk => $len, sub {
1092     my $string = $_[1];
1093     $_[0]->unshift_read (chunk => 1, sub {
1094     if ($_[1] eq ",") {
1095     $cb->($_[0], $string);
1096     } else {
1097     $self->_error (&Errno::EBADMSG);
1098     }
1099     });
1100     });
1101    
1102     1
1103     }
1104     };
1105    
1106     =item packstring => $format, $cb->($handle, $string)
1107    
1108     An octet string prefixed with an encoded length. The encoding C<$format>
1109     uses the same format as a Perl C<pack> format, but must specify a single
1110     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1111     optional C<!>, C<< < >> or C<< > >> modifier).
1112    
1113     DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>.
1114    
1115     Example: read a block of data prefixed by its length in BER-encoded
1116     format (very efficient).
1117    
1118     $handle->push_read (packstring => "w", sub {
1119     my ($handle, $data) = @_;
1120     });
1121    
1122     =cut
1123    
1124     register_read_type packstring => sub {
1125     my ($self, $cb, $format) = @_;
1126    
1127     sub {
1128     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1129 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1130 root 1.61 or return;
1131    
1132 root 1.77 $format = length pack $format, $len;
1133 root 1.61
1134 root 1.77 # bypass unshift if we already have the remaining chunk
1135     if ($format + $len <= length $_[0]{rbuf}) {
1136     my $data = substr $_[0]{rbuf}, $format, $len;
1137     substr $_[0]{rbuf}, 0, $format + $len, "";
1138     $cb->($_[0], $data);
1139     } else {
1140     # remove prefix
1141     substr $_[0]{rbuf}, 0, $format, "";
1142    
1143     # read remaining chunk
1144     $_[0]->unshift_read (chunk => $len, $cb);
1145     }
1146 root 1.61
1147     1
1148     }
1149     };
1150    
1151 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1152    
1153     Reads a JSON object or array, decodes it and passes it to the callback.
1154    
1155     If a C<json> object was passed to the constructor, then that will be used
1156     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1157    
1158     This read type uses the incremental parser available with JSON version
1159     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1160     dependency on your own: this module will load the JSON module, but
1161     AnyEvent does not depend on it itself.
1162    
1163     Since JSON texts are fully self-delimiting, the C<json> read and write
1164 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1165     the C<json> write type description, above, for an actual example.
1166 root 1.40
1167     =cut
1168    
1169     register_read_type json => sub {
1170 root 1.63 my ($self, $cb) = @_;
1171 root 1.40
1172     require JSON;
1173    
1174     my $data;
1175     my $rbuf = \$self->{rbuf};
1176    
1177 root 1.41 my $json = $self->{json} ||= JSON->new->utf8;
1178 root 1.40
1179     sub {
1180     my $ref = $json->incr_parse ($self->{rbuf});
1181    
1182     if ($ref) {
1183     $self->{rbuf} = $json->incr_text;
1184     $json->incr_text = "";
1185     $cb->($self, $ref);
1186    
1187     1
1188     } else {
1189     $self->{rbuf} = "";
1190     ()
1191     }
1192     }
1193     };
1194    
1195 root 1.63 =item storable => $cb->($handle, $ref)
1196    
1197     Deserialises a L<Storable> frozen representation as written by the
1198     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1199     data).
1200    
1201     Raises C<EBADMSG> error if the data could not be decoded.
1202    
1203     =cut
1204    
1205     register_read_type storable => sub {
1206     my ($self, $cb) = @_;
1207    
1208     require Storable;
1209    
1210     sub {
1211     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1212 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1213 root 1.63 or return;
1214    
1215 root 1.77 my $format = length pack "w", $len;
1216 root 1.63
1217 root 1.77 # bypass unshift if we already have the remaining chunk
1218     if ($format + $len <= length $_[0]{rbuf}) {
1219     my $data = substr $_[0]{rbuf}, $format, $len;
1220     substr $_[0]{rbuf}, 0, $format + $len, "";
1221     $cb->($_[0], Storable::thaw ($data));
1222     } else {
1223     # remove prefix
1224     substr $_[0]{rbuf}, 0, $format, "";
1225    
1226     # read remaining chunk
1227     $_[0]->unshift_read (chunk => $len, sub {
1228     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1229     $cb->($_[0], $ref);
1230     } else {
1231     $self->_error (&Errno::EBADMSG);
1232     }
1233     });
1234     }
1235    
1236     1
1237 root 1.63 }
1238     };
1239    
1240 root 1.28 =back
1241    
1242 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1243 root 1.30
1244     This function (not method) lets you add your own types to C<push_read>.
1245    
1246     Whenever the given C<type> is used, C<push_read> will invoke the code
1247     reference with the handle object, the callback and the remaining
1248     arguments.
1249    
1250     The code reference is supposed to return a callback (usually a closure)
1251     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1252    
1253     It should invoke the passed callback when it is done reading (remember to
1254 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1255 root 1.30
1256     Note that this is a function, and all types registered this way will be
1257     global, so try to use unique names.
1258    
1259     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1260     search for C<register_read_type>)).
1261    
1262 root 1.10 =item $handle->stop_read
1263    
1264     =item $handle->start_read
1265    
1266 root 1.18 In rare cases you actually do not want to read anything from the
1267 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1268 root 1.22 any queued callbacks will be executed then. To start reading again, call
1269 root 1.10 C<start_read>.
1270    
1271 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1272     you change the C<on_read> callback or push/unshift a read callback, and it
1273     will automatically C<stop_read> for you when neither C<on_read> is set nor
1274     there are any read requests in the queue.
1275    
1276 root 1.10 =cut
1277    
1278     sub stop_read {
1279     my ($self) = @_;
1280 elmex 1.1
1281 root 1.38 delete $self->{_rw};
1282 root 1.8 }
1283 elmex 1.1
1284 root 1.10 sub start_read {
1285     my ($self) = @_;
1286    
1287 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1288 root 1.10 Scalar::Util::weaken $self;
1289    
1290 root 1.38 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1291 root 1.17 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
1292     my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1293 root 1.10
1294     if ($len > 0) {
1295 root 1.44 $self->{_activity} = AnyEvent->now;
1296 root 1.43
1297 root 1.17 $self->{filter_r}
1298 root 1.48 ? $self->{filter_r}($self, $rbuf)
1299 root 1.59 : $self->{_in_drain} || $self->_drain_rbuf;
1300 root 1.10
1301     } elsif (defined $len) {
1302 root 1.38 delete $self->{_rw};
1303     $self->{_eof} = 1;
1304 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1305 root 1.10
1306 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1307 root 1.52 return $self->_error ($!, 1);
1308 root 1.10 }
1309     });
1310     }
1311 elmex 1.1 }
1312    
1313 root 1.19 sub _dotls {
1314     my ($self) = @_;
1315    
1316 root 1.56 my $buf;
1317    
1318 root 1.38 if (length $self->{_tls_wbuf}) {
1319     while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1320     substr $self->{_tls_wbuf}, 0, $len, "";
1321 root 1.22 }
1322 root 1.19 }
1323    
1324 root 1.56 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1325 root 1.91 unless (length $buf) {
1326 root 1.56 # let's treat SSL-eof as we treat normal EOF
1327 root 1.91 delete $self->{_rw};
1328 root 1.56 $self->{_eof} = 1;
1329     }
1330 root 1.91
1331     $self->{rbuf} .= $buf;
1332     $self->_drain_rbuf unless $self->{_in_drain};
1333    
1334     $self->{tls} or return; # tls could have gone away
1335 root 1.23 }
1336    
1337 root 1.24 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1338    
1339     if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1340 root 1.23 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1341 root 1.52 return $self->_error ($!, 1);
1342 root 1.23 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1343 root 1.52 return $self->_error (&Errno::EIO, 1);
1344 root 1.19 }
1345 root 1.23
1346     # all others are fine for our purposes
1347 root 1.19 }
1348 root 1.91
1349     if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1350     $self->{wbuf} .= $buf;
1351     $self->_drain_wbuf;
1352     }
1353 root 1.19 }
1354    
1355 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1356    
1357     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1358     object is created, you can also do that at a later time by calling
1359     C<starttls>.
1360    
1361     The first argument is the same as the C<tls> constructor argument (either
1362     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1363    
1364     The second argument is the optional C<Net::SSLeay::CTX> object that is
1365     used when AnyEvent::Handle has to create its own TLS connection object.
1366    
1367 root 1.38 The TLS connection object will end up in C<< $handle->{tls} >> after this
1368     call and can be used or changed to your liking. Note that the handshake
1369     might have already started when this function returns.
1370    
1371 root 1.25 =cut
1372    
1373 root 1.19 sub starttls {
1374     my ($self, $ssl, $ctx) = @_;
1375    
1376 root 1.25 $self->stoptls;
1377    
1378 root 1.19 if ($ssl eq "accept") {
1379     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1380     Net::SSLeay::set_accept_state ($ssl);
1381     } elsif ($ssl eq "connect") {
1382     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1383     Net::SSLeay::set_connect_state ($ssl);
1384     }
1385    
1386     $self->{tls} = $ssl;
1387    
1388 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1389     # but the openssl maintainers basically said: "trust us, it just works".
1390     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1391     # and mismaintained ssleay-module doesn't even offer them).
1392 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1393 root 1.87 #
1394     # in short: this is a mess.
1395     #
1396     # note that we do not try to kepe the length constant between writes as we are required to do.
1397     # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1398     # and we drive openssl fully in blocking mode here.
1399 root 1.21 Net::SSLeay::CTX_set_mode ($self->{tls},
1400 root 1.34 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1401     | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1402 root 1.21
1403 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1404     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1405 root 1.19
1406 root 1.38 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1407 root 1.19
1408     $self->{filter_w} = sub {
1409 root 1.38 $_[0]{_tls_wbuf} .= ${$_[1]};
1410 root 1.19 &_dotls;
1411     };
1412     $self->{filter_r} = sub {
1413 root 1.38 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1414 root 1.19 &_dotls;
1415     };
1416 root 1.91
1417     &_dotls; # need to trigger the initial negotiation exchange
1418 root 1.19 }
1419    
1420 root 1.25 =item $handle->stoptls
1421    
1422     Destroys the SSL connection, if any. Partial read or write data will be
1423     lost.
1424    
1425     =cut
1426    
1427     sub stoptls {
1428     my ($self) = @_;
1429    
1430     Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
1431 root 1.38
1432     delete $self->{_rbio};
1433     delete $self->{_wbio};
1434     delete $self->{_tls_wbuf};
1435 root 1.25 delete $self->{filter_r};
1436     delete $self->{filter_w};
1437     }
1438    
1439 root 1.19 sub DESTROY {
1440     my $self = shift;
1441    
1442 root 1.25 $self->stoptls;
1443 root 1.62
1444     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1445    
1446     if ($linger && length $self->{wbuf}) {
1447     my $fh = delete $self->{fh};
1448     my $wbuf = delete $self->{wbuf};
1449    
1450     my @linger;
1451    
1452     push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1453     my $len = syswrite $fh, $wbuf, length $wbuf;
1454    
1455     if ($len > 0) {
1456     substr $wbuf, 0, $len, "";
1457     } else {
1458     @linger = (); # end
1459     }
1460     });
1461     push @linger, AnyEvent->timer (after => $linger, cb => sub {
1462     @linger = ();
1463     });
1464     }
1465 root 1.19 }
1466    
1467     =item AnyEvent::Handle::TLS_CTX
1468    
1469     This function creates and returns the Net::SSLeay::CTX object used by
1470     default for TLS mode.
1471    
1472     The context is created like this:
1473    
1474     Net::SSLeay::load_error_strings;
1475     Net::SSLeay::SSLeay_add_ssl_algorithms;
1476     Net::SSLeay::randomize;
1477    
1478     my $CTX = Net::SSLeay::CTX_new;
1479    
1480     Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1481    
1482     =cut
1483    
1484     our $TLS_CTX;
1485    
1486     sub TLS_CTX() {
1487     $TLS_CTX || do {
1488     require Net::SSLeay;
1489    
1490     Net::SSLeay::load_error_strings ();
1491     Net::SSLeay::SSLeay_add_ssl_algorithms ();
1492     Net::SSLeay::randomize ();
1493    
1494     $TLS_CTX = Net::SSLeay::CTX_new ();
1495    
1496     Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1497    
1498     $TLS_CTX
1499     }
1500     }
1501    
1502 elmex 1.1 =back
1503    
1504 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
1505    
1506     In many cases, you might want to subclass AnyEvent::Handle.
1507    
1508     To make this easier, a given version of AnyEvent::Handle uses these
1509     conventions:
1510    
1511     =over 4
1512    
1513     =item * all constructor arguments become object members.
1514    
1515     At least initially, when you pass a C<tls>-argument to the constructor it
1516 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
1517 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
1518    
1519     =item * other object member names are prefixed with an C<_>.
1520    
1521     All object members not explicitly documented (internal use) are prefixed
1522     with an underscore character, so the remaining non-C<_>-namespace is free
1523     for use for subclasses.
1524    
1525     =item * all members not documented here and not prefixed with an underscore
1526     are free to use in subclasses.
1527    
1528     Of course, new versions of AnyEvent::Handle may introduce more "public"
1529     member variables, but thats just life, at least it is documented.
1530    
1531     =back
1532    
1533 elmex 1.1 =head1 AUTHOR
1534    
1535 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1536 elmex 1.1
1537     =cut
1538    
1539     1; # End of AnyEvent::Handle