ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.114 by root, Wed Jan 21 06:06:22 2009 UTC vs.
Revision 1.193 by root, Mon Mar 15 18:51:30 2010 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17=cut
18
19our $VERSION = 4.331;
20 4
21=head1 SYNOPSIS 5=head1 SYNOPSIS
22 6
23 use AnyEvent; 7 use AnyEvent;
24 use AnyEvent::Handle; 8 use AnyEvent::Handle;
25 9
26 my $cv = AnyEvent->condvar; 10 my $cv = AnyEvent->condvar;
27 11
28 my $handle = 12 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 13 fh => \*STDIN,
31 on_eof => sub { 14 on_error => sub {
15 my ($hdl, $fatal, $msg) = @_;
16 warn "got error $msg\n";
17 $hdl->destroy;
32 $cv->send; 18 $cv->send;
33 },
34 ); 19 };
35 20
36 # send some request line 21 # send some request line
37 $handle->push_write ("getinfo\015\012"); 22 $hdl->push_write ("getinfo\015\012");
38 23
39 # read the response line 24 # read the response line
40 $handle->push_read (line => sub { 25 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 26 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 27 warn "got line <$line>\n";
43 $cv->send; 28 $cv->send;
44 }); 29 });
45 30
46 $cv->recv; 31 $cv->recv;
47 32
48=head1 DESCRIPTION 33=head1 DESCRIPTION
49 34
50This module is a helper module to make it easier to do event-based I/O on 35This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 36filehandles.
52on sockets see L<AnyEvent::Util>.
53 37
54The L<AnyEvent::Intro> tutorial contains some well-documented 38The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples. 39AnyEvent::Handle examples.
56 40
57In the following, when the documentation refers to of "bytes" then this 41In the following, when the documentation refers to of "bytes" then this
58means characters. As sysread and syswrite are used for all I/O, their 42means characters. As sysread and syswrite are used for all I/O, their
59treatment of characters applies to this module as well. 43treatment of characters applies to this module as well.
60 44
45At the very minimum, you should specify C<fh> or C<connect>, and the
46C<on_error> callback.
47
61All callbacks will be invoked with the handle object as their first 48All callbacks will be invoked with the handle object as their first
62argument. 49argument.
63 50
51=cut
52
53package AnyEvent::Handle;
54
55use Scalar::Util ();
56use List::Util ();
57use Carp ();
58use Errno qw(EAGAIN EINTR);
59
60use AnyEvent (); BEGIN { AnyEvent::common_sense }
61use AnyEvent::Util qw(WSAEWOULDBLOCK);
62
63our $VERSION = $AnyEvent::VERSION;
64
65sub _load_func($) {
66 my $func = $_[0];
67
68 unless (defined &$func) {
69 my $pkg = $func;
70 do {
71 $pkg =~ s/::[^:]+$//
72 or return;
73 eval "require $pkg";
74 } until defined &$func;
75 }
76
77 \&$func
78}
79
64=head1 METHODS 80=head1 METHODS
65 81
66=over 4 82=over 4
67 83
68=item B<new (%args)> 84=item $handle = B<new> AnyEvent::Handle fh => $filehandle, key => value...
69 85
70The constructor supports these arguments (all as key => value pairs). 86The constructor supports these arguments (all as C<< key => value >> pairs).
71 87
72=over 4 88=over 4
73 89
74=item fh => $filehandle [MANDATORY] 90=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
75 91
76The filehandle this L<AnyEvent::Handle> object will operate on. 92The filehandle this L<AnyEvent::Handle> object will operate on.
77
78NOTE: The filehandle will be set to non-blocking mode (using 93NOTE: The filehandle will be set to non-blocking mode (using
79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in 94C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode. 95that mode.
81 96
97=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
98
99Try to connect to the specified host and service (port), using
100C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
101default C<peername>.
102
103You have to specify either this parameter, or C<fh>, above.
104
105It is possible to push requests on the read and write queues, and modify
106properties of the stream, even while AnyEvent::Handle is connecting.
107
108When this parameter is specified, then the C<on_prepare>,
109C<on_connect_error> and C<on_connect> callbacks will be called under the
110appropriate circumstances:
111
112=over 4
113
114=item on_prepare => $cb->($handle)
115
116This (rarely used) callback is called before a new connection is
117attempted, but after the file handle has been created. It could be used to
118prepare the file handle with parameters required for the actual connect
119(as opposed to settings that can be changed when the connection is already
120established).
121
122The return value of this callback should be the connect timeout value in
123seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
124timeout is to be used).
125
126=item on_connect => $cb->($handle, $host, $port, $retry->())
127
128This callback is called when a connection has been successfully established.
129
130The actual numeric host and port (the socket peername) are passed as
131parameters, together with a retry callback.
132
133When, for some reason, the handle is not acceptable, then calling
134C<$retry> will continue with the next connection target (in case of
135multi-homed hosts or SRV records there can be multiple connection
136endpoints). At the time it is called the read and write queues, eof
137status, tls status and similar properties of the handle will have been
138reset.
139
140In most cases, ignoring the C<$retry> parameter is the way to go.
141
142=item on_connect_error => $cb->($handle, $message)
143
144This callback is called when the connection could not be
145established. C<$!> will contain the relevant error code, and C<$message> a
146message describing it (usually the same as C<"$!">).
147
148If this callback isn't specified, then C<on_error> will be called with a
149fatal error instead.
150
151=back
152
153=item on_error => $cb->($handle, $fatal, $message)
154
155This is the error callback, which is called when, well, some error
156occured, such as not being able to resolve the hostname, failure to
157connect or a read error.
158
159Some errors are fatal (which is indicated by C<$fatal> being true). On
160fatal errors the handle object will be destroyed (by a call to C<< ->
161destroy >>) after invoking the error callback (which means you are free to
162examine the handle object). Examples of fatal errors are an EOF condition
163with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
164cases where the other side can close the connection at their will it is
165often easiest to not report C<EPIPE> errors in this callback.
166
167AnyEvent::Handle tries to find an appropriate error code for you to check
168against, but in some cases (TLS errors), this does not work well. It is
169recommended to always output the C<$message> argument in human-readable
170error messages (it's usually the same as C<"$!">).
171
172Non-fatal errors can be retried by simply returning, but it is recommended
173to simply ignore this parameter and instead abondon the handle object
174when this callback is invoked. Examples of non-fatal errors are timeouts
175C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
176
177On callback entrance, the value of C<$!> contains the operating system
178error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
179C<EPROTO>).
180
181While not mandatory, it is I<highly> recommended to set this callback, as
182you will not be notified of errors otherwise. The default simply calls
183C<croak>.
184
185=item on_read => $cb->($handle)
186
187This sets the default read callback, which is called when data arrives
188and no read request is in the queue (unlike read queue callbacks, this
189callback will only be called when at least one octet of data is in the
190read buffer).
191
192To access (and remove data from) the read buffer, use the C<< ->rbuf >>
193method or access the C<< $handle->{rbuf} >> member directly. Note that you
194must not enlarge or modify the read buffer, you can only remove data at
195the beginning from it.
196
197When an EOF condition is detected then AnyEvent::Handle will first try to
198feed all the remaining data to the queued callbacks and C<on_read> before
199calling the C<on_eof> callback. If no progress can be made, then a fatal
200error will be raised (with C<$!> set to C<EPIPE>).
201
202Note that, unlike requests in the read queue, an C<on_read> callback
203doesn't mean you I<require> some data: if there is an EOF and there
204are outstanding read requests then an error will be flagged. With an
205C<on_read> callback, the C<on_eof> callback will be invoked.
206
82=item on_eof => $cb->($handle) 207=item on_eof => $cb->($handle)
83 208
84Set the callback to be called when an end-of-file condition is detected, 209Set the callback to be called when an end-of-file condition is detected,
85i.e. in the case of a socket, when the other side has closed the 210i.e. in the case of a socket, when the other side has closed the
86connection cleanly. 211connection cleanly, and there are no outstanding read requests in the
212queue (if there are read requests, then an EOF counts as an unexpected
213connection close and will be flagged as an error).
87 214
88For sockets, this just means that the other side has stopped sending data, 215For sockets, this just means that the other side has stopped sending data,
89you can still try to write data, and, in fact, one can return from the EOF 216you can still try to write data, and, in fact, one can return from the EOF
90callback and continue writing data, as only the read part has been shut 217callback and continue writing data, as only the read part has been shut
91down. 218down.
92 219
93While not mandatory, it is I<highly> recommended to set an EOF callback,
94otherwise you might end up with a closed socket while you are still
95waiting for data.
96
97If an EOF condition has been detected but no C<on_eof> callback has been 220If an EOF condition has been detected but no C<on_eof> callback has been
98set, then a fatal error will be raised with C<$!> set to <0>. 221set, then a fatal error will be raised with C<$!> set to <0>.
99
100=item on_error => $cb->($handle, $fatal)
101
102This is the error callback, which is called when, well, some error
103occured, such as not being able to resolve the hostname, failure to
104connect or a read error.
105
106Some errors are fatal (which is indicated by C<$fatal> being true). On
107fatal errors the handle object will be shut down and will not be usable
108(but you are free to look at the current C<< ->rbuf >>). Examples of fatal
109errors are an EOF condition with active (but unsatisifable) read watchers
110(C<EPIPE>) or I/O errors.
111
112Non-fatal errors can be retried by simply returning, but it is recommended
113to simply ignore this parameter and instead abondon the handle object
114when this callback is invoked. Examples of non-fatal errors are timeouts
115C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
116
117On callback entrance, the value of C<$!> contains the operating system
118error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
119
120While not mandatory, it is I<highly> recommended to set this callback, as
121you will not be notified of errors otherwise. The default simply calls
122C<croak>.
123
124=item on_read => $cb->($handle)
125
126This sets the default read callback, which is called when data arrives
127and no read request is in the queue (unlike read queue callbacks, this
128callback will only be called when at least one octet of data is in the
129read buffer).
130
131To access (and remove data from) the read buffer, use the C<< ->rbuf >>
132method or access the C<$handle->{rbuf}> member directly.
133
134When an EOF condition is detected then AnyEvent::Handle will first try to
135feed all the remaining data to the queued callbacks and C<on_read> before
136calling the C<on_eof> callback. If no progress can be made, then a fatal
137error will be raised (with C<$!> set to C<EPIPE>).
138 222
139=item on_drain => $cb->($handle) 223=item on_drain => $cb->($handle)
140 224
141This sets the callback that is called when the write buffer becomes empty 225This sets the callback that is called when the write buffer becomes empty
142(or when the callback is set and the buffer is empty already). 226(or when the callback is set and the buffer is empty already).
149memory and push it into the queue, but instead only read more data from 233memory and push it into the queue, but instead only read more data from
150the file when the write queue becomes empty. 234the file when the write queue becomes empty.
151 235
152=item timeout => $fractional_seconds 236=item timeout => $fractional_seconds
153 237
238=item rtimeout => $fractional_seconds
239
240=item wtimeout => $fractional_seconds
241
154If non-zero, then this enables an "inactivity" timeout: whenever this many 242If non-zero, then these enables an "inactivity" timeout: whenever this
155seconds pass without a successful read or write on the underlying file 243many seconds pass without a successful read or write on the underlying
156handle, the C<on_timeout> callback will be invoked (and if that one is 244file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
157missing, a non-fatal C<ETIMEDOUT> error will be raised). 245will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
246error will be raised).
247
248There are three variants of the timeouts that work fully independent
249of each other, for both read and write, just read, and just write:
250C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
251C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
252C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
158 253
159Note that timeout processing is also active when you currently do not have 254Note that timeout processing is also active when you currently do not have
160any outstanding read or write requests: If you plan to keep the connection 255any outstanding read or write requests: If you plan to keep the connection
161idle then you should disable the timout temporarily or ignore the timeout 256idle then you should disable the timout temporarily or ignore the timeout
162in the C<on_timeout> callback, in which case AnyEvent::Handle will simply 257in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
206accomplishd by setting this option to a true value. 301accomplishd by setting this option to a true value.
207 302
208The default is your opertaing system's default behaviour (most likely 303The default is your opertaing system's default behaviour (most likely
209enabled), this option explicitly enables or disables it, if possible. 304enabled), this option explicitly enables or disables it, if possible.
210 305
306=item keepalive => <boolean>
307
308Enables (default disable) the SO_KEEPALIVE option on the stream socket:
309normally, TCP connections have no time-out once established, so TCP
310connections, once established, can stay alive forever even when the other
311side has long gone. TCP keepalives are a cheap way to take down long-lived
312TCP connections whent he other side becomes unreachable. While the default
313is OS-dependent, TCP keepalives usually kick in after around two hours,
314and, if the other side doesn't reply, take down the TCP connection some 10
315to 15 minutes later.
316
317It is harmless to specify this option for file handles that do not support
318keepalives, and enabling it on connections that are potentially long-lived
319is usually a good idea.
320
321=item oobinline => <boolean>
322
323BSD majorly fucked up the implementation of TCP urgent data. The result
324is that almost no OS implements TCP according to the specs, and every OS
325implements it slightly differently.
326
327If you want to handle TCP urgent data, then setting this flag (the default
328is enabled) gives you the most portable way of getting urgent data, by
329putting it into the stream.
330
331Since BSD emulation of OOB data on top of TCP's urgent data can have
332security implications, AnyEvent::Handle sets this flag automatically
333unless explicitly specified. Note that setting this flag after
334establishing a connection I<may> be a bit too late (data loss could
335already have occured on BSD systems), but at least it will protect you
336from most attacks.
337
211=item read_size => <bytes> 338=item read_size => <bytes>
212 339
213The default read block size (the amount of bytes this module will 340The default read block size (the amount of bytes this module will
214try to read during each loop iteration, which affects memory 341try to read during each loop iteration, which affects memory
215requirements). Default: C<8192>. 342requirements). Default: C<8192>.
235 362
236This will not work for partial TLS data that could not be encoded 363This will not work for partial TLS data that could not be encoded
237yet. This data will be lost. Calling the C<stoptls> method in time might 364yet. This data will be lost. Calling the C<stoptls> method in time might
238help. 365help.
239 366
367=item peername => $string
368
369A string used to identify the remote site - usually the DNS hostname
370(I<not> IDN!) used to create the connection, rarely the IP address.
371
372Apart from being useful in error messages, this string is also used in TLS
373peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
374verification will be skipped when C<peername> is not specified or
375C<undef>.
376
240=item tls => "accept" | "connect" | Net::SSLeay::SSL object 377=item tls => "accept" | "connect" | Net::SSLeay::SSL object
241 378
242When this parameter is given, it enables TLS (SSL) mode, that means 379When this parameter is given, it enables TLS (SSL) mode, that means
243AnyEvent will start a TLS handshake as soon as the conenction has been 380AnyEvent will start a TLS handshake as soon as the connection has been
244established and will transparently encrypt/decrypt data afterwards. 381established and will transparently encrypt/decrypt data afterwards.
382
383All TLS protocol errors will be signalled as C<EPROTO>, with an
384appropriate error message.
245 385
246TLS mode requires Net::SSLeay to be installed (it will be loaded 386TLS mode requires Net::SSLeay to be installed (it will be loaded
247automatically when you try to create a TLS handle): this module doesn't 387automatically when you try to create a TLS handle): this module doesn't
248have a dependency on that module, so if your module requires it, you have 388have a dependency on that module, so if your module requires it, you have
249to add the dependency yourself. 389to add the dependency yourself.
253mode. 393mode.
254 394
255You can also provide your own TLS connection object, but you have 395You can also provide your own TLS connection object, but you have
256to make sure that you call either C<Net::SSLeay::set_connect_state> 396to make sure that you call either C<Net::SSLeay::set_connect_state>
257or C<Net::SSLeay::set_accept_state> on it before you pass it to 397or C<Net::SSLeay::set_accept_state> on it before you pass it to
258AnyEvent::Handle. 398AnyEvent::Handle. Also, this module will take ownership of this connection
399object.
400
401At some future point, AnyEvent::Handle might switch to another TLS
402implementation, then the option to use your own session object will go
403away.
259 404
260B<IMPORTANT:> since Net::SSLeay "objects" are really only integers, 405B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
261passing in the wrong integer will lead to certain crash. This most often 406passing in the wrong integer will lead to certain crash. This most often
262happens when one uses a stylish C<< tls => 1 >> and is surprised about the 407happens when one uses a stylish C<< tls => 1 >> and is surprised about the
263segmentation fault. 408segmentation fault.
264 409
265See the C<< ->starttls >> method for when need to start TLS negotiation later. 410See the C<< ->starttls >> method for when need to start TLS negotiation later.
266 411
267=item tls_ctx => $ssl_ctx 412=item tls_ctx => $anyevent_tls
268 413
269Use the given C<Net::SSLeay::CTX> object to create the new TLS connection 414Use the given C<AnyEvent::TLS> object to create the new TLS connection
270(unless a connection object was specified directly). If this parameter is 415(unless a connection object was specified directly). If this parameter is
271missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 416missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
417
418Instead of an object, you can also specify a hash reference with C<< key
419=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
420new TLS context object.
421
422=item on_starttls => $cb->($handle, $success[, $error_message])
423
424This callback will be invoked when the TLS/SSL handshake has finished. If
425C<$success> is true, then the TLS handshake succeeded, otherwise it failed
426(C<on_stoptls> will not be called in this case).
427
428The session in C<< $handle->{tls} >> can still be examined in this
429callback, even when the handshake was not successful.
430
431TLS handshake failures will not cause C<on_error> to be invoked when this
432callback is in effect, instead, the error message will be passed to C<on_starttls>.
433
434Without this callback, handshake failures lead to C<on_error> being
435called, as normal.
436
437Note that you cannot call C<starttls> right again in this callback. If you
438need to do that, start an zero-second timer instead whose callback can
439then call C<< ->starttls >> again.
440
441=item on_stoptls => $cb->($handle)
442
443When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
444set, then it will be invoked after freeing the TLS session. If it is not,
445then a TLS shutdown condition will be treated like a normal EOF condition
446on the handle.
447
448The session in C<< $handle->{tls} >> can still be examined in this
449callback.
450
451This callback will only be called on TLS shutdowns, not when the
452underlying handle signals EOF.
272 453
273=item json => JSON or JSON::XS object 454=item json => JSON or JSON::XS object
274 455
275This is the json coder object used by the C<json> read and write types. 456This is the json coder object used by the C<json> read and write types.
276 457
285 466
286=cut 467=cut
287 468
288sub new { 469sub new {
289 my $class = shift; 470 my $class = shift;
290
291 my $self = bless { @_ }, $class; 471 my $self = bless { @_ }, $class;
292 472
293 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 473 if ($self->{fh}) {
474 $self->_start;
475 return unless $self->{fh}; # could be gone by now
476
477 } elsif ($self->{connect}) {
478 require AnyEvent::Socket;
479
480 $self->{peername} = $self->{connect}[0]
481 unless exists $self->{peername};
482
483 $self->{_skip_drain_rbuf} = 1;
484
485 {
486 Scalar::Util::weaken (my $self = $self);
487
488 $self->{_connect} =
489 AnyEvent::Socket::tcp_connect (
490 $self->{connect}[0],
491 $self->{connect}[1],
492 sub {
493 my ($fh, $host, $port, $retry) = @_;
494
495 if ($fh) {
496 $self->{fh} = $fh;
497
498 delete $self->{_skip_drain_rbuf};
499 $self->_start;
500
501 $self->{on_connect}
502 and $self->{on_connect}($self, $host, $port, sub {
503 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
504 $self->{_skip_drain_rbuf} = 1;
505 &$retry;
506 });
507
508 } else {
509 if ($self->{on_connect_error}) {
510 $self->{on_connect_error}($self, "$!");
511 $self->destroy;
512 } else {
513 $self->_error ($!, 1);
514 }
515 }
516 },
517 sub {
518 local $self->{fh} = $_[0];
519
520 $self->{on_prepare}
521 ? $self->{on_prepare}->($self)
522 : ()
523 }
524 );
525 }
526
527 } else {
528 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
529 }
530
531 $self
532}
533
534sub _start {
535 my ($self) = @_;
294 536
295 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 537 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
296 538
539 $self->{_activity} =
540 $self->{_ractivity} =
541 $self->{_wactivity} = AE::now;
542
543 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
544 $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
545 $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
546
547 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
548 $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
549
550 $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
551
297 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}) 552 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
298 if $self->{tls}; 553 if $self->{tls};
299 554
300 $self->{_activity} = AnyEvent->now;
301 $self->_timeout;
302
303 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain}; 555 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
304 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
305 556
306 $self->start_read 557 $self->start_read
307 if $self->{on_read}; 558 if $self->{on_read} || @{ $self->{_queue} };
308 559
309 $self 560 $self->_drain_wbuf;
310}
311
312sub _shutdown {
313 my ($self) = @_;
314
315 delete $self->{_tw};
316 delete $self->{_rw};
317 delete $self->{_ww};
318 delete $self->{fh};
319
320 &_freetls;
321
322 delete $self->{on_read};
323 delete $self->{_queue};
324} 561}
325 562
326sub _error { 563sub _error {
327 my ($self, $errno, $fatal) = @_; 564 my ($self, $errno, $fatal, $message) = @_;
328
329 $self->_shutdown
330 if $fatal;
331 565
332 $! = $errno; 566 $! = $errno;
567 $message ||= "$!";
333 568
334 if ($self->{on_error}) { 569 if ($self->{on_error}) {
335 $self->{on_error}($self, $fatal); 570 $self->{on_error}($self, $fatal, $message);
336 } elsif ($self->{fh}) { 571 $self->destroy if $fatal;
572 } elsif ($self->{fh} || $self->{connect}) {
573 $self->destroy;
337 Carp::croak "AnyEvent::Handle uncaught error: $!"; 574 Carp::croak "AnyEvent::Handle uncaught error: $message";
338 } 575 }
339} 576}
340 577
341=item $fh = $handle->fh 578=item $fh = $handle->fh
342 579
366 $_[0]{on_eof} = $_[1]; 603 $_[0]{on_eof} = $_[1];
367} 604}
368 605
369=item $handle->on_timeout ($cb) 606=item $handle->on_timeout ($cb)
370 607
371Replace the current C<on_timeout> callback, or disables the callback (but 608=item $handle->on_rtimeout ($cb)
372not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
373argument and method.
374 609
375=cut 610=item $handle->on_wtimeout ($cb)
376 611
377sub on_timeout { 612Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
378 $_[0]{on_timeout} = $_[1]; 613callback, or disables the callback (but not the timeout) if C<$cb> =
379} 614C<undef>. See the C<timeout> constructor argument and method.
615
616=cut
617
618# see below
380 619
381=item $handle->autocork ($boolean) 620=item $handle->autocork ($boolean)
382 621
383Enables or disables the current autocork behaviour (see C<autocork> 622Enables or disables the current autocork behaviour (see C<autocork>
384constructor argument). Changes will only take effect on the next write. 623constructor argument). Changes will only take effect on the next write.
399sub no_delay { 638sub no_delay {
400 $_[0]{no_delay} = $_[1]; 639 $_[0]{no_delay} = $_[1];
401 640
402 eval { 641 eval {
403 local $SIG{__DIE__}; 642 local $SIG{__DIE__};
404 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 643 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
644 if $_[0]{fh};
405 }; 645 };
406} 646}
407 647
648=item $handle->keepalive ($boolean)
649
650Enables or disables the C<keepalive> setting (see constructor argument of
651the same name for details).
652
653=cut
654
655sub keepalive {
656 $_[0]{keepalive} = $_[1];
657
658 eval {
659 local $SIG{__DIE__};
660 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
661 if $_[0]{fh};
662 };
663}
664
665=item $handle->oobinline ($boolean)
666
667Enables or disables the C<oobinline> setting (see constructor argument of
668the same name for details).
669
670=cut
671
672sub oobinline {
673 $_[0]{oobinline} = $_[1];
674
675 eval {
676 local $SIG{__DIE__};
677 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
678 if $_[0]{fh};
679 };
680}
681
682=item $handle->keepalive ($boolean)
683
684Enables or disables the C<keepalive> setting (see constructor argument of
685the same name for details).
686
687=cut
688
689sub keepalive {
690 $_[0]{keepalive} = $_[1];
691
692 eval {
693 local $SIG{__DIE__};
694 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
695 if $_[0]{fh};
696 };
697}
698
699=item $handle->on_starttls ($cb)
700
701Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
702
703=cut
704
705sub on_starttls {
706 $_[0]{on_starttls} = $_[1];
707}
708
709=item $handle->on_stoptls ($cb)
710
711Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
712
713=cut
714
715sub on_stoptls {
716 $_[0]{on_stoptls} = $_[1];
717}
718
719=item $handle->rbuf_max ($max_octets)
720
721Configures the C<rbuf_max> setting (C<undef> disables it).
722
723=cut
724
725sub rbuf_max {
726 $_[0]{rbuf_max} = $_[1];
727}
728
408############################################################################# 729#############################################################################
409 730
410=item $handle->timeout ($seconds) 731=item $handle->timeout ($seconds)
411 732
733=item $handle->rtimeout ($seconds)
734
735=item $handle->wtimeout ($seconds)
736
412Configures (or disables) the inactivity timeout. 737Configures (or disables) the inactivity timeout.
413 738
414=cut 739=item $handle->timeout_reset
415 740
416sub timeout { 741=item $handle->rtimeout_reset
742
743=item $handle->wtimeout_reset
744
745Reset the activity timeout, as if data was received or sent.
746
747These methods are cheap to call.
748
749=cut
750
751for my $dir ("", "r", "w") {
752 my $timeout = "${dir}timeout";
753 my $tw = "_${dir}tw";
754 my $on_timeout = "on_${dir}timeout";
755 my $activity = "_${dir}activity";
756 my $cb;
757
758 *$on_timeout = sub {
759 $_[0]{$on_timeout} = $_[1];
760 };
761
762 *$timeout = sub {
417 my ($self, $timeout) = @_; 763 my ($self, $new_value) = @_;
418 764
419 $self->{timeout} = $timeout; 765 $self->{$timeout} = $new_value;
420 $self->_timeout; 766 delete $self->{$tw}; &$cb;
421} 767 };
422 768
769 *{"${dir}timeout_reset"} = sub {
770 $_[0]{$activity} = AE::now;
771 };
772
773 # main workhorse:
423# reset the timeout watcher, as neccessary 774 # reset the timeout watcher, as neccessary
424# also check for time-outs 775 # also check for time-outs
425sub _timeout { 776 $cb = sub {
426 my ($self) = @_; 777 my ($self) = @_;
427 778
428 if ($self->{timeout}) { 779 if ($self->{$timeout} && $self->{fh}) {
429 my $NOW = AnyEvent->now; 780 my $NOW = AE::now;
430 781
431 # when would the timeout trigger? 782 # when would the timeout trigger?
432 my $after = $self->{_activity} + $self->{timeout} - $NOW; 783 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
433 784
434 # now or in the past already? 785 # now or in the past already?
435 if ($after <= 0) { 786 if ($after <= 0) {
436 $self->{_activity} = $NOW; 787 $self->{$activity} = $NOW;
437 788
438 if ($self->{on_timeout}) { 789 if ($self->{$on_timeout}) {
439 $self->{on_timeout}($self); 790 $self->{$on_timeout}($self);
440 } else { 791 } else {
441 $self->_error (&Errno::ETIMEDOUT); 792 $self->_error (Errno::ETIMEDOUT);
793 }
794
795 # callback could have changed timeout value, optimise
796 return unless $self->{$timeout};
797
798 # calculate new after
799 $after = $self->{$timeout};
442 } 800 }
443 801
444 # callback could have changed timeout value, optimise 802 Scalar::Util::weaken $self;
445 return unless $self->{timeout}; 803 return unless $self; # ->error could have destroyed $self
446 804
447 # calculate new after 805 $self->{$tw} ||= AE::timer $after, 0, sub {
448 $after = $self->{timeout}; 806 delete $self->{$tw};
807 $cb->($self);
808 };
809 } else {
810 delete $self->{$tw};
449 } 811 }
450
451 Scalar::Util::weaken $self;
452 return unless $self; # ->error could have destroyed $self
453
454 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
455 delete $self->{_tw};
456 $self->_timeout;
457 });
458 } else {
459 delete $self->{_tw};
460 } 812 }
461} 813}
462 814
463############################################################################# 815#############################################################################
464 816
479 831
480=item $handle->on_drain ($cb) 832=item $handle->on_drain ($cb)
481 833
482Sets the C<on_drain> callback or clears it (see the description of 834Sets the C<on_drain> callback or clears it (see the description of
483C<on_drain> in the constructor). 835C<on_drain> in the constructor).
836
837This method may invoke callbacks (and therefore the handle might be
838destroyed after it returns).
484 839
485=cut 840=cut
486 841
487sub on_drain { 842sub on_drain {
488 my ($self, $cb) = @_; 843 my ($self, $cb) = @_;
497 852
498Queues the given scalar to be written. You can push as much data as you 853Queues the given scalar to be written. You can push as much data as you
499want (only limited by the available memory), as C<AnyEvent::Handle> 854want (only limited by the available memory), as C<AnyEvent::Handle>
500buffers it independently of the kernel. 855buffers it independently of the kernel.
501 856
857This method may invoke callbacks (and therefore the handle might be
858destroyed after it returns).
859
502=cut 860=cut
503 861
504sub _drain_wbuf { 862sub _drain_wbuf {
505 my ($self) = @_; 863 my ($self) = @_;
506 864
509 Scalar::Util::weaken $self; 867 Scalar::Util::weaken $self;
510 868
511 my $cb = sub { 869 my $cb = sub {
512 my $len = syswrite $self->{fh}, $self->{wbuf}; 870 my $len = syswrite $self->{fh}, $self->{wbuf};
513 871
514 if ($len >= 0) { 872 if (defined $len) {
515 substr $self->{wbuf}, 0, $len, ""; 873 substr $self->{wbuf}, 0, $len, "";
516 874
517 $self->{_activity} = AnyEvent->now; 875 $self->{_activity} = $self->{_wactivity} = AE::now;
518 876
519 $self->{on_drain}($self) 877 $self->{on_drain}($self)
520 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf}) 878 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
521 && $self->{on_drain}; 879 && $self->{on_drain};
522 880
528 886
529 # try to write data immediately 887 # try to write data immediately
530 $cb->() unless $self->{autocork}; 888 $cb->() unless $self->{autocork};
531 889
532 # if still data left in wbuf, we need to poll 890 # if still data left in wbuf, we need to poll
533 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 891 $self->{_ww} = AE::io $self->{fh}, 1, $cb
534 if length $self->{wbuf}; 892 if length $self->{wbuf};
535 }; 893 };
536} 894}
537 895
538our %WH; 896our %WH;
539 897
898# deprecated
540sub register_write_type($$) { 899sub register_write_type($$) {
541 $WH{$_[0]} = $_[1]; 900 $WH{$_[0]} = $_[1];
542} 901}
543 902
544sub push_write { 903sub push_write {
545 my $self = shift; 904 my $self = shift;
546 905
547 if (@_ > 1) { 906 if (@_ > 1) {
548 my $type = shift; 907 my $type = shift;
549 908
909 @_ = ($WH{$type} ||= _load_func "$type\::anyevent_write_type"
550 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 910 or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_write")
551 ->($self, @_); 911 ->($self, @_);
552 } 912 }
553 913
914 # we downgrade here to avoid hard-to-track-down bugs,
915 # and diagnose the problem earlier and better.
916
554 if ($self->{tls}) { 917 if ($self->{tls}) {
555 $self->{_tls_wbuf} .= $_[0]; 918 utf8::downgrade $self->{_tls_wbuf} .= $_[0];
556 919 &_dotls ($self) if $self->{fh};
557 &_dotls ($self);
558 } else { 920 } else {
559 $self->{wbuf} .= $_[0]; 921 utf8::downgrade $self->{wbuf} .= $_[0];
560 $self->_drain_wbuf; 922 $self->_drain_wbuf if $self->{fh};
561 } 923 }
562} 924}
563 925
564=item $handle->push_write (type => @args) 926=item $handle->push_write (type => @args)
565 927
566Instead of formatting your data yourself, you can also let this module do 928Instead of formatting your data yourself, you can also let this module
567the job by specifying a type and type-specific arguments. 929do the job by specifying a type and type-specific arguments. You
930can also specify the (fully qualified) name of a package, in which
931case AnyEvent tries to load the package and then expects to find the
932C<anyevent_read_type> function inside (see "custom write types", below).
568 933
569Predefined types are (if you have ideas for additional types, feel free to 934Predefined types are (if you have ideas for additional types, feel free to
570drop by and tell us): 935drop by and tell us):
571 936
572=over 4 937=over 4
629Other languages could read single lines terminated by a newline and pass 994Other languages could read single lines terminated by a newline and pass
630this line into their JSON decoder of choice. 995this line into their JSON decoder of choice.
631 996
632=cut 997=cut
633 998
999sub json_coder() {
1000 eval { require JSON::XS; JSON::XS->new->utf8 }
1001 || do { require JSON; JSON->new->utf8 }
1002}
1003
634register_write_type json => sub { 1004register_write_type json => sub {
635 my ($self, $ref) = @_; 1005 my ($self, $ref) = @_;
636 1006
637 require JSON; 1007 my $json = $self->{json} ||= json_coder;
638 1008
639 $self->{json} ? $self->{json}->encode ($ref) 1009 $json->encode ($ref)
640 : JSON::encode_json ($ref)
641}; 1010};
642 1011
643=item storable => $reference 1012=item storable => $reference
644 1013
645Freezes the given reference using L<Storable> and writes it to the 1014Freezes the given reference using L<Storable> and writes it to the
655 pack "w/a*", Storable::nfreeze ($ref) 1024 pack "w/a*", Storable::nfreeze ($ref)
656}; 1025};
657 1026
658=back 1027=back
659 1028
660=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 1029=item $handle->push_shutdown
661 1030
662This function (not method) lets you add your own types to C<push_write>. 1031Sometimes you know you want to close the socket after writing your data
1032before it was actually written. One way to do that is to replace your
1033C<on_drain> handler by a callback that shuts down the socket (and set
1034C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1035replaces the C<on_drain> callback with:
1036
1037 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
1038
1039This simply shuts down the write side and signals an EOF condition to the
1040the peer.
1041
1042You can rely on the normal read queue and C<on_eof> handling
1043afterwards. This is the cleanest way to close a connection.
1044
1045This method may invoke callbacks (and therefore the handle might be
1046destroyed after it returns).
1047
1048=cut
1049
1050sub push_shutdown {
1051 my ($self) = @_;
1052
1053 delete $self->{low_water_mark};
1054 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1055}
1056
1057=item custom write types - Package::anyevent_write_type $handle, @args
1058
1059Instead of one of the predefined types, you can also specify the name of
1060a package. AnyEvent will try to load the package and then expects to find
1061a function named C<anyevent_write_type> inside. If it isn't found, it
1062progressively tries to load the parent package until it either finds the
1063function (good) or runs out of packages (bad).
1064
663Whenever the given C<type> is used, C<push_write> will invoke the code 1065Whenever the given C<type> is used, C<push_write> will the function with
664reference with the handle object and the remaining arguments. 1066the handle object and the remaining arguments.
665 1067
666The code reference is supposed to return a single octet string that will 1068The function is supposed to return a single octet string that will be
667be appended to the write buffer. 1069appended to the write buffer, so you cna mentally treat this function as a
1070"arguments to on-the-wire-format" converter.
668 1071
669Note that this is a function, and all types registered this way will be 1072Example: implement a custom write type C<join> that joins the remaining
670global, so try to use unique names. 1073arguments using the first one.
1074
1075 $handle->push_write (My::Type => " ", 1,2,3);
1076
1077 # uses the following package, which can be defined in the "My::Type" or in
1078 # the "My" modules to be auto-loaded, or just about anywhere when the
1079 # My::Type::anyevent_write_type is defined before invoking it.
1080
1081 package My::Type;
1082
1083 sub anyevent_write_type {
1084 my ($handle, $delim, @args) = @_;
1085
1086 join $delim, @args
1087 }
671 1088
672=cut 1089=cut
673 1090
674############################################################################# 1091#############################################################################
675 1092
757=cut 1174=cut
758 1175
759sub _drain_rbuf { 1176sub _drain_rbuf {
760 my ($self) = @_; 1177 my ($self) = @_;
761 1178
1179 # avoid recursion
1180 return if $self->{_skip_drain_rbuf};
762 local $self->{_in_drain} = 1; 1181 local $self->{_skip_drain_rbuf} = 1;
763
764 if (
765 defined $self->{rbuf_max}
766 && $self->{rbuf_max} < length $self->{rbuf}
767 ) {
768 $self->_error (&Errno::ENOSPC, 1), return;
769 }
770 1182
771 while () { 1183 while () {
1184 # we need to use a separate tls read buffer, as we must not receive data while
1185 # we are draining the buffer, and this can only happen with TLS.
1186 $self->{rbuf} .= delete $self->{_tls_rbuf}
1187 if exists $self->{_tls_rbuf};
1188
772 my $len = length $self->{rbuf}; 1189 my $len = length $self->{rbuf};
773 1190
774 if (my $cb = shift @{ $self->{_queue} }) { 1191 if (my $cb = shift @{ $self->{_queue} }) {
775 unless ($cb->($self)) { 1192 unless ($cb->($self)) {
776 if ($self->{_eof}) { 1193 # no progress can be made
777 # no progress can be made (not enough data and no data forthcoming) 1194 # (not enough data and no data forthcoming)
778 $self->_error (&Errno::EPIPE, 1), return; 1195 $self->_error (Errno::EPIPE, 1), return
779 } 1196 if $self->{_eof};
780 1197
781 unshift @{ $self->{_queue} }, $cb; 1198 unshift @{ $self->{_queue} }, $cb;
782 last; 1199 last;
783 } 1200 }
784 } elsif ($self->{on_read}) { 1201 } elsif ($self->{on_read}) {
791 && !@{ $self->{_queue} } # and the queue is still empty 1208 && !@{ $self->{_queue} } # and the queue is still empty
792 && $self->{on_read} # but we still have on_read 1209 && $self->{on_read} # but we still have on_read
793 ) { 1210 ) {
794 # no further data will arrive 1211 # no further data will arrive
795 # so no progress can be made 1212 # so no progress can be made
796 $self->_error (&Errno::EPIPE, 1), return 1213 $self->_error (Errno::EPIPE, 1), return
797 if $self->{_eof}; 1214 if $self->{_eof};
798 1215
799 last; # more data might arrive 1216 last; # more data might arrive
800 } 1217 }
801 } else { 1218 } else {
804 last; 1221 last;
805 } 1222 }
806 } 1223 }
807 1224
808 if ($self->{_eof}) { 1225 if ($self->{_eof}) {
809 if ($self->{on_eof}) { 1226 $self->{on_eof}
810 $self->{on_eof}($self) 1227 ? $self->{on_eof}($self)
811 } else { 1228 : $self->_error (0, 1, "Unexpected end-of-file");
812 $self->_error (0, 1); 1229
813 } 1230 return;
1231 }
1232
1233 if (
1234 defined $self->{rbuf_max}
1235 && $self->{rbuf_max} < length $self->{rbuf}
1236 ) {
1237 $self->_error (Errno::ENOSPC, 1), return;
814 } 1238 }
815 1239
816 # may need to restart read watcher 1240 # may need to restart read watcher
817 unless ($self->{_rw}) { 1241 unless ($self->{_rw}) {
818 $self->start_read 1242 $self->start_read
824 1248
825This replaces the currently set C<on_read> callback, or clears it (when 1249This replaces the currently set C<on_read> callback, or clears it (when
826the new callback is C<undef>). See the description of C<on_read> in the 1250the new callback is C<undef>). See the description of C<on_read> in the
827constructor. 1251constructor.
828 1252
1253This method may invoke callbacks (and therefore the handle might be
1254destroyed after it returns).
1255
829=cut 1256=cut
830 1257
831sub on_read { 1258sub on_read {
832 my ($self, $cb) = @_; 1259 my ($self, $cb) = @_;
833 1260
834 $self->{on_read} = $cb; 1261 $self->{on_read} = $cb;
835 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1262 $self->_drain_rbuf if $cb;
836} 1263}
837 1264
838=item $handle->rbuf 1265=item $handle->rbuf
839 1266
840Returns the read buffer (as a modifiable lvalue). 1267Returns the read buffer (as a modifiable lvalue).
841 1268
842You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1269You can access the read buffer directly as the C<< ->{rbuf} >>
843you want. 1270member, if you want. However, the only operation allowed on the
1271read buffer (apart from looking at it) is removing data from its
1272beginning. Otherwise modifying or appending to it is not allowed and will
1273lead to hard-to-track-down bugs.
844 1274
845NOTE: The read buffer should only be used or modified if the C<on_read>, 1275NOTE: The read buffer should only be used or modified if the C<on_read>,
846C<push_read> or C<unshift_read> methods are used. The other read methods 1276C<push_read> or C<unshift_read> methods are used. The other read methods
847automatically manage the read buffer. 1277automatically manage the read buffer.
848 1278
869 1299
870If enough data was available, then the callback must remove all data it is 1300If enough data was available, then the callback must remove all data it is
871interested in (which can be none at all) and return a true value. After returning 1301interested in (which can be none at all) and return a true value. After returning
872true, it will be removed from the queue. 1302true, it will be removed from the queue.
873 1303
1304These methods may invoke callbacks (and therefore the handle might be
1305destroyed after it returns).
1306
874=cut 1307=cut
875 1308
876our %RH; 1309our %RH;
877 1310
878sub register_read_type($$) { 1311sub register_read_type($$) {
884 my $cb = pop; 1317 my $cb = pop;
885 1318
886 if (@_) { 1319 if (@_) {
887 my $type = shift; 1320 my $type = shift;
888 1321
1322 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
889 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1323 or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_read")
890 ->($self, $cb, @_); 1324 ->($self, $cb, @_);
891 } 1325 }
892 1326
893 push @{ $self->{_queue} }, $cb; 1327 push @{ $self->{_queue} }, $cb;
894 $self->_drain_rbuf unless $self->{_in_drain}; 1328 $self->_drain_rbuf;
895} 1329}
896 1330
897sub unshift_read { 1331sub unshift_read {
898 my $self = shift; 1332 my $self = shift;
899 my $cb = pop; 1333 my $cb = pop;
903 1337
904 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read") 1338 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
905 ->($self, $cb, @_); 1339 ->($self, $cb, @_);
906 } 1340 }
907 1341
908
909 unshift @{ $self->{_queue} }, $cb; 1342 unshift @{ $self->{_queue} }, $cb;
910 $self->_drain_rbuf unless $self->{_in_drain}; 1343 $self->_drain_rbuf;
911} 1344}
912 1345
913=item $handle->push_read (type => @args, $cb) 1346=item $handle->push_read (type => @args, $cb)
914 1347
915=item $handle->unshift_read (type => @args, $cb) 1348=item $handle->unshift_read (type => @args, $cb)
916 1349
917Instead of providing a callback that parses the data itself you can chose 1350Instead of providing a callback that parses the data itself you can chose
918between a number of predefined parsing formats, for chunks of data, lines 1351between a number of predefined parsing formats, for chunks of data, lines
919etc. 1352etc. You can also specify the (fully qualified) name of a package, in
1353which case AnyEvent tries to load the package and then expects to find the
1354C<anyevent_read_type> function inside (see "custom read types", below).
920 1355
921Predefined types are (if you have ideas for additional types, feel free to 1356Predefined types are (if you have ideas for additional types, feel free to
922drop by and tell us): 1357drop by and tell us):
923 1358
924=over 4 1359=over 4
1048 return 1; 1483 return 1;
1049 } 1484 }
1050 1485
1051 # reject 1486 # reject
1052 if ($reject && $$rbuf =~ $reject) { 1487 if ($reject && $$rbuf =~ $reject) {
1053 $self->_error (&Errno::EBADMSG); 1488 $self->_error (Errno::EBADMSG);
1054 } 1489 }
1055 1490
1056 # skip 1491 # skip
1057 if ($skip && $$rbuf =~ $skip) { 1492 if ($skip && $$rbuf =~ $skip) {
1058 $data .= substr $$rbuf, 0, $+[0], ""; 1493 $data .= substr $$rbuf, 0, $+[0], "";
1074 my ($self, $cb) = @_; 1509 my ($self, $cb) = @_;
1075 1510
1076 sub { 1511 sub {
1077 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1512 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1078 if ($_[0]{rbuf} =~ /[^0-9]/) { 1513 if ($_[0]{rbuf} =~ /[^0-9]/) {
1079 $self->_error (&Errno::EBADMSG); 1514 $self->_error (Errno::EBADMSG);
1080 } 1515 }
1081 return; 1516 return;
1082 } 1517 }
1083 1518
1084 my $len = $1; 1519 my $len = $1;
1087 my $string = $_[1]; 1522 my $string = $_[1];
1088 $_[0]->unshift_read (chunk => 1, sub { 1523 $_[0]->unshift_read (chunk => 1, sub {
1089 if ($_[1] eq ",") { 1524 if ($_[1] eq ",") {
1090 $cb->($_[0], $string); 1525 $cb->($_[0], $string);
1091 } else { 1526 } else {
1092 $self->_error (&Errno::EBADMSG); 1527 $self->_error (Errno::EBADMSG);
1093 } 1528 }
1094 }); 1529 });
1095 }); 1530 });
1096 1531
1097 1 1532 1
1164=cut 1599=cut
1165 1600
1166register_read_type json => sub { 1601register_read_type json => sub {
1167 my ($self, $cb) = @_; 1602 my ($self, $cb) = @_;
1168 1603
1169 require JSON; 1604 my $json = $self->{json} ||= json_coder;
1170 1605
1171 my $data; 1606 my $data;
1172 my $rbuf = \$self->{rbuf}; 1607 my $rbuf = \$self->{rbuf};
1173
1174 my $json = $self->{json} ||= JSON->new->utf8;
1175 1608
1176 sub { 1609 sub {
1177 my $ref = eval { $json->incr_parse ($self->{rbuf}) }; 1610 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1178 1611
1179 if ($ref) { 1612 if ($ref) {
1187 $json->incr_skip; 1620 $json->incr_skip;
1188 1621
1189 $self->{rbuf} = $json->incr_text; 1622 $self->{rbuf} = $json->incr_text;
1190 $json->incr_text = ""; 1623 $json->incr_text = "";
1191 1624
1192 $self->_error (&Errno::EBADMSG); 1625 $self->_error (Errno::EBADMSG);
1193 1626
1194 () 1627 ()
1195 } else { 1628 } else {
1196 $self->{rbuf} = ""; 1629 $self->{rbuf} = "";
1197 1630
1234 # read remaining chunk 1667 # read remaining chunk
1235 $_[0]->unshift_read (chunk => $len, sub { 1668 $_[0]->unshift_read (chunk => $len, sub {
1236 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1669 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1237 $cb->($_[0], $ref); 1670 $cb->($_[0], $ref);
1238 } else { 1671 } else {
1239 $self->_error (&Errno::EBADMSG); 1672 $self->_error (Errno::EBADMSG);
1240 } 1673 }
1241 }); 1674 });
1242 } 1675 }
1243 1676
1244 1 1677 1
1245 } 1678 }
1246}; 1679};
1247 1680
1248=back 1681=back
1249 1682
1250=item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args) 1683=item custom read types - Package::anyevent_read_type $handle, $cb, @args
1251 1684
1252This function (not method) lets you add your own types to C<push_read>. 1685Instead of one of the predefined types, you can also specify the name
1686of a package. AnyEvent will try to load the package and then expects to
1687find a function named C<anyevent_read_type> inside. If it isn't found, it
1688progressively tries to load the parent package until it either finds the
1689function (good) or runs out of packages (bad).
1253 1690
1254Whenever the given C<type> is used, C<push_read> will invoke the code 1691Whenever this type is used, C<push_read> will invoke the function with the
1255reference with the handle object, the callback and the remaining 1692handle object, the original callback and the remaining arguments.
1256arguments.
1257 1693
1258The code reference is supposed to return a callback (usually a closure) 1694The function is supposed to return a callback (usually a closure) that
1259that works as a plain read callback (see C<< ->push_read ($cb) >>). 1695works as a plain read callback (see C<< ->push_read ($cb) >>), so you can
1696mentally treat the function as a "configurable read type to read callback"
1697converter.
1260 1698
1261It should invoke the passed callback when it is done reading (remember to 1699It should invoke the original callback when it is done reading (remember
1262pass C<$handle> as first argument as all other callbacks do that). 1700to pass C<$handle> as first argument as all other callbacks do that,
1701although there is no strict requirement on this).
1263 1702
1264Note that this is a function, and all types registered this way will be
1265global, so try to use unique names.
1266
1267For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>, 1703For examples, see the source of this module (F<perldoc -m
1268search for C<register_read_type>)). 1704AnyEvent::Handle>, search for C<register_read_type>)).
1269 1705
1270=item $handle->stop_read 1706=item $handle->stop_read
1271 1707
1272=item $handle->start_read 1708=item $handle->start_read
1273 1709
1293} 1729}
1294 1730
1295sub start_read { 1731sub start_read {
1296 my ($self) = @_; 1732 my ($self) = @_;
1297 1733
1298 unless ($self->{_rw} || $self->{_eof}) { 1734 unless ($self->{_rw} || $self->{_eof} || !$self->{fh}) {
1299 Scalar::Util::weaken $self; 1735 Scalar::Util::weaken $self;
1300 1736
1301 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1737 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1302 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf}); 1738 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1303 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1739 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1304 1740
1305 if ($len > 0) { 1741 if ($len > 0) {
1306 $self->{_activity} = AnyEvent->now; 1742 $self->{_activity} = $self->{_ractivity} = AE::now;
1307 1743
1308 if ($self->{tls}) { 1744 if ($self->{tls}) {
1309 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf); 1745 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1310 1746
1311 &_dotls ($self); 1747 &_dotls ($self);
1312 } else { 1748 } else {
1313 $self->_drain_rbuf unless $self->{_in_drain}; 1749 $self->_drain_rbuf;
1314 } 1750 }
1315 1751
1316 } elsif (defined $len) { 1752 } elsif (defined $len) {
1317 delete $self->{_rw}; 1753 delete $self->{_rw};
1318 $self->{_eof} = 1; 1754 $self->{_eof} = 1;
1319 $self->_drain_rbuf unless $self->{_in_drain}; 1755 $self->_drain_rbuf;
1320 1756
1321 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1757 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1322 return $self->_error ($!, 1); 1758 return $self->_error ($!, 1);
1323 } 1759 }
1324 }); 1760 };
1761 }
1762}
1763
1764our $ERROR_SYSCALL;
1765our $ERROR_WANT_READ;
1766
1767sub _tls_error {
1768 my ($self, $err) = @_;
1769
1770 return $self->_error ($!, 1)
1771 if $err == Net::SSLeay::ERROR_SYSCALL ();
1772
1773 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1774
1775 # reduce error string to look less scary
1776 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1777
1778 if ($self->{_on_starttls}) {
1779 (delete $self->{_on_starttls})->($self, undef, $err);
1780 &_freetls;
1781 } else {
1782 &_freetls;
1783 $self->_error (Errno::EPROTO, 1, $err);
1325 } 1784 }
1326} 1785}
1327 1786
1328# poll the write BIO and send the data if applicable 1787# poll the write BIO and send the data if applicable
1788# also decode read data if possible
1789# this is basiclaly our TLS state machine
1790# more efficient implementations are possible with openssl,
1791# but not with the buggy and incomplete Net::SSLeay.
1329sub _dotls { 1792sub _dotls {
1330 my ($self) = @_; 1793 my ($self) = @_;
1331 1794
1332 my $tmp; 1795 my $tmp;
1333 1796
1334 if (length $self->{_tls_wbuf}) { 1797 if (length $self->{_tls_wbuf}) {
1335 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1798 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1336 substr $self->{_tls_wbuf}, 0, $tmp, ""; 1799 substr $self->{_tls_wbuf}, 0, $tmp, "";
1337 } 1800 }
1801
1802 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1803 return $self->_tls_error ($tmp)
1804 if $tmp != $ERROR_WANT_READ
1805 && ($tmp != $ERROR_SYSCALL || $!);
1338 } 1806 }
1339 1807
1340 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) { 1808 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1341 unless (length $tmp) { 1809 unless (length $tmp) {
1342 # let's treat SSL-eof as we treat normal EOF 1810 $self->{_on_starttls}
1343 delete $self->{_rw}; 1811 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1344 $self->{_eof} = 1;
1345 &_freetls; 1812 &_freetls;
1813
1814 if ($self->{on_stoptls}) {
1815 $self->{on_stoptls}($self);
1816 return;
1817 } else {
1818 # let's treat SSL-eof as we treat normal EOF
1819 delete $self->{_rw};
1820 $self->{_eof} = 1;
1821 }
1346 } 1822 }
1347 1823
1348 $self->{rbuf} .= $tmp; 1824 $self->{_tls_rbuf} .= $tmp;
1349 $self->_drain_rbuf unless $self->{_in_drain}; 1825 $self->_drain_rbuf;
1350 $self->{tls} or return; # tls session might have gone away in callback 1826 $self->{tls} or return; # tls session might have gone away in callback
1351 } 1827 }
1352 1828
1353 $tmp = Net::SSLeay::get_error ($self->{tls}, -1); 1829 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1354
1355 if ($tmp != Net::SSLeay::ERROR_WANT_READ ()) {
1356 if ($tmp == Net::SSLeay::ERROR_SYSCALL ()) {
1357 return $self->_error ($!, 1); 1830 return $self->_tls_error ($tmp)
1358 } elsif ($tmp == Net::SSLeay::ERROR_SSL ()) { 1831 if $tmp != $ERROR_WANT_READ
1359 return $self->_error (&Errno::EIO, 1); 1832 && ($tmp != $ERROR_SYSCALL || $!);
1360 }
1361
1362 # all other errors are fine for our purposes
1363 }
1364 1833
1365 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1834 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1366 $self->{wbuf} .= $tmp; 1835 $self->{wbuf} .= $tmp;
1367 $self->_drain_wbuf; 1836 $self->_drain_wbuf;
1837 $self->{tls} or return; # tls session might have gone away in callback
1368 } 1838 }
1839
1840 $self->{_on_starttls}
1841 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1842 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1369} 1843}
1370 1844
1371=item $handle->starttls ($tls[, $tls_ctx]) 1845=item $handle->starttls ($tls[, $tls_ctx])
1372 1846
1373Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1847Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1374object is created, you can also do that at a later time by calling 1848object is created, you can also do that at a later time by calling
1375C<starttls>. 1849C<starttls>.
1376 1850
1851Starting TLS is currently an asynchronous operation - when you push some
1852write data and then call C<< ->starttls >> then TLS negotiation will start
1853immediately, after which the queued write data is then sent.
1854
1377The first argument is the same as the C<tls> constructor argument (either 1855The first argument is the same as the C<tls> constructor argument (either
1378C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1856C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1379 1857
1380The second argument is the optional C<Net::SSLeay::CTX> object that is 1858The second argument is the optional C<AnyEvent::TLS> object that is used
1381used when AnyEvent::Handle has to create its own TLS connection object. 1859when AnyEvent::Handle has to create its own TLS connection object, or
1860a hash reference with C<< key => value >> pairs that will be used to
1861construct a new context.
1382 1862
1383The TLS connection object will end up in C<< $handle->{tls} >> after this 1863The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1384call and can be used or changed to your liking. Note that the handshake 1864context in C<< $handle->{tls_ctx} >> after this call and can be used or
1385might have already started when this function returns. 1865changed to your liking. Note that the handshake might have already started
1866when this function returns.
1386 1867
1387If it an error to start a TLS handshake more than once per 1868Due to bugs in OpenSSL, it might or might not be possible to do multiple
1388AnyEvent::Handle object (this is due to bugs in OpenSSL). 1869handshakes on the same stream. Best do not attempt to use the stream after
1870stopping TLS.
1389 1871
1872This method may invoke callbacks (and therefore the handle might be
1873destroyed after it returns).
1874
1390=cut 1875=cut
1876
1877our %TLS_CACHE; #TODO not yet documented, should we?
1391 1878
1392sub starttls { 1879sub starttls {
1393 my ($self, $ssl, $ctx) = @_; 1880 my ($self, $tls, $ctx) = @_;
1881
1882 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1883 if $self->{tls};
1884
1885 $self->{tls} = $tls;
1886 $self->{tls_ctx} = $ctx if @_ > 2;
1887
1888 return unless $self->{fh};
1394 1889
1395 require Net::SSLeay; 1890 require Net::SSLeay;
1396 1891
1397 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object" 1892 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1398 if $self->{tls}; 1893 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1894
1895 $tls = delete $self->{tls};
1896 $ctx = $self->{tls_ctx};
1897
1898 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1899
1900 if ("HASH" eq ref $ctx) {
1901 require AnyEvent::TLS;
1902
1903 if ($ctx->{cache}) {
1904 my $key = $ctx+0;
1905 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1906 } else {
1907 $ctx = new AnyEvent::TLS %$ctx;
1908 }
1909 }
1399 1910
1400 if ($ssl eq "accept") { 1911 $self->{tls_ctx} = $ctx || TLS_CTX ();
1401 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1912 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1402 Net::SSLeay::set_accept_state ($ssl);
1403 } elsif ($ssl eq "connect") {
1404 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1405 Net::SSLeay::set_connect_state ($ssl);
1406 }
1407
1408 $self->{tls} = $ssl;
1409 1913
1410 # basically, this is deep magic (because SSL_read should have the same issues) 1914 # basically, this is deep magic (because SSL_read should have the same issues)
1411 # but the openssl maintainers basically said: "trust us, it just works". 1915 # but the openssl maintainers basically said: "trust us, it just works".
1412 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1916 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1413 # and mismaintained ssleay-module doesn't even offer them). 1917 # and mismaintained ssleay-module doesn't even offer them).
1417 # 1921 #
1418 # note that we do not try to keep the length constant between writes as we are required to do. 1922 # note that we do not try to keep the length constant between writes as we are required to do.
1419 # we assume that most (but not all) of this insanity only applies to non-blocking cases, 1923 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1420 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to 1924 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1421 # have identity issues in that area. 1925 # have identity issues in that area.
1422 Net::SSLeay::CTX_set_mode ($self->{tls}, 1926# Net::SSLeay::CTX_set_mode ($ssl,
1423 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1927# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1424 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1928# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1929 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1425 1930
1426 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1931 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1427 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1932 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1428 1933
1934 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1935
1429 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1936 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1937
1938 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1939 if $self->{on_starttls};
1430 1940
1431 &_dotls; # need to trigger the initial handshake 1941 &_dotls; # need to trigger the initial handshake
1432 $self->start_read; # make sure we actually do read 1942 $self->start_read; # make sure we actually do read
1433} 1943}
1434 1944
1435=item $handle->stoptls 1945=item $handle->stoptls
1436 1946
1437Shuts down the SSL connection - this makes a proper EOF handshake by 1947Shuts down the SSL connection - this makes a proper EOF handshake by
1438sending a close notify to the other side, but since OpenSSL doesn't 1948sending a close notify to the other side, but since OpenSSL doesn't
1439support non-blocking shut downs, it is not possible to re-use the stream 1949support non-blocking shut downs, it is not guaranteed that you can re-use
1440afterwards. 1950the stream afterwards.
1951
1952This method may invoke callbacks (and therefore the handle might be
1953destroyed after it returns).
1441 1954
1442=cut 1955=cut
1443 1956
1444sub stoptls { 1957sub stoptls {
1445 my ($self) = @_; 1958 my ($self) = @_;
1446 1959
1447 if ($self->{tls}) { 1960 if ($self->{tls} && $self->{fh}) {
1448 Net::SSLeay::shutdown ($self->{tls}); 1961 Net::SSLeay::shutdown ($self->{tls});
1449 1962
1450 &_dotls; 1963 &_dotls;
1451 1964
1452 # we don't give a shit. no, we do, but we can't. no... 1965# # we don't give a shit. no, we do, but we can't. no...#d#
1453 # we, we... have to use openssl :/ 1966# # we, we... have to use openssl :/#d#
1454 &_freetls; 1967# &_freetls;#d#
1455 } 1968 }
1456} 1969}
1457 1970
1458sub _freetls { 1971sub _freetls {
1459 my ($self) = @_; 1972 my ($self) = @_;
1460 1973
1461 return unless $self->{tls}; 1974 return unless $self->{tls};
1462 1975
1463 Net::SSLeay::free (delete $self->{tls}); 1976 $self->{tls_ctx}->_put_session (delete $self->{tls})
1977 if $self->{tls} > 0;
1464 1978
1465 delete @$self{qw(_rbio _wbio _tls_wbuf)}; 1979 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1466} 1980}
1467 1981
1468sub DESTROY { 1982sub DESTROY {
1469 my $self = shift; 1983 my ($self) = @_;
1470 1984
1471 &_freetls; 1985 &_freetls;
1472 1986
1473 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1987 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1474 1988
1475 if ($linger && length $self->{wbuf}) { 1989 if ($linger && length $self->{wbuf} && $self->{fh}) {
1476 my $fh = delete $self->{fh}; 1990 my $fh = delete $self->{fh};
1477 my $wbuf = delete $self->{wbuf}; 1991 my $wbuf = delete $self->{wbuf};
1478 1992
1479 my @linger; 1993 my @linger;
1480 1994
1481 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub { 1995 push @linger, AE::io $fh, 1, sub {
1482 my $len = syswrite $fh, $wbuf, length $wbuf; 1996 my $len = syswrite $fh, $wbuf, length $wbuf;
1483 1997
1484 if ($len > 0) { 1998 if ($len > 0) {
1485 substr $wbuf, 0, $len, ""; 1999 substr $wbuf, 0, $len, "";
1486 } else { 2000 } else {
1487 @linger = (); # end 2001 @linger = (); # end
1488 } 2002 }
1489 }); 2003 };
1490 push @linger, AnyEvent->timer (after => $linger, cb => sub { 2004 push @linger, AE::timer $linger, 0, sub {
1491 @linger = (); 2005 @linger = ();
1492 }); 2006 };
1493 } 2007 }
1494} 2008}
1495 2009
1496=item $handle->destroy 2010=item $handle->destroy
1497 2011
1498Shuts down the handle object as much as possible - this call ensures that 2012Shuts down the handle object as much as possible - this call ensures that
1499no further callbacks will be invoked and resources will be freed as much 2013no further callbacks will be invoked and as many resources as possible
1500as possible. You must not call any methods on the object afterwards. 2014will be freed. Any method you will call on the handle object after
2015destroying it in this way will be silently ignored (and it will return the
2016empty list).
1501 2017
1502Normally, you can just "forget" any references to an AnyEvent::Handle 2018Normally, you can just "forget" any references to an AnyEvent::Handle
1503object and it will simply shut down. This works in fatal error and EOF 2019object and it will simply shut down. This works in fatal error and EOF
1504callbacks, as well as code outside. It does I<NOT> work in a read or write 2020callbacks, as well as code outside. It does I<NOT> work in a read or write
1505callback, so when you want to destroy the AnyEvent::Handle object from 2021callback, so when you want to destroy the AnyEvent::Handle object from
1506within such an callback. You I<MUST> call C<< ->destroy >> explicitly in 2022within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1507that case. 2023that case.
1508 2024
2025Destroying the handle object in this way has the advantage that callbacks
2026will be removed as well, so if those are the only reference holders (as
2027is common), then one doesn't need to do anything special to break any
2028reference cycles.
2029
1509The handle might still linger in the background and write out remaining 2030The handle might still linger in the background and write out remaining
1510data, as specified by the C<linger> option, however. 2031data, as specified by the C<linger> option, however.
1511 2032
1512=cut 2033=cut
1513 2034
1514sub destroy { 2035sub destroy {
1515 my ($self) = @_; 2036 my ($self) = @_;
1516 2037
1517 $self->DESTROY; 2038 $self->DESTROY;
1518 %$self = (); 2039 %$self = ();
2040 bless $self, "AnyEvent::Handle::destroyed";
1519} 2041}
2042
2043sub AnyEvent::Handle::destroyed::AUTOLOAD {
2044 #nop
2045}
2046
2047=item $handle->destroyed
2048
2049Returns false as long as the handle hasn't been destroyed by a call to C<<
2050->destroy >>, true otherwise.
2051
2052Can be useful to decide whether the handle is still valid after some
2053callback possibly destroyed the handle. For example, C<< ->push_write >>,
2054C<< ->starttls >> and other methods can call user callbacks, which in turn
2055can destroy the handle, so work can be avoided by checking sometimes:
2056
2057 $hdl->starttls ("accept");
2058 return if $hdl->destroyed;
2059 $hdl->push_write (...
2060
2061Note that the call to C<push_write> will silently be ignored if the handle
2062has been destroyed, so often you can just ignore the possibility of the
2063handle being destroyed.
2064
2065=cut
2066
2067sub destroyed { 0 }
2068sub AnyEvent::Handle::destroyed::destroyed { 1 }
1520 2069
1521=item AnyEvent::Handle::TLS_CTX 2070=item AnyEvent::Handle::TLS_CTX
1522 2071
1523This function creates and returns the Net::SSLeay::CTX object used by 2072This function creates and returns the AnyEvent::TLS object used by default
1524default for TLS mode. 2073for TLS mode.
1525 2074
1526The context is created like this: 2075The context is created by calling L<AnyEvent::TLS> without any arguments.
1527
1528 Net::SSLeay::load_error_strings;
1529 Net::SSLeay::SSLeay_add_ssl_algorithms;
1530 Net::SSLeay::randomize;
1531
1532 my $CTX = Net::SSLeay::CTX_new;
1533
1534 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1535 2076
1536=cut 2077=cut
1537 2078
1538our $TLS_CTX; 2079our $TLS_CTX;
1539 2080
1540sub TLS_CTX() { 2081sub TLS_CTX() {
1541 $TLS_CTX || do { 2082 $TLS_CTX ||= do {
1542 require Net::SSLeay; 2083 require AnyEvent::TLS;
1543 2084
1544 Net::SSLeay::load_error_strings (); 2085 new AnyEvent::TLS
1545 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1546 Net::SSLeay::randomize ();
1547
1548 $TLS_CTX = Net::SSLeay::CTX_new ();
1549
1550 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1551
1552 $TLS_CTX
1553 } 2086 }
1554} 2087}
1555 2088
1556=back 2089=back
1557 2090
1596 2129
1597 $handle->on_read (sub { }); 2130 $handle->on_read (sub { });
1598 $handle->on_eof (undef); 2131 $handle->on_eof (undef);
1599 $handle->on_error (sub { 2132 $handle->on_error (sub {
1600 my $data = delete $_[0]{rbuf}; 2133 my $data = delete $_[0]{rbuf};
1601 undef $handle;
1602 }); 2134 });
1603 2135
1604The reason to use C<on_error> is that TCP connections, due to latencies 2136The reason to use C<on_error> is that TCP connections, due to latencies
1605and packets loss, might get closed quite violently with an error, when in 2137and packets loss, might get closed quite violently with an error, when in
1606fact, all data has been received. 2138fact, all data has been received.
1622 $handle->on_drain (sub { 2154 $handle->on_drain (sub {
1623 warn "all data submitted to the kernel\n"; 2155 warn "all data submitted to the kernel\n";
1624 undef $handle; 2156 undef $handle;
1625 }); 2157 });
1626 2158
2159If you just want to queue some data and then signal EOF to the other side,
2160consider using C<< ->push_shutdown >> instead.
2161
2162=item I want to contact a TLS/SSL server, I don't care about security.
2163
2164If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2165simply connect to it and then create the AnyEvent::Handle with the C<tls>
2166parameter:
2167
2168 tcp_connect $host, $port, sub {
2169 my ($fh) = @_;
2170
2171 my $handle = new AnyEvent::Handle
2172 fh => $fh,
2173 tls => "connect",
2174 on_error => sub { ... };
2175
2176 $handle->push_write (...);
2177 };
2178
2179=item I want to contact a TLS/SSL server, I do care about security.
2180
2181Then you should additionally enable certificate verification, including
2182peername verification, if the protocol you use supports it (see
2183L<AnyEvent::TLS>, C<verify_peername>).
2184
2185E.g. for HTTPS:
2186
2187 tcp_connect $host, $port, sub {
2188 my ($fh) = @_;
2189
2190 my $handle = new AnyEvent::Handle
2191 fh => $fh,
2192 peername => $host,
2193 tls => "connect",
2194 tls_ctx => { verify => 1, verify_peername => "https" },
2195 ...
2196
2197Note that you must specify the hostname you connected to (or whatever
2198"peername" the protocol needs) as the C<peername> argument, otherwise no
2199peername verification will be done.
2200
2201The above will use the system-dependent default set of trusted CA
2202certificates. If you want to check against a specific CA, add the
2203C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2204
2205 tls_ctx => {
2206 verify => 1,
2207 verify_peername => "https",
2208 ca_file => "my-ca-cert.pem",
2209 },
2210
2211=item I want to create a TLS/SSL server, how do I do that?
2212
2213Well, you first need to get a server certificate and key. You have
2214three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2215self-signed certificate (cheap. check the search engine of your choice,
2216there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2217nice program for that purpose).
2218
2219Then create a file with your private key (in PEM format, see
2220L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2221file should then look like this:
2222
2223 -----BEGIN RSA PRIVATE KEY-----
2224 ...header data
2225 ... lots of base64'y-stuff
2226 -----END RSA PRIVATE KEY-----
2227
2228 -----BEGIN CERTIFICATE-----
2229 ... lots of base64'y-stuff
2230 -----END CERTIFICATE-----
2231
2232The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2233specify this file as C<cert_file>:
2234
2235 tcp_server undef, $port, sub {
2236 my ($fh) = @_;
2237
2238 my $handle = new AnyEvent::Handle
2239 fh => $fh,
2240 tls => "accept",
2241 tls_ctx => { cert_file => "my-server-keycert.pem" },
2242 ...
2243
2244When you have intermediate CA certificates that your clients might not
2245know about, just append them to the C<cert_file>.
2246
1627=back 2247=back
1628 2248
1629 2249
1630=head1 SUBCLASSING AnyEvent::Handle 2250=head1 SUBCLASSING AnyEvent::Handle
1631 2251

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines