ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.96
Committed: Thu Oct 2 08:10:27 2008 UTC (15 years, 8 months ago) by root
Branch: MAIN
Changes since 1.95: +10 -7 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 package AnyEvent::Handle;
2    
3 elmex 1.6 no warnings;
4 root 1.79 use strict qw(subs vars);
5 elmex 1.1
6 root 1.8 use AnyEvent ();
7 root 1.42 use AnyEvent::Util qw(WSAEWOULDBLOCK);
8 root 1.8 use Scalar::Util ();
9     use Carp ();
10     use Fcntl ();
11 root 1.43 use Errno qw(EAGAIN EINTR);
12 elmex 1.1
13     =head1 NAME
14    
15 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 elmex 1.1
17     =cut
18    
19 root 1.91 our $VERSION = 4.3;
20 elmex 1.1
21     =head1 SYNOPSIS
22    
23     use AnyEvent;
24     use AnyEvent::Handle;
25    
26     my $cv = AnyEvent->condvar;
27    
28 root 1.31 my $handle =
29 elmex 1.2 AnyEvent::Handle->new (
30     fh => \*STDIN,
31     on_eof => sub {
32     $cv->broadcast;
33     },
34     );
35    
36 root 1.31 # send some request line
37     $handle->push_write ("getinfo\015\012");
38    
39     # read the response line
40     $handle->push_read (line => sub {
41     my ($handle, $line) = @_;
42     warn "read line <$line>\n";
43     $cv->send;
44     });
45    
46     $cv->recv;
47 elmex 1.1
48     =head1 DESCRIPTION
49    
50 root 1.8 This module is a helper module to make it easier to do event-based I/O on
51 elmex 1.13 filehandles. For utility functions for doing non-blocking connects and accepts
52     on sockets see L<AnyEvent::Util>.
53 root 1.8
54 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
55     AnyEvent::Handle examples.
56    
57 root 1.8 In the following, when the documentation refers to of "bytes" then this
58     means characters. As sysread and syswrite are used for all I/O, their
59     treatment of characters applies to this module as well.
60 elmex 1.1
61 root 1.8 All callbacks will be invoked with the handle object as their first
62     argument.
63 elmex 1.1
64 root 1.90 =head2 SIGPIPE is not handled by this module
65    
66     SIGPIPE is not handled by this module, so one of the practical
67     requirements of using it is to ignore SIGPIPE (C<$SIG{PIPE} =
68     'IGNORE'>). At least, this is highly recommend in a networked program: If
69     you use AnyEvent::Handle in a filter program (like sort), exiting on
70     SIGPIPE is probably the right thing to do.
71    
72 elmex 1.1 =head1 METHODS
73    
74     =over 4
75    
76     =item B<new (%args)>
77    
78 root 1.8 The constructor supports these arguments (all as key => value pairs).
79 elmex 1.1
80     =over 4
81    
82 root 1.8 =item fh => $filehandle [MANDATORY]
83 elmex 1.1
84     The filehandle this L<AnyEvent::Handle> object will operate on.
85    
86 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
87     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
88     that mode.
89 root 1.8
90 root 1.40 =item on_eof => $cb->($handle)
91 root 1.10
92 root 1.74 Set the callback to be called when an end-of-file condition is detected,
93 root 1.52 i.e. in the case of a socket, when the other side has closed the
94     connection cleanly.
95 root 1.8
96 root 1.82 For sockets, this just means that the other side has stopped sending data,
97     you can still try to write data, and, in fact, one can return from the eof
98     callback and continue writing data, as only the read part has been shut
99     down.
100    
101 root 1.80 While not mandatory, it is I<highly> recommended to set an eof callback,
102 root 1.16 otherwise you might end up with a closed socket while you are still
103     waiting for data.
104    
105 root 1.80 If an EOF condition has been detected but no C<on_eof> callback has been
106     set, then a fatal error will be raised with C<$!> set to <0>.
107    
108 root 1.52 =item on_error => $cb->($handle, $fatal)
109 root 1.10
110 root 1.52 This is the error callback, which is called when, well, some error
111     occured, such as not being able to resolve the hostname, failure to
112     connect or a read error.
113    
114     Some errors are fatal (which is indicated by C<$fatal> being true). On
115 root 1.82 fatal errors the handle object will be shut down and will not be usable
116 root 1.88 (but you are free to look at the current C<< ->rbuf >>). Examples of fatal
117 root 1.82 errors are an EOF condition with active (but unsatisifable) read watchers
118     (C<EPIPE>) or I/O errors.
119    
120     Non-fatal errors can be retried by simply returning, but it is recommended
121     to simply ignore this parameter and instead abondon the handle object
122     when this callback is invoked. Examples of non-fatal errors are timeouts
123     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
124 root 1.8
125 root 1.10 On callback entrance, the value of C<$!> contains the operating system
126 root 1.43 error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
127 root 1.8
128 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
129     you will not be notified of errors otherwise. The default simply calls
130 root 1.52 C<croak>.
131 root 1.8
132 root 1.40 =item on_read => $cb->($handle)
133 root 1.8
134     This sets the default read callback, which is called when data arrives
135 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
136     callback will only be called when at least one octet of data is in the
137     read buffer).
138 root 1.8
139     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
140 root 1.40 method or access the C<$handle->{rbuf}> member directly.
141 root 1.8
142     When an EOF condition is detected then AnyEvent::Handle will first try to
143     feed all the remaining data to the queued callbacks and C<on_read> before
144     calling the C<on_eof> callback. If no progress can be made, then a fatal
145     error will be raised (with C<$!> set to C<EPIPE>).
146 elmex 1.1
147 root 1.40 =item on_drain => $cb->($handle)
148 elmex 1.1
149 root 1.8 This sets the callback that is called when the write buffer becomes empty
150     (or when the callback is set and the buffer is empty already).
151 elmex 1.1
152 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
153 elmex 1.2
154 root 1.69 This callback is useful when you don't want to put all of your write data
155     into the queue at once, for example, when you want to write the contents
156     of some file to the socket you might not want to read the whole file into
157     memory and push it into the queue, but instead only read more data from
158     the file when the write queue becomes empty.
159    
160 root 1.43 =item timeout => $fractional_seconds
161    
162     If non-zero, then this enables an "inactivity" timeout: whenever this many
163     seconds pass without a successful read or write on the underlying file
164     handle, the C<on_timeout> callback will be invoked (and if that one is
165 root 1.88 missing, a non-fatal C<ETIMEDOUT> error will be raised).
166 root 1.43
167     Note that timeout processing is also active when you currently do not have
168     any outstanding read or write requests: If you plan to keep the connection
169     idle then you should disable the timout temporarily or ignore the timeout
170 root 1.88 in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
171     restart the timeout.
172 root 1.43
173     Zero (the default) disables this timeout.
174    
175     =item on_timeout => $cb->($handle)
176    
177     Called whenever the inactivity timeout passes. If you return from this
178     callback, then the timeout will be reset as if some activity had happened,
179     so this condition is not fatal in any way.
180    
181 root 1.8 =item rbuf_max => <bytes>
182 elmex 1.2
183 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
184     when the read buffer ever (strictly) exceeds this size. This is useful to
185 root 1.88 avoid some forms of denial-of-service attacks.
186 elmex 1.2
187 root 1.8 For example, a server accepting connections from untrusted sources should
188     be configured to accept only so-and-so much data that it cannot act on
189     (for example, when expecting a line, an attacker could send an unlimited
190     amount of data without a callback ever being called as long as the line
191     isn't finished).
192 elmex 1.2
193 root 1.70 =item autocork => <boolean>
194    
195     When disabled (the default), then C<push_write> will try to immediately
196 root 1.88 write the data to the handle, if possible. This avoids having to register
197     a write watcher and wait for the next event loop iteration, but can
198     be inefficient if you write multiple small chunks (on the wire, this
199     disadvantage is usually avoided by your kernel's nagle algorithm, see
200     C<no_delay>, but this option can save costly syscalls).
201 root 1.70
202     When enabled, then writes will always be queued till the next event loop
203     iteration. This is efficient when you do many small writes per iteration,
204 root 1.88 but less efficient when you do a single write only per iteration (or when
205     the write buffer often is full). It also increases write latency.
206 root 1.70
207     =item no_delay => <boolean>
208    
209     When doing small writes on sockets, your operating system kernel might
210     wait a bit for more data before actually sending it out. This is called
211     the Nagle algorithm, and usually it is beneficial.
212    
213 root 1.88 In some situations you want as low a delay as possible, which can be
214     accomplishd by setting this option to a true value.
215 root 1.70
216 root 1.88 The default is your opertaing system's default behaviour (most likely
217     enabled), this option explicitly enables or disables it, if possible.
218 root 1.70
219 root 1.8 =item read_size => <bytes>
220 elmex 1.2
221 root 1.88 The default read block size (the amount of bytes this module will
222     try to read during each loop iteration, which affects memory
223     requirements). Default: C<8192>.
224 root 1.8
225     =item low_water_mark => <bytes>
226    
227     Sets the amount of bytes (default: C<0>) that make up an "empty" write
228     buffer: If the write reaches this size or gets even samller it is
229     considered empty.
230 elmex 1.2
231 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
232     the write buffer before it is fully drained, but this is a rare case, as
233     the operating system kernel usually buffers data as well, so the default
234     is good in almost all cases.
235    
236 root 1.62 =item linger => <seconds>
237    
238     If non-zero (default: C<3600>), then the destructor of the
239 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
240     write data and will install a watcher that will write this data to the
241     socket. No errors will be reported (this mostly matches how the operating
242     system treats outstanding data at socket close time).
243 root 1.62
244 root 1.88 This will not work for partial TLS data that could not be encoded
245 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
246     help.
247 root 1.62
248 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
249    
250 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
251 root 1.88 AnyEvent will start a TLS handshake as soon as the conenction has been
252     established and will transparently encrypt/decrypt data afterwards.
253 root 1.19
254 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
255 root 1.88 automatically when you try to create a TLS handle): this module doesn't
256     have a dependency on that module, so if your module requires it, you have
257     to add the dependency yourself.
258 root 1.26
259 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
260     C<accept>, and for the TLS client side of a connection, use C<connect>
261     mode.
262 root 1.19
263     You can also provide your own TLS connection object, but you have
264     to make sure that you call either C<Net::SSLeay::set_connect_state>
265     or C<Net::SSLeay::set_accept_state> on it before you pass it to
266     AnyEvent::Handle.
267    
268 root 1.88 See the C<< ->starttls >> method for when need to start TLS negotiation later.
269 root 1.26
270 root 1.19 =item tls_ctx => $ssl_ctx
271    
272 root 1.88 Use the given C<Net::SSLeay::CTX> object to create the new TLS connection
273 root 1.19 (unless a connection object was specified directly). If this parameter is
274     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
275    
276 root 1.40 =item json => JSON or JSON::XS object
277    
278     This is the json coder object used by the C<json> read and write types.
279    
280 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
281 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
282     texts.
283 root 1.40
284     Note that you are responsible to depend on the JSON module if you want to
285     use this functionality, as AnyEvent does not have a dependency itself.
286    
287 elmex 1.1 =back
288    
289     =cut
290    
291     sub new {
292 root 1.8 my $class = shift;
293    
294     my $self = bless { @_ }, $class;
295    
296     $self->{fh} or Carp::croak "mandatory argument fh is missing";
297    
298     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
299 elmex 1.1
300 root 1.94 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
301     if $self->{tls};
302 root 1.19
303 root 1.44 $self->{_activity} = AnyEvent->now;
304 root 1.43 $self->_timeout;
305 elmex 1.1
306 root 1.70 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
307     $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
308 root 1.10
309 root 1.66 $self->start_read
310 root 1.67 if $self->{on_read};
311 root 1.66
312 root 1.8 $self
313     }
314 elmex 1.2
315 root 1.8 sub _shutdown {
316     my ($self) = @_;
317 elmex 1.2
318 root 1.46 delete $self->{_tw};
319 root 1.38 delete $self->{_rw};
320     delete $self->{_ww};
321 root 1.8 delete $self->{fh};
322 root 1.52
323 root 1.92 &_freetls;
324 root 1.82
325     delete $self->{on_read};
326     delete $self->{_queue};
327 root 1.8 }
328    
329 root 1.52 sub _error {
330     my ($self, $errno, $fatal) = @_;
331 root 1.8
332 root 1.52 $self->_shutdown
333     if $fatal;
334 elmex 1.1
335 root 1.52 $! = $errno;
336 root 1.37
337 root 1.52 if ($self->{on_error}) {
338     $self->{on_error}($self, $fatal);
339     } else {
340     Carp::croak "AnyEvent::Handle uncaught error: $!";
341     }
342 elmex 1.1 }
343    
344 root 1.8 =item $fh = $handle->fh
345 elmex 1.1
346 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
347 elmex 1.1
348     =cut
349    
350 root 1.38 sub fh { $_[0]{fh} }
351 elmex 1.1
352 root 1.8 =item $handle->on_error ($cb)
353 elmex 1.1
354 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
355 elmex 1.1
356 root 1.8 =cut
357    
358     sub on_error {
359     $_[0]{on_error} = $_[1];
360     }
361    
362     =item $handle->on_eof ($cb)
363    
364     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
365 elmex 1.1
366     =cut
367    
368 root 1.8 sub on_eof {
369     $_[0]{on_eof} = $_[1];
370     }
371    
372 root 1.43 =item $handle->on_timeout ($cb)
373    
374 root 1.88 Replace the current C<on_timeout> callback, or disables the callback (but
375     not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
376     argument and method.
377 root 1.43
378     =cut
379    
380     sub on_timeout {
381     $_[0]{on_timeout} = $_[1];
382     }
383    
384 root 1.70 =item $handle->autocork ($boolean)
385    
386     Enables or disables the current autocork behaviour (see C<autocork>
387     constructor argument).
388    
389     =cut
390    
391     =item $handle->no_delay ($boolean)
392    
393     Enables or disables the C<no_delay> setting (see constructor argument of
394     the same name for details).
395    
396     =cut
397    
398     sub no_delay {
399     $_[0]{no_delay} = $_[1];
400    
401     eval {
402     local $SIG{__DIE__};
403     setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
404     };
405     }
406    
407 root 1.43 #############################################################################
408    
409     =item $handle->timeout ($seconds)
410    
411     Configures (or disables) the inactivity timeout.
412    
413     =cut
414    
415     sub timeout {
416     my ($self, $timeout) = @_;
417    
418     $self->{timeout} = $timeout;
419     $self->_timeout;
420     }
421    
422     # reset the timeout watcher, as neccessary
423     # also check for time-outs
424     sub _timeout {
425     my ($self) = @_;
426    
427     if ($self->{timeout}) {
428 root 1.44 my $NOW = AnyEvent->now;
429 root 1.43
430     # when would the timeout trigger?
431     my $after = $self->{_activity} + $self->{timeout} - $NOW;
432    
433     # now or in the past already?
434     if ($after <= 0) {
435     $self->{_activity} = $NOW;
436    
437     if ($self->{on_timeout}) {
438 root 1.48 $self->{on_timeout}($self);
439 root 1.43 } else {
440 root 1.52 $self->_error (&Errno::ETIMEDOUT);
441 root 1.43 }
442    
443 root 1.56 # callback could have changed timeout value, optimise
444 root 1.43 return unless $self->{timeout};
445    
446     # calculate new after
447     $after = $self->{timeout};
448     }
449    
450     Scalar::Util::weaken $self;
451 root 1.56 return unless $self; # ->error could have destroyed $self
452 root 1.43
453     $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
454     delete $self->{_tw};
455     $self->_timeout;
456     });
457     } else {
458     delete $self->{_tw};
459     }
460     }
461    
462 root 1.9 #############################################################################
463    
464     =back
465    
466     =head2 WRITE QUEUE
467    
468     AnyEvent::Handle manages two queues per handle, one for writing and one
469     for reading.
470    
471     The write queue is very simple: you can add data to its end, and
472     AnyEvent::Handle will automatically try to get rid of it for you.
473    
474 elmex 1.20 When data could be written and the write buffer is shorter then the low
475 root 1.9 water mark, the C<on_drain> callback will be invoked.
476    
477     =over 4
478    
479 root 1.8 =item $handle->on_drain ($cb)
480    
481     Sets the C<on_drain> callback or clears it (see the description of
482     C<on_drain> in the constructor).
483    
484     =cut
485    
486     sub on_drain {
487 elmex 1.1 my ($self, $cb) = @_;
488    
489 root 1.8 $self->{on_drain} = $cb;
490    
491     $cb->($self)
492 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
493 root 1.8 }
494    
495     =item $handle->push_write ($data)
496    
497     Queues the given scalar to be written. You can push as much data as you
498     want (only limited by the available memory), as C<AnyEvent::Handle>
499     buffers it independently of the kernel.
500    
501     =cut
502    
503 root 1.17 sub _drain_wbuf {
504     my ($self) = @_;
505 root 1.8
506 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
507 root 1.35
508 root 1.8 Scalar::Util::weaken $self;
509 root 1.35
510 root 1.8 my $cb = sub {
511     my $len = syswrite $self->{fh}, $self->{wbuf};
512    
513 root 1.29 if ($len >= 0) {
514 root 1.8 substr $self->{wbuf}, 0, $len, "";
515    
516 root 1.44 $self->{_activity} = AnyEvent->now;
517 root 1.43
518 root 1.8 $self->{on_drain}($self)
519 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
520 root 1.8 && $self->{on_drain};
521    
522 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
523 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
524 root 1.52 $self->_error ($!, 1);
525 elmex 1.1 }
526 root 1.8 };
527    
528 root 1.35 # try to write data immediately
529 root 1.70 $cb->() unless $self->{autocork};
530 root 1.8
531 root 1.35 # if still data left in wbuf, we need to poll
532 root 1.38 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
533 root 1.35 if length $self->{wbuf};
534 root 1.8 };
535     }
536    
537 root 1.30 our %WH;
538    
539     sub register_write_type($$) {
540     $WH{$_[0]} = $_[1];
541     }
542    
543 root 1.17 sub push_write {
544     my $self = shift;
545    
546 root 1.29 if (@_ > 1) {
547     my $type = shift;
548    
549     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
550     ->($self, @_);
551     }
552    
553 root 1.93 if ($self->{tls}) {
554     $self->{_tls_wbuf} .= $_[0];
555     &_dotls ($self);
556 root 1.17 } else {
557     $self->{wbuf} .= $_[0];
558     $self->_drain_wbuf;
559     }
560     }
561    
562 root 1.29 =item $handle->push_write (type => @args)
563    
564     Instead of formatting your data yourself, you can also let this module do
565     the job by specifying a type and type-specific arguments.
566    
567 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
568     drop by and tell us):
569 root 1.29
570     =over 4
571    
572     =item netstring => $string
573    
574     Formats the given value as netstring
575     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
576    
577     =cut
578    
579     register_write_type netstring => sub {
580     my ($self, $string) = @_;
581    
582 root 1.96 (length $string) . ":$string,"
583 root 1.29 };
584    
585 root 1.61 =item packstring => $format, $data
586    
587     An octet string prefixed with an encoded length. The encoding C<$format>
588     uses the same format as a Perl C<pack> format, but must specify a single
589     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
590     optional C<!>, C<< < >> or C<< > >> modifier).
591    
592     =cut
593    
594     register_write_type packstring => sub {
595     my ($self, $format, $string) = @_;
596    
597 root 1.65 pack "$format/a*", $string
598 root 1.61 };
599    
600 root 1.39 =item json => $array_or_hashref
601    
602 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
603     provide your own JSON object, this means it will be encoded to JSON text
604     in UTF-8.
605    
606     JSON objects (and arrays) are self-delimiting, so you can write JSON at
607     one end of a handle and read them at the other end without using any
608     additional framing.
609    
610 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
611     this module doesn't need delimiters after or between JSON texts to be
612     able to read them, many other languages depend on that.
613    
614     A simple RPC protocol that interoperates easily with others is to send
615     JSON arrays (or objects, although arrays are usually the better choice as
616     they mimic how function argument passing works) and a newline after each
617     JSON text:
618    
619     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
620     $handle->push_write ("\012");
621    
622     An AnyEvent::Handle receiver would simply use the C<json> read type and
623     rely on the fact that the newline will be skipped as leading whitespace:
624    
625     $handle->push_read (json => sub { my $array = $_[1]; ... });
626    
627     Other languages could read single lines terminated by a newline and pass
628     this line into their JSON decoder of choice.
629    
630 root 1.40 =cut
631    
632     register_write_type json => sub {
633     my ($self, $ref) = @_;
634    
635     require JSON;
636    
637     $self->{json} ? $self->{json}->encode ($ref)
638     : JSON::encode_json ($ref)
639     };
640    
641 root 1.63 =item storable => $reference
642    
643     Freezes the given reference using L<Storable> and writes it to the
644     handle. Uses the C<nfreeze> format.
645    
646     =cut
647    
648     register_write_type storable => sub {
649     my ($self, $ref) = @_;
650    
651     require Storable;
652    
653 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
654 root 1.63 };
655    
656 root 1.53 =back
657    
658 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
659 root 1.30
660     This function (not method) lets you add your own types to C<push_write>.
661     Whenever the given C<type> is used, C<push_write> will invoke the code
662     reference with the handle object and the remaining arguments.
663 root 1.29
664 root 1.30 The code reference is supposed to return a single octet string that will
665     be appended to the write buffer.
666 root 1.29
667 root 1.30 Note that this is a function, and all types registered this way will be
668     global, so try to use unique names.
669 root 1.29
670 root 1.30 =cut
671 root 1.29
672 root 1.8 #############################################################################
673    
674 root 1.9 =back
675    
676     =head2 READ QUEUE
677    
678     AnyEvent::Handle manages two queues per handle, one for writing and one
679     for reading.
680    
681     The read queue is more complex than the write queue. It can be used in two
682     ways, the "simple" way, using only C<on_read> and the "complex" way, using
683     a queue.
684    
685     In the simple case, you just install an C<on_read> callback and whenever
686     new data arrives, it will be called. You can then remove some data (if
687 root 1.69 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
688     leave the data there if you want to accumulate more (e.g. when only a
689     partial message has been received so far).
690 root 1.9
691     In the more complex case, you want to queue multiple callbacks. In this
692     case, AnyEvent::Handle will call the first queued callback each time new
693 root 1.61 data arrives (also the first time it is queued) and removes it when it has
694     done its job (see C<push_read>, below).
695 root 1.9
696     This way you can, for example, push three line-reads, followed by reading
697     a chunk of data, and AnyEvent::Handle will execute them in order.
698    
699     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
700     the specified number of bytes which give an XML datagram.
701    
702     # in the default state, expect some header bytes
703     $handle->on_read (sub {
704     # some data is here, now queue the length-header-read (4 octets)
705 root 1.52 shift->unshift_read (chunk => 4, sub {
706 root 1.9 # header arrived, decode
707     my $len = unpack "N", $_[1];
708    
709     # now read the payload
710 root 1.52 shift->unshift_read (chunk => $len, sub {
711 root 1.9 my $xml = $_[1];
712     # handle xml
713     });
714     });
715     });
716    
717 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
718     and another line or "ERROR" for the first request that is sent, and 64
719     bytes for the second request. Due to the availability of a queue, we can
720     just pipeline sending both requests and manipulate the queue as necessary
721     in the callbacks.
722    
723     When the first callback is called and sees an "OK" response, it will
724     C<unshift> another line-read. This line-read will be queued I<before> the
725     64-byte chunk callback.
726 root 1.9
727 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
728 root 1.9 $handle->push_write ("request 1\015\012");
729    
730     # we expect "ERROR" or "OK" as response, so push a line read
731 root 1.52 $handle->push_read (line => sub {
732 root 1.9 # if we got an "OK", we have to _prepend_ another line,
733     # so it will be read before the second request reads its 64 bytes
734     # which are already in the queue when this callback is called
735     # we don't do this in case we got an error
736     if ($_[1] eq "OK") {
737 root 1.52 $_[0]->unshift_read (line => sub {
738 root 1.9 my $response = $_[1];
739     ...
740     });
741     }
742     });
743    
744 root 1.69 # request two, simply returns 64 octets
745 root 1.9 $handle->push_write ("request 2\015\012");
746    
747     # simply read 64 bytes, always
748 root 1.52 $handle->push_read (chunk => 64, sub {
749 root 1.9 my $response = $_[1];
750     ...
751     });
752    
753     =over 4
754    
755 root 1.10 =cut
756    
757 root 1.8 sub _drain_rbuf {
758     my ($self) = @_;
759 elmex 1.1
760 root 1.59 local $self->{_in_drain} = 1;
761    
762 root 1.17 if (
763     defined $self->{rbuf_max}
764     && $self->{rbuf_max} < length $self->{rbuf}
765     ) {
766 root 1.82 $self->_error (&Errno::ENOSPC, 1), return;
767 root 1.17 }
768    
769 root 1.59 while () {
770     my $len = length $self->{rbuf};
771 elmex 1.1
772 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
773 root 1.29 unless ($cb->($self)) {
774 root 1.38 if ($self->{_eof}) {
775 root 1.10 # no progress can be made (not enough data and no data forthcoming)
776 root 1.82 $self->_error (&Errno::EPIPE, 1), return;
777 root 1.10 }
778    
779 root 1.38 unshift @{ $self->{_queue} }, $cb;
780 root 1.55 last;
781 root 1.8 }
782     } elsif ($self->{on_read}) {
783 root 1.61 last unless $len;
784    
785 root 1.8 $self->{on_read}($self);
786    
787     if (
788 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
789     && !@{ $self->{_queue} } # and the queue is still empty
790     && $self->{on_read} # but we still have on_read
791 root 1.8 ) {
792 root 1.55 # no further data will arrive
793     # so no progress can be made
794 root 1.82 $self->_error (&Errno::EPIPE, 1), return
795 root 1.55 if $self->{_eof};
796    
797     last; # more data might arrive
798 elmex 1.1 }
799 root 1.8 } else {
800     # read side becomes idle
801 root 1.93 delete $self->{_rw} unless $self->{tls};
802 root 1.55 last;
803 root 1.8 }
804     }
805    
806 root 1.80 if ($self->{_eof}) {
807     if ($self->{on_eof}) {
808     $self->{on_eof}($self)
809     } else {
810     $self->_error (0, 1);
811     }
812     }
813 root 1.55
814     # may need to restart read watcher
815     unless ($self->{_rw}) {
816     $self->start_read
817     if $self->{on_read} || @{ $self->{_queue} };
818     }
819 elmex 1.1 }
820    
821 root 1.8 =item $handle->on_read ($cb)
822 elmex 1.1
823 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
824     the new callback is C<undef>). See the description of C<on_read> in the
825     constructor.
826 elmex 1.1
827 root 1.8 =cut
828    
829     sub on_read {
830     my ($self, $cb) = @_;
831 elmex 1.1
832 root 1.8 $self->{on_read} = $cb;
833 root 1.59 $self->_drain_rbuf if $cb && !$self->{_in_drain};
834 elmex 1.1 }
835    
836 root 1.8 =item $handle->rbuf
837    
838     Returns the read buffer (as a modifiable lvalue).
839 elmex 1.1
840 root 1.8 You can access the read buffer directly as the C<< ->{rbuf} >> member, if
841     you want.
842 elmex 1.1
843 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
844     C<push_read> or C<unshift_read> methods are used. The other read methods
845     automatically manage the read buffer.
846 elmex 1.1
847     =cut
848    
849 elmex 1.2 sub rbuf : lvalue {
850 root 1.8 $_[0]{rbuf}
851 elmex 1.2 }
852 elmex 1.1
853 root 1.8 =item $handle->push_read ($cb)
854    
855     =item $handle->unshift_read ($cb)
856    
857     Append the given callback to the end of the queue (C<push_read>) or
858     prepend it (C<unshift_read>).
859    
860     The callback is called each time some additional read data arrives.
861 elmex 1.1
862 elmex 1.20 It must check whether enough data is in the read buffer already.
863 elmex 1.1
864 root 1.8 If not enough data is available, it must return the empty list or a false
865     value, in which case it will be called repeatedly until enough data is
866     available (or an error condition is detected).
867    
868     If enough data was available, then the callback must remove all data it is
869     interested in (which can be none at all) and return a true value. After returning
870     true, it will be removed from the queue.
871 elmex 1.1
872     =cut
873    
874 root 1.30 our %RH;
875    
876     sub register_read_type($$) {
877     $RH{$_[0]} = $_[1];
878     }
879    
880 root 1.8 sub push_read {
881 root 1.28 my $self = shift;
882     my $cb = pop;
883    
884     if (@_) {
885     my $type = shift;
886    
887     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
888     ->($self, $cb, @_);
889     }
890 elmex 1.1
891 root 1.38 push @{ $self->{_queue} }, $cb;
892 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
893 elmex 1.1 }
894    
895 root 1.8 sub unshift_read {
896 root 1.28 my $self = shift;
897     my $cb = pop;
898    
899     if (@_) {
900     my $type = shift;
901    
902     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
903     ->($self, $cb, @_);
904     }
905    
906 root 1.8
907 root 1.38 unshift @{ $self->{_queue} }, $cb;
908 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
909 root 1.8 }
910 elmex 1.1
911 root 1.28 =item $handle->push_read (type => @args, $cb)
912 elmex 1.1
913 root 1.28 =item $handle->unshift_read (type => @args, $cb)
914 elmex 1.1
915 root 1.28 Instead of providing a callback that parses the data itself you can chose
916     between a number of predefined parsing formats, for chunks of data, lines
917     etc.
918 elmex 1.1
919 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
920     drop by and tell us):
921 root 1.28
922     =over 4
923    
924 root 1.40 =item chunk => $octets, $cb->($handle, $data)
925 root 1.28
926     Invoke the callback only once C<$octets> bytes have been read. Pass the
927     data read to the callback. The callback will never be called with less
928     data.
929    
930     Example: read 2 bytes.
931    
932     $handle->push_read (chunk => 2, sub {
933     warn "yay ", unpack "H*", $_[1];
934     });
935 elmex 1.1
936     =cut
937    
938 root 1.28 register_read_type chunk => sub {
939     my ($self, $cb, $len) = @_;
940 elmex 1.1
941 root 1.8 sub {
942     $len <= length $_[0]{rbuf} or return;
943 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
944 root 1.8 1
945     }
946 root 1.28 };
947 root 1.8
948 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
949 elmex 1.1
950 root 1.8 The callback will be called only once a full line (including the end of
951     line marker, C<$eol>) has been read. This line (excluding the end of line
952     marker) will be passed to the callback as second argument (C<$line>), and
953     the end of line marker as the third argument (C<$eol>).
954 elmex 1.1
955 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
956     will be interpreted as a fixed record end marker, or it can be a regex
957     object (e.g. created by C<qr>), in which case it is interpreted as a
958     regular expression.
959 elmex 1.1
960 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
961     undef), then C<qr|\015?\012|> is used (which is good for most internet
962     protocols).
963 elmex 1.1
964 root 1.8 Partial lines at the end of the stream will never be returned, as they are
965     not marked by the end of line marker.
966 elmex 1.1
967 root 1.8 =cut
968 elmex 1.1
969 root 1.28 register_read_type line => sub {
970     my ($self, $cb, $eol) = @_;
971 elmex 1.1
972 root 1.76 if (@_ < 3) {
973     # this is more than twice as fast as the generic code below
974     sub {
975     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
976 elmex 1.1
977 root 1.76 $cb->($_[0], $1, $2);
978     1
979     }
980     } else {
981     $eol = quotemeta $eol unless ref $eol;
982     $eol = qr|^(.*?)($eol)|s;
983    
984     sub {
985     $_[0]{rbuf} =~ s/$eol// or return;
986 elmex 1.1
987 root 1.76 $cb->($_[0], $1, $2);
988     1
989     }
990 root 1.8 }
991 root 1.28 };
992 elmex 1.1
993 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
994 root 1.36
995     Makes a regex match against the regex object C<$accept> and returns
996     everything up to and including the match.
997    
998     Example: read a single line terminated by '\n'.
999    
1000     $handle->push_read (regex => qr<\n>, sub { ... });
1001    
1002     If C<$reject> is given and not undef, then it determines when the data is
1003     to be rejected: it is matched against the data when the C<$accept> regex
1004     does not match and generates an C<EBADMSG> error when it matches. This is
1005     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1006     receive buffer overflow).
1007    
1008     Example: expect a single decimal number followed by whitespace, reject
1009     anything else (not the use of an anchor).
1010    
1011     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1012    
1013     If C<$skip> is given and not C<undef>, then it will be matched against
1014     the receive buffer when neither C<$accept> nor C<$reject> match,
1015     and everything preceding and including the match will be accepted
1016     unconditionally. This is useful to skip large amounts of data that you
1017     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1018     have to start matching from the beginning. This is purely an optimisation
1019     and is usually worth only when you expect more than a few kilobytes.
1020    
1021     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1022     expect the header to be very large (it isn't in practise, but...), we use
1023     a skip regex to skip initial portions. The skip regex is tricky in that
1024     it only accepts something not ending in either \015 or \012, as these are
1025     required for the accept regex.
1026    
1027     $handle->push_read (regex =>
1028     qr<\015\012\015\012>,
1029     undef, # no reject
1030     qr<^.*[^\015\012]>,
1031     sub { ... });
1032    
1033     =cut
1034    
1035     register_read_type regex => sub {
1036     my ($self, $cb, $accept, $reject, $skip) = @_;
1037    
1038     my $data;
1039     my $rbuf = \$self->{rbuf};
1040    
1041     sub {
1042     # accept
1043     if ($$rbuf =~ $accept) {
1044     $data .= substr $$rbuf, 0, $+[0], "";
1045     $cb->($self, $data);
1046     return 1;
1047     }
1048    
1049     # reject
1050     if ($reject && $$rbuf =~ $reject) {
1051 root 1.52 $self->_error (&Errno::EBADMSG);
1052 root 1.36 }
1053    
1054     # skip
1055     if ($skip && $$rbuf =~ $skip) {
1056     $data .= substr $$rbuf, 0, $+[0], "";
1057     }
1058    
1059     ()
1060     }
1061     };
1062    
1063 root 1.61 =item netstring => $cb->($handle, $string)
1064    
1065     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1066    
1067     Throws an error with C<$!> set to EBADMSG on format violations.
1068    
1069     =cut
1070    
1071     register_read_type netstring => sub {
1072     my ($self, $cb) = @_;
1073    
1074     sub {
1075     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1076     if ($_[0]{rbuf} =~ /[^0-9]/) {
1077     $self->_error (&Errno::EBADMSG);
1078     }
1079     return;
1080     }
1081    
1082     my $len = $1;
1083    
1084     $self->unshift_read (chunk => $len, sub {
1085     my $string = $_[1];
1086     $_[0]->unshift_read (chunk => 1, sub {
1087     if ($_[1] eq ",") {
1088     $cb->($_[0], $string);
1089     } else {
1090     $self->_error (&Errno::EBADMSG);
1091     }
1092     });
1093     });
1094    
1095     1
1096     }
1097     };
1098    
1099     =item packstring => $format, $cb->($handle, $string)
1100    
1101     An octet string prefixed with an encoded length. The encoding C<$format>
1102     uses the same format as a Perl C<pack> format, but must specify a single
1103     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1104     optional C<!>, C<< < >> or C<< > >> modifier).
1105    
1106 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1107     EPP uses a prefix of C<N> (4 octtes).
1108 root 1.61
1109     Example: read a block of data prefixed by its length in BER-encoded
1110     format (very efficient).
1111    
1112     $handle->push_read (packstring => "w", sub {
1113     my ($handle, $data) = @_;
1114     });
1115    
1116     =cut
1117    
1118     register_read_type packstring => sub {
1119     my ($self, $cb, $format) = @_;
1120    
1121     sub {
1122     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1123 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1124 root 1.61 or return;
1125    
1126 root 1.77 $format = length pack $format, $len;
1127 root 1.61
1128 root 1.77 # bypass unshift if we already have the remaining chunk
1129     if ($format + $len <= length $_[0]{rbuf}) {
1130     my $data = substr $_[0]{rbuf}, $format, $len;
1131     substr $_[0]{rbuf}, 0, $format + $len, "";
1132     $cb->($_[0], $data);
1133     } else {
1134     # remove prefix
1135     substr $_[0]{rbuf}, 0, $format, "";
1136    
1137     # read remaining chunk
1138     $_[0]->unshift_read (chunk => $len, $cb);
1139     }
1140 root 1.61
1141     1
1142     }
1143     };
1144    
1145 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1146    
1147     Reads a JSON object or array, decodes it and passes it to the callback.
1148    
1149     If a C<json> object was passed to the constructor, then that will be used
1150     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1151    
1152     This read type uses the incremental parser available with JSON version
1153     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1154     dependency on your own: this module will load the JSON module, but
1155     AnyEvent does not depend on it itself.
1156    
1157     Since JSON texts are fully self-delimiting, the C<json> read and write
1158 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1159     the C<json> write type description, above, for an actual example.
1160 root 1.40
1161     =cut
1162    
1163     register_read_type json => sub {
1164 root 1.63 my ($self, $cb) = @_;
1165 root 1.40
1166     require JSON;
1167    
1168     my $data;
1169     my $rbuf = \$self->{rbuf};
1170    
1171 root 1.41 my $json = $self->{json} ||= JSON->new->utf8;
1172 root 1.40
1173     sub {
1174     my $ref = $json->incr_parse ($self->{rbuf});
1175    
1176     if ($ref) {
1177     $self->{rbuf} = $json->incr_text;
1178     $json->incr_text = "";
1179     $cb->($self, $ref);
1180    
1181     1
1182     } else {
1183     $self->{rbuf} = "";
1184     ()
1185     }
1186     }
1187     };
1188    
1189 root 1.63 =item storable => $cb->($handle, $ref)
1190    
1191     Deserialises a L<Storable> frozen representation as written by the
1192     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1193     data).
1194    
1195     Raises C<EBADMSG> error if the data could not be decoded.
1196    
1197     =cut
1198    
1199     register_read_type storable => sub {
1200     my ($self, $cb) = @_;
1201    
1202     require Storable;
1203    
1204     sub {
1205     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1206 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1207 root 1.63 or return;
1208    
1209 root 1.77 my $format = length pack "w", $len;
1210 root 1.63
1211 root 1.77 # bypass unshift if we already have the remaining chunk
1212     if ($format + $len <= length $_[0]{rbuf}) {
1213     my $data = substr $_[0]{rbuf}, $format, $len;
1214     substr $_[0]{rbuf}, 0, $format + $len, "";
1215     $cb->($_[0], Storable::thaw ($data));
1216     } else {
1217     # remove prefix
1218     substr $_[0]{rbuf}, 0, $format, "";
1219    
1220     # read remaining chunk
1221     $_[0]->unshift_read (chunk => $len, sub {
1222     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1223     $cb->($_[0], $ref);
1224     } else {
1225     $self->_error (&Errno::EBADMSG);
1226     }
1227     });
1228     }
1229    
1230     1
1231 root 1.63 }
1232     };
1233    
1234 root 1.28 =back
1235    
1236 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1237 root 1.30
1238     This function (not method) lets you add your own types to C<push_read>.
1239    
1240     Whenever the given C<type> is used, C<push_read> will invoke the code
1241     reference with the handle object, the callback and the remaining
1242     arguments.
1243    
1244     The code reference is supposed to return a callback (usually a closure)
1245     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1246    
1247     It should invoke the passed callback when it is done reading (remember to
1248 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1249 root 1.30
1250     Note that this is a function, and all types registered this way will be
1251     global, so try to use unique names.
1252    
1253     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1254     search for C<register_read_type>)).
1255    
1256 root 1.10 =item $handle->stop_read
1257    
1258     =item $handle->start_read
1259    
1260 root 1.18 In rare cases you actually do not want to read anything from the
1261 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1262 root 1.22 any queued callbacks will be executed then. To start reading again, call
1263 root 1.10 C<start_read>.
1264    
1265 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1266     you change the C<on_read> callback or push/unshift a read callback, and it
1267     will automatically C<stop_read> for you when neither C<on_read> is set nor
1268     there are any read requests in the queue.
1269    
1270 root 1.93 These methods will have no effect when in TLS mode (as TLS doesn't support
1271     half-duplex connections).
1272    
1273 root 1.10 =cut
1274    
1275     sub stop_read {
1276     my ($self) = @_;
1277 elmex 1.1
1278 root 1.93 delete $self->{_rw} unless $self->{tls};
1279 root 1.8 }
1280 elmex 1.1
1281 root 1.10 sub start_read {
1282     my ($self) = @_;
1283    
1284 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1285 root 1.10 Scalar::Util::weaken $self;
1286    
1287 root 1.38 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1288 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1289 root 1.17 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1290 root 1.10
1291     if ($len > 0) {
1292 root 1.44 $self->{_activity} = AnyEvent->now;
1293 root 1.43
1294 root 1.93 if ($self->{tls}) {
1295     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1296     &_dotls ($self);
1297     } else {
1298     $self->_drain_rbuf unless $self->{_in_drain};
1299     }
1300 root 1.10
1301     } elsif (defined $len) {
1302 root 1.38 delete $self->{_rw};
1303     $self->{_eof} = 1;
1304 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1305 root 1.10
1306 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1307 root 1.52 return $self->_error ($!, 1);
1308 root 1.10 }
1309     });
1310     }
1311 elmex 1.1 }
1312    
1313 root 1.19 sub _dotls {
1314     my ($self) = @_;
1315    
1316 root 1.56 my $buf;
1317    
1318 root 1.38 if (length $self->{_tls_wbuf}) {
1319     while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1320     substr $self->{_tls_wbuf}, 0, $len, "";
1321 root 1.22 }
1322 root 1.19 }
1323    
1324 root 1.56 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1325 root 1.91 unless (length $buf) {
1326 root 1.56 # let's treat SSL-eof as we treat normal EOF
1327 root 1.91 delete $self->{_rw};
1328 root 1.56 $self->{_eof} = 1;
1329 root 1.92 &_freetls;
1330 root 1.56 }
1331 root 1.91
1332     $self->{rbuf} .= $buf;
1333     $self->_drain_rbuf unless $self->{_in_drain};
1334 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1335 root 1.23 }
1336    
1337 root 1.24 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1338    
1339     if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1340 root 1.23 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1341 root 1.52 return $self->_error ($!, 1);
1342 root 1.23 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1343 root 1.52 return $self->_error (&Errno::EIO, 1);
1344 root 1.19 }
1345 root 1.23
1346     # all others are fine for our purposes
1347 root 1.19 }
1348 root 1.91
1349 root 1.96 while (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1350 root 1.91 $self->{wbuf} .= $buf;
1351     $self->_drain_wbuf;
1352     }
1353 root 1.19 }
1354    
1355 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1356    
1357     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1358     object is created, you can also do that at a later time by calling
1359     C<starttls>.
1360    
1361     The first argument is the same as the C<tls> constructor argument (either
1362     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1363    
1364     The second argument is the optional C<Net::SSLeay::CTX> object that is
1365     used when AnyEvent::Handle has to create its own TLS connection object.
1366    
1367 root 1.38 The TLS connection object will end up in C<< $handle->{tls} >> after this
1368     call and can be used or changed to your liking. Note that the handshake
1369     might have already started when this function returns.
1370    
1371 root 1.92 If it an error to start a TLS handshake more than once per
1372     AnyEvent::Handle object (this is due to bugs in OpenSSL).
1373    
1374 root 1.25 =cut
1375    
1376 root 1.19 sub starttls {
1377     my ($self, $ssl, $ctx) = @_;
1378    
1379 root 1.94 require Net::SSLeay;
1380    
1381 root 1.92 Carp::croak "it is an error to call starttls more than once on an Anyevent::Handle object"
1382     if $self->{tls};
1383    
1384 root 1.19 if ($ssl eq "accept") {
1385     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1386     Net::SSLeay::set_accept_state ($ssl);
1387     } elsif ($ssl eq "connect") {
1388     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1389     Net::SSLeay::set_connect_state ($ssl);
1390     }
1391    
1392     $self->{tls} = $ssl;
1393    
1394 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1395     # but the openssl maintainers basically said: "trust us, it just works".
1396     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1397     # and mismaintained ssleay-module doesn't even offer them).
1398 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1399 root 1.87 #
1400     # in short: this is a mess.
1401     #
1402 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
1403 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1404 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1405     # have identity issues in that area.
1406 root 1.21 Net::SSLeay::CTX_set_mode ($self->{tls},
1407 root 1.34 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1408     | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1409 root 1.21
1410 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1411     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1412 root 1.19
1413 root 1.38 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1414 root 1.19
1415 root 1.93 &_dotls; # need to trigger the initial handshake
1416     $self->start_read; # make sure we actually do read
1417 root 1.19 }
1418    
1419 root 1.25 =item $handle->stoptls
1420    
1421 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
1422     sending a close notify to the other side, but since OpenSSL doesn't
1423     support non-blocking shut downs, it is not possible to re-use the stream
1424     afterwards.
1425 root 1.25
1426     =cut
1427    
1428     sub stoptls {
1429     my ($self) = @_;
1430    
1431 root 1.92 if ($self->{tls}) {
1432 root 1.94 Net::SSLeay::shutdown ($self->{tls});
1433 root 1.92
1434     &_dotls;
1435    
1436     # we don't give a shit. no, we do, but we can't. no...
1437     # we, we... have to use openssl :/
1438     &_freetls;
1439     }
1440     }
1441    
1442     sub _freetls {
1443     my ($self) = @_;
1444    
1445     return unless $self->{tls};
1446 root 1.38
1447 root 1.92 Net::SSLeay::free (delete $self->{tls});
1448    
1449 root 1.93 delete @$self{qw(_rbio _wbio _tls_wbuf)};
1450 root 1.25 }
1451    
1452 root 1.19 sub DESTROY {
1453     my $self = shift;
1454    
1455 root 1.92 &_freetls;
1456 root 1.62
1457     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1458    
1459     if ($linger && length $self->{wbuf}) {
1460     my $fh = delete $self->{fh};
1461     my $wbuf = delete $self->{wbuf};
1462    
1463     my @linger;
1464    
1465     push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1466     my $len = syswrite $fh, $wbuf, length $wbuf;
1467    
1468     if ($len > 0) {
1469     substr $wbuf, 0, $len, "";
1470     } else {
1471     @linger = (); # end
1472     }
1473     });
1474     push @linger, AnyEvent->timer (after => $linger, cb => sub {
1475     @linger = ();
1476     });
1477     }
1478 root 1.19 }
1479    
1480     =item AnyEvent::Handle::TLS_CTX
1481    
1482     This function creates and returns the Net::SSLeay::CTX object used by
1483     default for TLS mode.
1484    
1485     The context is created like this:
1486    
1487     Net::SSLeay::load_error_strings;
1488     Net::SSLeay::SSLeay_add_ssl_algorithms;
1489     Net::SSLeay::randomize;
1490    
1491     my $CTX = Net::SSLeay::CTX_new;
1492    
1493     Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1494    
1495     =cut
1496    
1497     our $TLS_CTX;
1498    
1499     sub TLS_CTX() {
1500     $TLS_CTX || do {
1501     require Net::SSLeay;
1502    
1503     Net::SSLeay::load_error_strings ();
1504     Net::SSLeay::SSLeay_add_ssl_algorithms ();
1505     Net::SSLeay::randomize ();
1506    
1507     $TLS_CTX = Net::SSLeay::CTX_new ();
1508    
1509     Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1510    
1511     $TLS_CTX
1512     }
1513     }
1514    
1515 elmex 1.1 =back
1516    
1517 root 1.95
1518     =head1 NONFREQUENTLY ASKED QUESTIONS
1519    
1520     =over 4
1521    
1522     =item How do I read data until the other side closes the connection?
1523    
1524 root 1.96 If you just want to read your data into a perl scalar, the easiest way
1525     to achieve this is by setting an C<on_read> callback that does nothing,
1526     clearing the C<on_eof> callback and in the C<on_error> callback, the data
1527     will be in C<$_[0]{rbuf}>:
1528 root 1.95
1529     $handle->on_read (sub { });
1530     $handle->on_eof (undef);
1531     $handle->on_error (sub {
1532     my $data = delete $_[0]{rbuf};
1533     undef $handle;
1534     });
1535    
1536     The reason to use C<on_error> is that TCP connections, due to latencies
1537     and packets loss, might get closed quite violently with an error, when in
1538     fact, all data has been received.
1539    
1540     It is usually better to use acknowledgements when transfering data,
1541     to make sure the other side hasn't just died and you got the data
1542     intact. This is also one reason why so many internet protocols have an
1543     explicit QUIT command.
1544    
1545    
1546 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
1547     all data has been written?
1548 root 1.95
1549     After writing your last bits of data, set the C<on_drain> callback
1550     and destroy the handle in there - with the default setting of
1551     C<low_water_mark> this will be called precisely when all data has been
1552     written to the socket:
1553    
1554     $handle->push_write (...);
1555     $handle->on_drain (sub {
1556     warn "all data submitted to the kernel\n";
1557     undef $handle;
1558     });
1559    
1560     =back
1561    
1562    
1563 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
1564    
1565     In many cases, you might want to subclass AnyEvent::Handle.
1566    
1567     To make this easier, a given version of AnyEvent::Handle uses these
1568     conventions:
1569    
1570     =over 4
1571    
1572     =item * all constructor arguments become object members.
1573    
1574     At least initially, when you pass a C<tls>-argument to the constructor it
1575 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
1576 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
1577    
1578     =item * other object member names are prefixed with an C<_>.
1579    
1580     All object members not explicitly documented (internal use) are prefixed
1581     with an underscore character, so the remaining non-C<_>-namespace is free
1582     for use for subclasses.
1583    
1584     =item * all members not documented here and not prefixed with an underscore
1585     are free to use in subclasses.
1586    
1587     Of course, new versions of AnyEvent::Handle may introduce more "public"
1588     member variables, but thats just life, at least it is documented.
1589    
1590     =back
1591    
1592 elmex 1.1 =head1 AUTHOR
1593    
1594 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1595 elmex 1.1
1596     =cut
1597    
1598     1; # End of AnyEvent::Handle