ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.45 by root, Thu May 29 00:20:39 2008 UTC vs.
Revision 1.184 by root, Thu Sep 3 13:14:38 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict;
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17=cut
18
19our $VERSION = '0.04';
20 4
21=head1 SYNOPSIS 5=head1 SYNOPSIS
22 6
23 use AnyEvent; 7 use AnyEvent;
24 use AnyEvent::Handle; 8 use AnyEvent::Handle;
25 9
26 my $cv = AnyEvent->condvar; 10 my $cv = AnyEvent->condvar;
27 11
28 my $handle = 12 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 13 fh => \*STDIN,
31 on_eof => sub { 14 on_error => sub {
32 $cv->broadcast; 15 my ($hdl, $fatal, $msg) = @_;
33 }, 16 warn "got error $msg\n";
17 $hdl->destroy;
18 $cv->send;
34 ); 19 );
35 20
36 # send some request line 21 # send some request line
37 $handle->push_write ("getinfo\015\012"); 22 $hdl->push_write ("getinfo\015\012");
38 23
39 # read the response line 24 # read the response line
40 $handle->push_read (line => sub { 25 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 26 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 27 warn "got line <$line>\n";
43 $cv->send; 28 $cv->send;
44 }); 29 });
45 30
46 $cv->recv; 31 $cv->recv;
47 32
48=head1 DESCRIPTION 33=head1 DESCRIPTION
49 34
50This module is a helper module to make it easier to do event-based I/O on 35This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 36filehandles.
52on sockets see L<AnyEvent::Util>. 37
38The L<AnyEvent::Intro> tutorial contains some well-documented
39AnyEvent::Handle examples.
53 40
54In the following, when the documentation refers to of "bytes" then this 41In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 42means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 43treatment of characters applies to this module as well.
57 44
45At the very minimum, you should specify C<fh> or C<connect>, and the
46C<on_error> callback.
47
58All callbacks will be invoked with the handle object as their first 48All callbacks will be invoked with the handle object as their first
59argument. 49argument.
60 50
51=cut
52
53package AnyEvent::Handle;
54
55use Scalar::Util ();
56use List::Util ();
57use Carp ();
58use Errno qw(EAGAIN EINTR);
59
60use AnyEvent (); BEGIN { AnyEvent::common_sense }
61use AnyEvent::Util qw(WSAEWOULDBLOCK);
62
63our $VERSION = $AnyEvent::VERSION;
64
61=head1 METHODS 65=head1 METHODS
62 66
63=over 4 67=over 4
64 68
65=item B<new (%args)> 69=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 70
67The constructor supports these arguments (all as key => value pairs). 71The constructor supports these arguments (all as C<< key => value >> pairs).
68 72
69=over 4 73=over 4
70 74
71=item fh => $filehandle [MANDATORY] 75=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
72 76
73The filehandle this L<AnyEvent::Handle> object will operate on. 77The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
77 81
78=item on_eof => $cb->($handle) 82=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
79 83
80Set the callback to be called on EOF. 84Try to connect to the specified host and service (port), using
85C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
86default C<peername>.
81 87
82While not mandatory, it is highly recommended to set an eof callback, 88You have to specify either this parameter, or C<fh>, above.
83otherwise you might end up with a closed socket while you are still
84waiting for data.
85 89
90It is possible to push requests on the read and write queues, and modify
91properties of the stream, even while AnyEvent::Handle is connecting.
92
93When this parameter is specified, then the C<on_prepare>,
94C<on_connect_error> and C<on_connect> callbacks will be called under the
95appropriate circumstances:
96
97=over 4
98
86=item on_error => $cb->($handle) 99=item on_prepare => $cb->($handle)
87 100
101This (rarely used) callback is called before a new connection is
102attempted, but after the file handle has been created. It could be used to
103prepare the file handle with parameters required for the actual connect
104(as opposed to settings that can be changed when the connection is already
105established).
106
107The return value of this callback should be the connect timeout value in
108seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
109timeout is to be used).
110
111=item on_connect => $cb->($handle, $host, $port, $retry->())
112
113This callback is called when a connection has been successfully established.
114
115The actual numeric host and port (the socket peername) are passed as
116parameters, together with a retry callback.
117
118When, for some reason, the handle is not acceptable, then calling
119C<$retry> will continue with the next conenction target (in case of
120multi-homed hosts or SRV records there can be multiple connection
121endpoints). When it is called then the read and write queues, eof status,
122tls status and similar properties of the handle are being reset.
123
124In most cases, ignoring the C<$retry> parameter is the way to go.
125
126=item on_connect_error => $cb->($handle, $message)
127
128This callback is called when the conenction could not be
129established. C<$!> will contain the relevant error code, and C<$message> a
130message describing it (usually the same as C<"$!">).
131
132If this callback isn't specified, then C<on_error> will be called with a
133fatal error instead.
134
135=back
136
137=item on_error => $cb->($handle, $fatal, $message)
138
88This is the fatal error callback, that is called when, well, a fatal error 139This is the error callback, which is called when, well, some error
89occurs, such as not being able to resolve the hostname, failure to connect 140occured, such as not being able to resolve the hostname, failure to
90or a read error. 141connect or a read error.
91 142
92The object will not be in a usable state when this callback has been 143Some errors are fatal (which is indicated by C<$fatal> being true). On
93called. 144fatal errors the handle object will be destroyed (by a call to C<< ->
145destroy >>) after invoking the error callback (which means you are free to
146examine the handle object). Examples of fatal errors are an EOF condition
147with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
148cases where the other side can close the connection at their will it is
149often easiest to not report C<EPIPE> errors in this callback.
150
151AnyEvent::Handle tries to find an appropriate error code for you to check
152against, but in some cases (TLS errors), this does not work well. It is
153recommended to always output the C<$message> argument in human-readable
154error messages (it's usually the same as C<"$!">).
155
156Non-fatal errors can be retried by simply returning, but it is recommended
157to simply ignore this parameter and instead abondon the handle object
158when this callback is invoked. Examples of non-fatal errors are timeouts
159C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
94 160
95On callback entrance, the value of C<$!> contains the operating system 161On callback entrance, the value of C<$!> contains the operating system
96error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 162error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
97 163C<EPROTO>).
98The callback should throw an exception. If it returns, then
99AnyEvent::Handle will C<croak> for you.
100 164
101While not mandatory, it is I<highly> recommended to set this callback, as 165While not mandatory, it is I<highly> recommended to set this callback, as
102you will not be notified of errors otherwise. The default simply calls 166you will not be notified of errors otherwise. The default simply calls
103die. 167C<croak>.
104 168
105=item on_read => $cb->($handle) 169=item on_read => $cb->($handle)
106 170
107This sets the default read callback, which is called when data arrives 171This sets the default read callback, which is called when data arrives
108and no read request is in the queue. 172and no read request is in the queue (unlike read queue callbacks, this
173callback will only be called when at least one octet of data is in the
174read buffer).
109 175
110To access (and remove data from) the read buffer, use the C<< ->rbuf >> 176To access (and remove data from) the read buffer, use the C<< ->rbuf >>
111method or access the C<$handle->{rbuf}> member directly. 177method or access the C<< $handle->{rbuf} >> member directly. Note that you
178must not enlarge or modify the read buffer, you can only remove data at
179the beginning from it.
112 180
113When an EOF condition is detected then AnyEvent::Handle will first try to 181When an EOF condition is detected then AnyEvent::Handle will first try to
114feed all the remaining data to the queued callbacks and C<on_read> before 182feed all the remaining data to the queued callbacks and C<on_read> before
115calling the C<on_eof> callback. If no progress can be made, then a fatal 183calling the C<on_eof> callback. If no progress can be made, then a fatal
116error will be raised (with C<$!> set to C<EPIPE>). 184error will be raised (with C<$!> set to C<EPIPE>).
117 185
186Note that, unlike requests in the read queue, an C<on_read> callback
187doesn't mean you I<require> some data: if there is an EOF and there
188are outstanding read requests then an error will be flagged. With an
189C<on_read> callback, the C<on_eof> callback will be invoked.
190
191=item on_eof => $cb->($handle)
192
193Set the callback to be called when an end-of-file condition is detected,
194i.e. in the case of a socket, when the other side has closed the
195connection cleanly, and there are no outstanding read requests in the
196queue (if there are read requests, then an EOF counts as an unexpected
197connection close and will be flagged as an error).
198
199For sockets, this just means that the other side has stopped sending data,
200you can still try to write data, and, in fact, one can return from the EOF
201callback and continue writing data, as only the read part has been shut
202down.
203
204If an EOF condition has been detected but no C<on_eof> callback has been
205set, then a fatal error will be raised with C<$!> set to <0>.
206
118=item on_drain => $cb->($handle) 207=item on_drain => $cb->($handle)
119 208
120This sets the callback that is called when the write buffer becomes empty 209This sets the callback that is called when the write buffer becomes empty
121(or when the callback is set and the buffer is empty already). 210(or when the callback is set and the buffer is empty already).
122 211
123To append to the write buffer, use the C<< ->push_write >> method. 212To append to the write buffer, use the C<< ->push_write >> method.
124 213
214This callback is useful when you don't want to put all of your write data
215into the queue at once, for example, when you want to write the contents
216of some file to the socket you might not want to read the whole file into
217memory and push it into the queue, but instead only read more data from
218the file when the write queue becomes empty.
219
125=item timeout => $fractional_seconds 220=item timeout => $fractional_seconds
126 221
222=item rtimeout => $fractional_seconds
223
224=item wtimeout => $fractional_seconds
225
127If non-zero, then this enables an "inactivity" timeout: whenever this many 226If non-zero, then these enables an "inactivity" timeout: whenever this
128seconds pass without a successful read or write on the underlying file 227many seconds pass without a successful read or write on the underlying
129handle, the C<on_timeout> callback will be invoked (and if that one is 228file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
130missing, an C<ETIMEDOUT> error will be raised). 229will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
230error will be raised).
231
232There are three variants of the timeouts that work fully independent
233of each other, for both read and write, just read, and just write:
234C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
235C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
236C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
131 237
132Note that timeout processing is also active when you currently do not have 238Note that timeout processing is also active when you currently do not have
133any outstanding read or write requests: If you plan to keep the connection 239any outstanding read or write requests: If you plan to keep the connection
134idle then you should disable the timout temporarily or ignore the timeout 240idle then you should disable the timout temporarily or ignore the timeout
135in the C<on_timeout> callback. 241in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
242restart the timeout.
136 243
137Zero (the default) disables this timeout. 244Zero (the default) disables this timeout.
138 245
139=item on_timeout => $cb->($handle) 246=item on_timeout => $cb->($handle)
140 247
144 251
145=item rbuf_max => <bytes> 252=item rbuf_max => <bytes>
146 253
147If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 254If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
148when the read buffer ever (strictly) exceeds this size. This is useful to 255when the read buffer ever (strictly) exceeds this size. This is useful to
149avoid denial-of-service attacks. 256avoid some forms of denial-of-service attacks.
150 257
151For example, a server accepting connections from untrusted sources should 258For example, a server accepting connections from untrusted sources should
152be configured to accept only so-and-so much data that it cannot act on 259be configured to accept only so-and-so much data that it cannot act on
153(for example, when expecting a line, an attacker could send an unlimited 260(for example, when expecting a line, an attacker could send an unlimited
154amount of data without a callback ever being called as long as the line 261amount of data without a callback ever being called as long as the line
155isn't finished). 262isn't finished).
156 263
264=item autocork => <boolean>
265
266When disabled (the default), then C<push_write> will try to immediately
267write the data to the handle, if possible. This avoids having to register
268a write watcher and wait for the next event loop iteration, but can
269be inefficient if you write multiple small chunks (on the wire, this
270disadvantage is usually avoided by your kernel's nagle algorithm, see
271C<no_delay>, but this option can save costly syscalls).
272
273When enabled, then writes will always be queued till the next event loop
274iteration. This is efficient when you do many small writes per iteration,
275but less efficient when you do a single write only per iteration (or when
276the write buffer often is full). It also increases write latency.
277
278=item no_delay => <boolean>
279
280When doing small writes on sockets, your operating system kernel might
281wait a bit for more data before actually sending it out. This is called
282the Nagle algorithm, and usually it is beneficial.
283
284In some situations you want as low a delay as possible, which can be
285accomplishd by setting this option to a true value.
286
287The default is your opertaing system's default behaviour (most likely
288enabled), this option explicitly enables or disables it, if possible.
289
290=item keepalive => <boolean>
291
292Enables (default disable) the SO_KEEPALIVE option on the stream socket:
293normally, TCP connections have no time-out once established, so TCP
294conenctions, once established, can stay alive forever even when the other
295side has long gone. TCP keepalives are a cheap way to take down long-lived
296TCP connections whent he other side becomes unreachable. While the default
297is OS-dependent, TCP keepalives usually kick in after around two hours,
298and, if the other side doesn't reply, take down the TCP connection some 10
299to 15 minutes later.
300
301It is harmless to specify this option for file handles that do not support
302keepalives, and enabling it on connections that are potentially long-lived
303is usually a good idea.
304
305=item oobinline => <boolean>
306
307BSD majorly fucked up the implementation of TCP urgent data. The result
308is that almost no OS implements TCP according to the specs, and every OS
309implements it slightly differently.
310
311If you want to handle TCP urgent data, then setting this flag (the default
312is enabled) gives you the most portable way of getting urgent data, by
313putting it into the stream.
314
315Since BSD emulation of OOB data on top of TCP's urgent data can have
316security implications, AnyEvent::Handle sets this flag automatically
317unless explicitly specified. Note that setting this flag after
318establishing a connection I<may> be a bit too late (data loss could
319already have occured on BSD systems), but at least it will protect you
320from most attacks.
321
157=item read_size => <bytes> 322=item read_size => <bytes>
158 323
159The default read block size (the amount of bytes this module will try to read 324The default read block size (the amount of bytes this module will
160on each [loop iteration). Default: C<4096>. 325try to read during each loop iteration, which affects memory
326requirements). Default: C<8192>.
161 327
162=item low_water_mark => <bytes> 328=item low_water_mark => <bytes>
163 329
164Sets the amount of bytes (default: C<0>) that make up an "empty" write 330Sets the amount of bytes (default: C<0>) that make up an "empty" write
165buffer: If the write reaches this size or gets even samller it is 331buffer: If the write reaches this size or gets even samller it is
166considered empty. 332considered empty.
167 333
334Sometimes it can be beneficial (for performance reasons) to add data to
335the write buffer before it is fully drained, but this is a rare case, as
336the operating system kernel usually buffers data as well, so the default
337is good in almost all cases.
338
339=item linger => <seconds>
340
341If non-zero (default: C<3600>), then the destructor of the
342AnyEvent::Handle object will check whether there is still outstanding
343write data and will install a watcher that will write this data to the
344socket. No errors will be reported (this mostly matches how the operating
345system treats outstanding data at socket close time).
346
347This will not work for partial TLS data that could not be encoded
348yet. This data will be lost. Calling the C<stoptls> method in time might
349help.
350
351=item peername => $string
352
353A string used to identify the remote site - usually the DNS hostname
354(I<not> IDN!) used to create the connection, rarely the IP address.
355
356Apart from being useful in error messages, this string is also used in TLS
357peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
358verification will be skipped when C<peername> is not specified or
359C<undef>.
360
168=item tls => "accept" | "connect" | Net::SSLeay::SSL object 361=item tls => "accept" | "connect" | Net::SSLeay::SSL object
169 362
170When this parameter is given, it enables TLS (SSL) mode, that means it 363When this parameter is given, it enables TLS (SSL) mode, that means
171will start making tls handshake and will transparently encrypt/decrypt 364AnyEvent will start a TLS handshake as soon as the conenction has been
172data. 365established and will transparently encrypt/decrypt data afterwards.
366
367All TLS protocol errors will be signalled as C<EPROTO>, with an
368appropriate error message.
173 369
174TLS mode requires Net::SSLeay to be installed (it will be loaded 370TLS mode requires Net::SSLeay to be installed (it will be loaded
175automatically when you try to create a TLS handle). 371automatically when you try to create a TLS handle): this module doesn't
372have a dependency on that module, so if your module requires it, you have
373to add the dependency yourself.
176 374
177For the TLS server side, use C<accept>, and for the TLS client side of a 375Unlike TCP, TLS has a server and client side: for the TLS server side, use
178connection, use C<connect> mode. 376C<accept>, and for the TLS client side of a connection, use C<connect>
377mode.
179 378
180You can also provide your own TLS connection object, but you have 379You can also provide your own TLS connection object, but you have
181to make sure that you call either C<Net::SSLeay::set_connect_state> 380to make sure that you call either C<Net::SSLeay::set_connect_state>
182or C<Net::SSLeay::set_accept_state> on it before you pass it to 381or C<Net::SSLeay::set_accept_state> on it before you pass it to
183AnyEvent::Handle. 382AnyEvent::Handle. Also, this module will take ownership of this connection
383object.
184 384
385At some future point, AnyEvent::Handle might switch to another TLS
386implementation, then the option to use your own session object will go
387away.
388
389B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
390passing in the wrong integer will lead to certain crash. This most often
391happens when one uses a stylish C<< tls => 1 >> and is surprised about the
392segmentation fault.
393
185See the C<starttls> method if you need to start TLs negotiation later. 394See the C<< ->starttls >> method for when need to start TLS negotiation later.
186 395
187=item tls_ctx => $ssl_ctx 396=item tls_ctx => $anyevent_tls
188 397
189Use the given Net::SSLeay::CTX object to create the new TLS connection 398Use the given C<AnyEvent::TLS> object to create the new TLS connection
190(unless a connection object was specified directly). If this parameter is 399(unless a connection object was specified directly). If this parameter is
191missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 400missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
192 401
402Instead of an object, you can also specify a hash reference with C<< key
403=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
404new TLS context object.
405
406=item on_starttls => $cb->($handle, $success[, $error_message])
407
408This callback will be invoked when the TLS/SSL handshake has finished. If
409C<$success> is true, then the TLS handshake succeeded, otherwise it failed
410(C<on_stoptls> will not be called in this case).
411
412The session in C<< $handle->{tls} >> can still be examined in this
413callback, even when the handshake was not successful.
414
415TLS handshake failures will not cause C<on_error> to be invoked when this
416callback is in effect, instead, the error message will be passed to C<on_starttls>.
417
418Without this callback, handshake failures lead to C<on_error> being
419called, as normal.
420
421Note that you cannot call C<starttls> right again in this callback. If you
422need to do that, start an zero-second timer instead whose callback can
423then call C<< ->starttls >> again.
424
425=item on_stoptls => $cb->($handle)
426
427When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
428set, then it will be invoked after freeing the TLS session. If it is not,
429then a TLS shutdown condition will be treated like a normal EOF condition
430on the handle.
431
432The session in C<< $handle->{tls} >> can still be examined in this
433callback.
434
435This callback will only be called on TLS shutdowns, not when the
436underlying handle signals EOF.
437
193=item json => JSON or JSON::XS object 438=item json => JSON or JSON::XS object
194 439
195This is the json coder object used by the C<json> read and write types. 440This is the json coder object used by the C<json> read and write types.
196 441
197If you don't supply it, then AnyEvent::Handle will create and use a 442If you don't supply it, then AnyEvent::Handle will create and use a
198suitable one, which will write and expect UTF-8 encoded JSON texts. 443suitable one (on demand), which will write and expect UTF-8 encoded JSON
444texts.
199 445
200Note that you are responsible to depend on the JSON module if you want to 446Note that you are responsible to depend on the JSON module if you want to
201use this functionality, as AnyEvent does not have a dependency itself. 447use this functionality, as AnyEvent does not have a dependency itself.
202 448
203=item filter_r => $cb
204
205=item filter_w => $cb
206
207These exist, but are undocumented at this time.
208
209=back 449=back
210 450
211=cut 451=cut
212 452
213sub new { 453sub new {
214 my $class = shift; 454 my $class = shift;
215
216 my $self = bless { @_ }, $class; 455 my $self = bless { @_ }, $class;
217 456
218 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 457 if ($self->{fh}) {
458 $self->_start;
459 return unless $self->{fh}; # could be gone by now
460
461 } elsif ($self->{connect}) {
462 require AnyEvent::Socket;
463
464 $self->{peername} = $self->{connect}[0]
465 unless exists $self->{peername};
466
467 $self->{_skip_drain_rbuf} = 1;
468
469 {
470 Scalar::Util::weaken (my $self = $self);
471
472 $self->{_connect} =
473 AnyEvent::Socket::tcp_connect (
474 $self->{connect}[0],
475 $self->{connect}[1],
476 sub {
477 my ($fh, $host, $port, $retry) = @_;
478
479 if ($fh) {
480 $self->{fh} = $fh;
481
482 delete $self->{_skip_drain_rbuf};
483 $self->_start;
484
485 $self->{on_connect}
486 and $self->{on_connect}($self, $host, $port, sub {
487 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
488 $self->{_skip_drain_rbuf} = 1;
489 &$retry;
490 });
491
492 } else {
493 if ($self->{on_connect_error}) {
494 $self->{on_connect_error}($self, "$!");
495 $self->destroy;
496 } else {
497 $self->_error ($!, 1);
498 }
499 }
500 },
501 sub {
502 local $self->{fh} = $_[0];
503
504 $self->{on_prepare}
505 ? $self->{on_prepare}->($self)
506 : ()
507 }
508 );
509 }
510
511 } else {
512 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
513 }
514
515 $self
516}
517
518sub _start {
519 my ($self) = @_;
219 520
220 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 521 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
221 522
222 if ($self->{tls}) { 523 $self->{_activity} =
223 require Net::SSLeay; 524 $self->{_ractivity} =
525 $self->{_wactivity} = AE::now;
526
527 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
528 $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
529 $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
530
531 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
532 $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
533
534 $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
535
224 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 536 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
225 } 537 if $self->{tls};
226 538
227# $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; # nop
228# $self->on_error (delete $self->{on_error}) if $self->{on_error}; # nop
229# $self->on_read (delete $self->{on_read} ) if $self->{on_read}; # nop
230 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 539 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
231 540
232 $self->{_activity} = AnyEvent->now;
233 $self->_timeout;
234
235 $self->start_read; 541 $self->start_read
542 if $self->{on_read} || @{ $self->{_queue} };
236 543
237 $self 544 $self->_drain_wbuf;
238} 545}
239 546
240sub _shutdown {
241 my ($self) = @_;
242
243 delete $self->{_rw};
244 delete $self->{_ww};
245 delete $self->{fh};
246}
247
248sub error { 547sub _error {
249 my ($self) = @_; 548 my ($self, $errno, $fatal, $message) = @_;
250 549
251 { 550 $! = $errno;
252 local $!; 551 $message ||= "$!";
253 $self->_shutdown;
254 }
255 552
256 $self->{on_error}($self)
257 if $self->{on_error}; 553 if ($self->{on_error}) {
258 554 $self->{on_error}($self, $fatal, $message);
555 $self->destroy if $fatal;
556 } elsif ($self->{fh}) {
557 $self->destroy;
259 Carp::croak "AnyEvent::Handle uncaught fatal error: $!"; 558 Carp::croak "AnyEvent::Handle uncaught error: $message";
559 }
260} 560}
261 561
262=item $fh = $handle->fh 562=item $fh = $handle->fh
263 563
264This method returns the file handle of the L<AnyEvent::Handle> object. 564This method returns the file handle used to create the L<AnyEvent::Handle> object.
265 565
266=cut 566=cut
267 567
268sub fh { $_[0]{fh} } 568sub fh { $_[0]{fh} }
269 569
287 $_[0]{on_eof} = $_[1]; 587 $_[0]{on_eof} = $_[1];
288} 588}
289 589
290=item $handle->on_timeout ($cb) 590=item $handle->on_timeout ($cb)
291 591
292Replace the current C<on_timeout> callback, or disables the callback 592=item $handle->on_rtimeout ($cb)
293(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
294argument.
295 593
296=cut 594=item $handle->on_wtimeout ($cb)
297 595
298sub on_timeout { 596Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
597callback, or disables the callback (but not the timeout) if C<$cb> =
598C<undef>. See the C<timeout> constructor argument and method.
599
600=cut
601
602# see below
603
604=item $handle->autocork ($boolean)
605
606Enables or disables the current autocork behaviour (see C<autocork>
607constructor argument). Changes will only take effect on the next write.
608
609=cut
610
611sub autocork {
612 $_[0]{autocork} = $_[1];
613}
614
615=item $handle->no_delay ($boolean)
616
617Enables or disables the C<no_delay> setting (see constructor argument of
618the same name for details).
619
620=cut
621
622sub no_delay {
623 $_[0]{no_delay} = $_[1];
624
625 eval {
626 local $SIG{__DIE__};
627 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
628 if $_[0]{fh};
629 };
630}
631
632=item $handle->keepalive ($boolean)
633
634Enables or disables the C<keepalive> setting (see constructor argument of
635the same name for details).
636
637=cut
638
639sub keepalive {
640 $_[0]{keepalive} = $_[1];
641
642 eval {
643 local $SIG{__DIE__};
644 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
645 if $_[0]{fh};
646 };
647}
648
649=item $handle->oobinline ($boolean)
650
651Enables or disables the C<oobinline> setting (see constructor argument of
652the same name for details).
653
654=cut
655
656sub oobinline {
657 $_[0]{oobinline} = $_[1];
658
659 eval {
660 local $SIG{__DIE__};
661 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
662 if $_[0]{fh};
663 };
664}
665
666=item $handle->keepalive ($boolean)
667
668Enables or disables the C<keepalive> setting (see constructor argument of
669the same name for details).
670
671=cut
672
673sub keepalive {
674 $_[0]{keepalive} = $_[1];
675
676 eval {
677 local $SIG{__DIE__};
678 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
679 if $_[0]{fh};
680 };
681}
682
683=item $handle->on_starttls ($cb)
684
685Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
686
687=cut
688
689sub on_starttls {
690 $_[0]{on_starttls} = $_[1];
691}
692
693=item $handle->on_stoptls ($cb)
694
695Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
696
697=cut
698
699sub on_starttls {
299 $_[0]{on_timeout} = $_[1]; 700 $_[0]{on_stoptls} = $_[1];
701}
702
703=item $handle->rbuf_max ($max_octets)
704
705Configures the C<rbuf_max> setting (C<undef> disables it).
706
707=cut
708
709sub rbuf_max {
710 $_[0]{rbuf_max} = $_[1];
300} 711}
301 712
302############################################################################# 713#############################################################################
303 714
304=item $handle->timeout ($seconds) 715=item $handle->timeout ($seconds)
305 716
717=item $handle->rtimeout ($seconds)
718
719=item $handle->wtimeout ($seconds)
720
306Configures (or disables) the inactivity timeout. 721Configures (or disables) the inactivity timeout.
307 722
308=cut 723=item $handle->timeout_reset
309 724
310sub timeout { 725=item $handle->rtimeout_reset
726
727=item $handle->wtimeout_reset
728
729Reset the activity timeout, as if data was received or sent.
730
731These methods are cheap to call.
732
733=cut
734
735for my $dir ("", "r", "w") {
736 my $timeout = "${dir}timeout";
737 my $tw = "_${dir}tw";
738 my $on_timeout = "on_${dir}timeout";
739 my $activity = "_${dir}activity";
740 my $cb;
741
742 *$on_timeout = sub {
743 $_[0]{$on_timeout} = $_[1];
744 };
745
746 *$timeout = sub {
311 my ($self, $timeout) = @_; 747 my ($self, $new_value) = @_;
312 748
313 $self->{timeout} = $timeout; 749 $self->{$timeout} = $new_value;
314 $self->_timeout; 750 delete $self->{$tw}; &$cb;
315} 751 };
316 752
753 *{"${dir}timeout_reset"} = sub {
754 $_[0]{$activity} = AE::now;
755 };
756
757 # main workhorse:
317# reset the timeout watcher, as neccessary 758 # reset the timeout watcher, as neccessary
318# also check for time-outs 759 # also check for time-outs
319sub _timeout { 760 $cb = sub {
320 my ($self) = @_; 761 my ($self) = @_;
321 762
322 if ($self->{timeout}) { 763 if ($self->{$timeout} && $self->{fh}) {
323 my $NOW = AnyEvent->now; 764 my $NOW = AE::now;
324 765
325 # when would the timeout trigger? 766 # when would the timeout trigger?
326 my $after = $self->{_activity} + $self->{timeout} - $NOW; 767 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
327 768
328 # now or in the past already? 769 # now or in the past already?
329 if ($after <= 0) { 770 if ($after <= 0) {
330 $self->{_activity} = $NOW; 771 $self->{$activity} = $NOW;
331 772
332 if ($self->{on_timeout}) { 773 if ($self->{$on_timeout}) {
333 $self->{on_timeout}->($self); 774 $self->{$on_timeout}($self);
334 } else { 775 } else {
335 $! = Errno::ETIMEDOUT; 776 $self->_error (Errno::ETIMEDOUT);
336 $self->error; 777 }
778
779 # callback could have changed timeout value, optimise
780 return unless $self->{$timeout};
781
782 # calculate new after
783 $after = $self->{$timeout};
337 } 784 }
338 785
339 # callbakx could have changed timeout value, optimise 786 Scalar::Util::weaken $self;
340 return unless $self->{timeout}; 787 return unless $self; # ->error could have destroyed $self
341 788
342 # calculate new after 789 $self->{$tw} ||= AE::timer $after, 0, sub {
343 $after = $self->{timeout}; 790 delete $self->{$tw};
791 $cb->($self);
792 };
793 } else {
794 delete $self->{$tw};
344 } 795 }
345
346 Scalar::Util::weaken $self;
347
348 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
349 delete $self->{_tw};
350 $self->_timeout;
351 });
352 } else {
353 delete $self->{_tw};
354 } 796 }
355} 797}
356 798
357############################################################################# 799#############################################################################
358 800
382 my ($self, $cb) = @_; 824 my ($self, $cb) = @_;
383 825
384 $self->{on_drain} = $cb; 826 $self->{on_drain} = $cb;
385 827
386 $cb->($self) 828 $cb->($self)
387 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 829 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
388} 830}
389 831
390=item $handle->push_write ($data) 832=item $handle->push_write ($data)
391 833
392Queues the given scalar to be written. You can push as much data as you 834Queues the given scalar to be written. You can push as much data as you
403 Scalar::Util::weaken $self; 845 Scalar::Util::weaken $self;
404 846
405 my $cb = sub { 847 my $cb = sub {
406 my $len = syswrite $self->{fh}, $self->{wbuf}; 848 my $len = syswrite $self->{fh}, $self->{wbuf};
407 849
408 if ($len >= 0) { 850 if (defined $len) {
409 substr $self->{wbuf}, 0, $len, ""; 851 substr $self->{wbuf}, 0, $len, "";
410 852
411 $self->{_activity} = AnyEvent->now; 853 $self->{_activity} = $self->{_wactivity} = AE::now;
412 854
413 $self->{on_drain}($self) 855 $self->{on_drain}($self)
414 if $self->{low_water_mark} >= length $self->{wbuf} 856 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
415 && $self->{on_drain}; 857 && $self->{on_drain};
416 858
417 delete $self->{_ww} unless length $self->{wbuf}; 859 delete $self->{_ww} unless length $self->{wbuf};
418 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 860 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
419 $self->error; 861 $self->_error ($!, 1);
420 } 862 }
421 }; 863 };
422 864
423 # try to write data immediately 865 # try to write data immediately
424 $cb->(); 866 $cb->() unless $self->{autocork};
425 867
426 # if still data left in wbuf, we need to poll 868 # if still data left in wbuf, we need to poll
427 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 869 $self->{_ww} = AE::io $self->{fh}, 1, $cb
428 if length $self->{wbuf}; 870 if length $self->{wbuf};
429 }; 871 };
430} 872}
431 873
432our %WH; 874our %WH;
443 885
444 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 886 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
445 ->($self, @_); 887 ->($self, @_);
446 } 888 }
447 889
448 if ($self->{filter_w}) { 890 if ($self->{tls}) {
449 $self->{filter_w}->($self, \$_[0]); 891 $self->{_tls_wbuf} .= $_[0];
892 &_dotls ($self) if $self->{fh};
450 } else { 893 } else {
451 $self->{wbuf} .= $_[0]; 894 $self->{wbuf} .= $_[0];
452 $self->_drain_wbuf; 895 $self->_drain_wbuf if $self->{fh};
453 } 896 }
454} 897}
455 898
456=item $handle->push_write (type => @args) 899=item $handle->push_write (type => @args)
457
458=item $handle->unshift_write (type => @args)
459 900
460Instead of formatting your data yourself, you can also let this module do 901Instead of formatting your data yourself, you can also let this module do
461the job by specifying a type and type-specific arguments. 902the job by specifying a type and type-specific arguments.
462 903
463Predefined types are (if you have ideas for additional types, feel free to 904Predefined types are (if you have ideas for additional types, feel free to
468=item netstring => $string 909=item netstring => $string
469 910
470Formats the given value as netstring 911Formats the given value as netstring
471(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them). 912(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
472 913
473=back
474
475=cut 914=cut
476 915
477register_write_type netstring => sub { 916register_write_type netstring => sub {
478 my ($self, $string) = @_; 917 my ($self, $string) = @_;
479 918
480 sprintf "%d:%s,", (length $string), $string 919 (length $string) . ":$string,"
920};
921
922=item packstring => $format, $data
923
924An octet string prefixed with an encoded length. The encoding C<$format>
925uses the same format as a Perl C<pack> format, but must specify a single
926integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
927optional C<!>, C<< < >> or C<< > >> modifier).
928
929=cut
930
931register_write_type packstring => sub {
932 my ($self, $format, $string) = @_;
933
934 pack "$format/a*", $string
481}; 935};
482 936
483=item json => $array_or_hashref 937=item json => $array_or_hashref
484 938
485Encodes the given hash or array reference into a JSON object. Unless you 939Encodes the given hash or array reference into a JSON object. Unless you
510Other languages could read single lines terminated by a newline and pass 964Other languages could read single lines terminated by a newline and pass
511this line into their JSON decoder of choice. 965this line into their JSON decoder of choice.
512 966
513=cut 967=cut
514 968
969sub json_coder() {
970 eval { require JSON::XS; JSON::XS->new->utf8 }
971 || do { require JSON; JSON->new->utf8 }
972}
973
515register_write_type json => sub { 974register_write_type json => sub {
516 my ($self, $ref) = @_; 975 my ($self, $ref) = @_;
517 976
518 require JSON; 977 my $json = $self->{json} ||= json_coder;
519 978
520 $self->{json} ? $self->{json}->encode ($ref) 979 $json->encode ($ref)
521 : JSON::encode_json ($ref)
522}; 980};
981
982=item storable => $reference
983
984Freezes the given reference using L<Storable> and writes it to the
985handle. Uses the C<nfreeze> format.
986
987=cut
988
989register_write_type storable => sub {
990 my ($self, $ref) = @_;
991
992 require Storable;
993
994 pack "w/a*", Storable::nfreeze ($ref)
995};
996
997=back
998
999=item $handle->push_shutdown
1000
1001Sometimes you know you want to close the socket after writing your data
1002before it was actually written. One way to do that is to replace your
1003C<on_drain> handler by a callback that shuts down the socket (and set
1004C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1005replaces the C<on_drain> callback with:
1006
1007 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
1008
1009This simply shuts down the write side and signals an EOF condition to the
1010the peer.
1011
1012You can rely on the normal read queue and C<on_eof> handling
1013afterwards. This is the cleanest way to close a connection.
1014
1015=cut
1016
1017sub push_shutdown {
1018 my ($self) = @_;
1019
1020 delete $self->{low_water_mark};
1021 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1022}
523 1023
524=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 1024=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
525 1025
526This function (not method) lets you add your own types to C<push_write>. 1026This function (not method) lets you add your own types to C<push_write>.
527Whenever the given C<type> is used, C<push_write> will invoke the code 1027Whenever the given C<type> is used, C<push_write> will invoke the code
548ways, the "simple" way, using only C<on_read> and the "complex" way, using 1048ways, the "simple" way, using only C<on_read> and the "complex" way, using
549a queue. 1049a queue.
550 1050
551In the simple case, you just install an C<on_read> callback and whenever 1051In the simple case, you just install an C<on_read> callback and whenever
552new data arrives, it will be called. You can then remove some data (if 1052new data arrives, it will be called. You can then remove some data (if
553enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 1053enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
554or not. 1054leave the data there if you want to accumulate more (e.g. when only a
1055partial message has been received so far).
555 1056
556In the more complex case, you want to queue multiple callbacks. In this 1057In the more complex case, you want to queue multiple callbacks. In this
557case, AnyEvent::Handle will call the first queued callback each time new 1058case, AnyEvent::Handle will call the first queued callback each time new
558data arrives and removes it when it has done its job (see C<push_read>, 1059data arrives (also the first time it is queued) and removes it when it has
559below). 1060done its job (see C<push_read>, below).
560 1061
561This way you can, for example, push three line-reads, followed by reading 1062This way you can, for example, push three line-reads, followed by reading
562a chunk of data, and AnyEvent::Handle will execute them in order. 1063a chunk of data, and AnyEvent::Handle will execute them in order.
563 1064
564Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 1065Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
565the specified number of bytes which give an XML datagram. 1066the specified number of bytes which give an XML datagram.
566 1067
567 # in the default state, expect some header bytes 1068 # in the default state, expect some header bytes
568 $handle->on_read (sub { 1069 $handle->on_read (sub {
569 # some data is here, now queue the length-header-read (4 octets) 1070 # some data is here, now queue the length-header-read (4 octets)
570 shift->unshift_read_chunk (4, sub { 1071 shift->unshift_read (chunk => 4, sub {
571 # header arrived, decode 1072 # header arrived, decode
572 my $len = unpack "N", $_[1]; 1073 my $len = unpack "N", $_[1];
573 1074
574 # now read the payload 1075 # now read the payload
575 shift->unshift_read_chunk ($len, sub { 1076 shift->unshift_read (chunk => $len, sub {
576 my $xml = $_[1]; 1077 my $xml = $_[1];
577 # handle xml 1078 # handle xml
578 }); 1079 });
579 }); 1080 });
580 }); 1081 });
581 1082
582Example 2: Implement a client for a protocol that replies either with 1083Example 2: Implement a client for a protocol that replies either with "OK"
583"OK" and another line or "ERROR" for one request, and 64 bytes for the 1084and another line or "ERROR" for the first request that is sent, and 64
584second request. Due tot he availability of a full queue, we can just 1085bytes for the second request. Due to the availability of a queue, we can
585pipeline sending both requests and manipulate the queue as necessary in 1086just pipeline sending both requests and manipulate the queue as necessary
586the callbacks: 1087in the callbacks.
587 1088
588 # request one 1089When the first callback is called and sees an "OK" response, it will
1090C<unshift> another line-read. This line-read will be queued I<before> the
109164-byte chunk callback.
1092
1093 # request one, returns either "OK + extra line" or "ERROR"
589 $handle->push_write ("request 1\015\012"); 1094 $handle->push_write ("request 1\015\012");
590 1095
591 # we expect "ERROR" or "OK" as response, so push a line read 1096 # we expect "ERROR" or "OK" as response, so push a line read
592 $handle->push_read_line (sub { 1097 $handle->push_read (line => sub {
593 # if we got an "OK", we have to _prepend_ another line, 1098 # if we got an "OK", we have to _prepend_ another line,
594 # so it will be read before the second request reads its 64 bytes 1099 # so it will be read before the second request reads its 64 bytes
595 # which are already in the queue when this callback is called 1100 # which are already in the queue when this callback is called
596 # we don't do this in case we got an error 1101 # we don't do this in case we got an error
597 if ($_[1] eq "OK") { 1102 if ($_[1] eq "OK") {
598 $_[0]->unshift_read_line (sub { 1103 $_[0]->unshift_read (line => sub {
599 my $response = $_[1]; 1104 my $response = $_[1];
600 ... 1105 ...
601 }); 1106 });
602 } 1107 }
603 }); 1108 });
604 1109
605 # request two 1110 # request two, simply returns 64 octets
606 $handle->push_write ("request 2\015\012"); 1111 $handle->push_write ("request 2\015\012");
607 1112
608 # simply read 64 bytes, always 1113 # simply read 64 bytes, always
609 $handle->push_read_chunk (64, sub { 1114 $handle->push_read (chunk => 64, sub {
610 my $response = $_[1]; 1115 my $response = $_[1];
611 ... 1116 ...
612 }); 1117 });
613 1118
614=over 4 1119=over 4
615 1120
616=cut 1121=cut
617 1122
618sub _drain_rbuf { 1123sub _drain_rbuf {
619 my ($self) = @_; 1124 my ($self) = @_;
1125
1126 # avoid recursion
1127 return if $self->{_skip_drain_rbuf};
1128 local $self->{_skip_drain_rbuf} = 1;
1129
1130 while () {
1131 # we need to use a separate tls read buffer, as we must not receive data while
1132 # we are draining the buffer, and this can only happen with TLS.
1133 $self->{rbuf} .= delete $self->{_tls_rbuf}
1134 if exists $self->{_tls_rbuf};
1135
1136 my $len = length $self->{rbuf};
1137
1138 if (my $cb = shift @{ $self->{_queue} }) {
1139 unless ($cb->($self)) {
1140 # no progress can be made
1141 # (not enough data and no data forthcoming)
1142 $self->_error (Errno::EPIPE, 1), return
1143 if $self->{_eof};
1144
1145 unshift @{ $self->{_queue} }, $cb;
1146 last;
1147 }
1148 } elsif ($self->{on_read}) {
1149 last unless $len;
1150
1151 $self->{on_read}($self);
1152
1153 if (
1154 $len == length $self->{rbuf} # if no data has been consumed
1155 && !@{ $self->{_queue} } # and the queue is still empty
1156 && $self->{on_read} # but we still have on_read
1157 ) {
1158 # no further data will arrive
1159 # so no progress can be made
1160 $self->_error (Errno::EPIPE, 1), return
1161 if $self->{_eof};
1162
1163 last; # more data might arrive
1164 }
1165 } else {
1166 # read side becomes idle
1167 delete $self->{_rw} unless $self->{tls};
1168 last;
1169 }
1170 }
1171
1172 if ($self->{_eof}) {
1173 $self->{on_eof}
1174 ? $self->{on_eof}($self)
1175 : $self->_error (0, 1, "Unexpected end-of-file");
1176
1177 return;
1178 }
620 1179
621 if ( 1180 if (
622 defined $self->{rbuf_max} 1181 defined $self->{rbuf_max}
623 && $self->{rbuf_max} < length $self->{rbuf} 1182 && $self->{rbuf_max} < length $self->{rbuf}
624 ) { 1183 ) {
625 $! = &Errno::ENOSPC; 1184 $self->_error (Errno::ENOSPC, 1), return;
626 $self->error;
627 } 1185 }
628 1186
629 return if $self->{in_drain}; 1187 # may need to restart read watcher
630 local $self->{in_drain} = 1; 1188 unless ($self->{_rw}) {
631 1189 $self->start_read
632 while (my $len = length $self->{rbuf}) { 1190 if $self->{on_read} || @{ $self->{_queue} };
633 no strict 'refs';
634 if (my $cb = shift @{ $self->{_queue} }) {
635 unless ($cb->($self)) {
636 if ($self->{_eof}) {
637 # no progress can be made (not enough data and no data forthcoming)
638 $! = &Errno::EPIPE;
639 $self->error;
640 }
641
642 unshift @{ $self->{_queue} }, $cb;
643 return;
644 }
645 } elsif ($self->{on_read}) {
646 $self->{on_read}($self);
647
648 if (
649 $self->{_eof} # if no further data will arrive
650 && $len == length $self->{rbuf} # and no data has been consumed
651 && !@{ $self->{_queue} } # and the queue is still empty
652 && $self->{on_read} # and we still want to read data
653 ) {
654 # then no progress can be made
655 $! = &Errno::EPIPE;
656 $self->error;
657 }
658 } else {
659 # read side becomes idle
660 delete $self->{_rw};
661 return;
662 }
663 }
664
665 if ($self->{_eof}) {
666 $self->_shutdown;
667 $self->{on_eof}($self)
668 if $self->{on_eof};
669 } 1191 }
670} 1192}
671 1193
672=item $handle->on_read ($cb) 1194=item $handle->on_read ($cb)
673 1195
679 1201
680sub on_read { 1202sub on_read {
681 my ($self, $cb) = @_; 1203 my ($self, $cb) = @_;
682 1204
683 $self->{on_read} = $cb; 1205 $self->{on_read} = $cb;
1206 $self->_drain_rbuf if $cb;
684} 1207}
685 1208
686=item $handle->rbuf 1209=item $handle->rbuf
687 1210
688Returns the read buffer (as a modifiable lvalue). 1211Returns the read buffer (as a modifiable lvalue).
689 1212
690You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1213You can access the read buffer directly as the C<< ->{rbuf} >>
691you want. 1214member, if you want. However, the only operation allowed on the
1215read buffer (apart from looking at it) is removing data from its
1216beginning. Otherwise modifying or appending to it is not allowed and will
1217lead to hard-to-track-down bugs.
692 1218
693NOTE: The read buffer should only be used or modified if the C<on_read>, 1219NOTE: The read buffer should only be used or modified if the C<on_read>,
694C<push_read> or C<unshift_read> methods are used. The other read methods 1220C<push_read> or C<unshift_read> methods are used. The other read methods
695automatically manage the read buffer. 1221automatically manage the read buffer.
696 1222
750 my $type = shift; 1276 my $type = shift;
751 1277
752 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read") 1278 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
753 ->($self, $cb, @_); 1279 ->($self, $cb, @_);
754 } 1280 }
755
756 1281
757 unshift @{ $self->{_queue} }, $cb; 1282 unshift @{ $self->{_queue} }, $cb;
758 $self->_drain_rbuf; 1283 $self->_drain_rbuf;
759} 1284}
760 1285
793 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1318 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
794 1 1319 1
795 } 1320 }
796}; 1321};
797 1322
798# compatibility with older API
799sub push_read_chunk {
800 $_[0]->push_read (chunk => $_[1], $_[2]);
801}
802
803sub unshift_read_chunk {
804 $_[0]->unshift_read (chunk => $_[1], $_[2]);
805}
806
807=item line => [$eol, ]$cb->($handle, $line, $eol) 1323=item line => [$eol, ]$cb->($handle, $line, $eol)
808 1324
809The callback will be called only once a full line (including the end of 1325The callback will be called only once a full line (including the end of
810line marker, C<$eol>) has been read. This line (excluding the end of line 1326line marker, C<$eol>) has been read. This line (excluding the end of line
811marker) will be passed to the callback as second argument (C<$line>), and 1327marker) will be passed to the callback as second argument (C<$line>), and
826=cut 1342=cut
827 1343
828register_read_type line => sub { 1344register_read_type line => sub {
829 my ($self, $cb, $eol) = @_; 1345 my ($self, $cb, $eol) = @_;
830 1346
831 $eol = qr|(\015?\012)| if @_ < 3; 1347 if (@_ < 3) {
832 $eol = quotemeta $eol unless ref $eol; 1348 # this is more than twice as fast as the generic code below
833 $eol = qr|^(.*?)($eol)|s;
834
835 sub { 1349 sub {
836 $_[0]{rbuf} =~ s/$eol// or return; 1350 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
837 1351
838 $cb->($_[0], $1, $2); 1352 $cb->($_[0], $1, $2);
839 1
840 }
841};
842
843# compatibility with older API
844sub push_read_line {
845 my $self = shift;
846 $self->push_read (line => @_);
847}
848
849sub unshift_read_line {
850 my $self = shift;
851 $self->unshift_read (line => @_);
852}
853
854=item netstring => $cb->($handle, $string)
855
856A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
857
858Throws an error with C<$!> set to EBADMSG on format violations.
859
860=cut
861
862register_read_type netstring => sub {
863 my ($self, $cb) = @_;
864
865 sub {
866 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
867 if ($_[0]{rbuf} =~ /[^0-9]/) {
868 $! = &Errno::EBADMSG;
869 $self->error;
870 } 1353 1
871 return;
872 } 1354 }
1355 } else {
1356 $eol = quotemeta $eol unless ref $eol;
1357 $eol = qr|^(.*?)($eol)|s;
873 1358
874 my $len = $1; 1359 sub {
1360 $_[0]{rbuf} =~ s/$eol// or return;
875 1361
876 $self->unshift_read (chunk => $len, sub { 1362 $cb->($_[0], $1, $2);
877 my $string = $_[1];
878 $_[0]->unshift_read (chunk => 1, sub {
879 if ($_[1] eq ",") {
880 $cb->($_[0], $string);
881 } else {
882 $! = &Errno::EBADMSG;
883 $self->error;
884 }
885 }); 1363 1
886 }); 1364 }
887
888 1
889 } 1365 }
890}; 1366};
891 1367
892=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1368=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
893 1369
945 return 1; 1421 return 1;
946 } 1422 }
947 1423
948 # reject 1424 # reject
949 if ($reject && $$rbuf =~ $reject) { 1425 if ($reject && $$rbuf =~ $reject) {
950 $! = &Errno::EBADMSG; 1426 $self->_error (Errno::EBADMSG);
951 $self->error;
952 } 1427 }
953 1428
954 # skip 1429 # skip
955 if ($skip && $$rbuf =~ $skip) { 1430 if ($skip && $$rbuf =~ $skip) {
956 $data .= substr $$rbuf, 0, $+[0], ""; 1431 $data .= substr $$rbuf, 0, $+[0], "";
958 1433
959 () 1434 ()
960 } 1435 }
961}; 1436};
962 1437
1438=item netstring => $cb->($handle, $string)
1439
1440A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1441
1442Throws an error with C<$!> set to EBADMSG on format violations.
1443
1444=cut
1445
1446register_read_type netstring => sub {
1447 my ($self, $cb) = @_;
1448
1449 sub {
1450 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1451 if ($_[0]{rbuf} =~ /[^0-9]/) {
1452 $self->_error (Errno::EBADMSG);
1453 }
1454 return;
1455 }
1456
1457 my $len = $1;
1458
1459 $self->unshift_read (chunk => $len, sub {
1460 my $string = $_[1];
1461 $_[0]->unshift_read (chunk => 1, sub {
1462 if ($_[1] eq ",") {
1463 $cb->($_[0], $string);
1464 } else {
1465 $self->_error (Errno::EBADMSG);
1466 }
1467 });
1468 });
1469
1470 1
1471 }
1472};
1473
1474=item packstring => $format, $cb->($handle, $string)
1475
1476An octet string prefixed with an encoded length. The encoding C<$format>
1477uses the same format as a Perl C<pack> format, but must specify a single
1478integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1479optional C<!>, C<< < >> or C<< > >> modifier).
1480
1481For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1482EPP uses a prefix of C<N> (4 octtes).
1483
1484Example: read a block of data prefixed by its length in BER-encoded
1485format (very efficient).
1486
1487 $handle->push_read (packstring => "w", sub {
1488 my ($handle, $data) = @_;
1489 });
1490
1491=cut
1492
1493register_read_type packstring => sub {
1494 my ($self, $cb, $format) = @_;
1495
1496 sub {
1497 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1498 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1499 or return;
1500
1501 $format = length pack $format, $len;
1502
1503 # bypass unshift if we already have the remaining chunk
1504 if ($format + $len <= length $_[0]{rbuf}) {
1505 my $data = substr $_[0]{rbuf}, $format, $len;
1506 substr $_[0]{rbuf}, 0, $format + $len, "";
1507 $cb->($_[0], $data);
1508 } else {
1509 # remove prefix
1510 substr $_[0]{rbuf}, 0, $format, "";
1511
1512 # read remaining chunk
1513 $_[0]->unshift_read (chunk => $len, $cb);
1514 }
1515
1516 1
1517 }
1518};
1519
963=item json => $cb->($handle, $hash_or_arrayref) 1520=item json => $cb->($handle, $hash_or_arrayref)
964 1521
965Reads a JSON object or array, decodes it and passes it to the callback. 1522Reads a JSON object or array, decodes it and passes it to the
1523callback. When a parse error occurs, an C<EBADMSG> error will be raised.
966 1524
967If a C<json> object was passed to the constructor, then that will be used 1525If a C<json> object was passed to the constructor, then that will be used
968for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1526for the final decode, otherwise it will create a JSON coder expecting UTF-8.
969 1527
970This read type uses the incremental parser available with JSON version 1528This read type uses the incremental parser available with JSON version
977the C<json> write type description, above, for an actual example. 1535the C<json> write type description, above, for an actual example.
978 1536
979=cut 1537=cut
980 1538
981register_read_type json => sub { 1539register_read_type json => sub {
982 my ($self, $cb, $accept, $reject, $skip) = @_; 1540 my ($self, $cb) = @_;
983 1541
984 require JSON; 1542 my $json = $self->{json} ||= json_coder;
985 1543
986 my $data; 1544 my $data;
987 my $rbuf = \$self->{rbuf}; 1545 my $rbuf = \$self->{rbuf};
988 1546
989 my $json = $self->{json} ||= JSON->new->utf8;
990
991 sub { 1547 sub {
992 my $ref = $json->incr_parse ($self->{rbuf}); 1548 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
993 1549
994 if ($ref) { 1550 if ($ref) {
995 $self->{rbuf} = $json->incr_text; 1551 $self->{rbuf} = $json->incr_text;
996 $json->incr_text = ""; 1552 $json->incr_text = "";
997 $cb->($self, $ref); 1553 $cb->($self, $ref);
998 1554
999 1 1555 1
1556 } elsif ($@) {
1557 # error case
1558 $json->incr_skip;
1559
1560 $self->{rbuf} = $json->incr_text;
1561 $json->incr_text = "";
1562
1563 $self->_error (Errno::EBADMSG);
1564
1565 ()
1000 } else { 1566 } else {
1001 $self->{rbuf} = ""; 1567 $self->{rbuf} = "";
1568
1002 () 1569 ()
1003 } 1570 }
1571 }
1572};
1573
1574=item storable => $cb->($handle, $ref)
1575
1576Deserialises a L<Storable> frozen representation as written by the
1577C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1578data).
1579
1580Raises C<EBADMSG> error if the data could not be decoded.
1581
1582=cut
1583
1584register_read_type storable => sub {
1585 my ($self, $cb) = @_;
1586
1587 require Storable;
1588
1589 sub {
1590 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1591 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1592 or return;
1593
1594 my $format = length pack "w", $len;
1595
1596 # bypass unshift if we already have the remaining chunk
1597 if ($format + $len <= length $_[0]{rbuf}) {
1598 my $data = substr $_[0]{rbuf}, $format, $len;
1599 substr $_[0]{rbuf}, 0, $format + $len, "";
1600 $cb->($_[0], Storable::thaw ($data));
1601 } else {
1602 # remove prefix
1603 substr $_[0]{rbuf}, 0, $format, "";
1604
1605 # read remaining chunk
1606 $_[0]->unshift_read (chunk => $len, sub {
1607 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1608 $cb->($_[0], $ref);
1609 } else {
1610 $self->_error (Errno::EBADMSG);
1611 }
1612 });
1613 }
1614
1615 1
1004 } 1616 }
1005}; 1617};
1006 1618
1007=back 1619=back
1008 1620
1029=item $handle->stop_read 1641=item $handle->stop_read
1030 1642
1031=item $handle->start_read 1643=item $handle->start_read
1032 1644
1033In rare cases you actually do not want to read anything from the 1645In rare cases you actually do not want to read anything from the
1034socket. In this case you can call C<stop_read>. Neither C<on_read> no 1646socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1035any queued callbacks will be executed then. To start reading again, call 1647any queued callbacks will be executed then. To start reading again, call
1036C<start_read>. 1648C<start_read>.
1037 1649
1650Note that AnyEvent::Handle will automatically C<start_read> for you when
1651you change the C<on_read> callback or push/unshift a read callback, and it
1652will automatically C<stop_read> for you when neither C<on_read> is set nor
1653there are any read requests in the queue.
1654
1655These methods will have no effect when in TLS mode (as TLS doesn't support
1656half-duplex connections).
1657
1038=cut 1658=cut
1039 1659
1040sub stop_read { 1660sub stop_read {
1041 my ($self) = @_; 1661 my ($self) = @_;
1042 1662
1043 delete $self->{_rw}; 1663 delete $self->{_rw} unless $self->{tls};
1044} 1664}
1045 1665
1046sub start_read { 1666sub start_read {
1047 my ($self) = @_; 1667 my ($self) = @_;
1048 1668
1049 unless ($self->{_rw} || $self->{_eof}) { 1669 unless ($self->{_rw} || $self->{_eof}) {
1050 Scalar::Util::weaken $self; 1670 Scalar::Util::weaken $self;
1051 1671
1052 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1672 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1053 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1673 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1054 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1674 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1055 1675
1056 if ($len > 0) { 1676 if ($len > 0) {
1057 $self->{_activity} = AnyEvent->now; 1677 $self->{_activity} = $self->{_ractivity} = AE::now;
1058 1678
1059 $self->{filter_r} 1679 if ($self->{tls}) {
1060 ? $self->{filter_r}->($self, $rbuf) 1680 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1681
1682 &_dotls ($self);
1683 } else {
1061 : $self->_drain_rbuf; 1684 $self->_drain_rbuf;
1685 }
1062 1686
1063 } elsif (defined $len) { 1687 } elsif (defined $len) {
1064 delete $self->{_rw}; 1688 delete $self->{_rw};
1065 delete $self->{_ww};
1066 delete $self->{_tw};
1067 $self->{_eof} = 1; 1689 $self->{_eof} = 1;
1068 $self->_drain_rbuf; 1690 $self->_drain_rbuf;
1069 1691
1070 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1692 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1071 return $self->error; 1693 return $self->_error ($!, 1);
1072 } 1694 }
1073 }); 1695 };
1074 } 1696 }
1075} 1697}
1076 1698
1699our $ERROR_SYSCALL;
1700our $ERROR_WANT_READ;
1701
1702sub _tls_error {
1703 my ($self, $err) = @_;
1704
1705 return $self->_error ($!, 1)
1706 if $err == Net::SSLeay::ERROR_SYSCALL ();
1707
1708 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1709
1710 # reduce error string to look less scary
1711 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1712
1713 if ($self->{_on_starttls}) {
1714 (delete $self->{_on_starttls})->($self, undef, $err);
1715 &_freetls;
1716 } else {
1717 &_freetls;
1718 $self->_error (Errno::EPROTO, 1, $err);
1719 }
1720}
1721
1722# poll the write BIO and send the data if applicable
1723# also decode read data if possible
1724# this is basiclaly our TLS state machine
1725# more efficient implementations are possible with openssl,
1726# but not with the buggy and incomplete Net::SSLeay.
1077sub _dotls { 1727sub _dotls {
1078 my ($self) = @_; 1728 my ($self) = @_;
1079 1729
1730 my $tmp;
1731
1080 if (length $self->{_tls_wbuf}) { 1732 if (length $self->{_tls_wbuf}) {
1081 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1733 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1082 substr $self->{_tls_wbuf}, 0, $len, ""; 1734 substr $self->{_tls_wbuf}, 0, $tmp, "";
1083 } 1735 }
1084 }
1085 1736
1737 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1738 return $self->_tls_error ($tmp)
1739 if $tmp != $ERROR_WANT_READ
1740 && ($tmp != $ERROR_SYSCALL || $!);
1741 }
1742
1743 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1744 unless (length $tmp) {
1745 $self->{_on_starttls}
1746 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1747 &_freetls;
1748
1749 if ($self->{on_stoptls}) {
1750 $self->{on_stoptls}($self);
1751 return;
1752 } else {
1753 # let's treat SSL-eof as we treat normal EOF
1754 delete $self->{_rw};
1755 $self->{_eof} = 1;
1756 }
1757 }
1758
1759 $self->{_tls_rbuf} .= $tmp;
1760 $self->_drain_rbuf;
1761 $self->{tls} or return; # tls session might have gone away in callback
1762 }
1763
1764 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1765 return $self->_tls_error ($tmp)
1766 if $tmp != $ERROR_WANT_READ
1767 && ($tmp != $ERROR_SYSCALL || $!);
1768
1086 if (defined (my $buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1769 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1087 $self->{wbuf} .= $buf; 1770 $self->{wbuf} .= $tmp;
1088 $self->_drain_wbuf; 1771 $self->_drain_wbuf;
1089 } 1772 }
1090 1773
1091 while (defined (my $buf = Net::SSLeay::read ($self->{tls}))) { 1774 $self->{_on_starttls}
1092 $self->{rbuf} .= $buf; 1775 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1093 $self->_drain_rbuf; 1776 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1094 }
1095
1096 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1097
1098 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1099 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1100 $self->error;
1101 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1102 $! = &Errno::EIO;
1103 $self->error;
1104 }
1105
1106 # all others are fine for our purposes
1107 }
1108} 1777}
1109 1778
1110=item $handle->starttls ($tls[, $tls_ctx]) 1779=item $handle->starttls ($tls[, $tls_ctx])
1111 1780
1112Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1781Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1113object is created, you can also do that at a later time by calling 1782object is created, you can also do that at a later time by calling
1114C<starttls>. 1783C<starttls>.
1115 1784
1785Starting TLS is currently an asynchronous operation - when you push some
1786write data and then call C<< ->starttls >> then TLS negotiation will start
1787immediately, after which the queued write data is then sent.
1788
1116The first argument is the same as the C<tls> constructor argument (either 1789The first argument is the same as the C<tls> constructor argument (either
1117C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1790C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1118 1791
1119The second argument is the optional C<Net::SSLeay::CTX> object that is 1792The second argument is the optional C<AnyEvent::TLS> object that is used
1120used when AnyEvent::Handle has to create its own TLS connection object. 1793when AnyEvent::Handle has to create its own TLS connection object, or
1794a hash reference with C<< key => value >> pairs that will be used to
1795construct a new context.
1121 1796
1122The TLS connection object will end up in C<< $handle->{tls} >> after this 1797The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1123call and can be used or changed to your liking. Note that the handshake 1798context in C<< $handle->{tls_ctx} >> after this call and can be used or
1124might have already started when this function returns. 1799changed to your liking. Note that the handshake might have already started
1800when this function returns.
1125 1801
1126=cut 1802Due to bugs in OpenSSL, it might or might not be possible to do multiple
1803handshakes on the same stream. Best do not attempt to use the stream after
1804stopping TLS.
1127 1805
1128# TODO: maybe document... 1806=cut
1807
1808our %TLS_CACHE; #TODO not yet documented, should we?
1809
1129sub starttls { 1810sub starttls {
1130 my ($self, $ssl, $ctx) = @_; 1811 my ($self, $tls, $ctx) = @_;
1131 1812
1132 $self->stoptls; 1813 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1814 if $self->{tls};
1133 1815
1134 if ($ssl eq "accept") { 1816 $self->{tls} = $tls;
1135 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1817 $self->{tls_ctx} = $ctx if @_ > 2;
1136 Net::SSLeay::set_accept_state ($ssl); 1818
1137 } elsif ($ssl eq "connect") { 1819 return unless $self->{fh};
1138 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1820
1139 Net::SSLeay::set_connect_state ($ssl); 1821 require Net::SSLeay;
1822
1823 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1824 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1825
1826 $tls = delete $self->{tls};
1827 $ctx = $self->{tls_ctx};
1828
1829 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1830
1831 if ("HASH" eq ref $ctx) {
1832 require AnyEvent::TLS;
1833
1834 if ($ctx->{cache}) {
1835 my $key = $ctx+0;
1836 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1837 } else {
1838 $ctx = new AnyEvent::TLS %$ctx;
1839 }
1840 }
1140 } 1841
1141 1842 $self->{tls_ctx} = $ctx || TLS_CTX ();
1142 $self->{tls} = $ssl; 1843 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1143 1844
1144 # basically, this is deep magic (because SSL_read should have the same issues) 1845 # basically, this is deep magic (because SSL_read should have the same issues)
1145 # but the openssl maintainers basically said: "trust us, it just works". 1846 # but the openssl maintainers basically said: "trust us, it just works".
1146 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1847 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1147 # and mismaintained ssleay-module doesn't even offer them). 1848 # and mismaintained ssleay-module doesn't even offer them).
1148 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1849 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1850 #
1851 # in short: this is a mess.
1852 #
1853 # note that we do not try to keep the length constant between writes as we are required to do.
1854 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1855 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1856 # have identity issues in that area.
1149 Net::SSLeay::CTX_set_mode ($self->{tls}, 1857# Net::SSLeay::CTX_set_mode ($ssl,
1150 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1858# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1151 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1859# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1860 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1152 1861
1153 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1862 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1154 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1863 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1155 1864
1865 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1866
1156 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1867 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1157 1868
1158 $self->{filter_w} = sub { 1869 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1159 $_[0]{_tls_wbuf} .= ${$_[1]}; 1870 if $self->{on_starttls};
1160 &_dotls; 1871
1161 }; 1872 &_dotls; # need to trigger the initial handshake
1162 $self->{filter_r} = sub { 1873 $self->start_read; # make sure we actually do read
1163 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1164 &_dotls;
1165 };
1166} 1874}
1167 1875
1168=item $handle->stoptls 1876=item $handle->stoptls
1169 1877
1170Destroys the SSL connection, if any. Partial read or write data will be 1878Shuts down the SSL connection - this makes a proper EOF handshake by
1171lost. 1879sending a close notify to the other side, but since OpenSSL doesn't
1880support non-blocking shut downs, it is not guarenteed that you can re-use
1881the stream afterwards.
1172 1882
1173=cut 1883=cut
1174 1884
1175sub stoptls { 1885sub stoptls {
1176 my ($self) = @_; 1886 my ($self) = @_;
1177 1887
1178 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1888 if ($self->{tls}) {
1889 Net::SSLeay::shutdown ($self->{tls});
1179 1890
1180 delete $self->{_rbio}; 1891 &_dotls;
1181 delete $self->{_wbio}; 1892
1182 delete $self->{_tls_wbuf}; 1893# # we don't give a shit. no, we do, but we can't. no...#d#
1183 delete $self->{filter_r}; 1894# # we, we... have to use openssl :/#d#
1184 delete $self->{filter_w}; 1895# &_freetls;#d#
1896 }
1897}
1898
1899sub _freetls {
1900 my ($self) = @_;
1901
1902 return unless $self->{tls};
1903
1904 $self->{tls_ctx}->_put_session (delete $self->{tls})
1905 if $self->{tls} > 0;
1906
1907 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1185} 1908}
1186 1909
1187sub DESTROY { 1910sub DESTROY {
1188 my $self = shift; 1911 my ($self) = @_;
1189 1912
1190 $self->stoptls; 1913 &_freetls;
1914
1915 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1916
1917 if ($linger && length $self->{wbuf} && $self->{fh}) {
1918 my $fh = delete $self->{fh};
1919 my $wbuf = delete $self->{wbuf};
1920
1921 my @linger;
1922
1923 push @linger, AE::io $fh, 1, sub {
1924 my $len = syswrite $fh, $wbuf, length $wbuf;
1925
1926 if ($len > 0) {
1927 substr $wbuf, 0, $len, "";
1928 } else {
1929 @linger = (); # end
1930 }
1931 };
1932 push @linger, AE::timer $linger, 0, sub {
1933 @linger = ();
1934 };
1935 }
1936}
1937
1938=item $handle->destroy
1939
1940Shuts down the handle object as much as possible - this call ensures that
1941no further callbacks will be invoked and as many resources as possible
1942will be freed. Any method you will call on the handle object after
1943destroying it in this way will be silently ignored (and it will return the
1944empty list).
1945
1946Normally, you can just "forget" any references to an AnyEvent::Handle
1947object and it will simply shut down. This works in fatal error and EOF
1948callbacks, as well as code outside. It does I<NOT> work in a read or write
1949callback, so when you want to destroy the AnyEvent::Handle object from
1950within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1951that case.
1952
1953Destroying the handle object in this way has the advantage that callbacks
1954will be removed as well, so if those are the only reference holders (as
1955is common), then one doesn't need to do anything special to break any
1956reference cycles.
1957
1958The handle might still linger in the background and write out remaining
1959data, as specified by the C<linger> option, however.
1960
1961=cut
1962
1963sub destroy {
1964 my ($self) = @_;
1965
1966 $self->DESTROY;
1967 %$self = ();
1968 bless $self, "AnyEvent::Handle::destroyed";
1969}
1970
1971sub AnyEvent::Handle::destroyed::AUTOLOAD {
1972 #nop
1191} 1973}
1192 1974
1193=item AnyEvent::Handle::TLS_CTX 1975=item AnyEvent::Handle::TLS_CTX
1194 1976
1195This function creates and returns the Net::SSLeay::CTX object used by 1977This function creates and returns the AnyEvent::TLS object used by default
1196default for TLS mode. 1978for TLS mode.
1197 1979
1198The context is created like this: 1980The context is created by calling L<AnyEvent::TLS> without any arguments.
1199
1200 Net::SSLeay::load_error_strings;
1201 Net::SSLeay::SSLeay_add_ssl_algorithms;
1202 Net::SSLeay::randomize;
1203
1204 my $CTX = Net::SSLeay::CTX_new;
1205
1206 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1207 1981
1208=cut 1982=cut
1209 1983
1210our $TLS_CTX; 1984our $TLS_CTX;
1211 1985
1212sub TLS_CTX() { 1986sub TLS_CTX() {
1213 $TLS_CTX || do { 1987 $TLS_CTX ||= do {
1214 require Net::SSLeay; 1988 require AnyEvent::TLS;
1215 1989
1216 Net::SSLeay::load_error_strings (); 1990 new AnyEvent::TLS
1217 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1218 Net::SSLeay::randomize ();
1219
1220 $TLS_CTX = Net::SSLeay::CTX_new ();
1221
1222 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1223
1224 $TLS_CTX
1225 } 1991 }
1226} 1992}
1227 1993
1228=back 1994=back
1995
1996
1997=head1 NONFREQUENTLY ASKED QUESTIONS
1998
1999=over 4
2000
2001=item I C<undef> the AnyEvent::Handle reference inside my callback and
2002still get further invocations!
2003
2004That's because AnyEvent::Handle keeps a reference to itself when handling
2005read or write callbacks.
2006
2007It is only safe to "forget" the reference inside EOF or error callbacks,
2008from within all other callbacks, you need to explicitly call the C<<
2009->destroy >> method.
2010
2011=item I get different callback invocations in TLS mode/Why can't I pause
2012reading?
2013
2014Unlike, say, TCP, TLS connections do not consist of two independent
2015communication channels, one for each direction. Or put differently. The
2016read and write directions are not independent of each other: you cannot
2017write data unless you are also prepared to read, and vice versa.
2018
2019This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
2020callback invocations when you are not expecting any read data - the reason
2021is that AnyEvent::Handle always reads in TLS mode.
2022
2023During the connection, you have to make sure that you always have a
2024non-empty read-queue, or an C<on_read> watcher. At the end of the
2025connection (or when you no longer want to use it) you can call the
2026C<destroy> method.
2027
2028=item How do I read data until the other side closes the connection?
2029
2030If you just want to read your data into a perl scalar, the easiest way
2031to achieve this is by setting an C<on_read> callback that does nothing,
2032clearing the C<on_eof> callback and in the C<on_error> callback, the data
2033will be in C<$_[0]{rbuf}>:
2034
2035 $handle->on_read (sub { });
2036 $handle->on_eof (undef);
2037 $handle->on_error (sub {
2038 my $data = delete $_[0]{rbuf};
2039 });
2040
2041The reason to use C<on_error> is that TCP connections, due to latencies
2042and packets loss, might get closed quite violently with an error, when in
2043fact, all data has been received.
2044
2045It is usually better to use acknowledgements when transferring data,
2046to make sure the other side hasn't just died and you got the data
2047intact. This is also one reason why so many internet protocols have an
2048explicit QUIT command.
2049
2050=item I don't want to destroy the handle too early - how do I wait until
2051all data has been written?
2052
2053After writing your last bits of data, set the C<on_drain> callback
2054and destroy the handle in there - with the default setting of
2055C<low_water_mark> this will be called precisely when all data has been
2056written to the socket:
2057
2058 $handle->push_write (...);
2059 $handle->on_drain (sub {
2060 warn "all data submitted to the kernel\n";
2061 undef $handle;
2062 });
2063
2064If you just want to queue some data and then signal EOF to the other side,
2065consider using C<< ->push_shutdown >> instead.
2066
2067=item I want to contact a TLS/SSL server, I don't care about security.
2068
2069If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2070simply connect to it and then create the AnyEvent::Handle with the C<tls>
2071parameter:
2072
2073 tcp_connect $host, $port, sub {
2074 my ($fh) = @_;
2075
2076 my $handle = new AnyEvent::Handle
2077 fh => $fh,
2078 tls => "connect",
2079 on_error => sub { ... };
2080
2081 $handle->push_write (...);
2082 };
2083
2084=item I want to contact a TLS/SSL server, I do care about security.
2085
2086Then you should additionally enable certificate verification, including
2087peername verification, if the protocol you use supports it (see
2088L<AnyEvent::TLS>, C<verify_peername>).
2089
2090E.g. for HTTPS:
2091
2092 tcp_connect $host, $port, sub {
2093 my ($fh) = @_;
2094
2095 my $handle = new AnyEvent::Handle
2096 fh => $fh,
2097 peername => $host,
2098 tls => "connect",
2099 tls_ctx => { verify => 1, verify_peername => "https" },
2100 ...
2101
2102Note that you must specify the hostname you connected to (or whatever
2103"peername" the protocol needs) as the C<peername> argument, otherwise no
2104peername verification will be done.
2105
2106The above will use the system-dependent default set of trusted CA
2107certificates. If you want to check against a specific CA, add the
2108C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2109
2110 tls_ctx => {
2111 verify => 1,
2112 verify_peername => "https",
2113 ca_file => "my-ca-cert.pem",
2114 },
2115
2116=item I want to create a TLS/SSL server, how do I do that?
2117
2118Well, you first need to get a server certificate and key. You have
2119three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2120self-signed certificate (cheap. check the search engine of your choice,
2121there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2122nice program for that purpose).
2123
2124Then create a file with your private key (in PEM format, see
2125L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2126file should then look like this:
2127
2128 -----BEGIN RSA PRIVATE KEY-----
2129 ...header data
2130 ... lots of base64'y-stuff
2131 -----END RSA PRIVATE KEY-----
2132
2133 -----BEGIN CERTIFICATE-----
2134 ... lots of base64'y-stuff
2135 -----END CERTIFICATE-----
2136
2137The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2138specify this file as C<cert_file>:
2139
2140 tcp_server undef, $port, sub {
2141 my ($fh) = @_;
2142
2143 my $handle = new AnyEvent::Handle
2144 fh => $fh,
2145 tls => "accept",
2146 tls_ctx => { cert_file => "my-server-keycert.pem" },
2147 ...
2148
2149When you have intermediate CA certificates that your clients might not
2150know about, just append them to the C<cert_file>.
2151
2152=back
2153
1229 2154
1230=head1 SUBCLASSING AnyEvent::Handle 2155=head1 SUBCLASSING AnyEvent::Handle
1231 2156
1232In many cases, you might want to subclass AnyEvent::Handle. 2157In many cases, you might want to subclass AnyEvent::Handle.
1233 2158
1237=over 4 2162=over 4
1238 2163
1239=item * all constructor arguments become object members. 2164=item * all constructor arguments become object members.
1240 2165
1241At least initially, when you pass a C<tls>-argument to the constructor it 2166At least initially, when you pass a C<tls>-argument to the constructor it
1242will end up in C<< $handle->{tls} >>. Those members might be changes or 2167will end up in C<< $handle->{tls} >>. Those members might be changed or
1243mutated later on (for example C<tls> will hold the TLS connection object). 2168mutated later on (for example C<tls> will hold the TLS connection object).
1244 2169
1245=item * other object member names are prefixed with an C<_>. 2170=item * other object member names are prefixed with an C<_>.
1246 2171
1247All object members not explicitly documented (internal use) are prefixed 2172All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines