ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.53 by root, Mon Jun 2 09:12:14 2008 UTC vs.
Revision 1.143 by root, Mon Jul 6 21:02:34 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent (); 6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK); 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 8use Scalar::Util ();
9use Carp (); 9use Carp ();
14 14
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17=cut 17=cut
18 18
19our $VERSION = 4.1; 19our $VERSION = 4.452;
20 20
21=head1 SYNOPSIS 21=head1 SYNOPSIS
22 22
23 use AnyEvent; 23 use AnyEvent;
24 use AnyEvent::Handle; 24 use AnyEvent::Handle;
27 27
28 my $handle = 28 my $handle =
29 AnyEvent::Handle->new ( 29 AnyEvent::Handle->new (
30 fh => \*STDIN, 30 fh => \*STDIN,
31 on_eof => sub { 31 on_eof => sub {
32 $cv->broadcast; 32 $cv->send;
33 }, 33 },
34 ); 34 );
35 35
36 # send some request line 36 # send some request line
37 $handle->push_write ("getinfo\015\012"); 37 $handle->push_write ("getinfo\015\012");
49 49
50This module is a helper module to make it easier to do event-based I/O on 50This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 51filehandles. For utility functions for doing non-blocking connects and accepts
52on sockets see L<AnyEvent::Util>. 52on sockets see L<AnyEvent::Util>.
53 53
54The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples.
56
54In the following, when the documentation refers to of "bytes" then this 57In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 58means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 59treatment of characters applies to this module as well.
57 60
58All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
60 63
61=head1 METHODS 64=head1 METHODS
62 65
63=over 4 66=over 4
64 67
65=item B<new (%args)> 68=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 69
67The constructor supports these arguments (all as key => value pairs). 70The constructor supports these arguments (all as C<< key => value >> pairs).
68 71
69=over 4 72=over 4
70 73
71=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [MANDATORY]
72 75
73The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
74 77
75NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
77 81
78=item on_eof => $cb->($handle) 82=item on_eof => $cb->($handle)
79 83
80Set the callback to be called when an end-of-file condition is detcted, 84Set the callback to be called when an end-of-file condition is detected,
81i.e. in the case of a socket, when the other side has closed the 85i.e. in the case of a socket, when the other side has closed the
82connection cleanly. 86connection cleanly.
83 87
88For sockets, this just means that the other side has stopped sending data,
89you can still try to write data, and, in fact, one can return from the EOF
90callback and continue writing data, as only the read part has been shut
91down.
92
84While not mandatory, it is highly recommended to set an eof callback, 93While not mandatory, it is I<highly> recommended to set an EOF callback,
85otherwise you might end up with a closed socket while you are still 94otherwise you might end up with a closed socket while you are still
86waiting for data. 95waiting for data.
87 96
97If an EOF condition has been detected but no C<on_eof> callback has been
98set, then a fatal error will be raised with C<$!> set to <0>.
99
88=item on_error => $cb->($handle, $fatal) 100=item on_error => $cb->($handle, $fatal, $message)
89 101
90This is the error callback, which is called when, well, some error 102This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 103occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 104connect or a read error.
93 105
94Some errors are fatal (which is indicated by C<$fatal> being true). On 106Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 107fatal errors the handle object will be shut down and will not be usable
108(but you are free to look at the current C<< ->rbuf >>). Examples of fatal
109errors are an EOF condition with active (but unsatisifable) read watchers
110(C<EPIPE>) or I/O errors.
111
112AnyEvent::Handle tries to find an appropriate error code for you to check
113against, but in some cases (TLS errors), this does not work well. It is
114recommended to always output the C<$message> argument in human-readable
115error messages (it's usually the same as C<"$!">).
116
96usable. Non-fatal errors can be retried by simply returning, but it is 117Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 118to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 119when this callback is invoked. Examples of non-fatal errors are timeouts
120C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 121
100On callback entrance, the value of C<$!> contains the operating system 122On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 123error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
124C<EPROTO>).
102 125
103While not mandatory, it is I<highly> recommended to set this callback, as 126While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 127you will not be notified of errors otherwise. The default simply calls
105C<croak>. 128C<croak>.
106 129
107=item on_read => $cb->($handle) 130=item on_read => $cb->($handle)
108 131
109This sets the default read callback, which is called when data arrives 132This sets the default read callback, which is called when data arrives
110and no read request is in the queue. 133and no read request is in the queue (unlike read queue callbacks, this
134callback will only be called when at least one octet of data is in the
135read buffer).
111 136
112To access (and remove data from) the read buffer, use the C<< ->rbuf >> 137To access (and remove data from) the read buffer, use the C<< ->rbuf >>
113method or access the C<$handle->{rbuf}> member directly. 138method or access the C<< $handle->{rbuf} >> member directly. Note that you
139must not enlarge or modify the read buffer, you can only remove data at
140the beginning from it.
114 141
115When an EOF condition is detected then AnyEvent::Handle will first try to 142When an EOF condition is detected then AnyEvent::Handle will first try to
116feed all the remaining data to the queued callbacks and C<on_read> before 143feed all the remaining data to the queued callbacks and C<on_read> before
117calling the C<on_eof> callback. If no progress can be made, then a fatal 144calling the C<on_eof> callback. If no progress can be made, then a fatal
118error will be raised (with C<$!> set to C<EPIPE>). 145error will be raised (with C<$!> set to C<EPIPE>).
122This sets the callback that is called when the write buffer becomes empty 149This sets the callback that is called when the write buffer becomes empty
123(or when the callback is set and the buffer is empty already). 150(or when the callback is set and the buffer is empty already).
124 151
125To append to the write buffer, use the C<< ->push_write >> method. 152To append to the write buffer, use the C<< ->push_write >> method.
126 153
154This callback is useful when you don't want to put all of your write data
155into the queue at once, for example, when you want to write the contents
156of some file to the socket you might not want to read the whole file into
157memory and push it into the queue, but instead only read more data from
158the file when the write queue becomes empty.
159
127=item timeout => $fractional_seconds 160=item timeout => $fractional_seconds
128 161
129If non-zero, then this enables an "inactivity" timeout: whenever this many 162If non-zero, then this enables an "inactivity" timeout: whenever this many
130seconds pass without a successful read or write on the underlying file 163seconds pass without a successful read or write on the underlying file
131handle, the C<on_timeout> callback will be invoked (and if that one is 164handle, the C<on_timeout> callback will be invoked (and if that one is
132missing, an C<ETIMEDOUT> error will be raised). 165missing, a non-fatal C<ETIMEDOUT> error will be raised).
133 166
134Note that timeout processing is also active when you currently do not have 167Note that timeout processing is also active when you currently do not have
135any outstanding read or write requests: If you plan to keep the connection 168any outstanding read or write requests: If you plan to keep the connection
136idle then you should disable the timout temporarily or ignore the timeout 169idle then you should disable the timout temporarily or ignore the timeout
137in the C<on_timeout> callback. 170in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
171restart the timeout.
138 172
139Zero (the default) disables this timeout. 173Zero (the default) disables this timeout.
140 174
141=item on_timeout => $cb->($handle) 175=item on_timeout => $cb->($handle)
142 176
146 180
147=item rbuf_max => <bytes> 181=item rbuf_max => <bytes>
148 182
149If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 183If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
150when the read buffer ever (strictly) exceeds this size. This is useful to 184when the read buffer ever (strictly) exceeds this size. This is useful to
151avoid denial-of-service attacks. 185avoid some forms of denial-of-service attacks.
152 186
153For example, a server accepting connections from untrusted sources should 187For example, a server accepting connections from untrusted sources should
154be configured to accept only so-and-so much data that it cannot act on 188be configured to accept only so-and-so much data that it cannot act on
155(for example, when expecting a line, an attacker could send an unlimited 189(for example, when expecting a line, an attacker could send an unlimited
156amount of data without a callback ever being called as long as the line 190amount of data without a callback ever being called as long as the line
157isn't finished). 191isn't finished).
158 192
193=item autocork => <boolean>
194
195When disabled (the default), then C<push_write> will try to immediately
196write the data to the handle, if possible. This avoids having to register
197a write watcher and wait for the next event loop iteration, but can
198be inefficient if you write multiple small chunks (on the wire, this
199disadvantage is usually avoided by your kernel's nagle algorithm, see
200C<no_delay>, but this option can save costly syscalls).
201
202When enabled, then writes will always be queued till the next event loop
203iteration. This is efficient when you do many small writes per iteration,
204but less efficient when you do a single write only per iteration (or when
205the write buffer often is full). It also increases write latency.
206
207=item no_delay => <boolean>
208
209When doing small writes on sockets, your operating system kernel might
210wait a bit for more data before actually sending it out. This is called
211the Nagle algorithm, and usually it is beneficial.
212
213In some situations you want as low a delay as possible, which can be
214accomplishd by setting this option to a true value.
215
216The default is your opertaing system's default behaviour (most likely
217enabled), this option explicitly enables or disables it, if possible.
218
159=item read_size => <bytes> 219=item read_size => <bytes>
160 220
161The default read block size (the amount of bytes this module will try to read 221The default read block size (the amount of bytes this module will
162during each (loop iteration). Default: C<8192>. 222try to read during each loop iteration, which affects memory
223requirements). Default: C<8192>.
163 224
164=item low_water_mark => <bytes> 225=item low_water_mark => <bytes>
165 226
166Sets the amount of bytes (default: C<0>) that make up an "empty" write 227Sets the amount of bytes (default: C<0>) that make up an "empty" write
167buffer: If the write reaches this size or gets even samller it is 228buffer: If the write reaches this size or gets even samller it is
168considered empty. 229considered empty.
169 230
231Sometimes it can be beneficial (for performance reasons) to add data to
232the write buffer before it is fully drained, but this is a rare case, as
233the operating system kernel usually buffers data as well, so the default
234is good in almost all cases.
235
236=item linger => <seconds>
237
238If non-zero (default: C<3600>), then the destructor of the
239AnyEvent::Handle object will check whether there is still outstanding
240write data and will install a watcher that will write this data to the
241socket. No errors will be reported (this mostly matches how the operating
242system treats outstanding data at socket close time).
243
244This will not work for partial TLS data that could not be encoded
245yet. This data will be lost. Calling the C<stoptls> method in time might
246help.
247
248=item peername => $string
249
250A string used to identify the remote site - usually the DNS hostname
251(I<not> IDN!) used to create the connection, rarely the IP address.
252
253Apart from being useful in error messages, this string is also used in TLS
254peername verification (see C<verify_peername> in L<AnyEvent::TLS>).
255
170=item tls => "accept" | "connect" | Net::SSLeay::SSL object 256=item tls => "accept" | "connect" | Net::SSLeay::SSL object
171 257
172When this parameter is given, it enables TLS (SSL) mode, that means it 258When this parameter is given, it enables TLS (SSL) mode, that means
173will start making tls handshake and will transparently encrypt/decrypt 259AnyEvent will start a TLS handshake as soon as the conenction has been
174data. 260established and will transparently encrypt/decrypt data afterwards.
261
262All TLS protocol errors will be signalled as C<EPROTO>, with an
263appropriate error message.
175 264
176TLS mode requires Net::SSLeay to be installed (it will be loaded 265TLS mode requires Net::SSLeay to be installed (it will be loaded
177automatically when you try to create a TLS handle). 266automatically when you try to create a TLS handle): this module doesn't
267have a dependency on that module, so if your module requires it, you have
268to add the dependency yourself.
178 269
179For the TLS server side, use C<accept>, and for the TLS client side of a 270Unlike TCP, TLS has a server and client side: for the TLS server side, use
180connection, use C<connect> mode. 271C<accept>, and for the TLS client side of a connection, use C<connect>
272mode.
181 273
182You can also provide your own TLS connection object, but you have 274You can also provide your own TLS connection object, but you have
183to make sure that you call either C<Net::SSLeay::set_connect_state> 275to make sure that you call either C<Net::SSLeay::set_connect_state>
184or C<Net::SSLeay::set_accept_state> on it before you pass it to 276or C<Net::SSLeay::set_accept_state> on it before you pass it to
185AnyEvent::Handle. 277AnyEvent::Handle. Also, this module will take ownership of this connection
278object.
186 279
280At some future point, AnyEvent::Handle might switch to another TLS
281implementation, then the option to use your own session object will go
282away.
283
284B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
285passing in the wrong integer will lead to certain crash. This most often
286happens when one uses a stylish C<< tls => 1 >> and is surprised about the
287segmentation fault.
288
187See the C<starttls> method if you need to start TLs negotiation later. 289See the C<< ->starttls >> method for when need to start TLS negotiation later.
188 290
189=item tls_ctx => $ssl_ctx 291=item tls_ctx => $anyevent_tls
190 292
191Use the given Net::SSLeay::CTX object to create the new TLS connection 293Use the given C<AnyEvent::TLS> object to create the new TLS connection
192(unless a connection object was specified directly). If this parameter is 294(unless a connection object was specified directly). If this parameter is
193missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 295missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
194 296
297Instead of an object, you can also specify a hash reference with C<< key
298=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
299new TLS context object.
300
301=item on_starttls => $cb->($handle, $success[, $error_message])
302
303This callback will be invoked when the TLS/SSL handshake has finished. If
304C<$success> is true, then the TLS handshake succeeded, otherwise it failed
305(C<on_stoptls> will not be called in this case).
306
307The session in C<< $handle->{tls} >> can still be examined in this
308callback, even when the handshake was not successful.
309
310TLS handshake failures will not cause C<on_error> to be invoked when this
311callback is in effect, instead, the error message will be passed to C<on_starttls>.
312
313Without this callback, handshake failures lead to C<on_error> being
314called, as normal.
315
316Note that you cannot call C<starttls> right again in this callback. If you
317need to do that, start an zero-second timer instead whose callback can
318then call C<< ->starttls >> again.
319
320=item on_stoptls => $cb->($handle)
321
322When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
323set, then it will be invoked after freeing the TLS session. If it is not,
324then a TLS shutdown condition will be treated like a normal EOF condition
325on the handle.
326
327The session in C<< $handle->{tls} >> can still be examined in this
328callback.
329
330This callback will only be called on TLS shutdowns, not when the
331underlying handle signals EOF.
332
195=item json => JSON or JSON::XS object 333=item json => JSON or JSON::XS object
196 334
197This is the json coder object used by the C<json> read and write types. 335This is the json coder object used by the C<json> read and write types.
198 336
199If you don't supply it, then AnyEvent::Handle will create and use a 337If you don't supply it, then AnyEvent::Handle will create and use a
200suitable one, which will write and expect UTF-8 encoded JSON texts. 338suitable one (on demand), which will write and expect UTF-8 encoded JSON
339texts.
201 340
202Note that you are responsible to depend on the JSON module if you want to 341Note that you are responsible to depend on the JSON module if you want to
203use this functionality, as AnyEvent does not have a dependency itself. 342use this functionality, as AnyEvent does not have a dependency itself.
204 343
205=item filter_r => $cb
206
207=item filter_w => $cb
208
209These exist, but are undocumented at this time.
210
211=back 344=back
212 345
213=cut 346=cut
214 347
215sub new { 348sub new {
216 my $class = shift; 349 my $class = shift;
217
218 my $self = bless { @_ }, $class; 350 my $self = bless { @_ }, $class;
219 351
220 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 352 $self->{fh} or Carp::croak "mandatory argument fh is missing";
221 353
222 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 354 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
223
224 if ($self->{tls}) {
225 require Net::SSLeay;
226 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
227 }
228
229# $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; # nop
230# $self->on_error (delete $self->{on_error}) if $self->{on_error}; # nop
231# $self->on_read (delete $self->{on_read} ) if $self->{on_read}; # nop
232 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
233 355
234 $self->{_activity} = AnyEvent->now; 356 $self->{_activity} = AnyEvent->now;
235 $self->_timeout; 357 $self->_timeout;
236 358
359 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
360
361 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
362 if $self->{tls};
363
364 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
365
237 $self->start_read; 366 $self->start_read
367 if $self->{on_read};
238 368
239 $self 369 $self->{fh} && $self
240} 370}
241 371
242sub _shutdown { 372sub _shutdown {
243 my ($self) = @_; 373 my ($self) = @_;
244 374
245 delete $self->{_tw}; 375 delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
246 delete $self->{_rw}; 376 $self->{_eof} = 1; # tell starttls et. al to stop trying
247 delete $self->{_ww};
248 delete $self->{fh};
249 377
250 $self->stoptls; 378 &_freetls;
251} 379}
252 380
253sub _error { 381sub _error {
254 my ($self, $errno, $fatal) = @_; 382 my ($self, $errno, $fatal, $message) = @_;
255 383
256 $self->_shutdown 384 $self->_shutdown
257 if $fatal; 385 if $fatal;
258 386
259 $! = $errno; 387 $! = $errno;
388 $message ||= "$!";
260 389
261 if ($self->{on_error}) { 390 if ($self->{on_error}) {
262 $self->{on_error}($self, $fatal); 391 $self->{on_error}($self, $fatal, $message);
263 } else { 392 } elsif ($self->{fh}) {
264 Carp::croak "AnyEvent::Handle uncaught error: $!"; 393 Carp::croak "AnyEvent::Handle uncaught error: $message";
265 } 394 }
266} 395}
267 396
268=item $fh = $handle->fh 397=item $fh = $handle->fh
269 398
270This method returns the file handle of the L<AnyEvent::Handle> object. 399This method returns the file handle used to create the L<AnyEvent::Handle> object.
271 400
272=cut 401=cut
273 402
274sub fh { $_[0]{fh} } 403sub fh { $_[0]{fh} }
275 404
293 $_[0]{on_eof} = $_[1]; 422 $_[0]{on_eof} = $_[1];
294} 423}
295 424
296=item $handle->on_timeout ($cb) 425=item $handle->on_timeout ($cb)
297 426
298Replace the current C<on_timeout> callback, or disables the callback 427Replace the current C<on_timeout> callback, or disables the callback (but
299(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor 428not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
300argument. 429argument and method.
301 430
302=cut 431=cut
303 432
304sub on_timeout { 433sub on_timeout {
305 $_[0]{on_timeout} = $_[1]; 434 $_[0]{on_timeout} = $_[1];
435}
436
437=item $handle->autocork ($boolean)
438
439Enables or disables the current autocork behaviour (see C<autocork>
440constructor argument). Changes will only take effect on the next write.
441
442=cut
443
444sub autocork {
445 $_[0]{autocork} = $_[1];
446}
447
448=item $handle->no_delay ($boolean)
449
450Enables or disables the C<no_delay> setting (see constructor argument of
451the same name for details).
452
453=cut
454
455sub no_delay {
456 $_[0]{no_delay} = $_[1];
457
458 eval {
459 local $SIG{__DIE__};
460 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
461 };
462}
463
464=item $handle->on_starttls ($cb)
465
466Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
467
468=cut
469
470sub on_starttls {
471 $_[0]{on_starttls} = $_[1];
472}
473
474=item $handle->on_stoptls ($cb)
475
476Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
477
478=cut
479
480sub on_starttls {
481 $_[0]{on_stoptls} = $_[1];
306} 482}
307 483
308############################################################################# 484#############################################################################
309 485
310=item $handle->timeout ($seconds) 486=item $handle->timeout ($seconds)
339 $self->{on_timeout}($self); 515 $self->{on_timeout}($self);
340 } else { 516 } else {
341 $self->_error (&Errno::ETIMEDOUT); 517 $self->_error (&Errno::ETIMEDOUT);
342 } 518 }
343 519
344 # callbakx could have changed timeout value, optimise 520 # callback could have changed timeout value, optimise
345 return unless $self->{timeout}; 521 return unless $self->{timeout};
346 522
347 # calculate new after 523 # calculate new after
348 $after = $self->{timeout}; 524 $after = $self->{timeout};
349 } 525 }
350 526
351 Scalar::Util::weaken $self; 527 Scalar::Util::weaken $self;
528 return unless $self; # ->error could have destroyed $self
352 529
353 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub { 530 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
354 delete $self->{_tw}; 531 delete $self->{_tw};
355 $self->_timeout; 532 $self->_timeout;
356 }); 533 });
387 my ($self, $cb) = @_; 564 my ($self, $cb) = @_;
388 565
389 $self->{on_drain} = $cb; 566 $self->{on_drain} = $cb;
390 567
391 $cb->($self) 568 $cb->($self)
392 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 569 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
393} 570}
394 571
395=item $handle->push_write ($data) 572=item $handle->push_write ($data)
396 573
397Queues the given scalar to be written. You can push as much data as you 574Queues the given scalar to be written. You can push as much data as you
414 substr $self->{wbuf}, 0, $len, ""; 591 substr $self->{wbuf}, 0, $len, "";
415 592
416 $self->{_activity} = AnyEvent->now; 593 $self->{_activity} = AnyEvent->now;
417 594
418 $self->{on_drain}($self) 595 $self->{on_drain}($self)
419 if $self->{low_water_mark} >= length $self->{wbuf} 596 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
420 && $self->{on_drain}; 597 && $self->{on_drain};
421 598
422 delete $self->{_ww} unless length $self->{wbuf}; 599 delete $self->{_ww} unless length $self->{wbuf};
423 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 600 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
424 $self->_error ($!, 1); 601 $self->_error ($!, 1);
425 } 602 }
426 }; 603 };
427 604
428 # try to write data immediately 605 # try to write data immediately
429 $cb->(); 606 $cb->() unless $self->{autocork};
430 607
431 # if still data left in wbuf, we need to poll 608 # if still data left in wbuf, we need to poll
432 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 609 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
433 if length $self->{wbuf}; 610 if length $self->{wbuf};
434 }; 611 };
448 625
449 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 626 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
450 ->($self, @_); 627 ->($self, @_);
451 } 628 }
452 629
453 if ($self->{filter_w}) { 630 if ($self->{tls}) {
454 $self->{filter_w}($self, \$_[0]); 631 $self->{_tls_wbuf} .= $_[0];
632
633 &_dotls ($self);
455 } else { 634 } else {
456 $self->{wbuf} .= $_[0]; 635 $self->{wbuf} .= $_[0];
457 $self->_drain_wbuf; 636 $self->_drain_wbuf;
458 } 637 }
459} 638}
476=cut 655=cut
477 656
478register_write_type netstring => sub { 657register_write_type netstring => sub {
479 my ($self, $string) = @_; 658 my ($self, $string) = @_;
480 659
481 sprintf "%d:%s,", (length $string), $string 660 (length $string) . ":$string,"
661};
662
663=item packstring => $format, $data
664
665An octet string prefixed with an encoded length. The encoding C<$format>
666uses the same format as a Perl C<pack> format, but must specify a single
667integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
668optional C<!>, C<< < >> or C<< > >> modifier).
669
670=cut
671
672register_write_type packstring => sub {
673 my ($self, $format, $string) = @_;
674
675 pack "$format/a*", $string
482}; 676};
483 677
484=item json => $array_or_hashref 678=item json => $array_or_hashref
485 679
486Encodes the given hash or array reference into a JSON object. Unless you 680Encodes the given hash or array reference into a JSON object. Unless you
520 714
521 $self->{json} ? $self->{json}->encode ($ref) 715 $self->{json} ? $self->{json}->encode ($ref)
522 : JSON::encode_json ($ref) 716 : JSON::encode_json ($ref)
523}; 717};
524 718
719=item storable => $reference
720
721Freezes the given reference using L<Storable> and writes it to the
722handle. Uses the C<nfreeze> format.
723
724=cut
725
726register_write_type storable => sub {
727 my ($self, $ref) = @_;
728
729 require Storable;
730
731 pack "w/a*", Storable::nfreeze ($ref)
732};
733
525=back 734=back
735
736=item $handle->push_shutdown
737
738Sometimes you know you want to close the socket after writing your data
739before it was actually written. One way to do that is to replace your
740C<on_drain> handler by a callback that shuts down the socket (and set
741C<low_water_mark> to C<0>). This method is a shorthand for just that, and
742replaces the C<on_drain> callback with:
743
744 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
745
746This simply shuts down the write side and signals an EOF condition to the
747the peer.
748
749You can rely on the normal read queue and C<on_eof> handling
750afterwards. This is the cleanest way to close a connection.
751
752=cut
753
754sub push_shutdown {
755 my ($self) = @_;
756
757 delete $self->{low_water_mark};
758 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
759}
526 760
527=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 761=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
528 762
529This function (not method) lets you add your own types to C<push_write>. 763This function (not method) lets you add your own types to C<push_write>.
530Whenever the given C<type> is used, C<push_write> will invoke the code 764Whenever the given C<type> is used, C<push_write> will invoke the code
551ways, the "simple" way, using only C<on_read> and the "complex" way, using 785ways, the "simple" way, using only C<on_read> and the "complex" way, using
552a queue. 786a queue.
553 787
554In the simple case, you just install an C<on_read> callback and whenever 788In the simple case, you just install an C<on_read> callback and whenever
555new data arrives, it will be called. You can then remove some data (if 789new data arrives, it will be called. You can then remove some data (if
556enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 790enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
557or not. 791leave the data there if you want to accumulate more (e.g. when only a
792partial message has been received so far).
558 793
559In the more complex case, you want to queue multiple callbacks. In this 794In the more complex case, you want to queue multiple callbacks. In this
560case, AnyEvent::Handle will call the first queued callback each time new 795case, AnyEvent::Handle will call the first queued callback each time new
561data arrives and removes it when it has done its job (see C<push_read>, 796data arrives (also the first time it is queued) and removes it when it has
562below). 797done its job (see C<push_read>, below).
563 798
564This way you can, for example, push three line-reads, followed by reading 799This way you can, for example, push three line-reads, followed by reading
565a chunk of data, and AnyEvent::Handle will execute them in order. 800a chunk of data, and AnyEvent::Handle will execute them in order.
566 801
567Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 802Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
580 # handle xml 815 # handle xml
581 }); 816 });
582 }); 817 });
583 }); 818 });
584 819
585Example 2: Implement a client for a protocol that replies either with 820Example 2: Implement a client for a protocol that replies either with "OK"
586"OK" and another line or "ERROR" for one request, and 64 bytes for the 821and another line or "ERROR" for the first request that is sent, and 64
587second request. Due tot he availability of a full queue, we can just 822bytes for the second request. Due to the availability of a queue, we can
588pipeline sending both requests and manipulate the queue as necessary in 823just pipeline sending both requests and manipulate the queue as necessary
589the callbacks: 824in the callbacks.
590 825
591 # request one 826When the first callback is called and sees an "OK" response, it will
827C<unshift> another line-read. This line-read will be queued I<before> the
82864-byte chunk callback.
829
830 # request one, returns either "OK + extra line" or "ERROR"
592 $handle->push_write ("request 1\015\012"); 831 $handle->push_write ("request 1\015\012");
593 832
594 # we expect "ERROR" or "OK" as response, so push a line read 833 # we expect "ERROR" or "OK" as response, so push a line read
595 $handle->push_read (line => sub { 834 $handle->push_read (line => sub {
596 # if we got an "OK", we have to _prepend_ another line, 835 # if we got an "OK", we have to _prepend_ another line,
603 ... 842 ...
604 }); 843 });
605 } 844 }
606 }); 845 });
607 846
608 # request two 847 # request two, simply returns 64 octets
609 $handle->push_write ("request 2\015\012"); 848 $handle->push_write ("request 2\015\012");
610 849
611 # simply read 64 bytes, always 850 # simply read 64 bytes, always
612 $handle->push_read (chunk => 64, sub { 851 $handle->push_read (chunk => 64, sub {
613 my $response = $_[1]; 852 my $response = $_[1];
619=cut 858=cut
620 859
621sub _drain_rbuf { 860sub _drain_rbuf {
622 my ($self) = @_; 861 my ($self) = @_;
623 862
863 local $self->{_in_drain} = 1;
864
624 if ( 865 if (
625 defined $self->{rbuf_max} 866 defined $self->{rbuf_max}
626 && $self->{rbuf_max} < length $self->{rbuf} 867 && $self->{rbuf_max} < length $self->{rbuf}
627 ) { 868 ) {
628 return $self->_error (&Errno::ENOSPC, 1); 869 $self->_error (&Errno::ENOSPC, 1), return;
629 } 870 }
630 871
631 return if $self->{in_drain}; 872 while () {
632 local $self->{in_drain} = 1; 873 # we need to use a separate tls read buffer, as we must not receive data while
874 # we are draining the buffer, and this can only happen with TLS.
875 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
633 876
634 while (my $len = length $self->{rbuf}) { 877 my $len = length $self->{rbuf};
635 no strict 'refs'; 878
636 if (my $cb = shift @{ $self->{_queue} }) { 879 if (my $cb = shift @{ $self->{_queue} }) {
637 unless ($cb->($self)) { 880 unless ($cb->($self)) {
638 if ($self->{_eof}) { 881 if ($self->{_eof}) {
639 # no progress can be made (not enough data and no data forthcoming) 882 # no progress can be made (not enough data and no data forthcoming)
640 return $self->_error (&Errno::EPIPE, 1); 883 $self->_error (&Errno::EPIPE, 1), return;
641 } 884 }
642 885
643 unshift @{ $self->{_queue} }, $cb; 886 unshift @{ $self->{_queue} }, $cb;
644 return; 887 last;
645 } 888 }
646 } elsif ($self->{on_read}) { 889 } elsif ($self->{on_read}) {
890 last unless $len;
891
647 $self->{on_read}($self); 892 $self->{on_read}($self);
648 893
649 if ( 894 if (
650 $self->{_eof} # if no further data will arrive
651 && $len == length $self->{rbuf} # and no data has been consumed 895 $len == length $self->{rbuf} # if no data has been consumed
652 && !@{ $self->{_queue} } # and the queue is still empty 896 && !@{ $self->{_queue} } # and the queue is still empty
653 && $self->{on_read} # and we still want to read data 897 && $self->{on_read} # but we still have on_read
654 ) { 898 ) {
899 # no further data will arrive
655 # then no progress can be made 900 # so no progress can be made
656 return $self->_error (&Errno::EPIPE, 1); 901 $self->_error (&Errno::EPIPE, 1), return
902 if $self->{_eof};
903
904 last; # more data might arrive
657 } 905 }
658 } else { 906 } else {
659 # read side becomes idle 907 # read side becomes idle
660 delete $self->{_rw}; 908 delete $self->{_rw} unless $self->{tls};
661 return; 909 last;
662 } 910 }
663 } 911 }
664 912
913 if ($self->{_eof}) {
914 if ($self->{on_eof}) {
665 $self->{on_eof}($self) 915 $self->{on_eof}($self)
666 if $self->{_eof} && $self->{on_eof}; 916 } else {
917 $self->_error (0, 1, "Unexpected end-of-file");
918 }
919 }
920
921 # may need to restart read watcher
922 unless ($self->{_rw}) {
923 $self->start_read
924 if $self->{on_read} || @{ $self->{_queue} };
925 }
667} 926}
668 927
669=item $handle->on_read ($cb) 928=item $handle->on_read ($cb)
670 929
671This replaces the currently set C<on_read> callback, or clears it (when 930This replaces the currently set C<on_read> callback, or clears it (when
676 935
677sub on_read { 936sub on_read {
678 my ($self, $cb) = @_; 937 my ($self, $cb) = @_;
679 938
680 $self->{on_read} = $cb; 939 $self->{on_read} = $cb;
940 $self->_drain_rbuf if $cb && !$self->{_in_drain};
681} 941}
682 942
683=item $handle->rbuf 943=item $handle->rbuf
684 944
685Returns the read buffer (as a modifiable lvalue). 945Returns the read buffer (as a modifiable lvalue).
686 946
687You can access the read buffer directly as the C<< ->{rbuf} >> member, if 947You can access the read buffer directly as the C<< ->{rbuf} >>
688you want. 948member, if you want. However, the only operation allowed on the
949read buffer (apart from looking at it) is removing data from its
950beginning. Otherwise modifying or appending to it is not allowed and will
951lead to hard-to-track-down bugs.
689 952
690NOTE: The read buffer should only be used or modified if the C<on_read>, 953NOTE: The read buffer should only be used or modified if the C<on_read>,
691C<push_read> or C<unshift_read> methods are used. The other read methods 954C<push_read> or C<unshift_read> methods are used. The other read methods
692automatically manage the read buffer. 955automatically manage the read buffer.
693 956
734 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 997 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
735 ->($self, $cb, @_); 998 ->($self, $cb, @_);
736 } 999 }
737 1000
738 push @{ $self->{_queue} }, $cb; 1001 push @{ $self->{_queue} }, $cb;
739 $self->_drain_rbuf; 1002 $self->_drain_rbuf unless $self->{_in_drain};
740} 1003}
741 1004
742sub unshift_read { 1005sub unshift_read {
743 my $self = shift; 1006 my $self = shift;
744 my $cb = pop; 1007 my $cb = pop;
750 ->($self, $cb, @_); 1013 ->($self, $cb, @_);
751 } 1014 }
752 1015
753 1016
754 unshift @{ $self->{_queue} }, $cb; 1017 unshift @{ $self->{_queue} }, $cb;
755 $self->_drain_rbuf; 1018 $self->_drain_rbuf unless $self->{_in_drain};
756} 1019}
757 1020
758=item $handle->push_read (type => @args, $cb) 1021=item $handle->push_read (type => @args, $cb)
759 1022
760=item $handle->unshift_read (type => @args, $cb) 1023=item $handle->unshift_read (type => @args, $cb)
790 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1053 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
791 1 1054 1
792 } 1055 }
793}; 1056};
794 1057
795# compatibility with older API
796sub push_read_chunk {
797 $_[0]->push_read (chunk => $_[1], $_[2]);
798}
799
800sub unshift_read_chunk {
801 $_[0]->unshift_read (chunk => $_[1], $_[2]);
802}
803
804=item line => [$eol, ]$cb->($handle, $line, $eol) 1058=item line => [$eol, ]$cb->($handle, $line, $eol)
805 1059
806The callback will be called only once a full line (including the end of 1060The callback will be called only once a full line (including the end of
807line marker, C<$eol>) has been read. This line (excluding the end of line 1061line marker, C<$eol>) has been read. This line (excluding the end of line
808marker) will be passed to the callback as second argument (C<$line>), and 1062marker) will be passed to the callback as second argument (C<$line>), and
823=cut 1077=cut
824 1078
825register_read_type line => sub { 1079register_read_type line => sub {
826 my ($self, $cb, $eol) = @_; 1080 my ($self, $cb, $eol) = @_;
827 1081
828 $eol = qr|(\015?\012)| if @_ < 3; 1082 if (@_ < 3) {
829 $eol = quotemeta $eol unless ref $eol; 1083 # this is more than twice as fast as the generic code below
830 $eol = qr|^(.*?)($eol)|s;
831
832 sub { 1084 sub {
833 $_[0]{rbuf} =~ s/$eol// or return; 1085 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
834 1086
835 $cb->($_[0], $1, $2); 1087 $cb->($_[0], $1, $2);
836 1
837 }
838};
839
840# compatibility with older API
841sub push_read_line {
842 my $self = shift;
843 $self->push_read (line => @_);
844}
845
846sub unshift_read_line {
847 my $self = shift;
848 $self->unshift_read (line => @_);
849}
850
851=item netstring => $cb->($handle, $string)
852
853A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
854
855Throws an error with C<$!> set to EBADMSG on format violations.
856
857=cut
858
859register_read_type netstring => sub {
860 my ($self, $cb) = @_;
861
862 sub {
863 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
864 if ($_[0]{rbuf} =~ /[^0-9]/) {
865 $self->_error (&Errno::EBADMSG);
866 } 1088 1
867 return;
868 } 1089 }
1090 } else {
1091 $eol = quotemeta $eol unless ref $eol;
1092 $eol = qr|^(.*?)($eol)|s;
869 1093
870 my $len = $1; 1094 sub {
1095 $_[0]{rbuf} =~ s/$eol// or return;
871 1096
872 $self->unshift_read (chunk => $len, sub { 1097 $cb->($_[0], $1, $2);
873 my $string = $_[1];
874 $_[0]->unshift_read (chunk => 1, sub {
875 if ($_[1] eq ",") {
876 $cb->($_[0], $string);
877 } else {
878 $self->_error (&Errno::EBADMSG);
879 }
880 }); 1098 1
881 }); 1099 }
882
883 1
884 } 1100 }
885}; 1101};
886 1102
887=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1103=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
888 1104
952 1168
953 () 1169 ()
954 } 1170 }
955}; 1171};
956 1172
1173=item netstring => $cb->($handle, $string)
1174
1175A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1176
1177Throws an error with C<$!> set to EBADMSG on format violations.
1178
1179=cut
1180
1181register_read_type netstring => sub {
1182 my ($self, $cb) = @_;
1183
1184 sub {
1185 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1186 if ($_[0]{rbuf} =~ /[^0-9]/) {
1187 $self->_error (&Errno::EBADMSG);
1188 }
1189 return;
1190 }
1191
1192 my $len = $1;
1193
1194 $self->unshift_read (chunk => $len, sub {
1195 my $string = $_[1];
1196 $_[0]->unshift_read (chunk => 1, sub {
1197 if ($_[1] eq ",") {
1198 $cb->($_[0], $string);
1199 } else {
1200 $self->_error (&Errno::EBADMSG);
1201 }
1202 });
1203 });
1204
1205 1
1206 }
1207};
1208
1209=item packstring => $format, $cb->($handle, $string)
1210
1211An octet string prefixed with an encoded length. The encoding C<$format>
1212uses the same format as a Perl C<pack> format, but must specify a single
1213integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1214optional C<!>, C<< < >> or C<< > >> modifier).
1215
1216For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1217EPP uses a prefix of C<N> (4 octtes).
1218
1219Example: read a block of data prefixed by its length in BER-encoded
1220format (very efficient).
1221
1222 $handle->push_read (packstring => "w", sub {
1223 my ($handle, $data) = @_;
1224 });
1225
1226=cut
1227
1228register_read_type packstring => sub {
1229 my ($self, $cb, $format) = @_;
1230
1231 sub {
1232 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1233 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1234 or return;
1235
1236 $format = length pack $format, $len;
1237
1238 # bypass unshift if we already have the remaining chunk
1239 if ($format + $len <= length $_[0]{rbuf}) {
1240 my $data = substr $_[0]{rbuf}, $format, $len;
1241 substr $_[0]{rbuf}, 0, $format + $len, "";
1242 $cb->($_[0], $data);
1243 } else {
1244 # remove prefix
1245 substr $_[0]{rbuf}, 0, $format, "";
1246
1247 # read remaining chunk
1248 $_[0]->unshift_read (chunk => $len, $cb);
1249 }
1250
1251 1
1252 }
1253};
1254
957=item json => $cb->($handle, $hash_or_arrayref) 1255=item json => $cb->($handle, $hash_or_arrayref)
958 1256
959Reads a JSON object or array, decodes it and passes it to the callback. 1257Reads a JSON object or array, decodes it and passes it to the
1258callback. When a parse error occurs, an C<EBADMSG> error will be raised.
960 1259
961If a C<json> object was passed to the constructor, then that will be used 1260If a C<json> object was passed to the constructor, then that will be used
962for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1261for the final decode, otherwise it will create a JSON coder expecting UTF-8.
963 1262
964This read type uses the incremental parser available with JSON version 1263This read type uses the incremental parser available with JSON version
971the C<json> write type description, above, for an actual example. 1270the C<json> write type description, above, for an actual example.
972 1271
973=cut 1272=cut
974 1273
975register_read_type json => sub { 1274register_read_type json => sub {
976 my ($self, $cb, $accept, $reject, $skip) = @_; 1275 my ($self, $cb) = @_;
977 1276
978 require JSON; 1277 my $json = $self->{json} ||=
1278 eval { require JSON::XS; JSON::XS->new->utf8 }
1279 || do { require JSON; JSON->new->utf8 };
979 1280
980 my $data; 1281 my $data;
981 my $rbuf = \$self->{rbuf}; 1282 my $rbuf = \$self->{rbuf};
982 1283
983 my $json = $self->{json} ||= JSON->new->utf8;
984
985 sub { 1284 sub {
986 my $ref = $json->incr_parse ($self->{rbuf}); 1285 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
987 1286
988 if ($ref) { 1287 if ($ref) {
989 $self->{rbuf} = $json->incr_text; 1288 $self->{rbuf} = $json->incr_text;
990 $json->incr_text = ""; 1289 $json->incr_text = "";
991 $cb->($self, $ref); 1290 $cb->($self, $ref);
992 1291
993 1 1292 1
1293 } elsif ($@) {
1294 # error case
1295 $json->incr_skip;
1296
1297 $self->{rbuf} = $json->incr_text;
1298 $json->incr_text = "";
1299
1300 $self->_error (&Errno::EBADMSG);
1301
1302 ()
994 } else { 1303 } else {
995 $self->{rbuf} = ""; 1304 $self->{rbuf} = "";
1305
996 () 1306 ()
997 } 1307 }
1308 }
1309};
1310
1311=item storable => $cb->($handle, $ref)
1312
1313Deserialises a L<Storable> frozen representation as written by the
1314C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1315data).
1316
1317Raises C<EBADMSG> error if the data could not be decoded.
1318
1319=cut
1320
1321register_read_type storable => sub {
1322 my ($self, $cb) = @_;
1323
1324 require Storable;
1325
1326 sub {
1327 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1328 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1329 or return;
1330
1331 my $format = length pack "w", $len;
1332
1333 # bypass unshift if we already have the remaining chunk
1334 if ($format + $len <= length $_[0]{rbuf}) {
1335 my $data = substr $_[0]{rbuf}, $format, $len;
1336 substr $_[0]{rbuf}, 0, $format + $len, "";
1337 $cb->($_[0], Storable::thaw ($data));
1338 } else {
1339 # remove prefix
1340 substr $_[0]{rbuf}, 0, $format, "";
1341
1342 # read remaining chunk
1343 $_[0]->unshift_read (chunk => $len, sub {
1344 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1345 $cb->($_[0], $ref);
1346 } else {
1347 $self->_error (&Errno::EBADMSG);
1348 }
1349 });
1350 }
1351
1352 1
998 } 1353 }
999}; 1354};
1000 1355
1001=back 1356=back
1002 1357
1023=item $handle->stop_read 1378=item $handle->stop_read
1024 1379
1025=item $handle->start_read 1380=item $handle->start_read
1026 1381
1027In rare cases you actually do not want to read anything from the 1382In rare cases you actually do not want to read anything from the
1028socket. In this case you can call C<stop_read>. Neither C<on_read> no 1383socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1029any queued callbacks will be executed then. To start reading again, call 1384any queued callbacks will be executed then. To start reading again, call
1030C<start_read>. 1385C<start_read>.
1031 1386
1387Note that AnyEvent::Handle will automatically C<start_read> for you when
1388you change the C<on_read> callback or push/unshift a read callback, and it
1389will automatically C<stop_read> for you when neither C<on_read> is set nor
1390there are any read requests in the queue.
1391
1392These methods will have no effect when in TLS mode (as TLS doesn't support
1393half-duplex connections).
1394
1032=cut 1395=cut
1033 1396
1034sub stop_read { 1397sub stop_read {
1035 my ($self) = @_; 1398 my ($self) = @_;
1036 1399
1037 delete $self->{_rw}; 1400 delete $self->{_rw} unless $self->{tls};
1038} 1401}
1039 1402
1040sub start_read { 1403sub start_read {
1041 my ($self) = @_; 1404 my ($self) = @_;
1042 1405
1043 unless ($self->{_rw} || $self->{_eof}) { 1406 unless ($self->{_rw} || $self->{_eof}) {
1044 Scalar::Util::weaken $self; 1407 Scalar::Util::weaken $self;
1045 1408
1046 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1409 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1047 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1410 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1048 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1411 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1049 1412
1050 if ($len > 0) { 1413 if ($len > 0) {
1051 $self->{_activity} = AnyEvent->now; 1414 $self->{_activity} = AnyEvent->now;
1052 1415
1053 $self->{filter_r} 1416 if ($self->{tls}) {
1054 ? $self->{filter_r}($self, $rbuf) 1417 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1055 : $self->_drain_rbuf; 1418
1419 &_dotls ($self);
1420 } else {
1421 $self->_drain_rbuf unless $self->{_in_drain};
1422 }
1056 1423
1057 } elsif (defined $len) { 1424 } elsif (defined $len) {
1058 delete $self->{_rw}; 1425 delete $self->{_rw};
1059 $self->{_eof} = 1; 1426 $self->{_eof} = 1;
1060 $self->_drain_rbuf; 1427 $self->_drain_rbuf unless $self->{_in_drain};
1061 1428
1062 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1429 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1063 return $self->_error ($!, 1); 1430 return $self->_error ($!, 1);
1064 } 1431 }
1065 }); 1432 });
1066 } 1433 }
1067} 1434}
1068 1435
1436our $ERROR_SYSCALL;
1437our $ERROR_WANT_READ;
1438
1439sub _tls_error {
1440 my ($self, $err) = @_;
1441
1442 return $self->_error ($!, 1)
1443 if $err == Net::SSLeay::ERROR_SYSCALL ();
1444
1445 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1446
1447 # reduce error string to look less scary
1448 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1449
1450 if ($self->{_on_starttls}) {
1451 (delete $self->{_on_starttls})->($self, undef, $err);
1452 &_freetls;
1453 } else {
1454 &_freetls;
1455 $self->_error (&Errno::EPROTO, 1, $err);
1456 }
1457}
1458
1459# poll the write BIO and send the data if applicable
1460# also decode read data if possible
1461# this is basiclaly our TLS state machine
1462# more efficient implementations are possible with openssl,
1463# but not with the buggy and incomplete Net::SSLeay.
1069sub _dotls { 1464sub _dotls {
1070 my ($self) = @_; 1465 my ($self) = @_;
1071 1466
1467 my $tmp;
1468
1072 if (length $self->{_tls_wbuf}) { 1469 if (length $self->{_tls_wbuf}) {
1073 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1470 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1074 substr $self->{_tls_wbuf}, 0, $len, ""; 1471 substr $self->{_tls_wbuf}, 0, $tmp, "";
1075 } 1472 }
1076 }
1077 1473
1474 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1475 return $self->_tls_error ($tmp)
1476 if $tmp != $ERROR_WANT_READ
1477 && ($tmp != $ERROR_SYSCALL || $!);
1478 }
1479
1480 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1481 unless (length $tmp) {
1482 $self->{_on_starttls}
1483 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1484 &_freetls;
1485
1486 if ($self->{on_stoptls}) {
1487 $self->{on_stoptls}($self);
1488 return;
1489 } else {
1490 # let's treat SSL-eof as we treat normal EOF
1491 delete $self->{_rw};
1492 $self->{_eof} = 1;
1493 }
1494 }
1495
1496 $self->{_tls_rbuf} .= $tmp;
1497 $self->_drain_rbuf unless $self->{_in_drain};
1498 $self->{tls} or return; # tls session might have gone away in callback
1499 }
1500
1501 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1502 return $self->_tls_error ($tmp)
1503 if $tmp != $ERROR_WANT_READ
1504 && ($tmp != $ERROR_SYSCALL || $!);
1505
1078 if (defined (my $buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1506 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1079 $self->{wbuf} .= $buf; 1507 $self->{wbuf} .= $tmp;
1080 $self->_drain_wbuf; 1508 $self->_drain_wbuf;
1081 } 1509 }
1082 1510
1083 while (defined (my $buf = Net::SSLeay::read ($self->{tls}))) { 1511 $self->{_on_starttls}
1084 $self->{rbuf} .= $buf; 1512 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1085 $self->_drain_rbuf; 1513 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1086 }
1087
1088 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1089
1090 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1091 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1092 return $self->_error ($!, 1);
1093 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1094 return $self->_error (&Errno::EIO, 1);
1095 }
1096
1097 # all others are fine for our purposes
1098 }
1099} 1514}
1100 1515
1101=item $handle->starttls ($tls[, $tls_ctx]) 1516=item $handle->starttls ($tls[, $tls_ctx])
1102 1517
1103Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1518Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1105C<starttls>. 1520C<starttls>.
1106 1521
1107The first argument is the same as the C<tls> constructor argument (either 1522The first argument is the same as the C<tls> constructor argument (either
1108C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1523C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1109 1524
1110The second argument is the optional C<Net::SSLeay::CTX> object that is 1525The second argument is the optional C<AnyEvent::TLS> object that is used
1111used when AnyEvent::Handle has to create its own TLS connection object. 1526when AnyEvent::Handle has to create its own TLS connection object, or
1527a hash reference with C<< key => value >> pairs that will be used to
1528construct a new context.
1112 1529
1113The TLS connection object will end up in C<< $handle->{tls} >> after this 1530The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1114call and can be used or changed to your liking. Note that the handshake 1531context in C<< $handle->{tls_ctx} >> after this call and can be used or
1115might have already started when this function returns. 1532changed to your liking. Note that the handshake might have already started
1533when this function returns.
1116 1534
1535If it an error to start a TLS handshake more than once per
1536AnyEvent::Handle object (this is due to bugs in OpenSSL).
1537
1117=cut 1538=cut
1539
1540our %TLS_CACHE; #TODO not yet documented, should we?
1118 1541
1119sub starttls { 1542sub starttls {
1120 my ($self, $ssl, $ctx) = @_; 1543 my ($self, $ssl, $ctx) = @_;
1121 1544
1122 $self->stoptls; 1545 require Net::SSLeay;
1123 1546
1124 if ($ssl eq "accept") { 1547 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1125 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1548 if $self->{tls};
1126 Net::SSLeay::set_accept_state ($ssl); 1549
1127 } elsif ($ssl eq "connect") { 1550 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1128 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1551 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1129 Net::SSLeay::set_connect_state ($ssl); 1552
1553 $ctx ||= $self->{tls_ctx};
1554
1555 if ("HASH" eq ref $ctx) {
1556 require AnyEvent::TLS;
1557
1558 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context
1559
1560 if ($ctx->{cache}) {
1561 my $key = $ctx+0;
1562 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1563 } else {
1564 $ctx = new AnyEvent::TLS %$ctx;
1565 }
1566 }
1130 } 1567
1131 1568 $self->{tls_ctx} = $ctx || TLS_CTX ();
1132 $self->{tls} = $ssl; 1569 $self->{tls} = $ssl = $self->{tls_ctx}->_get_session ($ssl, $self, $self->{peername});
1133 1570
1134 # basically, this is deep magic (because SSL_read should have the same issues) 1571 # basically, this is deep magic (because SSL_read should have the same issues)
1135 # but the openssl maintainers basically said: "trust us, it just works". 1572 # but the openssl maintainers basically said: "trust us, it just works".
1136 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1573 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1137 # and mismaintained ssleay-module doesn't even offer them). 1574 # and mismaintained ssleay-module doesn't even offer them).
1138 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1575 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1576 #
1577 # in short: this is a mess.
1578 #
1579 # note that we do not try to keep the length constant between writes as we are required to do.
1580 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1581 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1582 # have identity issues in that area.
1139 Net::SSLeay::CTX_set_mode ($self->{tls}, 1583# Net::SSLeay::CTX_set_mode ($ssl,
1140 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1584# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1141 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1585# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1586 Net::SSLeay::CTX_set_mode ($ssl, 1|2);
1142 1587
1143 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1588 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1144 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1589 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1145 1590
1146 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1591 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1147 1592
1148 $self->{filter_w} = sub { 1593 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1149 $_[0]{_tls_wbuf} .= ${$_[1]}; 1594 if $self->{on_starttls};
1150 &_dotls; 1595
1151 }; 1596 &_dotls; # need to trigger the initial handshake
1152 $self->{filter_r} = sub { 1597 $self->start_read; # make sure we actually do read
1153 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1154 &_dotls;
1155 };
1156} 1598}
1157 1599
1158=item $handle->stoptls 1600=item $handle->stoptls
1159 1601
1160Destroys the SSL connection, if any. Partial read or write data will be 1602Shuts down the SSL connection - this makes a proper EOF handshake by
1161lost. 1603sending a close notify to the other side, but since OpenSSL doesn't
1604support non-blocking shut downs, it is not possible to re-use the stream
1605afterwards.
1162 1606
1163=cut 1607=cut
1164 1608
1165sub stoptls { 1609sub stoptls {
1166 my ($self) = @_; 1610 my ($self) = @_;
1167 1611
1168 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1612 if ($self->{tls}) {
1613 Net::SSLeay::shutdown ($self->{tls});
1169 1614
1170 delete $self->{_rbio}; 1615 &_dotls;
1171 delete $self->{_wbio}; 1616
1172 delete $self->{_tls_wbuf}; 1617# # we don't give a shit. no, we do, but we can't. no...#d#
1173 delete $self->{filter_r}; 1618# # we, we... have to use openssl :/#d#
1174 delete $self->{filter_w}; 1619# &_freetls;#d#
1620 }
1621}
1622
1623sub _freetls {
1624 my ($self) = @_;
1625
1626 return unless $self->{tls};
1627
1628 $self->{tls_ctx}->_put_session (delete $self->{tls});
1629
1630 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1175} 1631}
1176 1632
1177sub DESTROY { 1633sub DESTROY {
1178 my $self = shift; 1634 my ($self) = @_;
1179 1635
1180 $self->stoptls; 1636 &_freetls;
1637
1638 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1639
1640 if ($linger && length $self->{wbuf}) {
1641 my $fh = delete $self->{fh};
1642 my $wbuf = delete $self->{wbuf};
1643
1644 my @linger;
1645
1646 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1647 my $len = syswrite $fh, $wbuf, length $wbuf;
1648
1649 if ($len > 0) {
1650 substr $wbuf, 0, $len, "";
1651 } else {
1652 @linger = (); # end
1653 }
1654 });
1655 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1656 @linger = ();
1657 });
1658 }
1659}
1660
1661=item $handle->destroy
1662
1663Shuts down the handle object as much as possible - this call ensures that
1664no further callbacks will be invoked and as many resources as possible
1665will be freed. You must not call any methods on the object afterwards.
1666
1667Normally, you can just "forget" any references to an AnyEvent::Handle
1668object and it will simply shut down. This works in fatal error and EOF
1669callbacks, as well as code outside. It does I<NOT> work in a read or write
1670callback, so when you want to destroy the AnyEvent::Handle object from
1671within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1672that case.
1673
1674The handle might still linger in the background and write out remaining
1675data, as specified by the C<linger> option, however.
1676
1677=cut
1678
1679sub destroy {
1680 my ($self) = @_;
1681
1682 $self->DESTROY;
1683 %$self = ();
1181} 1684}
1182 1685
1183=item AnyEvent::Handle::TLS_CTX 1686=item AnyEvent::Handle::TLS_CTX
1184 1687
1185This function creates and returns the Net::SSLeay::CTX object used by 1688This function creates and returns the AnyEvent::TLS object used by default
1186default for TLS mode. 1689for TLS mode.
1187 1690
1188The context is created like this: 1691The context is created by calling L<AnyEvent::TLS> without any arguments.
1189
1190 Net::SSLeay::load_error_strings;
1191 Net::SSLeay::SSLeay_add_ssl_algorithms;
1192 Net::SSLeay::randomize;
1193
1194 my $CTX = Net::SSLeay::CTX_new;
1195
1196 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1197 1692
1198=cut 1693=cut
1199 1694
1200our $TLS_CTX; 1695our $TLS_CTX;
1201 1696
1202sub TLS_CTX() { 1697sub TLS_CTX() {
1203 $TLS_CTX || do { 1698 $TLS_CTX ||= do {
1204 require Net::SSLeay; 1699 require AnyEvent::TLS;
1205 1700
1206 Net::SSLeay::load_error_strings (); 1701 new AnyEvent::TLS
1207 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1208 Net::SSLeay::randomize ();
1209
1210 $TLS_CTX = Net::SSLeay::CTX_new ();
1211
1212 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1213
1214 $TLS_CTX
1215 } 1702 }
1216} 1703}
1217 1704
1218=back 1705=back
1706
1707
1708=head1 NONFREQUENTLY ASKED QUESTIONS
1709
1710=over 4
1711
1712=item I C<undef> the AnyEvent::Handle reference inside my callback and
1713still get further invocations!
1714
1715That's because AnyEvent::Handle keeps a reference to itself when handling
1716read or write callbacks.
1717
1718It is only safe to "forget" the reference inside EOF or error callbacks,
1719from within all other callbacks, you need to explicitly call the C<<
1720->destroy >> method.
1721
1722=item I get different callback invocations in TLS mode/Why can't I pause
1723reading?
1724
1725Unlike, say, TCP, TLS connections do not consist of two independent
1726communication channels, one for each direction. Or put differently. The
1727read and write directions are not independent of each other: you cannot
1728write data unless you are also prepared to read, and vice versa.
1729
1730This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1731callback invocations when you are not expecting any read data - the reason
1732is that AnyEvent::Handle always reads in TLS mode.
1733
1734During the connection, you have to make sure that you always have a
1735non-empty read-queue, or an C<on_read> watcher. At the end of the
1736connection (or when you no longer want to use it) you can call the
1737C<destroy> method.
1738
1739=item How do I read data until the other side closes the connection?
1740
1741If you just want to read your data into a perl scalar, the easiest way
1742to achieve this is by setting an C<on_read> callback that does nothing,
1743clearing the C<on_eof> callback and in the C<on_error> callback, the data
1744will be in C<$_[0]{rbuf}>:
1745
1746 $handle->on_read (sub { });
1747 $handle->on_eof (undef);
1748 $handle->on_error (sub {
1749 my $data = delete $_[0]{rbuf};
1750 undef $handle;
1751 });
1752
1753The reason to use C<on_error> is that TCP connections, due to latencies
1754and packets loss, might get closed quite violently with an error, when in
1755fact, all data has been received.
1756
1757It is usually better to use acknowledgements when transferring data,
1758to make sure the other side hasn't just died and you got the data
1759intact. This is also one reason why so many internet protocols have an
1760explicit QUIT command.
1761
1762=item I don't want to destroy the handle too early - how do I wait until
1763all data has been written?
1764
1765After writing your last bits of data, set the C<on_drain> callback
1766and destroy the handle in there - with the default setting of
1767C<low_water_mark> this will be called precisely when all data has been
1768written to the socket:
1769
1770 $handle->push_write (...);
1771 $handle->on_drain (sub {
1772 warn "all data submitted to the kernel\n";
1773 undef $handle;
1774 });
1775
1776If you just want to queue some data and then signal EOF to the other side,
1777consider using C<< ->push_shutdown >> instead.
1778
1779=item I want to contact a TLS/SSL server, I don't care about security.
1780
1781If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1782simply connect to it and then create the AnyEvent::Handle with the C<tls>
1783parameter:
1784
1785 my $handle = new AnyEvent::Handle
1786 fh => $fh,
1787 tls => "connect",
1788 on_error => sub { ... };
1789
1790 $handle->push_write (...);
1791
1792=item I want to contact a TLS/SSL server, I do care about security.
1793
1794Then you #x##TODO#
1795
1796
1797
1798=back
1799
1219 1800
1220=head1 SUBCLASSING AnyEvent::Handle 1801=head1 SUBCLASSING AnyEvent::Handle
1221 1802
1222In many cases, you might want to subclass AnyEvent::Handle. 1803In many cases, you might want to subclass AnyEvent::Handle.
1223 1804
1227=over 4 1808=over 4
1228 1809
1229=item * all constructor arguments become object members. 1810=item * all constructor arguments become object members.
1230 1811
1231At least initially, when you pass a C<tls>-argument to the constructor it 1812At least initially, when you pass a C<tls>-argument to the constructor it
1232will end up in C<< $handle->{tls} >>. Those members might be changes or 1813will end up in C<< $handle->{tls} >>. Those members might be changed or
1233mutated later on (for example C<tls> will hold the TLS connection object). 1814mutated later on (for example C<tls> will hold the TLS connection object).
1234 1815
1235=item * other object member names are prefixed with an C<_>. 1816=item * other object member names are prefixed with an C<_>.
1236 1817
1237All object members not explicitly documented (internal use) are prefixed 1818All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines