ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.62 by root, Fri Jun 6 10:49:20 2008 UTC vs.
Revision 1.189 by root, Mon Sep 28 17:30:54 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict;
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17=cut
18
19our $VERSION = 4.14;
20 4
21=head1 SYNOPSIS 5=head1 SYNOPSIS
22 6
23 use AnyEvent; 7 use AnyEvent;
24 use AnyEvent::Handle; 8 use AnyEvent::Handle;
25 9
26 my $cv = AnyEvent->condvar; 10 my $cv = AnyEvent->condvar;
27 11
28 my $handle = 12 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 13 fh => \*STDIN,
31 on_eof => sub { 14 on_error => sub {
32 $cv->broadcast; 15 my ($hdl, $fatal, $msg) = @_;
33 }, 16 warn "got error $msg\n";
17 $hdl->destroy;
18 $cv->send;
34 ); 19 };
35 20
36 # send some request line 21 # send some request line
37 $handle->push_write ("getinfo\015\012"); 22 $hdl->push_write ("getinfo\015\012");
38 23
39 # read the response line 24 # read the response line
40 $handle->push_read (line => sub { 25 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 26 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 27 warn "got line <$line>\n";
43 $cv->send; 28 $cv->send;
44 }); 29 });
45 30
46 $cv->recv; 31 $cv->recv;
47 32
48=head1 DESCRIPTION 33=head1 DESCRIPTION
49 34
50This module is a helper module to make it easier to do event-based I/O on 35This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 36filehandles.
52on sockets see L<AnyEvent::Util>. 37
38The L<AnyEvent::Intro> tutorial contains some well-documented
39AnyEvent::Handle examples.
53 40
54In the following, when the documentation refers to of "bytes" then this 41In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 42means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 43treatment of characters applies to this module as well.
57 44
45At the very minimum, you should specify C<fh> or C<connect>, and the
46C<on_error> callback.
47
58All callbacks will be invoked with the handle object as their first 48All callbacks will be invoked with the handle object as their first
59argument. 49argument.
60 50
51=cut
52
53package AnyEvent::Handle;
54
55use Scalar::Util ();
56use List::Util ();
57use Carp ();
58use Errno qw(EAGAIN EINTR);
59
60use AnyEvent (); BEGIN { AnyEvent::common_sense }
61use AnyEvent::Util qw(WSAEWOULDBLOCK);
62
63our $VERSION = $AnyEvent::VERSION;
64
65sub _load_func($) {
66 my $func = $_[0];
67
68 unless (defined &$func) {
69 my $pkg = $func;
70 do {
71 $pkg =~ s/::[^:]+$//
72 or return;
73 eval "require $pkg";
74 } until defined &$func;
75 }
76
77 \&$func
78}
79
61=head1 METHODS 80=head1 METHODS
62 81
63=over 4 82=over 4
64 83
65=item B<new (%args)> 84=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 85
67The constructor supports these arguments (all as key => value pairs). 86The constructor supports these arguments (all as C<< key => value >> pairs).
68 87
69=over 4 88=over 4
70 89
71=item fh => $filehandle [MANDATORY] 90=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
72 91
73The filehandle this L<AnyEvent::Handle> object will operate on. 92The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using 93NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 94C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
95that mode.
77 96
97=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
98
99Try to connect to the specified host and service (port), using
100C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
101default C<peername>.
102
103You have to specify either this parameter, or C<fh>, above.
104
105It is possible to push requests on the read and write queues, and modify
106properties of the stream, even while AnyEvent::Handle is connecting.
107
108When this parameter is specified, then the C<on_prepare>,
109C<on_connect_error> and C<on_connect> callbacks will be called under the
110appropriate circumstances:
111
112=over 4
113
78=item on_eof => $cb->($handle) 114=item on_prepare => $cb->($handle)
79 115
80Set the callback to be called when an end-of-file condition is detcted, 116This (rarely used) callback is called before a new connection is
81i.e. in the case of a socket, when the other side has closed the 117attempted, but after the file handle has been created. It could be used to
82connection cleanly. 118prepare the file handle with parameters required for the actual connect
119(as opposed to settings that can be changed when the connection is already
120established).
83 121
84While not mandatory, it is highly recommended to set an eof callback, 122The return value of this callback should be the connect timeout value in
85otherwise you might end up with a closed socket while you are still 123seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
86waiting for data. 124timeout is to be used).
87 125
126=item on_connect => $cb->($handle, $host, $port, $retry->())
127
128This callback is called when a connection has been successfully established.
129
130The actual numeric host and port (the socket peername) are passed as
131parameters, together with a retry callback.
132
133When, for some reason, the handle is not acceptable, then calling
134C<$retry> will continue with the next connection target (in case of
135multi-homed hosts or SRV records there can be multiple connection
136endpoints). At the time it is called the read and write queues, eof
137status, tls status and similar properties of the handle will have been
138reset.
139
140In most cases, ignoring the C<$retry> parameter is the way to go.
141
142=item on_connect_error => $cb->($handle, $message)
143
144This callback is called when the connection could not be
145established. C<$!> will contain the relevant error code, and C<$message> a
146message describing it (usually the same as C<"$!">).
147
148If this callback isn't specified, then C<on_error> will be called with a
149fatal error instead.
150
151=back
152
88=item on_error => $cb->($handle, $fatal) 153=item on_error => $cb->($handle, $fatal, $message)
89 154
90This is the error callback, which is called when, well, some error 155This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 156occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 157connect or a read error.
93 158
94Some errors are fatal (which is indicated by C<$fatal> being true). On 159Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 160fatal errors the handle object will be destroyed (by a call to C<< ->
161destroy >>) after invoking the error callback (which means you are free to
162examine the handle object). Examples of fatal errors are an EOF condition
163with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
164cases where the other side can close the connection at their will it is
165often easiest to not report C<EPIPE> errors in this callback.
166
167AnyEvent::Handle tries to find an appropriate error code for you to check
168against, but in some cases (TLS errors), this does not work well. It is
169recommended to always output the C<$message> argument in human-readable
170error messages (it's usually the same as C<"$!">).
171
96usable. Non-fatal errors can be retried by simply returning, but it is 172Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 173to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 174when this callback is invoked. Examples of non-fatal errors are timeouts
175C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 176
100On callback entrance, the value of C<$!> contains the operating system 177On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 178error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
179C<EPROTO>).
102 180
103While not mandatory, it is I<highly> recommended to set this callback, as 181While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 182you will not be notified of errors otherwise. The default simply calls
105C<croak>. 183C<croak>.
106 184
110and no read request is in the queue (unlike read queue callbacks, this 188and no read request is in the queue (unlike read queue callbacks, this
111callback will only be called when at least one octet of data is in the 189callback will only be called when at least one octet of data is in the
112read buffer). 190read buffer).
113 191
114To access (and remove data from) the read buffer, use the C<< ->rbuf >> 192To access (and remove data from) the read buffer, use the C<< ->rbuf >>
115method or access the C<$handle->{rbuf}> member directly. 193method or access the C<< $handle->{rbuf} >> member directly. Note that you
194must not enlarge or modify the read buffer, you can only remove data at
195the beginning from it.
116 196
117When an EOF condition is detected then AnyEvent::Handle will first try to 197When an EOF condition is detected then AnyEvent::Handle will first try to
118feed all the remaining data to the queued callbacks and C<on_read> before 198feed all the remaining data to the queued callbacks and C<on_read> before
119calling the C<on_eof> callback. If no progress can be made, then a fatal 199calling the C<on_eof> callback. If no progress can be made, then a fatal
120error will be raised (with C<$!> set to C<EPIPE>). 200error will be raised (with C<$!> set to C<EPIPE>).
121 201
202Note that, unlike requests in the read queue, an C<on_read> callback
203doesn't mean you I<require> some data: if there is an EOF and there
204are outstanding read requests then an error will be flagged. With an
205C<on_read> callback, the C<on_eof> callback will be invoked.
206
207=item on_eof => $cb->($handle)
208
209Set the callback to be called when an end-of-file condition is detected,
210i.e. in the case of a socket, when the other side has closed the
211connection cleanly, and there are no outstanding read requests in the
212queue (if there are read requests, then an EOF counts as an unexpected
213connection close and will be flagged as an error).
214
215For sockets, this just means that the other side has stopped sending data,
216you can still try to write data, and, in fact, one can return from the EOF
217callback and continue writing data, as only the read part has been shut
218down.
219
220If an EOF condition has been detected but no C<on_eof> callback has been
221set, then a fatal error will be raised with C<$!> set to <0>.
222
122=item on_drain => $cb->($handle) 223=item on_drain => $cb->($handle)
123 224
124This sets the callback that is called when the write buffer becomes empty 225This sets the callback that is called when the write buffer becomes empty
125(or when the callback is set and the buffer is empty already). 226(or when the callback is set and the buffer is empty already).
126 227
127To append to the write buffer, use the C<< ->push_write >> method. 228To append to the write buffer, use the C<< ->push_write >> method.
128 229
230This callback is useful when you don't want to put all of your write data
231into the queue at once, for example, when you want to write the contents
232of some file to the socket you might not want to read the whole file into
233memory and push it into the queue, but instead only read more data from
234the file when the write queue becomes empty.
235
129=item timeout => $fractional_seconds 236=item timeout => $fractional_seconds
130 237
238=item rtimeout => $fractional_seconds
239
240=item wtimeout => $fractional_seconds
241
131If non-zero, then this enables an "inactivity" timeout: whenever this many 242If non-zero, then these enables an "inactivity" timeout: whenever this
132seconds pass without a successful read or write on the underlying file 243many seconds pass without a successful read or write on the underlying
133handle, the C<on_timeout> callback will be invoked (and if that one is 244file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
134missing, an C<ETIMEDOUT> error will be raised). 245will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
246error will be raised).
247
248There are three variants of the timeouts that work fully independent
249of each other, for both read and write, just read, and just write:
250C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
251C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
252C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
135 253
136Note that timeout processing is also active when you currently do not have 254Note that timeout processing is also active when you currently do not have
137any outstanding read or write requests: If you plan to keep the connection 255any outstanding read or write requests: If you plan to keep the connection
138idle then you should disable the timout temporarily or ignore the timeout 256idle then you should disable the timout temporarily or ignore the timeout
139in the C<on_timeout> callback. 257in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
258restart the timeout.
140 259
141Zero (the default) disables this timeout. 260Zero (the default) disables this timeout.
142 261
143=item on_timeout => $cb->($handle) 262=item on_timeout => $cb->($handle)
144 263
148 267
149=item rbuf_max => <bytes> 268=item rbuf_max => <bytes>
150 269
151If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 270If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
152when the read buffer ever (strictly) exceeds this size. This is useful to 271when the read buffer ever (strictly) exceeds this size. This is useful to
153avoid denial-of-service attacks. 272avoid some forms of denial-of-service attacks.
154 273
155For example, a server accepting connections from untrusted sources should 274For example, a server accepting connections from untrusted sources should
156be configured to accept only so-and-so much data that it cannot act on 275be configured to accept only so-and-so much data that it cannot act on
157(for example, when expecting a line, an attacker could send an unlimited 276(for example, when expecting a line, an attacker could send an unlimited
158amount of data without a callback ever being called as long as the line 277amount of data without a callback ever being called as long as the line
159isn't finished). 278isn't finished).
160 279
280=item autocork => <boolean>
281
282When disabled (the default), then C<push_write> will try to immediately
283write the data to the handle, if possible. This avoids having to register
284a write watcher and wait for the next event loop iteration, but can
285be inefficient if you write multiple small chunks (on the wire, this
286disadvantage is usually avoided by your kernel's nagle algorithm, see
287C<no_delay>, but this option can save costly syscalls).
288
289When enabled, then writes will always be queued till the next event loop
290iteration. This is efficient when you do many small writes per iteration,
291but less efficient when you do a single write only per iteration (or when
292the write buffer often is full). It also increases write latency.
293
294=item no_delay => <boolean>
295
296When doing small writes on sockets, your operating system kernel might
297wait a bit for more data before actually sending it out. This is called
298the Nagle algorithm, and usually it is beneficial.
299
300In some situations you want as low a delay as possible, which can be
301accomplishd by setting this option to a true value.
302
303The default is your opertaing system's default behaviour (most likely
304enabled), this option explicitly enables or disables it, if possible.
305
306=item keepalive => <boolean>
307
308Enables (default disable) the SO_KEEPALIVE option on the stream socket:
309normally, TCP connections have no time-out once established, so TCP
310connections, once established, can stay alive forever even when the other
311side has long gone. TCP keepalives are a cheap way to take down long-lived
312TCP connections whent he other side becomes unreachable. While the default
313is OS-dependent, TCP keepalives usually kick in after around two hours,
314and, if the other side doesn't reply, take down the TCP connection some 10
315to 15 minutes later.
316
317It is harmless to specify this option for file handles that do not support
318keepalives, and enabling it on connections that are potentially long-lived
319is usually a good idea.
320
321=item oobinline => <boolean>
322
323BSD majorly fucked up the implementation of TCP urgent data. The result
324is that almost no OS implements TCP according to the specs, and every OS
325implements it slightly differently.
326
327If you want to handle TCP urgent data, then setting this flag (the default
328is enabled) gives you the most portable way of getting urgent data, by
329putting it into the stream.
330
331Since BSD emulation of OOB data on top of TCP's urgent data can have
332security implications, AnyEvent::Handle sets this flag automatically
333unless explicitly specified. Note that setting this flag after
334establishing a connection I<may> be a bit too late (data loss could
335already have occured on BSD systems), but at least it will protect you
336from most attacks.
337
161=item read_size => <bytes> 338=item read_size => <bytes>
162 339
163The default read block size (the amount of bytes this module will try to read 340The default read block size (the amount of bytes this module will
164during each (loop iteration). Default: C<8192>. 341try to read during each loop iteration, which affects memory
342requirements). Default: C<8192>.
165 343
166=item low_water_mark => <bytes> 344=item low_water_mark => <bytes>
167 345
168Sets the amount of bytes (default: C<0>) that make up an "empty" write 346Sets the amount of bytes (default: C<0>) that make up an "empty" write
169buffer: If the write reaches this size or gets even samller it is 347buffer: If the write reaches this size or gets even samller it is
170considered empty. 348considered empty.
171 349
350Sometimes it can be beneficial (for performance reasons) to add data to
351the write buffer before it is fully drained, but this is a rare case, as
352the operating system kernel usually buffers data as well, so the default
353is good in almost all cases.
354
172=item linger => <seconds> 355=item linger => <seconds>
173 356
174If non-zero (default: C<3600>), then the destructor of the 357If non-zero (default: C<3600>), then the destructor of the
175AnyEvent::Handle object will check wether there is still outstanding write 358AnyEvent::Handle object will check whether there is still outstanding
176data and will install a watcher that will write out this data. No errors 359write data and will install a watcher that will write this data to the
177will be reported (this mostly matches how the operating system treats 360socket. No errors will be reported (this mostly matches how the operating
178outstanding data at socket close time). 361system treats outstanding data at socket close time).
179 362
180This will not work for partial TLS data that could not yet been 363This will not work for partial TLS data that could not be encoded
181encoded. This data will be lost. 364yet. This data will be lost. Calling the C<stoptls> method in time might
365help.
366
367=item peername => $string
368
369A string used to identify the remote site - usually the DNS hostname
370(I<not> IDN!) used to create the connection, rarely the IP address.
371
372Apart from being useful in error messages, this string is also used in TLS
373peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
374verification will be skipped when C<peername> is not specified or
375C<undef>.
182 376
183=item tls => "accept" | "connect" | Net::SSLeay::SSL object 377=item tls => "accept" | "connect" | Net::SSLeay::SSL object
184 378
185When this parameter is given, it enables TLS (SSL) mode, that means it 379When this parameter is given, it enables TLS (SSL) mode, that means
186will start making tls handshake and will transparently encrypt/decrypt 380AnyEvent will start a TLS handshake as soon as the connection has been
187data. 381established and will transparently encrypt/decrypt data afterwards.
382
383All TLS protocol errors will be signalled as C<EPROTO>, with an
384appropriate error message.
188 385
189TLS mode requires Net::SSLeay to be installed (it will be loaded 386TLS mode requires Net::SSLeay to be installed (it will be loaded
190automatically when you try to create a TLS handle). 387automatically when you try to create a TLS handle): this module doesn't
388have a dependency on that module, so if your module requires it, you have
389to add the dependency yourself.
191 390
192For the TLS server side, use C<accept>, and for the TLS client side of a 391Unlike TCP, TLS has a server and client side: for the TLS server side, use
193connection, use C<connect> mode. 392C<accept>, and for the TLS client side of a connection, use C<connect>
393mode.
194 394
195You can also provide your own TLS connection object, but you have 395You can also provide your own TLS connection object, but you have
196to make sure that you call either C<Net::SSLeay::set_connect_state> 396to make sure that you call either C<Net::SSLeay::set_connect_state>
197or C<Net::SSLeay::set_accept_state> on it before you pass it to 397or C<Net::SSLeay::set_accept_state> on it before you pass it to
198AnyEvent::Handle. 398AnyEvent::Handle. Also, this module will take ownership of this connection
399object.
199 400
401At some future point, AnyEvent::Handle might switch to another TLS
402implementation, then the option to use your own session object will go
403away.
404
405B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
406passing in the wrong integer will lead to certain crash. This most often
407happens when one uses a stylish C<< tls => 1 >> and is surprised about the
408segmentation fault.
409
200See the C<starttls> method if you need to start TLs negotiation later. 410See the C<< ->starttls >> method for when need to start TLS negotiation later.
201 411
202=item tls_ctx => $ssl_ctx 412=item tls_ctx => $anyevent_tls
203 413
204Use the given Net::SSLeay::CTX object to create the new TLS connection 414Use the given C<AnyEvent::TLS> object to create the new TLS connection
205(unless a connection object was specified directly). If this parameter is 415(unless a connection object was specified directly). If this parameter is
206missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 416missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
207 417
418Instead of an object, you can also specify a hash reference with C<< key
419=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
420new TLS context object.
421
422=item on_starttls => $cb->($handle, $success[, $error_message])
423
424This callback will be invoked when the TLS/SSL handshake has finished. If
425C<$success> is true, then the TLS handshake succeeded, otherwise it failed
426(C<on_stoptls> will not be called in this case).
427
428The session in C<< $handle->{tls} >> can still be examined in this
429callback, even when the handshake was not successful.
430
431TLS handshake failures will not cause C<on_error> to be invoked when this
432callback is in effect, instead, the error message will be passed to C<on_starttls>.
433
434Without this callback, handshake failures lead to C<on_error> being
435called, as normal.
436
437Note that you cannot call C<starttls> right again in this callback. If you
438need to do that, start an zero-second timer instead whose callback can
439then call C<< ->starttls >> again.
440
441=item on_stoptls => $cb->($handle)
442
443When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
444set, then it will be invoked after freeing the TLS session. If it is not,
445then a TLS shutdown condition will be treated like a normal EOF condition
446on the handle.
447
448The session in C<< $handle->{tls} >> can still be examined in this
449callback.
450
451This callback will only be called on TLS shutdowns, not when the
452underlying handle signals EOF.
453
208=item json => JSON or JSON::XS object 454=item json => JSON or JSON::XS object
209 455
210This is the json coder object used by the C<json> read and write types. 456This is the json coder object used by the C<json> read and write types.
211 457
212If you don't supply it, then AnyEvent::Handle will create and use a 458If you don't supply it, then AnyEvent::Handle will create and use a
213suitable one, which will write and expect UTF-8 encoded JSON texts. 459suitable one (on demand), which will write and expect UTF-8 encoded JSON
460texts.
214 461
215Note that you are responsible to depend on the JSON module if you want to 462Note that you are responsible to depend on the JSON module if you want to
216use this functionality, as AnyEvent does not have a dependency itself. 463use this functionality, as AnyEvent does not have a dependency itself.
217 464
218=item filter_r => $cb
219
220=item filter_w => $cb
221
222These exist, but are undocumented at this time.
223
224=back 465=back
225 466
226=cut 467=cut
227 468
228sub new { 469sub new {
229 my $class = shift; 470 my $class = shift;
230
231 my $self = bless { @_ }, $class; 471 my $self = bless { @_ }, $class;
232 472
233 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 473 if ($self->{fh}) {
474 $self->_start;
475 return unless $self->{fh}; # could be gone by now
476
477 } elsif ($self->{connect}) {
478 require AnyEvent::Socket;
479
480 $self->{peername} = $self->{connect}[0]
481 unless exists $self->{peername};
482
483 $self->{_skip_drain_rbuf} = 1;
484
485 {
486 Scalar::Util::weaken (my $self = $self);
487
488 $self->{_connect} =
489 AnyEvent::Socket::tcp_connect (
490 $self->{connect}[0],
491 $self->{connect}[1],
492 sub {
493 my ($fh, $host, $port, $retry) = @_;
494
495 if ($fh) {
496 $self->{fh} = $fh;
497
498 delete $self->{_skip_drain_rbuf};
499 $self->_start;
500
501 $self->{on_connect}
502 and $self->{on_connect}($self, $host, $port, sub {
503 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
504 $self->{_skip_drain_rbuf} = 1;
505 &$retry;
506 });
507
508 } else {
509 if ($self->{on_connect_error}) {
510 $self->{on_connect_error}($self, "$!");
511 $self->destroy;
512 } else {
513 $self->_error ($!, 1);
514 }
515 }
516 },
517 sub {
518 local $self->{fh} = $_[0];
519
520 $self->{on_prepare}
521 ? $self->{on_prepare}->($self)
522 : ()
523 }
524 );
525 }
526
527 } else {
528 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
529 }
530
531 $self
532}
533
534sub _start {
535 my ($self) = @_;
234 536
235 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 537 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
236 538
237 if ($self->{tls}) { 539 $self->{_activity} =
238 require Net::SSLeay; 540 $self->{_ractivity} =
541 $self->{_wactivity} = AE::now;
542
543 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
544 $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
545 $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
546
547 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
548 $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
549
550 $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
551
239 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 552 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
240 } 553 if $self->{tls};
241 554
242 $self->{_activity} = AnyEvent->now;
243 $self->_timeout;
244
245 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 555 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
246 556
247 $self 557 $self->start_read
248} 558 if $self->{on_read} || @{ $self->{_queue} };
249 559
250sub _shutdown { 560 $self->_drain_wbuf;
251 my ($self) = @_;
252
253 delete $self->{_tw};
254 delete $self->{_rw};
255 delete $self->{_ww};
256 delete $self->{fh};
257
258 $self->stoptls;
259} 561}
260 562
261sub _error { 563sub _error {
262 my ($self, $errno, $fatal) = @_; 564 my ($self, $errno, $fatal, $message) = @_;
263
264 $self->_shutdown
265 if $fatal;
266 565
267 $! = $errno; 566 $! = $errno;
567 $message ||= "$!";
268 568
269 if ($self->{on_error}) { 569 if ($self->{on_error}) {
270 $self->{on_error}($self, $fatal); 570 $self->{on_error}($self, $fatal, $message);
271 } else { 571 $self->destroy if $fatal;
572 } elsif ($self->{fh} || $self->{connect}) {
573 $self->destroy;
272 Carp::croak "AnyEvent::Handle uncaught error: $!"; 574 Carp::croak "AnyEvent::Handle uncaught error: $message";
273 } 575 }
274} 576}
275 577
276=item $fh = $handle->fh 578=item $fh = $handle->fh
277 579
278This method returns the file handle of the L<AnyEvent::Handle> object. 580This method returns the file handle used to create the L<AnyEvent::Handle> object.
279 581
280=cut 582=cut
281 583
282sub fh { $_[0]{fh} } 584sub fh { $_[0]{fh} }
283 585
301 $_[0]{on_eof} = $_[1]; 603 $_[0]{on_eof} = $_[1];
302} 604}
303 605
304=item $handle->on_timeout ($cb) 606=item $handle->on_timeout ($cb)
305 607
306Replace the current C<on_timeout> callback, or disables the callback 608=item $handle->on_rtimeout ($cb)
307(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
308argument.
309 609
310=cut 610=item $handle->on_wtimeout ($cb)
311 611
612Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
613callback, or disables the callback (but not the timeout) if C<$cb> =
614C<undef>. See the C<timeout> constructor argument and method.
615
616=cut
617
618# see below
619
620=item $handle->autocork ($boolean)
621
622Enables or disables the current autocork behaviour (see C<autocork>
623constructor argument). Changes will only take effect on the next write.
624
625=cut
626
627sub autocork {
628 $_[0]{autocork} = $_[1];
629}
630
631=item $handle->no_delay ($boolean)
632
633Enables or disables the C<no_delay> setting (see constructor argument of
634the same name for details).
635
636=cut
637
638sub no_delay {
639 $_[0]{no_delay} = $_[1];
640
641 eval {
642 local $SIG{__DIE__};
643 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
644 if $_[0]{fh};
645 };
646}
647
648=item $handle->keepalive ($boolean)
649
650Enables or disables the C<keepalive> setting (see constructor argument of
651the same name for details).
652
653=cut
654
655sub keepalive {
656 $_[0]{keepalive} = $_[1];
657
658 eval {
659 local $SIG{__DIE__};
660 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
661 if $_[0]{fh};
662 };
663}
664
665=item $handle->oobinline ($boolean)
666
667Enables or disables the C<oobinline> setting (see constructor argument of
668the same name for details).
669
670=cut
671
672sub oobinline {
673 $_[0]{oobinline} = $_[1];
674
675 eval {
676 local $SIG{__DIE__};
677 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
678 if $_[0]{fh};
679 };
680}
681
682=item $handle->keepalive ($boolean)
683
684Enables or disables the C<keepalive> setting (see constructor argument of
685the same name for details).
686
687=cut
688
689sub keepalive {
690 $_[0]{keepalive} = $_[1];
691
692 eval {
693 local $SIG{__DIE__};
694 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
695 if $_[0]{fh};
696 };
697}
698
699=item $handle->on_starttls ($cb)
700
701Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
702
703=cut
704
705sub on_starttls {
706 $_[0]{on_starttls} = $_[1];
707}
708
709=item $handle->on_stoptls ($cb)
710
711Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
712
713=cut
714
312sub on_timeout { 715sub on_stoptls {
313 $_[0]{on_timeout} = $_[1]; 716 $_[0]{on_stoptls} = $_[1];
717}
718
719=item $handle->rbuf_max ($max_octets)
720
721Configures the C<rbuf_max> setting (C<undef> disables it).
722
723=cut
724
725sub rbuf_max {
726 $_[0]{rbuf_max} = $_[1];
314} 727}
315 728
316############################################################################# 729#############################################################################
317 730
318=item $handle->timeout ($seconds) 731=item $handle->timeout ($seconds)
319 732
733=item $handle->rtimeout ($seconds)
734
735=item $handle->wtimeout ($seconds)
736
320Configures (or disables) the inactivity timeout. 737Configures (or disables) the inactivity timeout.
321 738
322=cut 739=item $handle->timeout_reset
323 740
324sub timeout { 741=item $handle->rtimeout_reset
742
743=item $handle->wtimeout_reset
744
745Reset the activity timeout, as if data was received or sent.
746
747These methods are cheap to call.
748
749=cut
750
751for my $dir ("", "r", "w") {
752 my $timeout = "${dir}timeout";
753 my $tw = "_${dir}tw";
754 my $on_timeout = "on_${dir}timeout";
755 my $activity = "_${dir}activity";
756 my $cb;
757
758 *$on_timeout = sub {
759 $_[0]{$on_timeout} = $_[1];
760 };
761
762 *$timeout = sub {
325 my ($self, $timeout) = @_; 763 my ($self, $new_value) = @_;
326 764
327 $self->{timeout} = $timeout; 765 $self->{$timeout} = $new_value;
328 $self->_timeout; 766 delete $self->{$tw}; &$cb;
329} 767 };
330 768
769 *{"${dir}timeout_reset"} = sub {
770 $_[0]{$activity} = AE::now;
771 };
772
773 # main workhorse:
331# reset the timeout watcher, as neccessary 774 # reset the timeout watcher, as neccessary
332# also check for time-outs 775 # also check for time-outs
333sub _timeout { 776 $cb = sub {
334 my ($self) = @_; 777 my ($self) = @_;
335 778
336 if ($self->{timeout}) { 779 if ($self->{$timeout} && $self->{fh}) {
337 my $NOW = AnyEvent->now; 780 my $NOW = AE::now;
338 781
339 # when would the timeout trigger? 782 # when would the timeout trigger?
340 my $after = $self->{_activity} + $self->{timeout} - $NOW; 783 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
341 784
342 # now or in the past already? 785 # now or in the past already?
343 if ($after <= 0) { 786 if ($after <= 0) {
344 $self->{_activity} = $NOW; 787 $self->{$activity} = $NOW;
345 788
346 if ($self->{on_timeout}) { 789 if ($self->{$on_timeout}) {
347 $self->{on_timeout}($self); 790 $self->{$on_timeout}($self);
348 } else { 791 } else {
349 $self->_error (&Errno::ETIMEDOUT); 792 $self->_error (Errno::ETIMEDOUT);
793 }
794
795 # callback could have changed timeout value, optimise
796 return unless $self->{$timeout};
797
798 # calculate new after
799 $after = $self->{$timeout};
350 } 800 }
351 801
352 # callback could have changed timeout value, optimise 802 Scalar::Util::weaken $self;
353 return unless $self->{timeout}; 803 return unless $self; # ->error could have destroyed $self
354 804
355 # calculate new after 805 $self->{$tw} ||= AE::timer $after, 0, sub {
356 $after = $self->{timeout}; 806 delete $self->{$tw};
807 $cb->($self);
808 };
809 } else {
810 delete $self->{$tw};
357 } 811 }
358
359 Scalar::Util::weaken $self;
360 return unless $self; # ->error could have destroyed $self
361
362 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
363 delete $self->{_tw};
364 $self->_timeout;
365 });
366 } else {
367 delete $self->{_tw};
368 } 812 }
369} 813}
370 814
371############################################################################# 815#############################################################################
372 816
396 my ($self, $cb) = @_; 840 my ($self, $cb) = @_;
397 841
398 $self->{on_drain} = $cb; 842 $self->{on_drain} = $cb;
399 843
400 $cb->($self) 844 $cb->($self)
401 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 845 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
402} 846}
403 847
404=item $handle->push_write ($data) 848=item $handle->push_write ($data)
405 849
406Queues the given scalar to be written. You can push as much data as you 850Queues the given scalar to be written. You can push as much data as you
417 Scalar::Util::weaken $self; 861 Scalar::Util::weaken $self;
418 862
419 my $cb = sub { 863 my $cb = sub {
420 my $len = syswrite $self->{fh}, $self->{wbuf}; 864 my $len = syswrite $self->{fh}, $self->{wbuf};
421 865
422 if ($len >= 0) { 866 if (defined $len) {
423 substr $self->{wbuf}, 0, $len, ""; 867 substr $self->{wbuf}, 0, $len, "";
424 868
425 $self->{_activity} = AnyEvent->now; 869 $self->{_activity} = $self->{_wactivity} = AE::now;
426 870
427 $self->{on_drain}($self) 871 $self->{on_drain}($self)
428 if $self->{low_water_mark} >= length $self->{wbuf} 872 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
429 && $self->{on_drain}; 873 && $self->{on_drain};
430 874
431 delete $self->{_ww} unless length $self->{wbuf}; 875 delete $self->{_ww} unless length $self->{wbuf};
432 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 876 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
433 $self->_error ($!, 1); 877 $self->_error ($!, 1);
434 } 878 }
435 }; 879 };
436 880
437 # try to write data immediately 881 # try to write data immediately
438 $cb->(); 882 $cb->() unless $self->{autocork};
439 883
440 # if still data left in wbuf, we need to poll 884 # if still data left in wbuf, we need to poll
441 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 885 $self->{_ww} = AE::io $self->{fh}, 1, $cb
442 if length $self->{wbuf}; 886 if length $self->{wbuf};
443 }; 887 };
444} 888}
445 889
446our %WH; 890our %WH;
447 891
892# deprecated
448sub register_write_type($$) { 893sub register_write_type($$) {
449 $WH{$_[0]} = $_[1]; 894 $WH{$_[0]} = $_[1];
450} 895}
451 896
452sub push_write { 897sub push_write {
453 my $self = shift; 898 my $self = shift;
454 899
455 if (@_ > 1) { 900 if (@_ > 1) {
456 my $type = shift; 901 my $type = shift;
457 902
903 @_ = ($WH{$type} ||= _load_func "$type\::anyevent_write_type"
458 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 904 or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_write")
459 ->($self, @_); 905 ->($self, @_);
460 } 906 }
461 907
462 if ($self->{filter_w}) { 908 if ($self->{tls}) {
463 $self->{filter_w}($self, \$_[0]); 909 $self->{_tls_wbuf} .= $_[0];
910 &_dotls ($self) if $self->{fh};
464 } else { 911 } else {
465 $self->{wbuf} .= $_[0]; 912 $self->{wbuf} .= $_[0];
466 $self->_drain_wbuf; 913 $self->_drain_wbuf if $self->{fh};
467 } 914 }
468} 915}
469 916
470=item $handle->push_write (type => @args) 917=item $handle->push_write (type => @args)
471 918
472Instead of formatting your data yourself, you can also let this module do 919Instead of formatting your data yourself, you can also let this module
473the job by specifying a type and type-specific arguments. 920do the job by specifying a type and type-specific arguments. You
921can also specify the (fully qualified) name of a package, in which
922case AnyEvent tries to load the package and then expects to find the
923C<anyevent_read_type> function inside (see "custom write types", below).
474 924
475Predefined types are (if you have ideas for additional types, feel free to 925Predefined types are (if you have ideas for additional types, feel free to
476drop by and tell us): 926drop by and tell us):
477 927
478=over 4 928=over 4
485=cut 935=cut
486 936
487register_write_type netstring => sub { 937register_write_type netstring => sub {
488 my ($self, $string) = @_; 938 my ($self, $string) = @_;
489 939
490 sprintf "%d:%s,", (length $string), $string 940 (length $string) . ":$string,"
491}; 941};
492 942
493=item packstring => $format, $data 943=item packstring => $format, $data
494 944
495An octet string prefixed with an encoded length. The encoding C<$format> 945An octet string prefixed with an encoded length. The encoding C<$format>
500=cut 950=cut
501 951
502register_write_type packstring => sub { 952register_write_type packstring => sub {
503 my ($self, $format, $string) = @_; 953 my ($self, $format, $string) = @_;
504 954
505 pack "$format/a", $string 955 pack "$format/a*", $string
506}; 956};
507 957
508=item json => $array_or_hashref 958=item json => $array_or_hashref
509 959
510Encodes the given hash or array reference into a JSON object. Unless you 960Encodes the given hash or array reference into a JSON object. Unless you
535Other languages could read single lines terminated by a newline and pass 985Other languages could read single lines terminated by a newline and pass
536this line into their JSON decoder of choice. 986this line into their JSON decoder of choice.
537 987
538=cut 988=cut
539 989
990sub json_coder() {
991 eval { require JSON::XS; JSON::XS->new->utf8 }
992 || do { require JSON; JSON->new->utf8 }
993}
994
540register_write_type json => sub { 995register_write_type json => sub {
541 my ($self, $ref) = @_; 996 my ($self, $ref) = @_;
542 997
543 require JSON; 998 my $json = $self->{json} ||= json_coder;
544 999
545 $self->{json} ? $self->{json}->encode ($ref) 1000 $json->encode ($ref)
546 : JSON::encode_json ($ref)
547}; 1001};
548 1002
1003=item storable => $reference
1004
1005Freezes the given reference using L<Storable> and writes it to the
1006handle. Uses the C<nfreeze> format.
1007
1008=cut
1009
1010register_write_type storable => sub {
1011 my ($self, $ref) = @_;
1012
1013 require Storable;
1014
1015 pack "w/a*", Storable::nfreeze ($ref)
1016};
1017
549=back 1018=back
550 1019
551=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 1020=item $handle->push_shutdown
552 1021
553This function (not method) lets you add your own types to C<push_write>. 1022Sometimes you know you want to close the socket after writing your data
1023before it was actually written. One way to do that is to replace your
1024C<on_drain> handler by a callback that shuts down the socket (and set
1025C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1026replaces the C<on_drain> callback with:
1027
1028 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
1029
1030This simply shuts down the write side and signals an EOF condition to the
1031the peer.
1032
1033You can rely on the normal read queue and C<on_eof> handling
1034afterwards. This is the cleanest way to close a connection.
1035
1036=cut
1037
1038sub push_shutdown {
1039 my ($self) = @_;
1040
1041 delete $self->{low_water_mark};
1042 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1043}
1044
1045=item custom write types - Package::anyevent_write_type $handle, @args
1046
1047Instead of one of the predefined types, you can also specify the name of
1048a package. AnyEvent will try to load the package and then expects to find
1049a function named C<anyevent_write_type> inside. If it isn't found, it
1050progressively tries to load the parent package until it either finds the
1051function (good) or runs out of packages (bad).
1052
554Whenever the given C<type> is used, C<push_write> will invoke the code 1053Whenever the given C<type> is used, C<push_write> will the function with
555reference with the handle object and the remaining arguments. 1054the handle object and the remaining arguments.
556 1055
557The code reference is supposed to return a single octet string that will 1056The function is supposed to return a single octet string that will be
558be appended to the write buffer. 1057appended to the write buffer, so you cna mentally treat this function as a
1058"arguments to on-the-wire-format" converter.
559 1059
560Note that this is a function, and all types registered this way will be 1060Example: implement a custom write type C<join> that joins the remaining
561global, so try to use unique names. 1061arguments using the first one.
1062
1063 $handle->push_write (My::Type => " ", 1,2,3);
1064
1065 # uses the following package, which can be defined in the "My::Type" or in
1066 # the "My" modules to be auto-loaded, or just about anywhere when the
1067 # My::Type::anyevent_write_type is defined before invoking it.
1068
1069 package My::Type;
1070
1071 sub anyevent_write_type {
1072 my ($handle, $delim, @args) = @_;
1073
1074 join $delim, @args
1075 }
562 1076
563=cut 1077=cut
564 1078
565############################################################################# 1079#############################################################################
566 1080
575ways, the "simple" way, using only C<on_read> and the "complex" way, using 1089ways, the "simple" way, using only C<on_read> and the "complex" way, using
576a queue. 1090a queue.
577 1091
578In the simple case, you just install an C<on_read> callback and whenever 1092In the simple case, you just install an C<on_read> callback and whenever
579new data arrives, it will be called. You can then remove some data (if 1093new data arrives, it will be called. You can then remove some data (if
580enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 1094enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
581or not. 1095leave the data there if you want to accumulate more (e.g. when only a
1096partial message has been received so far).
582 1097
583In the more complex case, you want to queue multiple callbacks. In this 1098In the more complex case, you want to queue multiple callbacks. In this
584case, AnyEvent::Handle will call the first queued callback each time new 1099case, AnyEvent::Handle will call the first queued callback each time new
585data arrives (also the first time it is queued) and removes it when it has 1100data arrives (also the first time it is queued) and removes it when it has
586done its job (see C<push_read>, below). 1101done its job (see C<push_read>, below).
604 # handle xml 1119 # handle xml
605 }); 1120 });
606 }); 1121 });
607 }); 1122 });
608 1123
609Example 2: Implement a client for a protocol that replies either with 1124Example 2: Implement a client for a protocol that replies either with "OK"
610"OK" and another line or "ERROR" for one request, and 64 bytes for the 1125and another line or "ERROR" for the first request that is sent, and 64
611second request. Due tot he availability of a full queue, we can just 1126bytes for the second request. Due to the availability of a queue, we can
612pipeline sending both requests and manipulate the queue as necessary in 1127just pipeline sending both requests and manipulate the queue as necessary
613the callbacks: 1128in the callbacks.
614 1129
615 # request one 1130When the first callback is called and sees an "OK" response, it will
1131C<unshift> another line-read. This line-read will be queued I<before> the
113264-byte chunk callback.
1133
1134 # request one, returns either "OK + extra line" or "ERROR"
616 $handle->push_write ("request 1\015\012"); 1135 $handle->push_write ("request 1\015\012");
617 1136
618 # we expect "ERROR" or "OK" as response, so push a line read 1137 # we expect "ERROR" or "OK" as response, so push a line read
619 $handle->push_read (line => sub { 1138 $handle->push_read (line => sub {
620 # if we got an "OK", we have to _prepend_ another line, 1139 # if we got an "OK", we have to _prepend_ another line,
627 ... 1146 ...
628 }); 1147 });
629 } 1148 }
630 }); 1149 });
631 1150
632 # request two 1151 # request two, simply returns 64 octets
633 $handle->push_write ("request 2\015\012"); 1152 $handle->push_write ("request 2\015\012");
634 1153
635 # simply read 64 bytes, always 1154 # simply read 64 bytes, always
636 $handle->push_read (chunk => 64, sub { 1155 $handle->push_read (chunk => 64, sub {
637 my $response = $_[1]; 1156 my $response = $_[1];
643=cut 1162=cut
644 1163
645sub _drain_rbuf { 1164sub _drain_rbuf {
646 my ($self) = @_; 1165 my ($self) = @_;
647 1166
1167 # avoid recursion
1168 return if $self->{_skip_drain_rbuf};
648 local $self->{_in_drain} = 1; 1169 local $self->{_skip_drain_rbuf} = 1;
649
650 if (
651 defined $self->{rbuf_max}
652 && $self->{rbuf_max} < length $self->{rbuf}
653 ) {
654 return $self->_error (&Errno::ENOSPC, 1);
655 }
656 1170
657 while () { 1171 while () {
658 no strict 'refs'; 1172 # we need to use a separate tls read buffer, as we must not receive data while
1173 # we are draining the buffer, and this can only happen with TLS.
1174 $self->{rbuf} .= delete $self->{_tls_rbuf}
1175 if exists $self->{_tls_rbuf};
659 1176
660 my $len = length $self->{rbuf}; 1177 my $len = length $self->{rbuf};
661 1178
662 if (my $cb = shift @{ $self->{_queue} }) { 1179 if (my $cb = shift @{ $self->{_queue} }) {
663 unless ($cb->($self)) { 1180 unless ($cb->($self)) {
664 if ($self->{_eof}) { 1181 # no progress can be made
665 # no progress can be made (not enough data and no data forthcoming) 1182 # (not enough data and no data forthcoming)
666 $self->_error (&Errno::EPIPE, 1), last; 1183 $self->_error (Errno::EPIPE, 1), return
667 } 1184 if $self->{_eof};
668 1185
669 unshift @{ $self->{_queue} }, $cb; 1186 unshift @{ $self->{_queue} }, $cb;
670 last; 1187 last;
671 } 1188 }
672 } elsif ($self->{on_read}) { 1189 } elsif ($self->{on_read}) {
679 && !@{ $self->{_queue} } # and the queue is still empty 1196 && !@{ $self->{_queue} } # and the queue is still empty
680 && $self->{on_read} # but we still have on_read 1197 && $self->{on_read} # but we still have on_read
681 ) { 1198 ) {
682 # no further data will arrive 1199 # no further data will arrive
683 # so no progress can be made 1200 # so no progress can be made
684 $self->_error (&Errno::EPIPE, 1), last 1201 $self->_error (Errno::EPIPE, 1), return
685 if $self->{_eof}; 1202 if $self->{_eof};
686 1203
687 last; # more data might arrive 1204 last; # more data might arrive
688 } 1205 }
689 } else { 1206 } else {
690 # read side becomes idle 1207 # read side becomes idle
691 delete $self->{_rw}; 1208 delete $self->{_rw} unless $self->{tls};
692 last; 1209 last;
693 } 1210 }
694 } 1211 }
695 1212
1213 if ($self->{_eof}) {
1214 $self->{on_eof}
696 $self->{on_eof}($self) 1215 ? $self->{on_eof}($self)
697 if $self->{_eof} && $self->{on_eof}; 1216 : $self->_error (0, 1, "Unexpected end-of-file");
1217
1218 return;
1219 }
1220
1221 if (
1222 defined $self->{rbuf_max}
1223 && $self->{rbuf_max} < length $self->{rbuf}
1224 ) {
1225 $self->_error (Errno::ENOSPC, 1), return;
1226 }
698 1227
699 # may need to restart read watcher 1228 # may need to restart read watcher
700 unless ($self->{_rw}) { 1229 unless ($self->{_rw}) {
701 $self->start_read 1230 $self->start_read
702 if $self->{on_read} || @{ $self->{_queue} }; 1231 if $self->{on_read} || @{ $self->{_queue} };
713 1242
714sub on_read { 1243sub on_read {
715 my ($self, $cb) = @_; 1244 my ($self, $cb) = @_;
716 1245
717 $self->{on_read} = $cb; 1246 $self->{on_read} = $cb;
718 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1247 $self->_drain_rbuf if $cb;
719} 1248}
720 1249
721=item $handle->rbuf 1250=item $handle->rbuf
722 1251
723Returns the read buffer (as a modifiable lvalue). 1252Returns the read buffer (as a modifiable lvalue).
724 1253
725You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1254You can access the read buffer directly as the C<< ->{rbuf} >>
726you want. 1255member, if you want. However, the only operation allowed on the
1256read buffer (apart from looking at it) is removing data from its
1257beginning. Otherwise modifying or appending to it is not allowed and will
1258lead to hard-to-track-down bugs.
727 1259
728NOTE: The read buffer should only be used or modified if the C<on_read>, 1260NOTE: The read buffer should only be used or modified if the C<on_read>,
729C<push_read> or C<unshift_read> methods are used. The other read methods 1261C<push_read> or C<unshift_read> methods are used. The other read methods
730automatically manage the read buffer. 1262automatically manage the read buffer.
731 1263
767 my $cb = pop; 1299 my $cb = pop;
768 1300
769 if (@_) { 1301 if (@_) {
770 my $type = shift; 1302 my $type = shift;
771 1303
1304 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
772 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1305 or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_read")
773 ->($self, $cb, @_); 1306 ->($self, $cb, @_);
774 } 1307 }
775 1308
776 push @{ $self->{_queue} }, $cb; 1309 push @{ $self->{_queue} }, $cb;
777 $self->_drain_rbuf unless $self->{_in_drain}; 1310 $self->_drain_rbuf;
778} 1311}
779 1312
780sub unshift_read { 1313sub unshift_read {
781 my $self = shift; 1314 my $self = shift;
782 my $cb = pop; 1315 my $cb = pop;
786 1319
787 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read") 1320 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
788 ->($self, $cb, @_); 1321 ->($self, $cb, @_);
789 } 1322 }
790 1323
791
792 unshift @{ $self->{_queue} }, $cb; 1324 unshift @{ $self->{_queue} }, $cb;
793 $self->_drain_rbuf unless $self->{_in_drain}; 1325 $self->_drain_rbuf;
794} 1326}
795 1327
796=item $handle->push_read (type => @args, $cb) 1328=item $handle->push_read (type => @args, $cb)
797 1329
798=item $handle->unshift_read (type => @args, $cb) 1330=item $handle->unshift_read (type => @args, $cb)
799 1331
800Instead of providing a callback that parses the data itself you can chose 1332Instead of providing a callback that parses the data itself you can chose
801between a number of predefined parsing formats, for chunks of data, lines 1333between a number of predefined parsing formats, for chunks of data, lines
802etc. 1334etc. You can also specify the (fully qualified) name of a package, in
1335which case AnyEvent tries to load the package and then expects to find the
1336C<anyevent_read_type> function inside (see "custom read types", below).
803 1337
804Predefined types are (if you have ideas for additional types, feel free to 1338Predefined types are (if you have ideas for additional types, feel free to
805drop by and tell us): 1339drop by and tell us):
806 1340
807=over 4 1341=over 4
828 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1362 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
829 1 1363 1
830 } 1364 }
831}; 1365};
832 1366
833# compatibility with older API
834sub push_read_chunk {
835 $_[0]->push_read (chunk => $_[1], $_[2]);
836}
837
838sub unshift_read_chunk {
839 $_[0]->unshift_read (chunk => $_[1], $_[2]);
840}
841
842=item line => [$eol, ]$cb->($handle, $line, $eol) 1367=item line => [$eol, ]$cb->($handle, $line, $eol)
843 1368
844The callback will be called only once a full line (including the end of 1369The callback will be called only once a full line (including the end of
845line marker, C<$eol>) has been read. This line (excluding the end of line 1370line marker, C<$eol>) has been read. This line (excluding the end of line
846marker) will be passed to the callback as second argument (C<$line>), and 1371marker) will be passed to the callback as second argument (C<$line>), and
861=cut 1386=cut
862 1387
863register_read_type line => sub { 1388register_read_type line => sub {
864 my ($self, $cb, $eol) = @_; 1389 my ($self, $cb, $eol) = @_;
865 1390
866 $eol = qr|(\015?\012)| if @_ < 3; 1391 if (@_ < 3) {
1392 # this is more than twice as fast as the generic code below
1393 sub {
1394 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1395
1396 $cb->($_[0], $1, $2);
1397 1
1398 }
1399 } else {
867 $eol = quotemeta $eol unless ref $eol; 1400 $eol = quotemeta $eol unless ref $eol;
868 $eol = qr|^(.*?)($eol)|s; 1401 $eol = qr|^(.*?)($eol)|s;
869 1402
870 sub { 1403 sub {
871 $_[0]{rbuf} =~ s/$eol// or return; 1404 $_[0]{rbuf} =~ s/$eol// or return;
872 1405
873 $cb->($_[0], $1, $2); 1406 $cb->($_[0], $1, $2);
1407 1
874 1 1408 }
875 } 1409 }
876}; 1410};
877
878# compatibility with older API
879sub push_read_line {
880 my $self = shift;
881 $self->push_read (line => @_);
882}
883
884sub unshift_read_line {
885 my $self = shift;
886 $self->unshift_read (line => @_);
887}
888 1411
889=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1412=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
890 1413
891Makes a regex match against the regex object C<$accept> and returns 1414Makes a regex match against the regex object C<$accept> and returns
892everything up to and including the match. 1415everything up to and including the match.
942 return 1; 1465 return 1;
943 } 1466 }
944 1467
945 # reject 1468 # reject
946 if ($reject && $$rbuf =~ $reject) { 1469 if ($reject && $$rbuf =~ $reject) {
947 $self->_error (&Errno::EBADMSG); 1470 $self->_error (Errno::EBADMSG);
948 } 1471 }
949 1472
950 # skip 1473 # skip
951 if ($skip && $$rbuf =~ $skip) { 1474 if ($skip && $$rbuf =~ $skip) {
952 $data .= substr $$rbuf, 0, $+[0], ""; 1475 $data .= substr $$rbuf, 0, $+[0], "";
968 my ($self, $cb) = @_; 1491 my ($self, $cb) = @_;
969 1492
970 sub { 1493 sub {
971 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1494 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
972 if ($_[0]{rbuf} =~ /[^0-9]/) { 1495 if ($_[0]{rbuf} =~ /[^0-9]/) {
973 $self->_error (&Errno::EBADMSG); 1496 $self->_error (Errno::EBADMSG);
974 } 1497 }
975 return; 1498 return;
976 } 1499 }
977 1500
978 my $len = $1; 1501 my $len = $1;
981 my $string = $_[1]; 1504 my $string = $_[1];
982 $_[0]->unshift_read (chunk => 1, sub { 1505 $_[0]->unshift_read (chunk => 1, sub {
983 if ($_[1] eq ",") { 1506 if ($_[1] eq ",") {
984 $cb->($_[0], $string); 1507 $cb->($_[0], $string);
985 } else { 1508 } else {
986 $self->_error (&Errno::EBADMSG); 1509 $self->_error (Errno::EBADMSG);
987 } 1510 }
988 }); 1511 });
989 }); 1512 });
990 1513
991 1 1514 1
997An octet string prefixed with an encoded length. The encoding C<$format> 1520An octet string prefixed with an encoded length. The encoding C<$format>
998uses the same format as a Perl C<pack> format, but must specify a single 1521uses the same format as a Perl C<pack> format, but must specify a single
999integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1522integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1000optional C<!>, C<< < >> or C<< > >> modifier). 1523optional C<!>, C<< < >> or C<< > >> modifier).
1001 1524
1002DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1525For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1526EPP uses a prefix of C<N> (4 octtes).
1003 1527
1004Example: read a block of data prefixed by its length in BER-encoded 1528Example: read a block of data prefixed by its length in BER-encoded
1005format (very efficient). 1529format (very efficient).
1006 1530
1007 $handle->push_read (packstring => "w", sub { 1531 $handle->push_read (packstring => "w", sub {
1013register_read_type packstring => sub { 1537register_read_type packstring => sub {
1014 my ($self, $cb, $format) = @_; 1538 my ($self, $cb, $format) = @_;
1015 1539
1016 sub { 1540 sub {
1017 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1541 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1018 defined (my $len = eval { unpack $format, $_[0]->{rbuf} }) 1542 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1019 or return; 1543 or return;
1020 1544
1545 $format = length pack $format, $len;
1546
1547 # bypass unshift if we already have the remaining chunk
1548 if ($format + $len <= length $_[0]{rbuf}) {
1549 my $data = substr $_[0]{rbuf}, $format, $len;
1550 substr $_[0]{rbuf}, 0, $format + $len, "";
1551 $cb->($_[0], $data);
1552 } else {
1021 # remove prefix 1553 # remove prefix
1022 substr $_[0]->{rbuf}, 0, (length pack $format, $len), ""; 1554 substr $_[0]{rbuf}, 0, $format, "";
1023 1555
1024 # read rest 1556 # read remaining chunk
1025 $_[0]->unshift_read (chunk => $len, $cb); 1557 $_[0]->unshift_read (chunk => $len, $cb);
1558 }
1026 1559
1027 1 1560 1
1028 } 1561 }
1029}; 1562};
1030 1563
1031=item json => $cb->($handle, $hash_or_arrayref) 1564=item json => $cb->($handle, $hash_or_arrayref)
1032 1565
1033Reads a JSON object or array, decodes it and passes it to the callback. 1566Reads a JSON object or array, decodes it and passes it to the
1567callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1034 1568
1035If a C<json> object was passed to the constructor, then that will be used 1569If a C<json> object was passed to the constructor, then that will be used
1036for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1570for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1037 1571
1038This read type uses the incremental parser available with JSON version 1572This read type uses the incremental parser available with JSON version
1045the C<json> write type description, above, for an actual example. 1579the C<json> write type description, above, for an actual example.
1046 1580
1047=cut 1581=cut
1048 1582
1049register_read_type json => sub { 1583register_read_type json => sub {
1050 my ($self, $cb, $accept, $reject, $skip) = @_; 1584 my ($self, $cb) = @_;
1051 1585
1052 require JSON; 1586 my $json = $self->{json} ||= json_coder;
1053 1587
1054 my $data; 1588 my $data;
1055 my $rbuf = \$self->{rbuf}; 1589 my $rbuf = \$self->{rbuf};
1056 1590
1057 my $json = $self->{json} ||= JSON->new->utf8;
1058
1059 sub { 1591 sub {
1060 my $ref = $json->incr_parse ($self->{rbuf}); 1592 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1061 1593
1062 if ($ref) { 1594 if ($ref) {
1063 $self->{rbuf} = $json->incr_text; 1595 $self->{rbuf} = $json->incr_text;
1064 $json->incr_text = ""; 1596 $json->incr_text = "";
1065 $cb->($self, $ref); 1597 $cb->($self, $ref);
1066 1598
1067 1 1599 1
1600 } elsif ($@) {
1601 # error case
1602 $json->incr_skip;
1603
1604 $self->{rbuf} = $json->incr_text;
1605 $json->incr_text = "";
1606
1607 $self->_error (Errno::EBADMSG);
1608
1609 ()
1068 } else { 1610 } else {
1069 $self->{rbuf} = ""; 1611 $self->{rbuf} = "";
1612
1070 () 1613 ()
1071 } 1614 }
1072 } 1615 }
1073}; 1616};
1074 1617
1618=item storable => $cb->($handle, $ref)
1619
1620Deserialises a L<Storable> frozen representation as written by the
1621C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1622data).
1623
1624Raises C<EBADMSG> error if the data could not be decoded.
1625
1626=cut
1627
1628register_read_type storable => sub {
1629 my ($self, $cb) = @_;
1630
1631 require Storable;
1632
1633 sub {
1634 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1635 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1636 or return;
1637
1638 my $format = length pack "w", $len;
1639
1640 # bypass unshift if we already have the remaining chunk
1641 if ($format + $len <= length $_[0]{rbuf}) {
1642 my $data = substr $_[0]{rbuf}, $format, $len;
1643 substr $_[0]{rbuf}, 0, $format + $len, "";
1644 $cb->($_[0], Storable::thaw ($data));
1645 } else {
1646 # remove prefix
1647 substr $_[0]{rbuf}, 0, $format, "";
1648
1649 # read remaining chunk
1650 $_[0]->unshift_read (chunk => $len, sub {
1651 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1652 $cb->($_[0], $ref);
1653 } else {
1654 $self->_error (Errno::EBADMSG);
1655 }
1656 });
1657 }
1658
1659 1
1660 }
1661};
1662
1075=back 1663=back
1076 1664
1077=item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args) 1665=item custom read types - Package::anyevent_read_type $handle, $cb, @args
1078 1666
1079This function (not method) lets you add your own types to C<push_read>. 1667Instead of one of the predefined types, you can also specify the name
1668of a package. AnyEvent will try to load the package and then expects to
1669find a function named C<anyevent_read_type> inside. If it isn't found, it
1670progressively tries to load the parent package until it either finds the
1671function (good) or runs out of packages (bad).
1080 1672
1081Whenever the given C<type> is used, C<push_read> will invoke the code 1673Whenever this type is used, C<push_read> will invoke the function with the
1082reference with the handle object, the callback and the remaining 1674handle object, the original callback and the remaining arguments.
1083arguments.
1084 1675
1085The code reference is supposed to return a callback (usually a closure) 1676The function is supposed to return a callback (usually a closure) that
1086that works as a plain read callback (see C<< ->push_read ($cb) >>). 1677works as a plain read callback (see C<< ->push_read ($cb) >>), so you can
1678mentally treat the function as a "configurable read type to read callback"
1679converter.
1087 1680
1088It should invoke the passed callback when it is done reading (remember to 1681It should invoke the original callback when it is done reading (remember
1089pass C<$handle> as first argument as all other callbacks do that). 1682to pass C<$handle> as first argument as all other callbacks do that,
1683although there is no strict requirement on this).
1090 1684
1091Note that this is a function, and all types registered this way will be
1092global, so try to use unique names.
1093
1094For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>, 1685For examples, see the source of this module (F<perldoc -m
1095search for C<register_read_type>)). 1686AnyEvent::Handle>, search for C<register_read_type>)).
1096 1687
1097=item $handle->stop_read 1688=item $handle->stop_read
1098 1689
1099=item $handle->start_read 1690=item $handle->start_read
1100 1691
1106Note that AnyEvent::Handle will automatically C<start_read> for you when 1697Note that AnyEvent::Handle will automatically C<start_read> for you when
1107you change the C<on_read> callback or push/unshift a read callback, and it 1698you change the C<on_read> callback or push/unshift a read callback, and it
1108will automatically C<stop_read> for you when neither C<on_read> is set nor 1699will automatically C<stop_read> for you when neither C<on_read> is set nor
1109there are any read requests in the queue. 1700there are any read requests in the queue.
1110 1701
1702These methods will have no effect when in TLS mode (as TLS doesn't support
1703half-duplex connections).
1704
1111=cut 1705=cut
1112 1706
1113sub stop_read { 1707sub stop_read {
1114 my ($self) = @_; 1708 my ($self) = @_;
1115 1709
1116 delete $self->{_rw}; 1710 delete $self->{_rw} unless $self->{tls};
1117} 1711}
1118 1712
1119sub start_read { 1713sub start_read {
1120 my ($self) = @_; 1714 my ($self) = @_;
1121 1715
1122 unless ($self->{_rw} || $self->{_eof}) { 1716 unless ($self->{_rw} || $self->{_eof}) {
1123 Scalar::Util::weaken $self; 1717 Scalar::Util::weaken $self;
1124 1718
1125 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1719 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1126 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1720 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1127 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1721 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1128 1722
1129 if ($len > 0) { 1723 if ($len > 0) {
1130 $self->{_activity} = AnyEvent->now; 1724 $self->{_activity} = $self->{_ractivity} = AE::now;
1131 1725
1132 $self->{filter_r} 1726 if ($self->{tls}) {
1133 ? $self->{filter_r}($self, $rbuf) 1727 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1134 : $self->{_in_drain} || $self->_drain_rbuf; 1728
1729 &_dotls ($self);
1730 } else {
1731 $self->_drain_rbuf;
1732 }
1135 1733
1136 } elsif (defined $len) { 1734 } elsif (defined $len) {
1137 delete $self->{_rw}; 1735 delete $self->{_rw};
1138 $self->{_eof} = 1; 1736 $self->{_eof} = 1;
1139 $self->_drain_rbuf unless $self->{_in_drain}; 1737 $self->_drain_rbuf;
1140 1738
1141 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1739 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1142 return $self->_error ($!, 1); 1740 return $self->_error ($!, 1);
1143 } 1741 }
1144 }); 1742 };
1145 } 1743 }
1146} 1744}
1147 1745
1746our $ERROR_SYSCALL;
1747our $ERROR_WANT_READ;
1748
1749sub _tls_error {
1750 my ($self, $err) = @_;
1751
1752 return $self->_error ($!, 1)
1753 if $err == Net::SSLeay::ERROR_SYSCALL ();
1754
1755 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1756
1757 # reduce error string to look less scary
1758 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1759
1760 if ($self->{_on_starttls}) {
1761 (delete $self->{_on_starttls})->($self, undef, $err);
1762 &_freetls;
1763 } else {
1764 &_freetls;
1765 $self->_error (Errno::EPROTO, 1, $err);
1766 }
1767}
1768
1769# poll the write BIO and send the data if applicable
1770# also decode read data if possible
1771# this is basiclaly our TLS state machine
1772# more efficient implementations are possible with openssl,
1773# but not with the buggy and incomplete Net::SSLeay.
1148sub _dotls { 1774sub _dotls {
1149 my ($self) = @_; 1775 my ($self) = @_;
1150 1776
1151 my $buf; 1777 my $tmp;
1152 1778
1153 if (length $self->{_tls_wbuf}) { 1779 if (length $self->{_tls_wbuf}) {
1154 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1780 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1155 substr $self->{_tls_wbuf}, 0, $len, ""; 1781 substr $self->{_tls_wbuf}, 0, $tmp, "";
1156 } 1782 }
1157 }
1158 1783
1784 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1785 return $self->_tls_error ($tmp)
1786 if $tmp != $ERROR_WANT_READ
1787 && ($tmp != $ERROR_SYSCALL || $!);
1788 }
1789
1790 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1791 unless (length $tmp) {
1792 $self->{_on_starttls}
1793 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1794 &_freetls;
1795
1796 if ($self->{on_stoptls}) {
1797 $self->{on_stoptls}($self);
1798 return;
1799 } else {
1800 # let's treat SSL-eof as we treat normal EOF
1801 delete $self->{_rw};
1802 $self->{_eof} = 1;
1803 }
1804 }
1805
1806 $self->{_tls_rbuf} .= $tmp;
1807 $self->_drain_rbuf;
1808 $self->{tls} or return; # tls session might have gone away in callback
1809 }
1810
1811 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1812 return $self->_tls_error ($tmp)
1813 if $tmp != $ERROR_WANT_READ
1814 && ($tmp != $ERROR_SYSCALL || $!);
1815
1159 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1816 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1160 $self->{wbuf} .= $buf; 1817 $self->{wbuf} .= $tmp;
1161 $self->_drain_wbuf; 1818 $self->_drain_wbuf;
1162 } 1819 }
1163 1820
1164 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1821 $self->{_on_starttls}
1165 if (length $buf) { 1822 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1166 $self->{rbuf} .= $buf; 1823 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1167 $self->_drain_rbuf unless $self->{_in_drain};
1168 } else {
1169 # let's treat SSL-eof as we treat normal EOF
1170 $self->{_eof} = 1;
1171 $self->_shutdown;
1172 return;
1173 }
1174 }
1175
1176 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1177
1178 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1179 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1180 return $self->_error ($!, 1);
1181 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1182 return $self->_error (&Errno::EIO, 1);
1183 }
1184
1185 # all others are fine for our purposes
1186 }
1187} 1824}
1188 1825
1189=item $handle->starttls ($tls[, $tls_ctx]) 1826=item $handle->starttls ($tls[, $tls_ctx])
1190 1827
1191Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1828Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1192object is created, you can also do that at a later time by calling 1829object is created, you can also do that at a later time by calling
1193C<starttls>. 1830C<starttls>.
1194 1831
1832Starting TLS is currently an asynchronous operation - when you push some
1833write data and then call C<< ->starttls >> then TLS negotiation will start
1834immediately, after which the queued write data is then sent.
1835
1195The first argument is the same as the C<tls> constructor argument (either 1836The first argument is the same as the C<tls> constructor argument (either
1196C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1837C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1197 1838
1198The second argument is the optional C<Net::SSLeay::CTX> object that is 1839The second argument is the optional C<AnyEvent::TLS> object that is used
1199used when AnyEvent::Handle has to create its own TLS connection object. 1840when AnyEvent::Handle has to create its own TLS connection object, or
1841a hash reference with C<< key => value >> pairs that will be used to
1842construct a new context.
1200 1843
1201The TLS connection object will end up in C<< $handle->{tls} >> after this 1844The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1202call and can be used or changed to your liking. Note that the handshake 1845context in C<< $handle->{tls_ctx} >> after this call and can be used or
1203might have already started when this function returns. 1846changed to your liking. Note that the handshake might have already started
1847when this function returns.
1204 1848
1849Due to bugs in OpenSSL, it might or might not be possible to do multiple
1850handshakes on the same stream. Best do not attempt to use the stream after
1851stopping TLS.
1852
1205=cut 1853=cut
1854
1855our %TLS_CACHE; #TODO not yet documented, should we?
1206 1856
1207sub starttls { 1857sub starttls {
1208 my ($self, $ssl, $ctx) = @_; 1858 my ($self, $tls, $ctx) = @_;
1209 1859
1210 $self->stoptls; 1860 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1861 if $self->{tls};
1211 1862
1212 if ($ssl eq "accept") { 1863 $self->{tls} = $tls;
1213 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1864 $self->{tls_ctx} = $ctx if @_ > 2;
1214 Net::SSLeay::set_accept_state ($ssl); 1865
1215 } elsif ($ssl eq "connect") { 1866 return unless $self->{fh};
1216 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1867
1217 Net::SSLeay::set_connect_state ($ssl); 1868 require Net::SSLeay;
1869
1870 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1871 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1872
1873 $tls = delete $self->{tls};
1874 $ctx = $self->{tls_ctx};
1875
1876 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1877
1878 if ("HASH" eq ref $ctx) {
1879 require AnyEvent::TLS;
1880
1881 if ($ctx->{cache}) {
1882 my $key = $ctx+0;
1883 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1884 } else {
1885 $ctx = new AnyEvent::TLS %$ctx;
1886 }
1887 }
1218 } 1888
1219 1889 $self->{tls_ctx} = $ctx || TLS_CTX ();
1220 $self->{tls} = $ssl; 1890 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1221 1891
1222 # basically, this is deep magic (because SSL_read should have the same issues) 1892 # basically, this is deep magic (because SSL_read should have the same issues)
1223 # but the openssl maintainers basically said: "trust us, it just works". 1893 # but the openssl maintainers basically said: "trust us, it just works".
1224 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1894 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1225 # and mismaintained ssleay-module doesn't even offer them). 1895 # and mismaintained ssleay-module doesn't even offer them).
1226 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1896 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1897 #
1898 # in short: this is a mess.
1899 #
1900 # note that we do not try to keep the length constant between writes as we are required to do.
1901 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1902 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1903 # have identity issues in that area.
1227 Net::SSLeay::CTX_set_mode ($self->{tls}, 1904# Net::SSLeay::CTX_set_mode ($ssl,
1228 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1905# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1229 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1906# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1907 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1230 1908
1231 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1909 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1232 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1910 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1233 1911
1912 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1913
1234 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1914 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1235 1915
1236 $self->{filter_w} = sub { 1916 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1237 $_[0]{_tls_wbuf} .= ${$_[1]}; 1917 if $self->{on_starttls};
1238 &_dotls; 1918
1239 }; 1919 &_dotls; # need to trigger the initial handshake
1240 $self->{filter_r} = sub { 1920 $self->start_read; # make sure we actually do read
1241 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1242 &_dotls;
1243 };
1244} 1921}
1245 1922
1246=item $handle->stoptls 1923=item $handle->stoptls
1247 1924
1248Destroys the SSL connection, if any. Partial read or write data will be 1925Shuts down the SSL connection - this makes a proper EOF handshake by
1249lost. 1926sending a close notify to the other side, but since OpenSSL doesn't
1927support non-blocking shut downs, it is not guarenteed that you can re-use
1928the stream afterwards.
1250 1929
1251=cut 1930=cut
1252 1931
1253sub stoptls { 1932sub stoptls {
1254 my ($self) = @_; 1933 my ($self) = @_;
1255 1934
1256 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1935 if ($self->{tls}) {
1936 Net::SSLeay::shutdown ($self->{tls});
1257 1937
1258 delete $self->{_rbio}; 1938 &_dotls;
1259 delete $self->{_wbio}; 1939
1260 delete $self->{_tls_wbuf}; 1940# # we don't give a shit. no, we do, but we can't. no...#d#
1261 delete $self->{filter_r}; 1941# # we, we... have to use openssl :/#d#
1262 delete $self->{filter_w}; 1942# &_freetls;#d#
1943 }
1944}
1945
1946sub _freetls {
1947 my ($self) = @_;
1948
1949 return unless $self->{tls};
1950
1951 $self->{tls_ctx}->_put_session (delete $self->{tls})
1952 if $self->{tls} > 0;
1953
1954 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1263} 1955}
1264 1956
1265sub DESTROY { 1957sub DESTROY {
1266 my $self = shift; 1958 my ($self) = @_;
1267 1959
1268 $self->stoptls; 1960 &_freetls;
1269 1961
1270 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1962 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1271 1963
1272 if ($linger && length $self->{wbuf}) { 1964 if ($linger && length $self->{wbuf} && $self->{fh}) {
1273 my $fh = delete $self->{fh}; 1965 my $fh = delete $self->{fh};
1274 my $wbuf = delete $self->{wbuf}; 1966 my $wbuf = delete $self->{wbuf};
1275 1967
1276 my @linger; 1968 my @linger;
1277 1969
1278 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub { 1970 push @linger, AE::io $fh, 1, sub {
1279 my $len = syswrite $fh, $wbuf, length $wbuf; 1971 my $len = syswrite $fh, $wbuf, length $wbuf;
1280 1972
1281 if ($len > 0) { 1973 if ($len > 0) {
1282 substr $wbuf, 0, $len, ""; 1974 substr $wbuf, 0, $len, "";
1283 } else { 1975 } else {
1284 @linger = (); # end 1976 @linger = (); # end
1285 } 1977 }
1286 }); 1978 };
1287 push @linger, AnyEvent->timer (after => $linger, cb => sub { 1979 push @linger, AE::timer $linger, 0, sub {
1288 @linger = (); 1980 @linger = ();
1289 }); 1981 };
1290 } 1982 }
1983}
1984
1985=item $handle->destroy
1986
1987Shuts down the handle object as much as possible - this call ensures that
1988no further callbacks will be invoked and as many resources as possible
1989will be freed. Any method you will call on the handle object after
1990destroying it in this way will be silently ignored (and it will return the
1991empty list).
1992
1993Normally, you can just "forget" any references to an AnyEvent::Handle
1994object and it will simply shut down. This works in fatal error and EOF
1995callbacks, as well as code outside. It does I<NOT> work in a read or write
1996callback, so when you want to destroy the AnyEvent::Handle object from
1997within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1998that case.
1999
2000Destroying the handle object in this way has the advantage that callbacks
2001will be removed as well, so if those are the only reference holders (as
2002is common), then one doesn't need to do anything special to break any
2003reference cycles.
2004
2005The handle might still linger in the background and write out remaining
2006data, as specified by the C<linger> option, however.
2007
2008=cut
2009
2010sub destroy {
2011 my ($self) = @_;
2012
2013 $self->DESTROY;
2014 %$self = ();
2015 bless $self, "AnyEvent::Handle::destroyed";
2016}
2017
2018sub AnyEvent::Handle::destroyed::AUTOLOAD {
2019 #nop
1291} 2020}
1292 2021
1293=item AnyEvent::Handle::TLS_CTX 2022=item AnyEvent::Handle::TLS_CTX
1294 2023
1295This function creates and returns the Net::SSLeay::CTX object used by 2024This function creates and returns the AnyEvent::TLS object used by default
1296default for TLS mode. 2025for TLS mode.
1297 2026
1298The context is created like this: 2027The context is created by calling L<AnyEvent::TLS> without any arguments.
1299
1300 Net::SSLeay::load_error_strings;
1301 Net::SSLeay::SSLeay_add_ssl_algorithms;
1302 Net::SSLeay::randomize;
1303
1304 my $CTX = Net::SSLeay::CTX_new;
1305
1306 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1307 2028
1308=cut 2029=cut
1309 2030
1310our $TLS_CTX; 2031our $TLS_CTX;
1311 2032
1312sub TLS_CTX() { 2033sub TLS_CTX() {
1313 $TLS_CTX || do { 2034 $TLS_CTX ||= do {
1314 require Net::SSLeay; 2035 require AnyEvent::TLS;
1315 2036
1316 Net::SSLeay::load_error_strings (); 2037 new AnyEvent::TLS
1317 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1318 Net::SSLeay::randomize ();
1319
1320 $TLS_CTX = Net::SSLeay::CTX_new ();
1321
1322 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1323
1324 $TLS_CTX
1325 } 2038 }
1326} 2039}
1327 2040
1328=back 2041=back
2042
2043
2044=head1 NONFREQUENTLY ASKED QUESTIONS
2045
2046=over 4
2047
2048=item I C<undef> the AnyEvent::Handle reference inside my callback and
2049still get further invocations!
2050
2051That's because AnyEvent::Handle keeps a reference to itself when handling
2052read or write callbacks.
2053
2054It is only safe to "forget" the reference inside EOF or error callbacks,
2055from within all other callbacks, you need to explicitly call the C<<
2056->destroy >> method.
2057
2058=item I get different callback invocations in TLS mode/Why can't I pause
2059reading?
2060
2061Unlike, say, TCP, TLS connections do not consist of two independent
2062communication channels, one for each direction. Or put differently. The
2063read and write directions are not independent of each other: you cannot
2064write data unless you are also prepared to read, and vice versa.
2065
2066This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
2067callback invocations when you are not expecting any read data - the reason
2068is that AnyEvent::Handle always reads in TLS mode.
2069
2070During the connection, you have to make sure that you always have a
2071non-empty read-queue, or an C<on_read> watcher. At the end of the
2072connection (or when you no longer want to use it) you can call the
2073C<destroy> method.
2074
2075=item How do I read data until the other side closes the connection?
2076
2077If you just want to read your data into a perl scalar, the easiest way
2078to achieve this is by setting an C<on_read> callback that does nothing,
2079clearing the C<on_eof> callback and in the C<on_error> callback, the data
2080will be in C<$_[0]{rbuf}>:
2081
2082 $handle->on_read (sub { });
2083 $handle->on_eof (undef);
2084 $handle->on_error (sub {
2085 my $data = delete $_[0]{rbuf};
2086 });
2087
2088The reason to use C<on_error> is that TCP connections, due to latencies
2089and packets loss, might get closed quite violently with an error, when in
2090fact, all data has been received.
2091
2092It is usually better to use acknowledgements when transferring data,
2093to make sure the other side hasn't just died and you got the data
2094intact. This is also one reason why so many internet protocols have an
2095explicit QUIT command.
2096
2097=item I don't want to destroy the handle too early - how do I wait until
2098all data has been written?
2099
2100After writing your last bits of data, set the C<on_drain> callback
2101and destroy the handle in there - with the default setting of
2102C<low_water_mark> this will be called precisely when all data has been
2103written to the socket:
2104
2105 $handle->push_write (...);
2106 $handle->on_drain (sub {
2107 warn "all data submitted to the kernel\n";
2108 undef $handle;
2109 });
2110
2111If you just want to queue some data and then signal EOF to the other side,
2112consider using C<< ->push_shutdown >> instead.
2113
2114=item I want to contact a TLS/SSL server, I don't care about security.
2115
2116If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2117simply connect to it and then create the AnyEvent::Handle with the C<tls>
2118parameter:
2119
2120 tcp_connect $host, $port, sub {
2121 my ($fh) = @_;
2122
2123 my $handle = new AnyEvent::Handle
2124 fh => $fh,
2125 tls => "connect",
2126 on_error => sub { ... };
2127
2128 $handle->push_write (...);
2129 };
2130
2131=item I want to contact a TLS/SSL server, I do care about security.
2132
2133Then you should additionally enable certificate verification, including
2134peername verification, if the protocol you use supports it (see
2135L<AnyEvent::TLS>, C<verify_peername>).
2136
2137E.g. for HTTPS:
2138
2139 tcp_connect $host, $port, sub {
2140 my ($fh) = @_;
2141
2142 my $handle = new AnyEvent::Handle
2143 fh => $fh,
2144 peername => $host,
2145 tls => "connect",
2146 tls_ctx => { verify => 1, verify_peername => "https" },
2147 ...
2148
2149Note that you must specify the hostname you connected to (or whatever
2150"peername" the protocol needs) as the C<peername> argument, otherwise no
2151peername verification will be done.
2152
2153The above will use the system-dependent default set of trusted CA
2154certificates. If you want to check against a specific CA, add the
2155C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2156
2157 tls_ctx => {
2158 verify => 1,
2159 verify_peername => "https",
2160 ca_file => "my-ca-cert.pem",
2161 },
2162
2163=item I want to create a TLS/SSL server, how do I do that?
2164
2165Well, you first need to get a server certificate and key. You have
2166three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2167self-signed certificate (cheap. check the search engine of your choice,
2168there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2169nice program for that purpose).
2170
2171Then create a file with your private key (in PEM format, see
2172L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2173file should then look like this:
2174
2175 -----BEGIN RSA PRIVATE KEY-----
2176 ...header data
2177 ... lots of base64'y-stuff
2178 -----END RSA PRIVATE KEY-----
2179
2180 -----BEGIN CERTIFICATE-----
2181 ... lots of base64'y-stuff
2182 -----END CERTIFICATE-----
2183
2184The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2185specify this file as C<cert_file>:
2186
2187 tcp_server undef, $port, sub {
2188 my ($fh) = @_;
2189
2190 my $handle = new AnyEvent::Handle
2191 fh => $fh,
2192 tls => "accept",
2193 tls_ctx => { cert_file => "my-server-keycert.pem" },
2194 ...
2195
2196When you have intermediate CA certificates that your clients might not
2197know about, just append them to the C<cert_file>.
2198
2199=back
2200
1329 2201
1330=head1 SUBCLASSING AnyEvent::Handle 2202=head1 SUBCLASSING AnyEvent::Handle
1331 2203
1332In many cases, you might want to subclass AnyEvent::Handle. 2204In many cases, you might want to subclass AnyEvent::Handle.
1333 2205
1337=over 4 2209=over 4
1338 2210
1339=item * all constructor arguments become object members. 2211=item * all constructor arguments become object members.
1340 2212
1341At least initially, when you pass a C<tls>-argument to the constructor it 2213At least initially, when you pass a C<tls>-argument to the constructor it
1342will end up in C<< $handle->{tls} >>. Those members might be changes or 2214will end up in C<< $handle->{tls} >>. Those members might be changed or
1343mutated later on (for example C<tls> will hold the TLS connection object). 2215mutated later on (for example C<tls> will hold the TLS connection object).
1344 2216
1345=item * other object member names are prefixed with an C<_>. 2217=item * other object member names are prefixed with an C<_>.
1346 2218
1347All object members not explicitly documented (internal use) are prefixed 2219All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines