ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.16 by root, Fri May 23 05:16:57 2008 UTC vs.
Revision 1.77 by root, Sun Jul 27 07:25:39 2008 UTC

2 2
3no warnings; 3no warnings;
4use strict; 4use strict;
5 5
6use AnyEvent (); 6use AnyEvent ();
7use AnyEvent::Util (); 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 8use Scalar::Util ();
9use Carp (); 9use Carp ();
10use Fcntl (); 10use Fcntl ();
11use Errno qw/EAGAIN EINTR/; 11use Errno qw(EAGAIN EINTR);
12 12
13=head1 NAME 13=head1 NAME
14 14
15AnyEvent::Handle - non-blocking I/O on filehandles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17This module is experimental.
18
19=cut 17=cut
20 18
21our $VERSION = '0.04'; 19our $VERSION = 4.22;
22 20
23=head1 SYNOPSIS 21=head1 SYNOPSIS
24 22
25 use AnyEvent; 23 use AnyEvent;
26 use AnyEvent::Handle; 24 use AnyEvent::Handle;
27 25
28 my $cv = AnyEvent->condvar; 26 my $cv = AnyEvent->condvar;
29 27
30 my $ae_fh = AnyEvent::Handle->new (fh => \*STDIN); 28 my $handle =
31
32 #TODO
33
34 # or use the constructor to pass the callback:
35
36 my $ae_fh2 =
37 AnyEvent::Handle->new ( 29 AnyEvent::Handle->new (
38 fh => \*STDIN, 30 fh => \*STDIN,
39 on_eof => sub { 31 on_eof => sub {
40 $cv->broadcast; 32 $cv->broadcast;
41 }, 33 },
42 #TODO
43 ); 34 );
44 35
45 $cv->wait; 36 # send some request line
37 $handle->push_write ("getinfo\015\012");
38
39 # read the response line
40 $handle->push_read (line => sub {
41 my ($handle, $line) = @_;
42 warn "read line <$line>\n";
43 $cv->send;
44 });
45
46 $cv->recv;
46 47
47=head1 DESCRIPTION 48=head1 DESCRIPTION
48 49
49This module is a helper module to make it easier to do event-based I/O on 50This module is a helper module to make it easier to do event-based I/O on
50filehandles. For utility functions for doing non-blocking connects and accepts 51filehandles. For utility functions for doing non-blocking connects and accepts
72The filehandle this L<AnyEvent::Handle> object will operate on. 73The filehandle this L<AnyEvent::Handle> object will operate on.
73 74
74NOTE: The filehandle will be set to non-blocking (using 75NOTE: The filehandle will be set to non-blocking (using
75AnyEvent::Util::fh_nonblocking). 76AnyEvent::Util::fh_nonblocking).
76 77
77=item on_eof => $cb->($self) 78=item on_eof => $cb->($handle)
78 79
79Set the callback to be called on EOF. 80Set the callback to be called when an end-of-file condition is detected,
81i.e. in the case of a socket, when the other side has closed the
82connection cleanly.
80 83
81While not mandatory, it is highly recommended to set an eof callback, 84While not mandatory, it is highly recommended to set an eof callback,
82otherwise you might end up with a closed socket while you are still 85otherwise you might end up with a closed socket while you are still
83waiting for data. 86waiting for data.
84 87
85=item on_error => $cb->($self) 88=item on_error => $cb->($handle, $fatal)
86 89
87This is the fatal error callback, that is called when, well, a fatal error 90This is the error callback, which is called when, well, some error
88ocurs, such as not being able to resolve the hostname, failure to connect 91occured, such as not being able to resolve the hostname, failure to
89or a read error. 92connect or a read error.
90 93
91The object will not be in a usable state when this callback has been 94Some errors are fatal (which is indicated by C<$fatal> being true). On
92called. 95fatal errors the handle object will be shut down and will not be
96usable. Non-fatal errors can be retried by simply returning, but it is
97recommended to simply ignore this parameter and instead abondon the handle
98object when this callback is invoked.
93 99
94On callback entrance, the value of C<$!> contains the operating system 100On callback entrance, the value of C<$!> contains the operating system
95error (or C<ENOSPC> or C<EPIPE>). 101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
96 102
97While not mandatory, it is I<highly> recommended to set this callback, as 103While not mandatory, it is I<highly> recommended to set this callback, as
98you will not be notified of errors otherwise. The default simply calls 104you will not be notified of errors otherwise. The default simply calls
99die. 105C<croak>.
100 106
101=item on_read => $cb->($self) 107=item on_read => $cb->($handle)
102 108
103This sets the default read callback, which is called when data arrives 109This sets the default read callback, which is called when data arrives
104and no read request is in the queue. 110and no read request is in the queue (unlike read queue callbacks, this
111callback will only be called when at least one octet of data is in the
112read buffer).
105 113
106To access (and remove data from) the read buffer, use the C<< ->rbuf >> 114To access (and remove data from) the read buffer, use the C<< ->rbuf >>
107method or acces sthe C<$self->{rbuf}> member directly. 115method or access the C<$handle->{rbuf}> member directly.
108 116
109When an EOF condition is detected then AnyEvent::Handle will first try to 117When an EOF condition is detected then AnyEvent::Handle will first try to
110feed all the remaining data to the queued callbacks and C<on_read> before 118feed all the remaining data to the queued callbacks and C<on_read> before
111calling the C<on_eof> callback. If no progress can be made, then a fatal 119calling the C<on_eof> callback. If no progress can be made, then a fatal
112error will be raised (with C<$!> set to C<EPIPE>). 120error will be raised (with C<$!> set to C<EPIPE>).
113 121
114=item on_drain => $cb->() 122=item on_drain => $cb->($handle)
115 123
116This sets the callback that is called when the write buffer becomes empty 124This sets the callback that is called when the write buffer becomes empty
117(or when the callback is set and the buffer is empty already). 125(or when the callback is set and the buffer is empty already).
118 126
119To append to the write buffer, use the C<< ->push_write >> method. 127To append to the write buffer, use the C<< ->push_write >> method.
128
129This callback is useful when you don't want to put all of your write data
130into the queue at once, for example, when you want to write the contents
131of some file to the socket you might not want to read the whole file into
132memory and push it into the queue, but instead only read more data from
133the file when the write queue becomes empty.
134
135=item timeout => $fractional_seconds
136
137If non-zero, then this enables an "inactivity" timeout: whenever this many
138seconds pass without a successful read or write on the underlying file
139handle, the C<on_timeout> callback will be invoked (and if that one is
140missing, an C<ETIMEDOUT> error will be raised).
141
142Note that timeout processing is also active when you currently do not have
143any outstanding read or write requests: If you plan to keep the connection
144idle then you should disable the timout temporarily or ignore the timeout
145in the C<on_timeout> callback.
146
147Zero (the default) disables this timeout.
148
149=item on_timeout => $cb->($handle)
150
151Called whenever the inactivity timeout passes. If you return from this
152callback, then the timeout will be reset as if some activity had happened,
153so this condition is not fatal in any way.
120 154
121=item rbuf_max => <bytes> 155=item rbuf_max => <bytes>
122 156
123If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 157If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
124when the read buffer ever (strictly) exceeds this size. This is useful to 158when the read buffer ever (strictly) exceeds this size. This is useful to
128be configured to accept only so-and-so much data that it cannot act on 162be configured to accept only so-and-so much data that it cannot act on
129(for example, when expecting a line, an attacker could send an unlimited 163(for example, when expecting a line, an attacker could send an unlimited
130amount of data without a callback ever being called as long as the line 164amount of data without a callback ever being called as long as the line
131isn't finished). 165isn't finished).
132 166
167=item autocork => <boolean>
168
169When disabled (the default), then C<push_write> will try to immediately
170write the data to the handle if possible. This avoids having to register
171a write watcher and wait for the next event loop iteration, but can be
172inefficient if you write multiple small chunks (this disadvantage is
173usually avoided by your kernel's nagle algorithm, see C<low_delay>).
174
175When enabled, then writes will always be queued till the next event loop
176iteration. This is efficient when you do many small writes per iteration,
177but less efficient when you do a single write only.
178
179=item no_delay => <boolean>
180
181When doing small writes on sockets, your operating system kernel might
182wait a bit for more data before actually sending it out. This is called
183the Nagle algorithm, and usually it is beneficial.
184
185In some situations you want as low a delay as possible, which cna be
186accomplishd by setting this option to true.
187
188The default is your opertaing system's default behaviour, this option
189explicitly enables or disables it, if possible.
190
133=item read_size => <bytes> 191=item read_size => <bytes>
134 192
135The default read block size (the amount of bytes this module will try to read 193The default read block size (the amount of bytes this module will try to read
136on each [loop iteration). Default: C<4096>. 194during each (loop iteration). Default: C<8192>.
137 195
138=item low_water_mark => <bytes> 196=item low_water_mark => <bytes>
139 197
140Sets the amount of bytes (default: C<0>) that make up an "empty" write 198Sets the amount of bytes (default: C<0>) that make up an "empty" write
141buffer: If the write reaches this size or gets even samller it is 199buffer: If the write reaches this size or gets even samller it is
142considered empty. 200considered empty.
143 201
202=item linger => <seconds>
203
204If non-zero (default: C<3600>), then the destructor of the
205AnyEvent::Handle object will check wether there is still outstanding write
206data and will install a watcher that will write out this data. No errors
207will be reported (this mostly matches how the operating system treats
208outstanding data at socket close time).
209
210This will not work for partial TLS data that could not yet been
211encoded. This data will be lost.
212
213=item tls => "accept" | "connect" | Net::SSLeay::SSL object
214
215When this parameter is given, it enables TLS (SSL) mode, that means it
216will start making tls handshake and will transparently encrypt/decrypt
217data.
218
219TLS mode requires Net::SSLeay to be installed (it will be loaded
220automatically when you try to create a TLS handle).
221
222For the TLS server side, use C<accept>, and for the TLS client side of a
223connection, use C<connect> mode.
224
225You can also provide your own TLS connection object, but you have
226to make sure that you call either C<Net::SSLeay::set_connect_state>
227or C<Net::SSLeay::set_accept_state> on it before you pass it to
228AnyEvent::Handle.
229
230See the C<starttls> method if you need to start TLS negotiation later.
231
232=item tls_ctx => $ssl_ctx
233
234Use the given Net::SSLeay::CTX object to create the new TLS connection
235(unless a connection object was specified directly). If this parameter is
236missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
237
238=item json => JSON or JSON::XS object
239
240This is the json coder object used by the C<json> read and write types.
241
242If you don't supply it, then AnyEvent::Handle will create and use a
243suitable one, which will write and expect UTF-8 encoded JSON texts.
244
245Note that you are responsible to depend on the JSON module if you want to
246use this functionality, as AnyEvent does not have a dependency itself.
247
248=item filter_r => $cb
249
250=item filter_w => $cb
251
252These exist, but are undocumented at this time.
253
144=back 254=back
145 255
146=cut 256=cut
147 257
148sub new { 258sub new {
152 262
153 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 263 $self->{fh} or Carp::croak "mandatory argument fh is missing";
154 264
155 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 265 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
156 266
157 $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; 267 if ($self->{tls}) {
158 $self->on_error (delete $self->{on_error}) if $self->{on_error}; 268 require Net::SSLeay;
269 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
270 }
271
272 $self->{_activity} = AnyEvent->now;
273 $self->_timeout;
274
159 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 275 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
160 $self->on_read (delete $self->{on_read} ) if $self->{on_read}; 276 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
161 277
162 $self->start_read; 278 $self->start_read
279 if $self->{on_read};
163 280
164 $self 281 $self
165} 282}
166 283
167sub _shutdown { 284sub _shutdown {
168 my ($self) = @_; 285 my ($self) = @_;
169 286
287 delete $self->{_tw};
170 delete $self->{rw}; 288 delete $self->{_rw};
171 delete $self->{ww}; 289 delete $self->{_ww};
172 delete $self->{fh}; 290 delete $self->{fh};
173}
174 291
292 $self->stoptls;
293}
294
175sub error { 295sub _error {
176 my ($self) = @_; 296 my ($self, $errno, $fatal) = @_;
177 297
178 {
179 local $!;
180 $self->_shutdown; 298 $self->_shutdown
181 } 299 if $fatal;
300
301 $! = $errno;
182 302
183 if ($self->{on_error}) { 303 if ($self->{on_error}) {
184 $self->{on_error}($self); 304 $self->{on_error}($self, $fatal);
185 } else { 305 } else {
186 die "AnyEvent::Handle uncaught fatal error: $!"; 306 Carp::croak "AnyEvent::Handle uncaught error: $!";
187 } 307 }
188} 308}
189 309
190=item $fh = $handle->fh 310=item $fh = $handle->fh
191 311
192This method returns the filehandle of the L<AnyEvent::Handle> object. 312This method returns the file handle of the L<AnyEvent::Handle> object.
193 313
194=cut 314=cut
195 315
196sub fh { $_[0]->{fh} } 316sub fh { $_[0]{fh} }
197 317
198=item $handle->on_error ($cb) 318=item $handle->on_error ($cb)
199 319
200Replace the current C<on_error> callback (see the C<on_error> constructor argument). 320Replace the current C<on_error> callback (see the C<on_error> constructor argument).
201 321
213 333
214sub on_eof { 334sub on_eof {
215 $_[0]{on_eof} = $_[1]; 335 $_[0]{on_eof} = $_[1];
216} 336}
217 337
338=item $handle->on_timeout ($cb)
339
340Replace the current C<on_timeout> callback, or disables the callback
341(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
342argument.
343
344=cut
345
346sub on_timeout {
347 $_[0]{on_timeout} = $_[1];
348}
349
350=item $handle->autocork ($boolean)
351
352Enables or disables the current autocork behaviour (see C<autocork>
353constructor argument).
354
355=cut
356
357=item $handle->no_delay ($boolean)
358
359Enables or disables the C<no_delay> setting (see constructor argument of
360the same name for details).
361
362=cut
363
364sub no_delay {
365 $_[0]{no_delay} = $_[1];
366
367 eval {
368 local $SIG{__DIE__};
369 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
370 };
371}
372
373#############################################################################
374
375=item $handle->timeout ($seconds)
376
377Configures (or disables) the inactivity timeout.
378
379=cut
380
381sub timeout {
382 my ($self, $timeout) = @_;
383
384 $self->{timeout} = $timeout;
385 $self->_timeout;
386}
387
388# reset the timeout watcher, as neccessary
389# also check for time-outs
390sub _timeout {
391 my ($self) = @_;
392
393 if ($self->{timeout}) {
394 my $NOW = AnyEvent->now;
395
396 # when would the timeout trigger?
397 my $after = $self->{_activity} + $self->{timeout} - $NOW;
398
399 # now or in the past already?
400 if ($after <= 0) {
401 $self->{_activity} = $NOW;
402
403 if ($self->{on_timeout}) {
404 $self->{on_timeout}($self);
405 } else {
406 $self->_error (&Errno::ETIMEDOUT);
407 }
408
409 # callback could have changed timeout value, optimise
410 return unless $self->{timeout};
411
412 # calculate new after
413 $after = $self->{timeout};
414 }
415
416 Scalar::Util::weaken $self;
417 return unless $self; # ->error could have destroyed $self
418
419 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
420 delete $self->{_tw};
421 $self->_timeout;
422 });
423 } else {
424 delete $self->{_tw};
425 }
426}
427
218############################################################################# 428#############################################################################
219 429
220=back 430=back
221 431
222=head2 WRITE QUEUE 432=head2 WRITE QUEUE
225for reading. 435for reading.
226 436
227The write queue is very simple: you can add data to its end, and 437The write queue is very simple: you can add data to its end, and
228AnyEvent::Handle will automatically try to get rid of it for you. 438AnyEvent::Handle will automatically try to get rid of it for you.
229 439
230When data could be writtena nd the write buffer is shorter then the low 440When data could be written and the write buffer is shorter then the low
231water mark, the C<on_drain> callback will be invoked. 441water mark, the C<on_drain> callback will be invoked.
232 442
233=over 4 443=over 4
234 444
235=item $handle->on_drain ($cb) 445=item $handle->on_drain ($cb)
254want (only limited by the available memory), as C<AnyEvent::Handle> 464want (only limited by the available memory), as C<AnyEvent::Handle>
255buffers it independently of the kernel. 465buffers it independently of the kernel.
256 466
257=cut 467=cut
258 468
259sub push_write { 469sub _drain_wbuf {
260 my ($self, $data) = @_; 470 my ($self) = @_;
261 471
262 $self->{wbuf} .= $data; 472 if (!$self->{_ww} && length $self->{wbuf}) {
263 473
264 unless ($self->{ww}) {
265 Scalar::Util::weaken $self; 474 Scalar::Util::weaken $self;
475
266 my $cb = sub { 476 my $cb = sub {
267 my $len = syswrite $self->{fh}, $self->{wbuf}; 477 my $len = syswrite $self->{fh}, $self->{wbuf};
268 478
269 if ($len > 0) { 479 if ($len >= 0) {
270 substr $self->{wbuf}, 0, $len, ""; 480 substr $self->{wbuf}, 0, $len, "";
271 481
482 $self->{_activity} = AnyEvent->now;
272 483
273 $self->{on_drain}($self) 484 $self->{on_drain}($self)
274 if $self->{low_water_mark} >= length $self->{wbuf} 485 if $self->{low_water_mark} >= length $self->{wbuf}
275 && $self->{on_drain}; 486 && $self->{on_drain};
276 487
277 delete $self->{ww} unless length $self->{wbuf}; 488 delete $self->{_ww} unless length $self->{wbuf};
278 } elsif ($! != EAGAIN && $! != EINTR) { 489 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
279 $self->error; 490 $self->_error ($!, 1);
280 } 491 }
281 }; 492 };
282 493
494 # try to write data immediately
495 $cb->() unless $self->{autocork};
496
497 # if still data left in wbuf, we need to poll
283 $self->{ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb); 498 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
284 499 if length $self->{wbuf};
285 $cb->($self);
286 }; 500 };
287} 501}
502
503our %WH;
504
505sub register_write_type($$) {
506 $WH{$_[0]} = $_[1];
507}
508
509sub push_write {
510 my $self = shift;
511
512 if (@_ > 1) {
513 my $type = shift;
514
515 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
516 ->($self, @_);
517 }
518
519 if ($self->{filter_w}) {
520 $self->{filter_w}($self, \$_[0]);
521 } else {
522 $self->{wbuf} .= $_[0];
523 $self->_drain_wbuf;
524 }
525}
526
527=item $handle->push_write (type => @args)
528
529Instead of formatting your data yourself, you can also let this module do
530the job by specifying a type and type-specific arguments.
531
532Predefined types are (if you have ideas for additional types, feel free to
533drop by and tell us):
534
535=over 4
536
537=item netstring => $string
538
539Formats the given value as netstring
540(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
541
542=cut
543
544register_write_type netstring => sub {
545 my ($self, $string) = @_;
546
547 sprintf "%d:%s,", (length $string), $string
548};
549
550=item packstring => $format, $data
551
552An octet string prefixed with an encoded length. The encoding C<$format>
553uses the same format as a Perl C<pack> format, but must specify a single
554integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
555optional C<!>, C<< < >> or C<< > >> modifier).
556
557=cut
558
559register_write_type packstring => sub {
560 my ($self, $format, $string) = @_;
561
562 pack "$format/a*", $string
563};
564
565=item json => $array_or_hashref
566
567Encodes the given hash or array reference into a JSON object. Unless you
568provide your own JSON object, this means it will be encoded to JSON text
569in UTF-8.
570
571JSON objects (and arrays) are self-delimiting, so you can write JSON at
572one end of a handle and read them at the other end without using any
573additional framing.
574
575The generated JSON text is guaranteed not to contain any newlines: While
576this module doesn't need delimiters after or between JSON texts to be
577able to read them, many other languages depend on that.
578
579A simple RPC protocol that interoperates easily with others is to send
580JSON arrays (or objects, although arrays are usually the better choice as
581they mimic how function argument passing works) and a newline after each
582JSON text:
583
584 $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
585 $handle->push_write ("\012");
586
587An AnyEvent::Handle receiver would simply use the C<json> read type and
588rely on the fact that the newline will be skipped as leading whitespace:
589
590 $handle->push_read (json => sub { my $array = $_[1]; ... });
591
592Other languages could read single lines terminated by a newline and pass
593this line into their JSON decoder of choice.
594
595=cut
596
597register_write_type json => sub {
598 my ($self, $ref) = @_;
599
600 require JSON;
601
602 $self->{json} ? $self->{json}->encode ($ref)
603 : JSON::encode_json ($ref)
604};
605
606=item storable => $reference
607
608Freezes the given reference using L<Storable> and writes it to the
609handle. Uses the C<nfreeze> format.
610
611=cut
612
613register_write_type storable => sub {
614 my ($self, $ref) = @_;
615
616 require Storable;
617
618 pack "w/a*", Storable::nfreeze ($ref)
619};
620
621=back
622
623=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
624
625This function (not method) lets you add your own types to C<push_write>.
626Whenever the given C<type> is used, C<push_write> will invoke the code
627reference with the handle object and the remaining arguments.
628
629The code reference is supposed to return a single octet string that will
630be appended to the write buffer.
631
632Note that this is a function, and all types registered this way will be
633global, so try to use unique names.
634
635=cut
288 636
289############################################################################# 637#############################################################################
290 638
291=back 639=back
292 640
299ways, the "simple" way, using only C<on_read> and the "complex" way, using 647ways, the "simple" way, using only C<on_read> and the "complex" way, using
300a queue. 648a queue.
301 649
302In the simple case, you just install an C<on_read> callback and whenever 650In the simple case, you just install an C<on_read> callback and whenever
303new data arrives, it will be called. You can then remove some data (if 651new data arrives, it will be called. You can then remove some data (if
304enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 652enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
305or not. 653leave the data there if you want to accumulate more (e.g. when only a
654partial message has been received so far).
306 655
307In the more complex case, you want to queue multiple callbacks. In this 656In the more complex case, you want to queue multiple callbacks. In this
308case, AnyEvent::Handle will call the first queued callback each time new 657case, AnyEvent::Handle will call the first queued callback each time new
309data arrives and removes it when it has done its job (see C<push_read>, 658data arrives (also the first time it is queued) and removes it when it has
310below). 659done its job (see C<push_read>, below).
311 660
312This way you can, for example, push three line-reads, followed by reading 661This way you can, for example, push three line-reads, followed by reading
313a chunk of data, and AnyEvent::Handle will execute them in order. 662a chunk of data, and AnyEvent::Handle will execute them in order.
314 663
315Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 664Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
316the specified number of bytes which give an XML datagram. 665the specified number of bytes which give an XML datagram.
317 666
318 # in the default state, expect some header bytes 667 # in the default state, expect some header bytes
319 $handle->on_read (sub { 668 $handle->on_read (sub {
320 # some data is here, now queue the length-header-read (4 octets) 669 # some data is here, now queue the length-header-read (4 octets)
321 shift->unshift_read_chunk (4, sub { 670 shift->unshift_read (chunk => 4, sub {
322 # header arrived, decode 671 # header arrived, decode
323 my $len = unpack "N", $_[1]; 672 my $len = unpack "N", $_[1];
324 673
325 # now read the payload 674 # now read the payload
326 shift->unshift_read_chunk ($len, sub { 675 shift->unshift_read (chunk => $len, sub {
327 my $xml = $_[1]; 676 my $xml = $_[1];
328 # handle xml 677 # handle xml
329 }); 678 });
330 }); 679 });
331 }); 680 });
332 681
333Example 2: Implement a client for a protocol that replies either with 682Example 2: Implement a client for a protocol that replies either with "OK"
334"OK" and another line or "ERROR" for one request, and 64 bytes for the 683and another line or "ERROR" for the first request that is sent, and 64
335second request. Due tot he availability of a full queue, we can just 684bytes for the second request. Due to the availability of a queue, we can
336pipeline sending both requests and manipulate the queue as necessary in 685just pipeline sending both requests and manipulate the queue as necessary
337the callbacks: 686in the callbacks.
338 687
339 # request one 688When the first callback is called and sees an "OK" response, it will
689C<unshift> another line-read. This line-read will be queued I<before> the
69064-byte chunk callback.
691
692 # request one, returns either "OK + extra line" or "ERROR"
340 $handle->push_write ("request 1\015\012"); 693 $handle->push_write ("request 1\015\012");
341 694
342 # we expect "ERROR" or "OK" as response, so push a line read 695 # we expect "ERROR" or "OK" as response, so push a line read
343 $handle->push_read_line (sub { 696 $handle->push_read (line => sub {
344 # if we got an "OK", we have to _prepend_ another line, 697 # if we got an "OK", we have to _prepend_ another line,
345 # so it will be read before the second request reads its 64 bytes 698 # so it will be read before the second request reads its 64 bytes
346 # which are already in the queue when this callback is called 699 # which are already in the queue when this callback is called
347 # we don't do this in case we got an error 700 # we don't do this in case we got an error
348 if ($_[1] eq "OK") { 701 if ($_[1] eq "OK") {
349 $_[0]->unshift_read_line (sub { 702 $_[0]->unshift_read (line => sub {
350 my $response = $_[1]; 703 my $response = $_[1];
351 ... 704 ...
352 }); 705 });
353 } 706 }
354 }); 707 });
355 708
356 # request two 709 # request two, simply returns 64 octets
357 $handle->push_write ("request 2\015\012"); 710 $handle->push_write ("request 2\015\012");
358 711
359 # simply read 64 bytes, always 712 # simply read 64 bytes, always
360 $handle->push_read_chunk (64, sub { 713 $handle->push_read (chunk => 64, sub {
361 my $response = $_[1]; 714 my $response = $_[1];
362 ... 715 ...
363 }); 716 });
364 717
365=over 4 718=over 4
367=cut 720=cut
368 721
369sub _drain_rbuf { 722sub _drain_rbuf {
370 my ($self) = @_; 723 my ($self) = @_;
371 724
372 return if $self->{in_drain};
373 local $self->{in_drain} = 1; 725 local $self->{_in_drain} = 1;
374 726
375 while (my $len = length $self->{rbuf}) { 727 if (
728 defined $self->{rbuf_max}
729 && $self->{rbuf_max} < length $self->{rbuf}
730 ) {
731 return $self->_error (&Errno::ENOSPC, 1);
732 }
733
734 while () {
376 no strict 'refs'; 735 no strict 'refs';
736
737 my $len = length $self->{rbuf};
738
377 if (my $cb = shift @{ $self->{queue} }) { 739 if (my $cb = shift @{ $self->{_queue} }) {
378 if (!$cb->($self)) { 740 unless ($cb->($self)) {
379 if ($self->{eof}) { 741 if ($self->{_eof}) {
380 # no progress can be made (not enough data and no data forthcoming) 742 # no progress can be made (not enough data and no data forthcoming)
381 $! = &Errno::EPIPE; return $self->error; 743 $self->_error (&Errno::EPIPE, 1), last;
382 } 744 }
383 745
384 unshift @{ $self->{queue} }, $cb; 746 unshift @{ $self->{_queue} }, $cb;
385 return; 747 last;
386 } 748 }
387 } elsif ($self->{on_read}) { 749 } elsif ($self->{on_read}) {
750 last unless $len;
751
388 $self->{on_read}($self); 752 $self->{on_read}($self);
389 753
390 if ( 754 if (
391 $self->{eof} # if no further data will arrive
392 && $len == length $self->{rbuf} # and no data has been consumed 755 $len == length $self->{rbuf} # if no data has been consumed
393 && !@{ $self->{queue} } # and the queue is still empty 756 && !@{ $self->{_queue} } # and the queue is still empty
394 && $self->{on_read} # and we still want to read data 757 && $self->{on_read} # but we still have on_read
395 ) { 758 ) {
759 # no further data will arrive
396 # then no progress can be made 760 # so no progress can be made
397 $! = &Errno::EPIPE; return $self->error; 761 $self->_error (&Errno::EPIPE, 1), last
762 if $self->{_eof};
763
764 last; # more data might arrive
398 } 765 }
399 } else { 766 } else {
400 # read side becomes idle 767 # read side becomes idle
401 delete $self->{rw}; 768 delete $self->{_rw};
402 return; 769 last;
403 } 770 }
404 } 771 }
405 772
406 if ($self->{eof}) {
407 $self->_shutdown;
408 $self->{on_eof}($self) 773 $self->{on_eof}($self)
409 if $self->{on_eof}; 774 if $self->{_eof} && $self->{on_eof};
775
776 # may need to restart read watcher
777 unless ($self->{_rw}) {
778 $self->start_read
779 if $self->{on_read} || @{ $self->{_queue} };
410 } 780 }
411} 781}
412 782
413=item $handle->on_read ($cb) 783=item $handle->on_read ($cb)
414 784
420 790
421sub on_read { 791sub on_read {
422 my ($self, $cb) = @_; 792 my ($self, $cb) = @_;
423 793
424 $self->{on_read} = $cb; 794 $self->{on_read} = $cb;
795 $self->_drain_rbuf if $cb && !$self->{_in_drain};
425} 796}
426 797
427=item $handle->rbuf 798=item $handle->rbuf
428 799
429Returns the read buffer (as a modifiable lvalue). 800Returns the read buffer (as a modifiable lvalue).
448Append the given callback to the end of the queue (C<push_read>) or 819Append the given callback to the end of the queue (C<push_read>) or
449prepend it (C<unshift_read>). 820prepend it (C<unshift_read>).
450 821
451The callback is called each time some additional read data arrives. 822The callback is called each time some additional read data arrives.
452 823
453It must check wether enough data is in the read buffer already. 824It must check whether enough data is in the read buffer already.
454 825
455If not enough data is available, it must return the empty list or a false 826If not enough data is available, it must return the empty list or a false
456value, in which case it will be called repeatedly until enough data is 827value, in which case it will be called repeatedly until enough data is
457available (or an error condition is detected). 828available (or an error condition is detected).
458 829
460interested in (which can be none at all) and return a true value. After returning 831interested in (which can be none at all) and return a true value. After returning
461true, it will be removed from the queue. 832true, it will be removed from the queue.
462 833
463=cut 834=cut
464 835
836our %RH;
837
838sub register_read_type($$) {
839 $RH{$_[0]} = $_[1];
840}
841
465sub push_read { 842sub push_read {
466 my ($self, $cb) = @_; 843 my $self = shift;
844 my $cb = pop;
467 845
846 if (@_) {
847 my $type = shift;
848
849 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
850 ->($self, $cb, @_);
851 }
852
468 push @{ $self->{queue} }, $cb; 853 push @{ $self->{_queue} }, $cb;
469 $self->_drain_rbuf; 854 $self->_drain_rbuf unless $self->{_in_drain};
470} 855}
471 856
472sub unshift_read { 857sub unshift_read {
473 my ($self, $cb) = @_; 858 my $self = shift;
859 my $cb = pop;
474 860
861 if (@_) {
862 my $type = shift;
863
864 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
865 ->($self, $cb, @_);
866 }
867
868
475 push @{ $self->{queue} }, $cb; 869 unshift @{ $self->{_queue} }, $cb;
476 $self->_drain_rbuf; 870 $self->_drain_rbuf unless $self->{_in_drain};
477} 871}
478 872
479=item $handle->push_read_chunk ($len, $cb->($self, $data)) 873=item $handle->push_read (type => @args, $cb)
480 874
481=item $handle->unshift_read_chunk ($len, $cb->($self, $data)) 875=item $handle->unshift_read (type => @args, $cb)
482 876
483Append the given callback to the end of the queue (C<push_read_chunk>) or 877Instead of providing a callback that parses the data itself you can chose
484prepend it (C<unshift_read_chunk>). 878between a number of predefined parsing formats, for chunks of data, lines
879etc.
485 880
486The callback will be called only once C<$len> bytes have been read, and 881Predefined types are (if you have ideas for additional types, feel free to
487these C<$len> bytes will be passed to the callback. 882drop by and tell us):
488 883
489=cut 884=over 4
490 885
491sub _read_chunk($$) { 886=item chunk => $octets, $cb->($handle, $data)
887
888Invoke the callback only once C<$octets> bytes have been read. Pass the
889data read to the callback. The callback will never be called with less
890data.
891
892Example: read 2 bytes.
893
894 $handle->push_read (chunk => 2, sub {
895 warn "yay ", unpack "H*", $_[1];
896 });
897
898=cut
899
900register_read_type chunk => sub {
492 my ($self, $len, $cb) = @_; 901 my ($self, $cb, $len) = @_;
493 902
494 sub { 903 sub {
495 $len <= length $_[0]{rbuf} or return; 904 $len <= length $_[0]{rbuf} or return;
496 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 905 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
497 1 906 1
498 } 907 }
499} 908};
500 909
910# compatibility with older API
501sub push_read_chunk { 911sub push_read_chunk {
502 $_[0]->push_read (&_read_chunk); 912 $_[0]->push_read (chunk => $_[1], $_[2]);
503} 913}
504
505 914
506sub unshift_read_chunk { 915sub unshift_read_chunk {
507 $_[0]->unshift_read (&_read_chunk); 916 $_[0]->unshift_read (chunk => $_[1], $_[2]);
508} 917}
509 918
510=item $handle->push_read_line ([$eol, ]$cb->($self, $line, $eol)) 919=item line => [$eol, ]$cb->($handle, $line, $eol)
511
512=item $handle->unshift_read_line ([$eol, ]$cb->($self, $line, $eol))
513
514Append the given callback to the end of the queue (C<push_read_line>) or
515prepend it (C<unshift_read_line>).
516 920
517The callback will be called only once a full line (including the end of 921The callback will be called only once a full line (including the end of
518line marker, C<$eol>) has been read. This line (excluding the end of line 922line marker, C<$eol>) has been read. This line (excluding the end of line
519marker) will be passed to the callback as second argument (C<$line>), and 923marker) will be passed to the callback as second argument (C<$line>), and
520the end of line marker as the third argument (C<$eol>). 924the end of line marker as the third argument (C<$eol>).
531Partial lines at the end of the stream will never be returned, as they are 935Partial lines at the end of the stream will never be returned, as they are
532not marked by the end of line marker. 936not marked by the end of line marker.
533 937
534=cut 938=cut
535 939
940register_read_type line => sub {
941 my ($self, $cb, $eol) = @_;
942
943 if (@_ < 3) {
944 # this is more than twice as fast as the generic code below
945 sub {
946 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
947
948 $cb->($_[0], $1, $2);
949 1
950 }
951 } else {
952 $eol = quotemeta $eol unless ref $eol;
953 $eol = qr|^(.*?)($eol)|s;
954
955 sub {
956 $_[0]{rbuf} =~ s/$eol// or return;
957
958 $cb->($_[0], $1, $2);
959 1
960 }
961 }
962};
963
964# compatibility with older API
536sub _read_line($$) { 965sub push_read_line {
537 my $self = shift; 966 my $self = shift;
538 my $cb = pop; 967 $self->push_read (line => @_);
539 my $eol = @_ ? shift : qr|(\015?\012)|; 968}
540 my $pos;
541 969
542 $eol = quotemeta $eol unless ref $eol; 970sub unshift_read_line {
543 $eol = qr|^(.*?)($eol)|s; 971 my $self = shift;
972 $self->unshift_read (line => @_);
973}
974
975=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
976
977Makes a regex match against the regex object C<$accept> and returns
978everything up to and including the match.
979
980Example: read a single line terminated by '\n'.
981
982 $handle->push_read (regex => qr<\n>, sub { ... });
983
984If C<$reject> is given and not undef, then it determines when the data is
985to be rejected: it is matched against the data when the C<$accept> regex
986does not match and generates an C<EBADMSG> error when it matches. This is
987useful to quickly reject wrong data (to avoid waiting for a timeout or a
988receive buffer overflow).
989
990Example: expect a single decimal number followed by whitespace, reject
991anything else (not the use of an anchor).
992
993 $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
994
995If C<$skip> is given and not C<undef>, then it will be matched against
996the receive buffer when neither C<$accept> nor C<$reject> match,
997and everything preceding and including the match will be accepted
998unconditionally. This is useful to skip large amounts of data that you
999know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1000have to start matching from the beginning. This is purely an optimisation
1001and is usually worth only when you expect more than a few kilobytes.
1002
1003Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1004expect the header to be very large (it isn't in practise, but...), we use
1005a skip regex to skip initial portions. The skip regex is tricky in that
1006it only accepts something not ending in either \015 or \012, as these are
1007required for the accept regex.
1008
1009 $handle->push_read (regex =>
1010 qr<\015\012\015\012>,
1011 undef, # no reject
1012 qr<^.*[^\015\012]>,
1013 sub { ... });
1014
1015=cut
1016
1017register_read_type regex => sub {
1018 my ($self, $cb, $accept, $reject, $skip) = @_;
1019
1020 my $data;
1021 my $rbuf = \$self->{rbuf};
544 1022
545 sub { 1023 sub {
546 $_[0]{rbuf} =~ s/$eol// or return; 1024 # accept
1025 if ($$rbuf =~ $accept) {
1026 $data .= substr $$rbuf, 0, $+[0], "";
1027 $cb->($self, $data);
1028 return 1;
1029 }
1030
1031 # reject
1032 if ($reject && $$rbuf =~ $reject) {
1033 $self->_error (&Errno::EBADMSG);
1034 }
547 1035
548 $cb->($_[0], $1, $2); 1036 # skip
1037 if ($skip && $$rbuf =~ $skip) {
1038 $data .= substr $$rbuf, 0, $+[0], "";
1039 }
1040
1041 ()
1042 }
1043};
1044
1045=item netstring => $cb->($handle, $string)
1046
1047A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1048
1049Throws an error with C<$!> set to EBADMSG on format violations.
1050
1051=cut
1052
1053register_read_type netstring => sub {
1054 my ($self, $cb) = @_;
1055
1056 sub {
1057 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1058 if ($_[0]{rbuf} =~ /[^0-9]/) {
1059 $self->_error (&Errno::EBADMSG);
1060 }
1061 return;
1062 }
1063
1064 my $len = $1;
1065
1066 $self->unshift_read (chunk => $len, sub {
1067 my $string = $_[1];
1068 $_[0]->unshift_read (chunk => 1, sub {
1069 if ($_[1] eq ",") {
1070 $cb->($_[0], $string);
1071 } else {
1072 $self->_error (&Errno::EBADMSG);
1073 }
1074 });
1075 });
1076
549 1 1077 1
550 } 1078 }
551} 1079};
552 1080
553sub push_read_line { 1081=item packstring => $format, $cb->($handle, $string)
554 $_[0]->push_read (&_read_line);
555}
556 1082
557sub unshift_read_line { 1083An octet string prefixed with an encoded length. The encoding C<$format>
558 $_[0]->unshift_read (&_read_line); 1084uses the same format as a Perl C<pack> format, but must specify a single
559} 1085integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1086optional C<!>, C<< < >> or C<< > >> modifier).
1087
1088DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>.
1089
1090Example: read a block of data prefixed by its length in BER-encoded
1091format (very efficient).
1092
1093 $handle->push_read (packstring => "w", sub {
1094 my ($handle, $data) = @_;
1095 });
1096
1097=cut
1098
1099register_read_type packstring => sub {
1100 my ($self, $cb, $format) = @_;
1101
1102 sub {
1103 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1104 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1105 or return;
1106
1107 $format = length pack $format, $len;
1108
1109 # bypass unshift if we already have the remaining chunk
1110 if ($format + $len <= length $_[0]{rbuf}) {
1111 my $data = substr $_[0]{rbuf}, $format, $len;
1112 substr $_[0]{rbuf}, 0, $format + $len, "";
1113 $cb->($_[0], $data);
1114 } else {
1115 # remove prefix
1116 substr $_[0]{rbuf}, 0, $format, "";
1117
1118 # read remaining chunk
1119 $_[0]->unshift_read (chunk => $len, $cb);
1120 }
1121
1122 1
1123 }
1124};
1125
1126=item json => $cb->($handle, $hash_or_arrayref)
1127
1128Reads a JSON object or array, decodes it and passes it to the callback.
1129
1130If a C<json> object was passed to the constructor, then that will be used
1131for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1132
1133This read type uses the incremental parser available with JSON version
11342.09 (and JSON::XS version 2.2) and above. You have to provide a
1135dependency on your own: this module will load the JSON module, but
1136AnyEvent does not depend on it itself.
1137
1138Since JSON texts are fully self-delimiting, the C<json> read and write
1139types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1140the C<json> write type description, above, for an actual example.
1141
1142=cut
1143
1144register_read_type json => sub {
1145 my ($self, $cb) = @_;
1146
1147 require JSON;
1148
1149 my $data;
1150 my $rbuf = \$self->{rbuf};
1151
1152 my $json = $self->{json} ||= JSON->new->utf8;
1153
1154 sub {
1155 my $ref = $json->incr_parse ($self->{rbuf});
1156
1157 if ($ref) {
1158 $self->{rbuf} = $json->incr_text;
1159 $json->incr_text = "";
1160 $cb->($self, $ref);
1161
1162 1
1163 } else {
1164 $self->{rbuf} = "";
1165 ()
1166 }
1167 }
1168};
1169
1170=item storable => $cb->($handle, $ref)
1171
1172Deserialises a L<Storable> frozen representation as written by the
1173C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1174data).
1175
1176Raises C<EBADMSG> error if the data could not be decoded.
1177
1178=cut
1179
1180register_read_type storable => sub {
1181 my ($self, $cb) = @_;
1182
1183 require Storable;
1184
1185 sub {
1186 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1187 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1188 or return;
1189
1190 my $format = length pack "w", $len;
1191
1192 # bypass unshift if we already have the remaining chunk
1193 if ($format + $len <= length $_[0]{rbuf}) {
1194 my $data = substr $_[0]{rbuf}, $format, $len;
1195 substr $_[0]{rbuf}, 0, $format + $len, "";
1196 $cb->($_[0], Storable::thaw ($data));
1197 } else {
1198 # remove prefix
1199 substr $_[0]{rbuf}, 0, $format, "";
1200
1201 # read remaining chunk
1202 $_[0]->unshift_read (chunk => $len, sub {
1203 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1204 $cb->($_[0], $ref);
1205 } else {
1206 $self->_error (&Errno::EBADMSG);
1207 }
1208 });
1209 }
1210
1211 1
1212 }
1213};
1214
1215=back
1216
1217=item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1218
1219This function (not method) lets you add your own types to C<push_read>.
1220
1221Whenever the given C<type> is used, C<push_read> will invoke the code
1222reference with the handle object, the callback and the remaining
1223arguments.
1224
1225The code reference is supposed to return a callback (usually a closure)
1226that works as a plain read callback (see C<< ->push_read ($cb) >>).
1227
1228It should invoke the passed callback when it is done reading (remember to
1229pass C<$handle> as first argument as all other callbacks do that).
1230
1231Note that this is a function, and all types registered this way will be
1232global, so try to use unique names.
1233
1234For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1235search for C<register_read_type>)).
560 1236
561=item $handle->stop_read 1237=item $handle->stop_read
562 1238
563=item $handle->start_read 1239=item $handle->start_read
564 1240
565In rare cases you actually do not want to read anything form the 1241In rare cases you actually do not want to read anything from the
566socket. In this case you can call C<stop_read>. Neither C<on_read> no 1242socket. In this case you can call C<stop_read>. Neither C<on_read> nor
567any queued callbacks will be executed then. To start readign again, call 1243any queued callbacks will be executed then. To start reading again, call
568C<start_read>. 1244C<start_read>.
1245
1246Note that AnyEvent::Handle will automatically C<start_read> for you when
1247you change the C<on_read> callback or push/unshift a read callback, and it
1248will automatically C<stop_read> for you when neither C<on_read> is set nor
1249there are any read requests in the queue.
569 1250
570=cut 1251=cut
571 1252
572sub stop_read { 1253sub stop_read {
573 my ($self) = @_; 1254 my ($self) = @_;
574 1255
575 delete $self->{rw}; 1256 delete $self->{_rw};
576} 1257}
577 1258
578sub start_read { 1259sub start_read {
579 my ($self) = @_; 1260 my ($self) = @_;
580 1261
581 unless ($self->{rw} || $self->{eof}) { 1262 unless ($self->{_rw} || $self->{_eof}) {
582 Scalar::Util::weaken $self; 1263 Scalar::Util::weaken $self;
583 1264
584 $self->{rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1265 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1266 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
585 my $len = sysread $self->{fh}, $self->{rbuf}, $self->{read_size} || 8192, length $self->{rbuf}; 1267 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
586 1268
587 if ($len > 0) { 1269 if ($len > 0) {
588 if (defined $self->{rbuf_max}) { 1270 $self->{_activity} = AnyEvent->now;
589 if ($self->{rbuf_max} < length $self->{rbuf}) { 1271
590 $! = &Errno::ENOSPC; return $self->error; 1272 $self->{filter_r}
591 } 1273 ? $self->{filter_r}($self, $rbuf)
592 } 1274 : $self->{_in_drain} || $self->_drain_rbuf;
593 1275
594 } elsif (defined $len) { 1276 } elsif (defined $len) {
595 $self->{eof} = 1;
596 delete $self->{rw}; 1277 delete $self->{_rw};
1278 $self->{_eof} = 1;
1279 $self->_drain_rbuf unless $self->{_in_drain};
597 1280
598 } elsif ($! != EAGAIN && $! != EINTR) { 1281 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
599 return $self->error; 1282 return $self->_error ($!, 1);
600 } 1283 }
601
602 $self->_drain_rbuf;
603 }); 1284 });
604 } 1285 }
605} 1286}
606 1287
1288sub _dotls {
1289 my ($self) = @_;
1290
1291 my $buf;
1292
1293 if (length $self->{_tls_wbuf}) {
1294 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1295 substr $self->{_tls_wbuf}, 0, $len, "";
1296 }
1297 }
1298
1299 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1300 $self->{wbuf} .= $buf;
1301 $self->_drain_wbuf;
1302 }
1303
1304 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1305 if (length $buf) {
1306 $self->{rbuf} .= $buf;
1307 $self->_drain_rbuf unless $self->{_in_drain};
1308 } else {
1309 # let's treat SSL-eof as we treat normal EOF
1310 $self->{_eof} = 1;
1311 $self->_shutdown;
1312 return;
1313 }
1314 }
1315
1316 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1317
1318 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1319 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1320 return $self->_error ($!, 1);
1321 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1322 return $self->_error (&Errno::EIO, 1);
1323 }
1324
1325 # all others are fine for our purposes
1326 }
1327}
1328
1329=item $handle->starttls ($tls[, $tls_ctx])
1330
1331Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1332object is created, you can also do that at a later time by calling
1333C<starttls>.
1334
1335The first argument is the same as the C<tls> constructor argument (either
1336C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1337
1338The second argument is the optional C<Net::SSLeay::CTX> object that is
1339used when AnyEvent::Handle has to create its own TLS connection object.
1340
1341The TLS connection object will end up in C<< $handle->{tls} >> after this
1342call and can be used or changed to your liking. Note that the handshake
1343might have already started when this function returns.
1344
1345=cut
1346
1347sub starttls {
1348 my ($self, $ssl, $ctx) = @_;
1349
1350 $self->stoptls;
1351
1352 if ($ssl eq "accept") {
1353 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1354 Net::SSLeay::set_accept_state ($ssl);
1355 } elsif ($ssl eq "connect") {
1356 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1357 Net::SSLeay::set_connect_state ($ssl);
1358 }
1359
1360 $self->{tls} = $ssl;
1361
1362 # basically, this is deep magic (because SSL_read should have the same issues)
1363 # but the openssl maintainers basically said: "trust us, it just works".
1364 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1365 # and mismaintained ssleay-module doesn't even offer them).
1366 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1367 Net::SSLeay::CTX_set_mode ($self->{tls},
1368 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1369 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1370
1371 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1372 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1373
1374 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1375
1376 $self->{filter_w} = sub {
1377 $_[0]{_tls_wbuf} .= ${$_[1]};
1378 &_dotls;
1379 };
1380 $self->{filter_r} = sub {
1381 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1382 &_dotls;
1383 };
1384}
1385
1386=item $handle->stoptls
1387
1388Destroys the SSL connection, if any. Partial read or write data will be
1389lost.
1390
1391=cut
1392
1393sub stoptls {
1394 my ($self) = @_;
1395
1396 Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
1397
1398 delete $self->{_rbio};
1399 delete $self->{_wbio};
1400 delete $self->{_tls_wbuf};
1401 delete $self->{filter_r};
1402 delete $self->{filter_w};
1403}
1404
1405sub DESTROY {
1406 my $self = shift;
1407
1408 $self->stoptls;
1409
1410 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1411
1412 if ($linger && length $self->{wbuf}) {
1413 my $fh = delete $self->{fh};
1414 my $wbuf = delete $self->{wbuf};
1415
1416 my @linger;
1417
1418 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1419 my $len = syswrite $fh, $wbuf, length $wbuf;
1420
1421 if ($len > 0) {
1422 substr $wbuf, 0, $len, "";
1423 } else {
1424 @linger = (); # end
1425 }
1426 });
1427 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1428 @linger = ();
1429 });
1430 }
1431}
1432
1433=item AnyEvent::Handle::TLS_CTX
1434
1435This function creates and returns the Net::SSLeay::CTX object used by
1436default for TLS mode.
1437
1438The context is created like this:
1439
1440 Net::SSLeay::load_error_strings;
1441 Net::SSLeay::SSLeay_add_ssl_algorithms;
1442 Net::SSLeay::randomize;
1443
1444 my $CTX = Net::SSLeay::CTX_new;
1445
1446 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1447
1448=cut
1449
1450our $TLS_CTX;
1451
1452sub TLS_CTX() {
1453 $TLS_CTX || do {
1454 require Net::SSLeay;
1455
1456 Net::SSLeay::load_error_strings ();
1457 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1458 Net::SSLeay::randomize ();
1459
1460 $TLS_CTX = Net::SSLeay::CTX_new ();
1461
1462 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1463
1464 $TLS_CTX
1465 }
1466}
1467
607=back 1468=back
608 1469
1470=head1 SUBCLASSING AnyEvent::Handle
1471
1472In many cases, you might want to subclass AnyEvent::Handle.
1473
1474To make this easier, a given version of AnyEvent::Handle uses these
1475conventions:
1476
1477=over 4
1478
1479=item * all constructor arguments become object members.
1480
1481At least initially, when you pass a C<tls>-argument to the constructor it
1482will end up in C<< $handle->{tls} >>. Those members might be changed or
1483mutated later on (for example C<tls> will hold the TLS connection object).
1484
1485=item * other object member names are prefixed with an C<_>.
1486
1487All object members not explicitly documented (internal use) are prefixed
1488with an underscore character, so the remaining non-C<_>-namespace is free
1489for use for subclasses.
1490
1491=item * all members not documented here and not prefixed with an underscore
1492are free to use in subclasses.
1493
1494Of course, new versions of AnyEvent::Handle may introduce more "public"
1495member variables, but thats just life, at least it is documented.
1496
1497=back
1498
609=head1 AUTHOR 1499=head1 AUTHOR
610 1500
611Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>. 1501Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
612 1502
613=cut 1503=cut

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines