ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.99 by root, Thu Oct 23 02:41:00 2008 UTC vs.
Revision 1.179 by root, Wed Aug 12 15:50:44 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17=cut
18
19our $VERSION = 4.3;
20 4
21=head1 SYNOPSIS 5=head1 SYNOPSIS
22 6
23 use AnyEvent; 7 use AnyEvent;
24 use AnyEvent::Handle; 8 use AnyEvent::Handle;
25 9
26 my $cv = AnyEvent->condvar; 10 my $cv = AnyEvent->condvar;
27 11
28 my $handle = 12 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 13 fh => \*STDIN,
31 on_eof => sub { 14 on_error => sub {
32 $cv->broadcast; 15 my ($hdl, $fatal, $msg) = @_;
33 }, 16 warn "got error $msg\n";
17 $hdl->destroy;
18 $cv->send;
34 ); 19 );
35 20
36 # send some request line 21 # send some request line
37 $handle->push_write ("getinfo\015\012"); 22 $hdl->push_write ("getinfo\015\012");
38 23
39 # read the response line 24 # read the response line
40 $handle->push_read (line => sub { 25 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 26 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 27 warn "got line <$line>\n";
43 $cv->send; 28 $cv->send;
44 }); 29 });
45 30
46 $cv->recv; 31 $cv->recv;
47 32
48=head1 DESCRIPTION 33=head1 DESCRIPTION
49 34
50This module is a helper module to make it easier to do event-based I/O on 35This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 36filehandles.
52on sockets see L<AnyEvent::Util>.
53 37
54The L<AnyEvent::Intro> tutorial contains some well-documented 38The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples. 39AnyEvent::Handle examples.
56 40
57In the following, when the documentation refers to of "bytes" then this 41In the following, when the documentation refers to of "bytes" then this
58means characters. As sysread and syswrite are used for all I/O, their 42means characters. As sysread and syswrite are used for all I/O, their
59treatment of characters applies to this module as well. 43treatment of characters applies to this module as well.
60 44
45At the very minimum, you should specify C<fh> or C<connect>, and the
46C<on_error> callback.
47
61All callbacks will be invoked with the handle object as their first 48All callbacks will be invoked with the handle object as their first
62argument. 49argument.
63 50
51=cut
52
53package AnyEvent::Handle;
54
55use Scalar::Util ();
56use List::Util ();
57use Carp ();
58use Errno qw(EAGAIN EINTR);
59
60use AnyEvent (); BEGIN { AnyEvent::common_sense }
61use AnyEvent::Util qw(WSAEWOULDBLOCK);
62
63our $VERSION = $AnyEvent::VERSION;
64
64=head1 METHODS 65=head1 METHODS
65 66
66=over 4 67=over 4
67 68
68=item B<new (%args)> 69=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
69 70
70The constructor supports these arguments (all as key => value pairs). 71The constructor supports these arguments (all as C<< key => value >> pairs).
71 72
72=over 4 73=over 4
73 74
74=item fh => $filehandle [MANDATORY] 75=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
75 76
76The filehandle this L<AnyEvent::Handle> object will operate on. 77The filehandle this L<AnyEvent::Handle> object will operate on.
77
78NOTE: The filehandle will be set to non-blocking mode (using 78NOTE: The filehandle will be set to non-blocking mode (using
79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode. 80that mode.
81 81
82=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
83
84Try to connect to the specified host and service (port), using
85C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
86default C<peername>.
87
88You have to specify either this parameter, or C<fh>, above.
89
90It is possible to push requests on the read and write queues, and modify
91properties of the stream, even while AnyEvent::Handle is connecting.
92
93When this parameter is specified, then the C<on_prepare>,
94C<on_connect_error> and C<on_connect> callbacks will be called under the
95appropriate circumstances:
96
97=over 4
98
82=item on_eof => $cb->($handle) 99=item on_prepare => $cb->($handle)
83 100
84Set the callback to be called when an end-of-file condition is detected, 101This (rarely used) callback is called before a new connection is
85i.e. in the case of a socket, when the other side has closed the 102attempted, but after the file handle has been created. It could be used to
86connection cleanly. 103prepare the file handle with parameters required for the actual connect
104(as opposed to settings that can be changed when the connection is already
105established).
87 106
88For sockets, this just means that the other side has stopped sending data, 107The return value of this callback should be the connect timeout value in
89you can still try to write data, and, in fact, one can return from the eof 108seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
90callback and continue writing data, as only the read part has been shut 109timeout is to be used).
91down.
92 110
93While not mandatory, it is I<highly> recommended to set an eof callback, 111=item on_connect => $cb->($handle, $host, $port, $retry->())
94otherwise you might end up with a closed socket while you are still
95waiting for data.
96 112
97If an EOF condition has been detected but no C<on_eof> callback has been 113This callback is called when a connection has been successfully established.
98set, then a fatal error will be raised with C<$!> set to <0>.
99 114
115The actual numeric host and port (the socket peername) are passed as
116parameters, together with a retry callback.
117
118When, for some reason, the handle is not acceptable, then calling
119C<$retry> will continue with the next conenction target (in case of
120multi-homed hosts or SRV records there can be multiple connection
121endpoints). When it is called then the read and write queues, eof status,
122tls status and similar properties of the handle are being reset.
123
124In most cases, ignoring the C<$retry> parameter is the way to go.
125
126=item on_connect_error => $cb->($handle, $message)
127
128This callback is called when the conenction could not be
129established. C<$!> will contain the relevant error code, and C<$message> a
130message describing it (usually the same as C<"$!">).
131
132If this callback isn't specified, then C<on_error> will be called with a
133fatal error instead.
134
135=back
136
100=item on_error => $cb->($handle, $fatal) 137=item on_error => $cb->($handle, $fatal, $message)
101 138
102This is the error callback, which is called when, well, some error 139This is the error callback, which is called when, well, some error
103occured, such as not being able to resolve the hostname, failure to 140occured, such as not being able to resolve the hostname, failure to
104connect or a read error. 141connect or a read error.
105 142
106Some errors are fatal (which is indicated by C<$fatal> being true). On 143Some errors are fatal (which is indicated by C<$fatal> being true). On
107fatal errors the handle object will be shut down and will not be usable 144fatal errors the handle object will be destroyed (by a call to C<< ->
108(but you are free to look at the current C<< ->rbuf >>). Examples of fatal 145destroy >>) after invoking the error callback (which means you are free to
109errors are an EOF condition with active (but unsatisifable) read watchers 146examine the handle object). Examples of fatal errors are an EOF condition
110(C<EPIPE>) or I/O errors. 147with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
148cases where the other side can close the connection at their will it is
149often easiest to not report C<EPIPE> errors in this callback.
150
151AnyEvent::Handle tries to find an appropriate error code for you to check
152against, but in some cases (TLS errors), this does not work well. It is
153recommended to always output the C<$message> argument in human-readable
154error messages (it's usually the same as C<"$!">).
111 155
112Non-fatal errors can be retried by simply returning, but it is recommended 156Non-fatal errors can be retried by simply returning, but it is recommended
113to simply ignore this parameter and instead abondon the handle object 157to simply ignore this parameter and instead abondon the handle object
114when this callback is invoked. Examples of non-fatal errors are timeouts 158when this callback is invoked. Examples of non-fatal errors are timeouts
115C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>). 159C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
116 160
117On callback entrance, the value of C<$!> contains the operating system 161On callback entrance, the value of C<$!> contains the operating system
118error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 162error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
163C<EPROTO>).
119 164
120While not mandatory, it is I<highly> recommended to set this callback, as 165While not mandatory, it is I<highly> recommended to set this callback, as
121you will not be notified of errors otherwise. The default simply calls 166you will not be notified of errors otherwise. The default simply calls
122C<croak>. 167C<croak>.
123 168
127and no read request is in the queue (unlike read queue callbacks, this 172and no read request is in the queue (unlike read queue callbacks, this
128callback will only be called when at least one octet of data is in the 173callback will only be called when at least one octet of data is in the
129read buffer). 174read buffer).
130 175
131To access (and remove data from) the read buffer, use the C<< ->rbuf >> 176To access (and remove data from) the read buffer, use the C<< ->rbuf >>
132method or access the C<$handle->{rbuf}> member directly. 177method or access the C<< $handle->{rbuf} >> member directly. Note that you
178must not enlarge or modify the read buffer, you can only remove data at
179the beginning from it.
133 180
134When an EOF condition is detected then AnyEvent::Handle will first try to 181When an EOF condition is detected then AnyEvent::Handle will first try to
135feed all the remaining data to the queued callbacks and C<on_read> before 182feed all the remaining data to the queued callbacks and C<on_read> before
136calling the C<on_eof> callback. If no progress can be made, then a fatal 183calling the C<on_eof> callback. If no progress can be made, then a fatal
137error will be raised (with C<$!> set to C<EPIPE>). 184error will be raised (with C<$!> set to C<EPIPE>).
185
186Note that, unlike requests in the read queue, an C<on_read> callback
187doesn't mean you I<require> some data: if there is an EOF and there
188are outstanding read requests then an error will be flagged. With an
189C<on_read> callback, the C<on_eof> callback will be invoked.
190
191=item on_eof => $cb->($handle)
192
193Set the callback to be called when an end-of-file condition is detected,
194i.e. in the case of a socket, when the other side has closed the
195connection cleanly, and there are no outstanding read requests in the
196queue (if there are read requests, then an EOF counts as an unexpected
197connection close and will be flagged as an error).
198
199For sockets, this just means that the other side has stopped sending data,
200you can still try to write data, and, in fact, one can return from the EOF
201callback and continue writing data, as only the read part has been shut
202down.
203
204If an EOF condition has been detected but no C<on_eof> callback has been
205set, then a fatal error will be raised with C<$!> set to <0>.
138 206
139=item on_drain => $cb->($handle) 207=item on_drain => $cb->($handle)
140 208
141This sets the callback that is called when the write buffer becomes empty 209This sets the callback that is called when the write buffer becomes empty
142(or when the callback is set and the buffer is empty already). 210(or when the callback is set and the buffer is empty already).
149memory and push it into the queue, but instead only read more data from 217memory and push it into the queue, but instead only read more data from
150the file when the write queue becomes empty. 218the file when the write queue becomes empty.
151 219
152=item timeout => $fractional_seconds 220=item timeout => $fractional_seconds
153 221
222=item rtimeout => $fractional_seconds
223
224=item wtimeout => $fractional_seconds
225
154If non-zero, then this enables an "inactivity" timeout: whenever this many 226If non-zero, then these enables an "inactivity" timeout: whenever this
155seconds pass without a successful read or write on the underlying file 227many seconds pass without a successful read or write on the underlying
156handle, the C<on_timeout> callback will be invoked (and if that one is 228file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
157missing, a non-fatal C<ETIMEDOUT> error will be raised). 229will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
230error will be raised).
231
232There are three variants of the timeouts that work fully independent
233of each other, for both read and write, just read, and just write:
234C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
235C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
236C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
158 237
159Note that timeout processing is also active when you currently do not have 238Note that timeout processing is also active when you currently do not have
160any outstanding read or write requests: If you plan to keep the connection 239any outstanding read or write requests: If you plan to keep the connection
161idle then you should disable the timout temporarily or ignore the timeout 240idle then you should disable the timout temporarily or ignore the timeout
162in the C<on_timeout> callback, in which case AnyEvent::Handle will simply 241in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
235 314
236This will not work for partial TLS data that could not be encoded 315This will not work for partial TLS data that could not be encoded
237yet. This data will be lost. Calling the C<stoptls> method in time might 316yet. This data will be lost. Calling the C<stoptls> method in time might
238help. 317help.
239 318
319=item peername => $string
320
321A string used to identify the remote site - usually the DNS hostname
322(I<not> IDN!) used to create the connection, rarely the IP address.
323
324Apart from being useful in error messages, this string is also used in TLS
325peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
326verification will be skipped when C<peername> is not specified or
327C<undef>.
328
240=item tls => "accept" | "connect" | Net::SSLeay::SSL object 329=item tls => "accept" | "connect" | Net::SSLeay::SSL object
241 330
242When this parameter is given, it enables TLS (SSL) mode, that means 331When this parameter is given, it enables TLS (SSL) mode, that means
243AnyEvent will start a TLS handshake as soon as the conenction has been 332AnyEvent will start a TLS handshake as soon as the conenction has been
244established and will transparently encrypt/decrypt data afterwards. 333established and will transparently encrypt/decrypt data afterwards.
334
335All TLS protocol errors will be signalled as C<EPROTO>, with an
336appropriate error message.
245 337
246TLS mode requires Net::SSLeay to be installed (it will be loaded 338TLS mode requires Net::SSLeay to be installed (it will be loaded
247automatically when you try to create a TLS handle): this module doesn't 339automatically when you try to create a TLS handle): this module doesn't
248have a dependency on that module, so if your module requires it, you have 340have a dependency on that module, so if your module requires it, you have
249to add the dependency yourself. 341to add the dependency yourself.
253mode. 345mode.
254 346
255You can also provide your own TLS connection object, but you have 347You can also provide your own TLS connection object, but you have
256to make sure that you call either C<Net::SSLeay::set_connect_state> 348to make sure that you call either C<Net::SSLeay::set_connect_state>
257or C<Net::SSLeay::set_accept_state> on it before you pass it to 349or C<Net::SSLeay::set_accept_state> on it before you pass it to
258AnyEvent::Handle. 350AnyEvent::Handle. Also, this module will take ownership of this connection
351object.
352
353At some future point, AnyEvent::Handle might switch to another TLS
354implementation, then the option to use your own session object will go
355away.
356
357B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
358passing in the wrong integer will lead to certain crash. This most often
359happens when one uses a stylish C<< tls => 1 >> and is surprised about the
360segmentation fault.
259 361
260See the C<< ->starttls >> method for when need to start TLS negotiation later. 362See the C<< ->starttls >> method for when need to start TLS negotiation later.
261 363
262=item tls_ctx => $ssl_ctx 364=item tls_ctx => $anyevent_tls
263 365
264Use the given C<Net::SSLeay::CTX> object to create the new TLS connection 366Use the given C<AnyEvent::TLS> object to create the new TLS connection
265(unless a connection object was specified directly). If this parameter is 367(unless a connection object was specified directly). If this parameter is
266missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 368missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
369
370Instead of an object, you can also specify a hash reference with C<< key
371=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
372new TLS context object.
373
374=item on_starttls => $cb->($handle, $success[, $error_message])
375
376This callback will be invoked when the TLS/SSL handshake has finished. If
377C<$success> is true, then the TLS handshake succeeded, otherwise it failed
378(C<on_stoptls> will not be called in this case).
379
380The session in C<< $handle->{tls} >> can still be examined in this
381callback, even when the handshake was not successful.
382
383TLS handshake failures will not cause C<on_error> to be invoked when this
384callback is in effect, instead, the error message will be passed to C<on_starttls>.
385
386Without this callback, handshake failures lead to C<on_error> being
387called, as normal.
388
389Note that you cannot call C<starttls> right again in this callback. If you
390need to do that, start an zero-second timer instead whose callback can
391then call C<< ->starttls >> again.
392
393=item on_stoptls => $cb->($handle)
394
395When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
396set, then it will be invoked after freeing the TLS session. If it is not,
397then a TLS shutdown condition will be treated like a normal EOF condition
398on the handle.
399
400The session in C<< $handle->{tls} >> can still be examined in this
401callback.
402
403This callback will only be called on TLS shutdowns, not when the
404underlying handle signals EOF.
267 405
268=item json => JSON or JSON::XS object 406=item json => JSON or JSON::XS object
269 407
270This is the json coder object used by the C<json> read and write types. 408This is the json coder object used by the C<json> read and write types.
271 409
280 418
281=cut 419=cut
282 420
283sub new { 421sub new {
284 my $class = shift; 422 my $class = shift;
285
286 my $self = bless { @_ }, $class; 423 my $self = bless { @_ }, $class;
287 424
288 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 425 if ($self->{fh}) {
426 $self->_start;
427 return unless $self->{fh}; # could be gone by now
428
429 } elsif ($self->{connect}) {
430 require AnyEvent::Socket;
431
432 $self->{peername} = $self->{connect}[0]
433 unless exists $self->{peername};
434
435 $self->{_skip_drain_rbuf} = 1;
436
437 {
438 Scalar::Util::weaken (my $self = $self);
439
440 $self->{_connect} =
441 AnyEvent::Socket::tcp_connect (
442 $self->{connect}[0],
443 $self->{connect}[1],
444 sub {
445 my ($fh, $host, $port, $retry) = @_;
446
447 if ($fh) {
448 $self->{fh} = $fh;
449
450 delete $self->{_skip_drain_rbuf};
451 $self->_start;
452
453 $self->{on_connect}
454 and $self->{on_connect}($self, $host, $port, sub {
455 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
456 $self->{_skip_drain_rbuf} = 1;
457 &$retry;
458 });
459
460 } else {
461 if ($self->{on_connect_error}) {
462 $self->{on_connect_error}($self, "$!");
463 $self->destroy;
464 } else {
465 $self->_error ($!, 1);
466 }
467 }
468 },
469 sub {
470 local $self->{fh} = $_[0];
471
472 $self->{on_prepare}
473 ? $self->{on_prepare}->($self)
474 : ()
475 }
476 );
477 }
478
479 } else {
480 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
481 }
482
483 $self
484}
485
486sub _start {
487 my ($self) = @_;
289 488
290 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 489 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
490
491 $self->{_activity} =
492 $self->{_ractivity} =
493 $self->{_wactivity} = AE::now;
494
495 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
496 $self->rtimeout (delete $self->{rtimeout}) if $self->{rtimeout};
497 $self->wtimeout (delete $self->{wtimeout}) if $self->{wtimeout};
498
499 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
291 500
292 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}) 501 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
293 if $self->{tls}; 502 if $self->{tls};
294 503
295 $self->{_activity} = AnyEvent->now;
296 $self->_timeout;
297
298 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain}; 504 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
299 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
300 505
301 $self->start_read 506 $self->start_read
302 if $self->{on_read}; 507 if $self->{on_read} || @{ $self->{_queue} };
303 508
304 $self 509 $self->_drain_wbuf;
305}
306
307sub _shutdown {
308 my ($self) = @_;
309
310 delete $self->{_tw};
311 delete $self->{_rw};
312 delete $self->{_ww};
313 delete $self->{fh};
314
315 &_freetls;
316
317 delete $self->{on_read};
318 delete $self->{_queue};
319} 510}
320 511
321sub _error { 512sub _error {
322 my ($self, $errno, $fatal) = @_; 513 my ($self, $errno, $fatal, $message) = @_;
323
324 $self->_shutdown
325 if $fatal;
326 514
327 $! = $errno; 515 $! = $errno;
516 $message ||= "$!";
328 517
329 if ($self->{on_error}) { 518 if ($self->{on_error}) {
330 $self->{on_error}($self, $fatal); 519 $self->{on_error}($self, $fatal, $message);
331 } else { 520 $self->destroy if $fatal;
521 } elsif ($self->{fh}) {
522 $self->destroy;
332 Carp::croak "AnyEvent::Handle uncaught error: $!"; 523 Carp::croak "AnyEvent::Handle uncaught error: $message";
333 } 524 }
334} 525}
335 526
336=item $fh = $handle->fh 527=item $fh = $handle->fh
337 528
361 $_[0]{on_eof} = $_[1]; 552 $_[0]{on_eof} = $_[1];
362} 553}
363 554
364=item $handle->on_timeout ($cb) 555=item $handle->on_timeout ($cb)
365 556
366Replace the current C<on_timeout> callback, or disables the callback (but 557=item $handle->on_rtimeout ($cb)
367not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
368argument and method.
369 558
370=cut 559=item $handle->on_wtimeout ($cb)
371 560
372sub on_timeout { 561Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
373 $_[0]{on_timeout} = $_[1]; 562callback, or disables the callback (but not the timeout) if C<$cb> =
374} 563C<undef>. See the C<timeout> constructor argument and method.
564
565=cut
566
567# see below
375 568
376=item $handle->autocork ($boolean) 569=item $handle->autocork ($boolean)
377 570
378Enables or disables the current autocork behaviour (see C<autocork> 571Enables or disables the current autocork behaviour (see C<autocork>
379constructor argument). 572constructor argument). Changes will only take effect on the next write.
380 573
381=cut 574=cut
575
576sub autocork {
577 $_[0]{autocork} = $_[1];
578}
382 579
383=item $handle->no_delay ($boolean) 580=item $handle->no_delay ($boolean)
384 581
385Enables or disables the C<no_delay> setting (see constructor argument of 582Enables or disables the C<no_delay> setting (see constructor argument of
386the same name for details). 583the same name for details).
390sub no_delay { 587sub no_delay {
391 $_[0]{no_delay} = $_[1]; 588 $_[0]{no_delay} = $_[1];
392 589
393 eval { 590 eval {
394 local $SIG{__DIE__}; 591 local $SIG{__DIE__};
395 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 592 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
593 if $_[0]{fh};
396 }; 594 };
397} 595}
398 596
597=item $handle->on_starttls ($cb)
598
599Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
600
601=cut
602
603sub on_starttls {
604 $_[0]{on_starttls} = $_[1];
605}
606
607=item $handle->on_stoptls ($cb)
608
609Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
610
611=cut
612
613sub on_starttls {
614 $_[0]{on_stoptls} = $_[1];
615}
616
617=item $handle->rbuf_max ($max_octets)
618
619Configures the C<rbuf_max> setting (C<undef> disables it).
620
621=cut
622
623sub rbuf_max {
624 $_[0]{rbuf_max} = $_[1];
625}
626
399############################################################################# 627#############################################################################
400 628
401=item $handle->timeout ($seconds) 629=item $handle->timeout ($seconds)
402 630
631=item $handle->rtimeout ($seconds)
632
633=item $handle->wtimeout ($seconds)
634
403Configures (or disables) the inactivity timeout. 635Configures (or disables) the inactivity timeout.
404 636
405=cut 637=item $handle->timeout_reset
406 638
407sub timeout { 639=item $handle->rtimeout_reset
640
641=item $handle->wtimeout_reset
642
643Reset the activity timeout, as if data was received or sent.
644
645These methods are cheap to call.
646
647=cut
648
649for my $dir ("", "r", "w") {
650 my $timeout = "${dir}timeout";
651 my $tw = "_${dir}tw";
652 my $on_timeout = "on_${dir}timeout";
653 my $activity = "_${dir}activity";
654 my $cb;
655
656 *$on_timeout = sub {
657 $_[0]{$on_timeout} = $_[1];
658 };
659
660 *$timeout = sub {
408 my ($self, $timeout) = @_; 661 my ($self, $new_value) = @_;
409 662
410 $self->{timeout} = $timeout; 663 $self->{$timeout} = $new_value;
411 $self->_timeout; 664 delete $self->{$tw}; &$cb;
412} 665 };
413 666
667 *{"${dir}timeout_reset"} = sub {
668 $_[0]{$activity} = AE::now;
669 };
670
671 # main workhorse:
414# reset the timeout watcher, as neccessary 672 # reset the timeout watcher, as neccessary
415# also check for time-outs 673 # also check for time-outs
416sub _timeout { 674 $cb = sub {
417 my ($self) = @_; 675 my ($self) = @_;
418 676
419 if ($self->{timeout}) { 677 if ($self->{$timeout} && $self->{fh}) {
420 my $NOW = AnyEvent->now; 678 my $NOW = AE::now;
421 679
422 # when would the timeout trigger? 680 # when would the timeout trigger?
423 my $after = $self->{_activity} + $self->{timeout} - $NOW; 681 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
424 682
425 # now or in the past already? 683 # now or in the past already?
426 if ($after <= 0) { 684 if ($after <= 0) {
427 $self->{_activity} = $NOW; 685 $self->{$activity} = $NOW;
428 686
429 if ($self->{on_timeout}) { 687 if ($self->{$on_timeout}) {
430 $self->{on_timeout}($self); 688 $self->{$on_timeout}($self);
431 } else { 689 } else {
432 $self->_error (&Errno::ETIMEDOUT); 690 $self->_error (Errno::ETIMEDOUT);
691 }
692
693 # callback could have changed timeout value, optimise
694 return unless $self->{$timeout};
695
696 # calculate new after
697 $after = $self->{$timeout};
433 } 698 }
434 699
435 # callback could have changed timeout value, optimise 700 Scalar::Util::weaken $self;
436 return unless $self->{timeout}; 701 return unless $self; # ->error could have destroyed $self
437 702
438 # calculate new after 703 $self->{$tw} ||= AE::timer $after, 0, sub {
439 $after = $self->{timeout}; 704 delete $self->{$tw};
705 $cb->($self);
706 };
707 } else {
708 delete $self->{$tw};
440 } 709 }
441
442 Scalar::Util::weaken $self;
443 return unless $self; # ->error could have destroyed $self
444
445 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
446 delete $self->{_tw};
447 $self->_timeout;
448 });
449 } else {
450 delete $self->{_tw};
451 } 710 }
452} 711}
453 712
454############################################################################# 713#############################################################################
455 714
500 Scalar::Util::weaken $self; 759 Scalar::Util::weaken $self;
501 760
502 my $cb = sub { 761 my $cb = sub {
503 my $len = syswrite $self->{fh}, $self->{wbuf}; 762 my $len = syswrite $self->{fh}, $self->{wbuf};
504 763
505 if ($len >= 0) { 764 if (defined $len) {
506 substr $self->{wbuf}, 0, $len, ""; 765 substr $self->{wbuf}, 0, $len, "";
507 766
508 $self->{_activity} = AnyEvent->now; 767 $self->{_activity} = $self->{_wactivity} = AE::now;
509 768
510 $self->{on_drain}($self) 769 $self->{on_drain}($self)
511 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf}) 770 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
512 && $self->{on_drain}; 771 && $self->{on_drain};
513 772
519 778
520 # try to write data immediately 779 # try to write data immediately
521 $cb->() unless $self->{autocork}; 780 $cb->() unless $self->{autocork};
522 781
523 # if still data left in wbuf, we need to poll 782 # if still data left in wbuf, we need to poll
524 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 783 $self->{_ww} = AE::io $self->{fh}, 1, $cb
525 if length $self->{wbuf}; 784 if length $self->{wbuf};
526 }; 785 };
527} 786}
528 787
529our %WH; 788our %WH;
542 ->($self, @_); 801 ->($self, @_);
543 } 802 }
544 803
545 if ($self->{tls}) { 804 if ($self->{tls}) {
546 $self->{_tls_wbuf} .= $_[0]; 805 $self->{_tls_wbuf} .= $_[0];
547 806 &_dotls ($self) if $self->{fh};
548 &_dotls ($self);
549 } else { 807 } else {
550 $self->{wbuf} .= $_[0]; 808 $self->{wbuf} .= $_[0];
551 $self->_drain_wbuf; 809 $self->_drain_wbuf if $self->{fh};
552 } 810 }
553} 811}
554 812
555=item $handle->push_write (type => @args) 813=item $handle->push_write (type => @args)
556 814
620Other languages could read single lines terminated by a newline and pass 878Other languages could read single lines terminated by a newline and pass
621this line into their JSON decoder of choice. 879this line into their JSON decoder of choice.
622 880
623=cut 881=cut
624 882
883sub json_coder() {
884 eval { require JSON::XS; JSON::XS->new->utf8 }
885 || do { require JSON; JSON->new->utf8 }
886}
887
625register_write_type json => sub { 888register_write_type json => sub {
626 my ($self, $ref) = @_; 889 my ($self, $ref) = @_;
627 890
628 require JSON; 891 my $json = $self->{json} ||= json_coder;
629 892
630 $self->{json} ? $self->{json}->encode ($ref) 893 $json->encode ($ref)
631 : JSON::encode_json ($ref)
632}; 894};
633 895
634=item storable => $reference 896=item storable => $reference
635 897
636Freezes the given reference using L<Storable> and writes it to the 898Freezes the given reference using L<Storable> and writes it to the
645 907
646 pack "w/a*", Storable::nfreeze ($ref) 908 pack "w/a*", Storable::nfreeze ($ref)
647}; 909};
648 910
649=back 911=back
912
913=item $handle->push_shutdown
914
915Sometimes you know you want to close the socket after writing your data
916before it was actually written. One way to do that is to replace your
917C<on_drain> handler by a callback that shuts down the socket (and set
918C<low_water_mark> to C<0>). This method is a shorthand for just that, and
919replaces the C<on_drain> callback with:
920
921 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
922
923This simply shuts down the write side and signals an EOF condition to the
924the peer.
925
926You can rely on the normal read queue and C<on_eof> handling
927afterwards. This is the cleanest way to close a connection.
928
929=cut
930
931sub push_shutdown {
932 my ($self) = @_;
933
934 delete $self->{low_water_mark};
935 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
936}
650 937
651=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 938=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
652 939
653This function (not method) lets you add your own types to C<push_write>. 940This function (not method) lets you add your own types to C<push_write>.
654Whenever the given C<type> is used, C<push_write> will invoke the code 941Whenever the given C<type> is used, C<push_write> will invoke the code
748=cut 1035=cut
749 1036
750sub _drain_rbuf { 1037sub _drain_rbuf {
751 my ($self) = @_; 1038 my ($self) = @_;
752 1039
1040 # avoid recursion
1041 return if $self->{_skip_drain_rbuf};
753 local $self->{_in_drain} = 1; 1042 local $self->{_skip_drain_rbuf} = 1;
754
755 if (
756 defined $self->{rbuf_max}
757 && $self->{rbuf_max} < length $self->{rbuf}
758 ) {
759 $self->_error (&Errno::ENOSPC, 1), return;
760 }
761 1043
762 while () { 1044 while () {
1045 # we need to use a separate tls read buffer, as we must not receive data while
1046 # we are draining the buffer, and this can only happen with TLS.
1047 $self->{rbuf} .= delete $self->{_tls_rbuf}
1048 if exists $self->{_tls_rbuf};
1049
763 my $len = length $self->{rbuf}; 1050 my $len = length $self->{rbuf};
764 1051
765 if (my $cb = shift @{ $self->{_queue} }) { 1052 if (my $cb = shift @{ $self->{_queue} }) {
766 unless ($cb->($self)) { 1053 unless ($cb->($self)) {
767 if ($self->{_eof}) { 1054 # no progress can be made
768 # no progress can be made (not enough data and no data forthcoming) 1055 # (not enough data and no data forthcoming)
769 $self->_error (&Errno::EPIPE, 1), return; 1056 $self->_error (Errno::EPIPE, 1), return
770 } 1057 if $self->{_eof};
771 1058
772 unshift @{ $self->{_queue} }, $cb; 1059 unshift @{ $self->{_queue} }, $cb;
773 last; 1060 last;
774 } 1061 }
775 } elsif ($self->{on_read}) { 1062 } elsif ($self->{on_read}) {
782 && !@{ $self->{_queue} } # and the queue is still empty 1069 && !@{ $self->{_queue} } # and the queue is still empty
783 && $self->{on_read} # but we still have on_read 1070 && $self->{on_read} # but we still have on_read
784 ) { 1071 ) {
785 # no further data will arrive 1072 # no further data will arrive
786 # so no progress can be made 1073 # so no progress can be made
787 $self->_error (&Errno::EPIPE, 1), return 1074 $self->_error (Errno::EPIPE, 1), return
788 if $self->{_eof}; 1075 if $self->{_eof};
789 1076
790 last; # more data might arrive 1077 last; # more data might arrive
791 } 1078 }
792 } else { 1079 } else {
795 last; 1082 last;
796 } 1083 }
797 } 1084 }
798 1085
799 if ($self->{_eof}) { 1086 if ($self->{_eof}) {
800 if ($self->{on_eof}) { 1087 $self->{on_eof}
801 $self->{on_eof}($self) 1088 ? $self->{on_eof}($self)
802 } else { 1089 : $self->_error (0, 1, "Unexpected end-of-file");
803 $self->_error (0, 1); 1090
804 } 1091 return;
1092 }
1093
1094 if (
1095 defined $self->{rbuf_max}
1096 && $self->{rbuf_max} < length $self->{rbuf}
1097 ) {
1098 $self->_error (Errno::ENOSPC, 1), return;
805 } 1099 }
806 1100
807 # may need to restart read watcher 1101 # may need to restart read watcher
808 unless ($self->{_rw}) { 1102 unless ($self->{_rw}) {
809 $self->start_read 1103 $self->start_read
821 1115
822sub on_read { 1116sub on_read {
823 my ($self, $cb) = @_; 1117 my ($self, $cb) = @_;
824 1118
825 $self->{on_read} = $cb; 1119 $self->{on_read} = $cb;
826 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1120 $self->_drain_rbuf if $cb;
827} 1121}
828 1122
829=item $handle->rbuf 1123=item $handle->rbuf
830 1124
831Returns the read buffer (as a modifiable lvalue). 1125Returns the read buffer (as a modifiable lvalue).
832 1126
833You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1127You can access the read buffer directly as the C<< ->{rbuf} >>
834you want. 1128member, if you want. However, the only operation allowed on the
1129read buffer (apart from looking at it) is removing data from its
1130beginning. Otherwise modifying or appending to it is not allowed and will
1131lead to hard-to-track-down bugs.
835 1132
836NOTE: The read buffer should only be used or modified if the C<on_read>, 1133NOTE: The read buffer should only be used or modified if the C<on_read>,
837C<push_read> or C<unshift_read> methods are used. The other read methods 1134C<push_read> or C<unshift_read> methods are used. The other read methods
838automatically manage the read buffer. 1135automatically manage the read buffer.
839 1136
880 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1177 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
881 ->($self, $cb, @_); 1178 ->($self, $cb, @_);
882 } 1179 }
883 1180
884 push @{ $self->{_queue} }, $cb; 1181 push @{ $self->{_queue} }, $cb;
885 $self->_drain_rbuf unless $self->{_in_drain}; 1182 $self->_drain_rbuf;
886} 1183}
887 1184
888sub unshift_read { 1185sub unshift_read {
889 my $self = shift; 1186 my $self = shift;
890 my $cb = pop; 1187 my $cb = pop;
896 ->($self, $cb, @_); 1193 ->($self, $cb, @_);
897 } 1194 }
898 1195
899 1196
900 unshift @{ $self->{_queue} }, $cb; 1197 unshift @{ $self->{_queue} }, $cb;
901 $self->_drain_rbuf unless $self->{_in_drain}; 1198 $self->_drain_rbuf;
902} 1199}
903 1200
904=item $handle->push_read (type => @args, $cb) 1201=item $handle->push_read (type => @args, $cb)
905 1202
906=item $handle->unshift_read (type => @args, $cb) 1203=item $handle->unshift_read (type => @args, $cb)
1039 return 1; 1336 return 1;
1040 } 1337 }
1041 1338
1042 # reject 1339 # reject
1043 if ($reject && $$rbuf =~ $reject) { 1340 if ($reject && $$rbuf =~ $reject) {
1044 $self->_error (&Errno::EBADMSG); 1341 $self->_error (Errno::EBADMSG);
1045 } 1342 }
1046 1343
1047 # skip 1344 # skip
1048 if ($skip && $$rbuf =~ $skip) { 1345 if ($skip && $$rbuf =~ $skip) {
1049 $data .= substr $$rbuf, 0, $+[0], ""; 1346 $data .= substr $$rbuf, 0, $+[0], "";
1065 my ($self, $cb) = @_; 1362 my ($self, $cb) = @_;
1066 1363
1067 sub { 1364 sub {
1068 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1365 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1069 if ($_[0]{rbuf} =~ /[^0-9]/) { 1366 if ($_[0]{rbuf} =~ /[^0-9]/) {
1070 $self->_error (&Errno::EBADMSG); 1367 $self->_error (Errno::EBADMSG);
1071 } 1368 }
1072 return; 1369 return;
1073 } 1370 }
1074 1371
1075 my $len = $1; 1372 my $len = $1;
1078 my $string = $_[1]; 1375 my $string = $_[1];
1079 $_[0]->unshift_read (chunk => 1, sub { 1376 $_[0]->unshift_read (chunk => 1, sub {
1080 if ($_[1] eq ",") { 1377 if ($_[1] eq ",") {
1081 $cb->($_[0], $string); 1378 $cb->($_[0], $string);
1082 } else { 1379 } else {
1083 $self->_error (&Errno::EBADMSG); 1380 $self->_error (Errno::EBADMSG);
1084 } 1381 }
1085 }); 1382 });
1086 }); 1383 });
1087 1384
1088 1 1385 1
1135 } 1432 }
1136}; 1433};
1137 1434
1138=item json => $cb->($handle, $hash_or_arrayref) 1435=item json => $cb->($handle, $hash_or_arrayref)
1139 1436
1140Reads a JSON object or array, decodes it and passes it to the callback. 1437Reads a JSON object or array, decodes it and passes it to the
1438callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1141 1439
1142If a C<json> object was passed to the constructor, then that will be used 1440If a C<json> object was passed to the constructor, then that will be used
1143for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1441for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1144 1442
1145This read type uses the incremental parser available with JSON version 1443This read type uses the incremental parser available with JSON version
1154=cut 1452=cut
1155 1453
1156register_read_type json => sub { 1454register_read_type json => sub {
1157 my ($self, $cb) = @_; 1455 my ($self, $cb) = @_;
1158 1456
1159 require JSON; 1457 my $json = $self->{json} ||= json_coder;
1160 1458
1161 my $data; 1459 my $data;
1162 my $rbuf = \$self->{rbuf}; 1460 my $rbuf = \$self->{rbuf};
1163 1461
1164 my $json = $self->{json} ||= JSON->new->utf8;
1165
1166 sub { 1462 sub {
1167 my $ref = $json->incr_parse ($self->{rbuf}); 1463 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1168 1464
1169 if ($ref) { 1465 if ($ref) {
1170 $self->{rbuf} = $json->incr_text; 1466 $self->{rbuf} = $json->incr_text;
1171 $json->incr_text = ""; 1467 $json->incr_text = "";
1172 $cb->($self, $ref); 1468 $cb->($self, $ref);
1173 1469
1174 1 1470 1
1471 } elsif ($@) {
1472 # error case
1473 $json->incr_skip;
1474
1475 $self->{rbuf} = $json->incr_text;
1476 $json->incr_text = "";
1477
1478 $self->_error (Errno::EBADMSG);
1479
1480 ()
1175 } else { 1481 } else {
1176 $self->{rbuf} = ""; 1482 $self->{rbuf} = "";
1483
1177 () 1484 ()
1178 } 1485 }
1179 } 1486 }
1180}; 1487};
1181 1488
1213 # read remaining chunk 1520 # read remaining chunk
1214 $_[0]->unshift_read (chunk => $len, sub { 1521 $_[0]->unshift_read (chunk => $len, sub {
1215 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1522 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1216 $cb->($_[0], $ref); 1523 $cb->($_[0], $ref);
1217 } else { 1524 } else {
1218 $self->_error (&Errno::EBADMSG); 1525 $self->_error (Errno::EBADMSG);
1219 } 1526 }
1220 }); 1527 });
1221 } 1528 }
1222 1529
1223 1 1530 1
1275 my ($self) = @_; 1582 my ($self) = @_;
1276 1583
1277 unless ($self->{_rw} || $self->{_eof}) { 1584 unless ($self->{_rw} || $self->{_eof}) {
1278 Scalar::Util::weaken $self; 1585 Scalar::Util::weaken $self;
1279 1586
1280 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1587 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1281 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf}); 1588 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1282 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1589 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1283 1590
1284 if ($len > 0) { 1591 if ($len > 0) {
1285 $self->{_activity} = AnyEvent->now; 1592 $self->{_activity} = $self->{_ractivity} = AE::now;
1286 1593
1287 if ($self->{tls}) { 1594 if ($self->{tls}) {
1288 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf); 1595 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1289 1596
1290 &_dotls ($self); 1597 &_dotls ($self);
1291 } else { 1598 } else {
1292 $self->_drain_rbuf unless $self->{_in_drain}; 1599 $self->_drain_rbuf;
1293 } 1600 }
1294 1601
1295 } elsif (defined $len) { 1602 } elsif (defined $len) {
1296 delete $self->{_rw}; 1603 delete $self->{_rw};
1297 $self->{_eof} = 1; 1604 $self->{_eof} = 1;
1298 $self->_drain_rbuf unless $self->{_in_drain}; 1605 $self->_drain_rbuf;
1299 1606
1300 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1607 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1301 return $self->_error ($!, 1); 1608 return $self->_error ($!, 1);
1302 } 1609 }
1303 }); 1610 };
1611 }
1612}
1613
1614our $ERROR_SYSCALL;
1615our $ERROR_WANT_READ;
1616
1617sub _tls_error {
1618 my ($self, $err) = @_;
1619
1620 return $self->_error ($!, 1)
1621 if $err == Net::SSLeay::ERROR_SYSCALL ();
1622
1623 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1624
1625 # reduce error string to look less scary
1626 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1627
1628 if ($self->{_on_starttls}) {
1629 (delete $self->{_on_starttls})->($self, undef, $err);
1630 &_freetls;
1631 } else {
1632 &_freetls;
1633 $self->_error (Errno::EPROTO, 1, $err);
1304 } 1634 }
1305} 1635}
1306 1636
1307# poll the write BIO and send the data if applicable 1637# poll the write BIO and send the data if applicable
1638# also decode read data if possible
1639# this is basiclaly our TLS state machine
1640# more efficient implementations are possible with openssl,
1641# but not with the buggy and incomplete Net::SSLeay.
1308sub _dotls { 1642sub _dotls {
1309 my ($self) = @_; 1643 my ($self) = @_;
1310 1644
1311 my $tmp; 1645 my $tmp;
1312 1646
1313 if (length $self->{_tls_wbuf}) { 1647 if (length $self->{_tls_wbuf}) {
1314 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1648 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1315 substr $self->{_tls_wbuf}, 0, $tmp, ""; 1649 substr $self->{_tls_wbuf}, 0, $tmp, "";
1316 } 1650 }
1651
1652 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1653 return $self->_tls_error ($tmp)
1654 if $tmp != $ERROR_WANT_READ
1655 && ($tmp != $ERROR_SYSCALL || $!);
1317 } 1656 }
1318 1657
1319 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) { 1658 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1320 unless (length $tmp) { 1659 unless (length $tmp) {
1321 # let's treat SSL-eof as we treat normal EOF 1660 $self->{_on_starttls}
1322 delete $self->{_rw}; 1661 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1323 $self->{_eof} = 1;
1324 &_freetls; 1662 &_freetls;
1663
1664 if ($self->{on_stoptls}) {
1665 $self->{on_stoptls}($self);
1666 return;
1667 } else {
1668 # let's treat SSL-eof as we treat normal EOF
1669 delete $self->{_rw};
1670 $self->{_eof} = 1;
1671 }
1325 } 1672 }
1326 1673
1327 $self->{rbuf} .= $tmp; 1674 $self->{_tls_rbuf} .= $tmp;
1328 $self->_drain_rbuf unless $self->{_in_drain}; 1675 $self->_drain_rbuf;
1329 $self->{tls} or return; # tls session might have gone away in callback 1676 $self->{tls} or return; # tls session might have gone away in callback
1330 } 1677 }
1331 1678
1332 $tmp = Net::SSLeay::get_error ($self->{tls}, -1); 1679 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1333
1334 if ($tmp != Net::SSLeay::ERROR_WANT_READ ()) {
1335 if ($tmp == Net::SSLeay::ERROR_SYSCALL ()) {
1336 return $self->_error ($!, 1); 1680 return $self->_tls_error ($tmp)
1337 } elsif ($tmp == Net::SSLeay::ERROR_SSL ()) { 1681 if $tmp != $ERROR_WANT_READ
1338 return $self->_error (&Errno::EIO, 1); 1682 && ($tmp != $ERROR_SYSCALL || $!);
1339 }
1340
1341 # all other errors are fine for our purposes
1342 }
1343 1683
1344 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1684 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1345 $self->{wbuf} .= $tmp; 1685 $self->{wbuf} .= $tmp;
1346 $self->_drain_wbuf; 1686 $self->_drain_wbuf;
1347 } 1687 }
1688
1689 $self->{_on_starttls}
1690 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1691 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1348} 1692}
1349 1693
1350=item $handle->starttls ($tls[, $tls_ctx]) 1694=item $handle->starttls ($tls[, $tls_ctx])
1351 1695
1352Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1696Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1353object is created, you can also do that at a later time by calling 1697object is created, you can also do that at a later time by calling
1354C<starttls>. 1698C<starttls>.
1355 1699
1700Starting TLS is currently an asynchronous operation - when you push some
1701write data and then call C<< ->starttls >> then TLS negotiation will start
1702immediately, after which the queued write data is then sent.
1703
1356The first argument is the same as the C<tls> constructor argument (either 1704The first argument is the same as the C<tls> constructor argument (either
1357C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1705C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1358 1706
1359The second argument is the optional C<Net::SSLeay::CTX> object that is 1707The second argument is the optional C<AnyEvent::TLS> object that is used
1360used when AnyEvent::Handle has to create its own TLS connection object. 1708when AnyEvent::Handle has to create its own TLS connection object, or
1709a hash reference with C<< key => value >> pairs that will be used to
1710construct a new context.
1361 1711
1362The TLS connection object will end up in C<< $handle->{tls} >> after this 1712The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1363call and can be used or changed to your liking. Note that the handshake 1713context in C<< $handle->{tls_ctx} >> after this call and can be used or
1364might have already started when this function returns. 1714changed to your liking. Note that the handshake might have already started
1715when this function returns.
1365 1716
1366If it an error to start a TLS handshake more than once per 1717Due to bugs in OpenSSL, it might or might not be possible to do multiple
1367AnyEvent::Handle object (this is due to bugs in OpenSSL). 1718handshakes on the same stream. Best do not attempt to use the stream after
1719stopping TLS.
1368 1720
1369=cut 1721=cut
1722
1723our %TLS_CACHE; #TODO not yet documented, should we?
1370 1724
1371sub starttls { 1725sub starttls {
1372 my ($self, $ssl, $ctx) = @_; 1726 my ($self, $tls, $ctx) = @_;
1727
1728 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1729 if $self->{tls};
1730
1731 $self->{tls} = $tls;
1732 $self->{tls_ctx} = $ctx if @_ > 2;
1733
1734 return unless $self->{fh};
1373 1735
1374 require Net::SSLeay; 1736 require Net::SSLeay;
1375 1737
1376 Carp::croak "it is an error to call starttls more than once on an Anyevent::Handle object" 1738 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1739 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1740
1377 if $self->{tls}; 1741 $tls = $self->{tls};
1742 $ctx = $self->{tls_ctx};
1743
1744 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1745
1746 if ("HASH" eq ref $ctx) {
1747 require AnyEvent::TLS;
1748
1749 if ($ctx->{cache}) {
1750 my $key = $ctx+0;
1751 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1752 } else {
1753 $ctx = new AnyEvent::TLS %$ctx;
1754 }
1755 }
1378 1756
1379 if ($ssl eq "accept") { 1757 $self->{tls_ctx} = $ctx || TLS_CTX ();
1380 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1758 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1381 Net::SSLeay::set_accept_state ($ssl);
1382 } elsif ($ssl eq "connect") {
1383 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1384 Net::SSLeay::set_connect_state ($ssl);
1385 }
1386
1387 $self->{tls} = $ssl;
1388 1759
1389 # basically, this is deep magic (because SSL_read should have the same issues) 1760 # basically, this is deep magic (because SSL_read should have the same issues)
1390 # but the openssl maintainers basically said: "trust us, it just works". 1761 # but the openssl maintainers basically said: "trust us, it just works".
1391 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1762 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1392 # and mismaintained ssleay-module doesn't even offer them). 1763 # and mismaintained ssleay-module doesn't even offer them).
1396 # 1767 #
1397 # note that we do not try to keep the length constant between writes as we are required to do. 1768 # note that we do not try to keep the length constant between writes as we are required to do.
1398 # we assume that most (but not all) of this insanity only applies to non-blocking cases, 1769 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1399 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to 1770 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1400 # have identity issues in that area. 1771 # have identity issues in that area.
1401 Net::SSLeay::CTX_set_mode ($self->{tls}, 1772# Net::SSLeay::CTX_set_mode ($ssl,
1402 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1773# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1403 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1774# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1775 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1404 1776
1405 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1777 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1406 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1778 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1407 1779
1780 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1781
1408 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1782 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1783
1784 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1785 if $self->{on_starttls};
1409 1786
1410 &_dotls; # need to trigger the initial handshake 1787 &_dotls; # need to trigger the initial handshake
1411 $self->start_read; # make sure we actually do read 1788 $self->start_read; # make sure we actually do read
1412} 1789}
1413 1790
1414=item $handle->stoptls 1791=item $handle->stoptls
1415 1792
1416Shuts down the SSL connection - this makes a proper EOF handshake by 1793Shuts down the SSL connection - this makes a proper EOF handshake by
1417sending a close notify to the other side, but since OpenSSL doesn't 1794sending a close notify to the other side, but since OpenSSL doesn't
1418support non-blocking shut downs, it is not possible to re-use the stream 1795support non-blocking shut downs, it is not guarenteed that you can re-use
1419afterwards. 1796the stream afterwards.
1420 1797
1421=cut 1798=cut
1422 1799
1423sub stoptls { 1800sub stoptls {
1424 my ($self) = @_; 1801 my ($self) = @_;
1426 if ($self->{tls}) { 1803 if ($self->{tls}) {
1427 Net::SSLeay::shutdown ($self->{tls}); 1804 Net::SSLeay::shutdown ($self->{tls});
1428 1805
1429 &_dotls; 1806 &_dotls;
1430 1807
1431 # we don't give a shit. no, we do, but we can't. no... 1808# # we don't give a shit. no, we do, but we can't. no...#d#
1432 # we, we... have to use openssl :/ 1809# # we, we... have to use openssl :/#d#
1433 &_freetls; 1810# &_freetls;#d#
1434 } 1811 }
1435} 1812}
1436 1813
1437sub _freetls { 1814sub _freetls {
1438 my ($self) = @_; 1815 my ($self) = @_;
1439 1816
1440 return unless $self->{tls}; 1817 return unless $self->{tls};
1441 1818
1442 Net::SSLeay::free (delete $self->{tls}); 1819 $self->{tls_ctx}->_put_session (delete $self->{tls})
1820 if $self->{tls} > 0;
1443 1821
1444 delete @$self{qw(_rbio _wbio _tls_wbuf)}; 1822 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1445} 1823}
1446 1824
1447sub DESTROY { 1825sub DESTROY {
1448 my $self = shift; 1826 my ($self) = @_;
1449 1827
1450 &_freetls; 1828 &_freetls;
1451 1829
1452 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1830 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1453 1831
1454 if ($linger && length $self->{wbuf}) { 1832 if ($linger && length $self->{wbuf} && $self->{fh}) {
1455 my $fh = delete $self->{fh}; 1833 my $fh = delete $self->{fh};
1456 my $wbuf = delete $self->{wbuf}; 1834 my $wbuf = delete $self->{wbuf};
1457 1835
1458 my @linger; 1836 my @linger;
1459 1837
1460 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub { 1838 push @linger, AE::io $fh, 1, sub {
1461 my $len = syswrite $fh, $wbuf, length $wbuf; 1839 my $len = syswrite $fh, $wbuf, length $wbuf;
1462 1840
1463 if ($len > 0) { 1841 if ($len > 0) {
1464 substr $wbuf, 0, $len, ""; 1842 substr $wbuf, 0, $len, "";
1465 } else { 1843 } else {
1466 @linger = (); # end 1844 @linger = (); # end
1467 } 1845 }
1468 }); 1846 };
1469 push @linger, AnyEvent->timer (after => $linger, cb => sub { 1847 push @linger, AE::timer $linger, 0, sub {
1470 @linger = (); 1848 @linger = ();
1471 }); 1849 };
1472 } 1850 }
1473} 1851}
1474 1852
1475=item $handle->destroy 1853=item $handle->destroy
1476 1854
1477Shut's down the handle object as much as possible - this call ensures that 1855Shuts down the handle object as much as possible - this call ensures that
1478no further callbacks will be invoked and resources will be freed as much 1856no further callbacks will be invoked and as many resources as possible
1479as possible. You must not call any methods on the object afterwards. 1857will be freed. Any method you will call on the handle object after
1858destroying it in this way will be silently ignored (and it will return the
1859empty list).
1860
1861Normally, you can just "forget" any references to an AnyEvent::Handle
1862object and it will simply shut down. This works in fatal error and EOF
1863callbacks, as well as code outside. It does I<NOT> work in a read or write
1864callback, so when you want to destroy the AnyEvent::Handle object from
1865within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1866that case.
1867
1868Destroying the handle object in this way has the advantage that callbacks
1869will be removed as well, so if those are the only reference holders (as
1870is common), then one doesn't need to do anything special to break any
1871reference cycles.
1480 1872
1481The handle might still linger in the background and write out remaining 1873The handle might still linger in the background and write out remaining
1482data, as specified by the C<linger> option, however. 1874data, as specified by the C<linger> option, however.
1483 1875
1484=cut 1876=cut
1486sub destroy { 1878sub destroy {
1487 my ($self) = @_; 1879 my ($self) = @_;
1488 1880
1489 $self->DESTROY; 1881 $self->DESTROY;
1490 %$self = (); 1882 %$self = ();
1883 bless $self, "AnyEvent::Handle::destroyed";
1884}
1885
1886sub AnyEvent::Handle::destroyed::AUTOLOAD {
1887 #nop
1491} 1888}
1492 1889
1493=item AnyEvent::Handle::TLS_CTX 1890=item AnyEvent::Handle::TLS_CTX
1494 1891
1495This function creates and returns the Net::SSLeay::CTX object used by 1892This function creates and returns the AnyEvent::TLS object used by default
1496default for TLS mode. 1893for TLS mode.
1497 1894
1498The context is created like this: 1895The context is created by calling L<AnyEvent::TLS> without any arguments.
1499
1500 Net::SSLeay::load_error_strings;
1501 Net::SSLeay::SSLeay_add_ssl_algorithms;
1502 Net::SSLeay::randomize;
1503
1504 my $CTX = Net::SSLeay::CTX_new;
1505
1506 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1507 1896
1508=cut 1897=cut
1509 1898
1510our $TLS_CTX; 1899our $TLS_CTX;
1511 1900
1512sub TLS_CTX() { 1901sub TLS_CTX() {
1513 $TLS_CTX || do { 1902 $TLS_CTX ||= do {
1514 require Net::SSLeay; 1903 require AnyEvent::TLS;
1515 1904
1516 Net::SSLeay::load_error_strings (); 1905 new AnyEvent::TLS
1517 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1518 Net::SSLeay::randomize ();
1519
1520 $TLS_CTX = Net::SSLeay::CTX_new ();
1521
1522 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1523
1524 $TLS_CTX
1525 } 1906 }
1526} 1907}
1527 1908
1528=back 1909=back
1529 1910
1530 1911
1531=head1 NONFREQUENTLY ASKED QUESTIONS 1912=head1 NONFREQUENTLY ASKED QUESTIONS
1532 1913
1533=over 4 1914=over 4
1915
1916=item I C<undef> the AnyEvent::Handle reference inside my callback and
1917still get further invocations!
1918
1919That's because AnyEvent::Handle keeps a reference to itself when handling
1920read or write callbacks.
1921
1922It is only safe to "forget" the reference inside EOF or error callbacks,
1923from within all other callbacks, you need to explicitly call the C<<
1924->destroy >> method.
1925
1926=item I get different callback invocations in TLS mode/Why can't I pause
1927reading?
1928
1929Unlike, say, TCP, TLS connections do not consist of two independent
1930communication channels, one for each direction. Or put differently. The
1931read and write directions are not independent of each other: you cannot
1932write data unless you are also prepared to read, and vice versa.
1933
1934This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1935callback invocations when you are not expecting any read data - the reason
1936is that AnyEvent::Handle always reads in TLS mode.
1937
1938During the connection, you have to make sure that you always have a
1939non-empty read-queue, or an C<on_read> watcher. At the end of the
1940connection (or when you no longer want to use it) you can call the
1941C<destroy> method.
1534 1942
1535=item How do I read data until the other side closes the connection? 1943=item How do I read data until the other side closes the connection?
1536 1944
1537If you just want to read your data into a perl scalar, the easiest way 1945If you just want to read your data into a perl scalar, the easiest way
1538to achieve this is by setting an C<on_read> callback that does nothing, 1946to achieve this is by setting an C<on_read> callback that does nothing,
1541 1949
1542 $handle->on_read (sub { }); 1950 $handle->on_read (sub { });
1543 $handle->on_eof (undef); 1951 $handle->on_eof (undef);
1544 $handle->on_error (sub { 1952 $handle->on_error (sub {
1545 my $data = delete $_[0]{rbuf}; 1953 my $data = delete $_[0]{rbuf};
1546 undef $handle;
1547 }); 1954 });
1548 1955
1549The reason to use C<on_error> is that TCP connections, due to latencies 1956The reason to use C<on_error> is that TCP connections, due to latencies
1550and packets loss, might get closed quite violently with an error, when in 1957and packets loss, might get closed quite violently with an error, when in
1551fact, all data has been received. 1958fact, all data has been received.
1552 1959
1553It is usually better to use acknowledgements when transfering data, 1960It is usually better to use acknowledgements when transferring data,
1554to make sure the other side hasn't just died and you got the data 1961to make sure the other side hasn't just died and you got the data
1555intact. This is also one reason why so many internet protocols have an 1962intact. This is also one reason why so many internet protocols have an
1556explicit QUIT command. 1963explicit QUIT command.
1557
1558 1964
1559=item I don't want to destroy the handle too early - how do I wait until 1965=item I don't want to destroy the handle too early - how do I wait until
1560all data has been written? 1966all data has been written?
1561 1967
1562After writing your last bits of data, set the C<on_drain> callback 1968After writing your last bits of data, set the C<on_drain> callback
1568 $handle->on_drain (sub { 1974 $handle->on_drain (sub {
1569 warn "all data submitted to the kernel\n"; 1975 warn "all data submitted to the kernel\n";
1570 undef $handle; 1976 undef $handle;
1571 }); 1977 });
1572 1978
1573=item I get different callback invocations in TLS mode/Why can't I pause 1979If you just want to queue some data and then signal EOF to the other side,
1574reading? 1980consider using C<< ->push_shutdown >> instead.
1575 1981
1576Unlike, say, TCP, TLS conenctions do not consist of two independent 1982=item I want to contact a TLS/SSL server, I don't care about security.
1577communication channels, one for each direction. Or put differently. the
1578read and write directions are not independent of each other: you cannot
1579write data unless you are also prepared to read, and vice versa.
1580 1983
1581This can mean than, in TLS mode, you might get C<on_error> or C<on_eof> 1984If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1582callback invocations when you are not expecting any read data - the reason 1985simply connect to it and then create the AnyEvent::Handle with the C<tls>
1583is that AnyEvent::Handle always reads in TLS mode. 1986parameter:
1584 1987
1585During the connection, you have to make sure that you always have a 1988 tcp_connect $host, $port, sub {
1586non-empty read-queue, or an C<on_read> watcher. At the end of the 1989 my ($fh) = @_;
1587connection (or when you no longer want to use it) you can call the 1990
1588C<destroy> method. 1991 my $handle = new AnyEvent::Handle
1992 fh => $fh,
1993 tls => "connect",
1994 on_error => sub { ... };
1995
1996 $handle->push_write (...);
1997 };
1998
1999=item I want to contact a TLS/SSL server, I do care about security.
2000
2001Then you should additionally enable certificate verification, including
2002peername verification, if the protocol you use supports it (see
2003L<AnyEvent::TLS>, C<verify_peername>).
2004
2005E.g. for HTTPS:
2006
2007 tcp_connect $host, $port, sub {
2008 my ($fh) = @_;
2009
2010 my $handle = new AnyEvent::Handle
2011 fh => $fh,
2012 peername => $host,
2013 tls => "connect",
2014 tls_ctx => { verify => 1, verify_peername => "https" },
2015 ...
2016
2017Note that you must specify the hostname you connected to (or whatever
2018"peername" the protocol needs) as the C<peername> argument, otherwise no
2019peername verification will be done.
2020
2021The above will use the system-dependent default set of trusted CA
2022certificates. If you want to check against a specific CA, add the
2023C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2024
2025 tls_ctx => {
2026 verify => 1,
2027 verify_peername => "https",
2028 ca_file => "my-ca-cert.pem",
2029 },
2030
2031=item I want to create a TLS/SSL server, how do I do that?
2032
2033Well, you first need to get a server certificate and key. You have
2034three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2035self-signed certificate (cheap. check the search engine of your choice,
2036there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2037nice program for that purpose).
2038
2039Then create a file with your private key (in PEM format, see
2040L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2041file should then look like this:
2042
2043 -----BEGIN RSA PRIVATE KEY-----
2044 ...header data
2045 ... lots of base64'y-stuff
2046 -----END RSA PRIVATE KEY-----
2047
2048 -----BEGIN CERTIFICATE-----
2049 ... lots of base64'y-stuff
2050 -----END CERTIFICATE-----
2051
2052The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2053specify this file as C<cert_file>:
2054
2055 tcp_server undef, $port, sub {
2056 my ($fh) = @_;
2057
2058 my $handle = new AnyEvent::Handle
2059 fh => $fh,
2060 tls => "accept",
2061 tls_ctx => { cert_file => "my-server-keycert.pem" },
2062 ...
2063
2064When you have intermediate CA certificates that your clients might not
2065know about, just append them to the C<cert_file>.
1589 2066
1590=back 2067=back
1591 2068
1592 2069
1593=head1 SUBCLASSING AnyEvent::Handle 2070=head1 SUBCLASSING AnyEvent::Handle

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines