ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.218 by root, Thu Feb 24 12:04:20 2011 UTC vs.
Revision 1.256 by root, Wed Jul 29 15:58:58 2020 UTC

11 11
12 my $hdl; $hdl = new AnyEvent::Handle 12 my $hdl; $hdl = new AnyEvent::Handle
13 fh => \*STDIN, 13 fh => \*STDIN,
14 on_error => sub { 14 on_error => sub {
15 my ($hdl, $fatal, $msg) = @_; 15 my ($hdl, $fatal, $msg) = @_;
16 warn "got error $msg\n"; 16 AE::log error => $msg;
17 $hdl->destroy; 17 $hdl->destroy;
18 $cv->send; 18 $cv->send;
19 }; 19 };
20 20
21 # send some request line 21 # send some request line
22 $hdl->push_write ("getinfo\015\012"); 22 $hdl->push_write ("getinfo\015\012");
23 23
24 # read the response line 24 # read the response line
25 $hdl->push_read (line => sub { 25 $hdl->push_read (line => sub {
26 my ($hdl, $line) = @_; 26 my ($hdl, $line) = @_;
27 warn "got line <$line>\n"; 27 say "got line <$line>";
28 $cv->send; 28 $cv->send;
29 }); 29 });
30 30
31 $cv->recv; 31 $cv->recv;
32 32
33=head1 DESCRIPTION 33=head1 DESCRIPTION
34 34
35This is a helper module to make it easier to do event-based I/O on 35This is a helper module to make it easier to do event-based I/O
36stream-based filehandles (sockets, pipes, and other stream things). 36on stream-based filehandles (sockets, pipes, and other stream
37things). Specifically, it doesn't work as expected on files, packet-based
38sockets or similar things.
37 39
38The L<AnyEvent::Intro> tutorial contains some well-documented 40The L<AnyEvent::Intro> tutorial contains some well-documented
39AnyEvent::Handle examples. 41AnyEvent::Handle examples.
40 42
41In the following, where the documentation refers to "bytes", it means 43In the following, where the documentation refers to "bytes", it means
53package AnyEvent::Handle; 55package AnyEvent::Handle;
54 56
55use Scalar::Util (); 57use Scalar::Util ();
56use List::Util (); 58use List::Util ();
57use Carp (); 59use Carp ();
58use Errno qw(EAGAIN EINTR); 60use Errno qw(EAGAIN EWOULDBLOCK EINTR);
59 61
60use AnyEvent (); BEGIN { AnyEvent::common_sense } 62use AnyEvent (); BEGIN { AnyEvent::common_sense }
61use AnyEvent::Util qw(WSAEWOULDBLOCK); 63use AnyEvent::Util qw(WSAEWOULDBLOCK);
62 64
63our $VERSION = $AnyEvent::VERSION; 65our $VERSION = $AnyEvent::VERSION;
91 93
92=item fh => $filehandle [C<fh> or C<connect> MANDATORY] 94=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
93 95
94The filehandle this L<AnyEvent::Handle> object will operate on. 96The filehandle this L<AnyEvent::Handle> object will operate on.
95NOTE: The filehandle will be set to non-blocking mode (using 97NOTE: The filehandle will be set to non-blocking mode (using
96C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in 98C<AnyEvent::fh_unblock>) by the constructor and needs to stay in
97that mode. 99that mode.
98 100
99=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY] 101=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
100 102
101Try to connect to the specified host and service (port), using 103Try to connect to the specified host and service (port), using
128=item on_connect => $cb->($handle, $host, $port, $retry->()) 130=item on_connect => $cb->($handle, $host, $port, $retry->())
129 131
130This callback is called when a connection has been successfully established. 132This callback is called when a connection has been successfully established.
131 133
132The peer's numeric host and port (the socket peername) are passed as 134The peer's numeric host and port (the socket peername) are passed as
133parameters, together with a retry callback. 135parameters, together with a retry callback. At the time it is called the
136read and write queues, EOF status, TLS status and similar properties of
137the handle will have been reset.
134 138
135If, for some reason, the handle is not acceptable, calling C<$retry> 139If, for some reason, the handle is not acceptable, calling C<$retry> will
136will continue with the next connection target (in case of multi-homed 140continue with the next connection target (in case of multi-homed hosts or
137hosts or SRV records there can be multiple connection endpoints). At the 141SRV records there can be multiple connection endpoints). The C<$retry>
138time it is called the read and write queues, eof status, tls status and 142callback can be invoked after the connect callback returns, i.e. one can
139similar properties of the handle will have been reset. 143start a handshake and then decide to retry with the next host if the
144handshake fails.
140 145
141In most cases, you should ignore the C<$retry> parameter. 146In most cases, you should ignore the C<$retry> parameter.
142 147
143=item on_connect_error => $cb->($handle, $message) 148=item on_connect_error => $cb->($handle, $message)
144 149
164with active (but unsatisfiable) read watchers (C<EPIPE>) or I/O errors. In 169with active (but unsatisfiable) read watchers (C<EPIPE>) or I/O errors. In
165cases where the other side can close the connection at will, it is 170cases where the other side can close the connection at will, it is
166often easiest to not report C<EPIPE> errors in this callback. 171often easiest to not report C<EPIPE> errors in this callback.
167 172
168AnyEvent::Handle tries to find an appropriate error code for you to check 173AnyEvent::Handle tries to find an appropriate error code for you to check
169against, but in some cases (TLS errors), this does not work well. It is 174against, but in some cases (TLS errors), this does not work well.
170recommended to always output the C<$message> argument in human-readable 175
171error messages (it's usually the same as C<"$!">). 176If you report the error to the user, it is recommended to always output
177the C<$message> argument in human-readable error messages (you don't need
178to report C<"$!"> if you report C<$message>).
179
180If you want to react programmatically to the error, then looking at C<$!>
181and comparing it against some of the documented C<Errno> values is usually
182better than looking at the C<$message>.
172 183
173Non-fatal errors can be retried by returning, but it is recommended 184Non-fatal errors can be retried by returning, but it is recommended
174to simply ignore this parameter and instead abondon the handle object 185to simply ignore this parameter and instead abondon the handle object
175when this callback is invoked. Examples of non-fatal errors are timeouts 186when this callback is invoked. Examples of non-fatal errors are timeouts
176C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>). 187C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
224If an EOF condition has been detected but no C<on_eof> callback has been 235If an EOF condition has been detected but no C<on_eof> callback has been
225set, then a fatal error will be raised with C<$!> set to <0>. 236set, then a fatal error will be raised with C<$!> set to <0>.
226 237
227=item on_drain => $cb->($handle) 238=item on_drain => $cb->($handle)
228 239
229This sets the callback that is called when the write buffer becomes empty 240This sets the callback that is called once when the write buffer becomes
230(or immediately if the buffer is empty already). 241empty (and immediately when the handle object is created).
231 242
232To append to the write buffer, use the C<< ->push_write >> method. 243To append to the write buffer, use the C<< ->push_write >> method.
233 244
234This callback is useful when you don't want to put all of your write data 245This callback is useful when you don't want to put all of your write data
235into the queue at once, for example, when you want to write the contents 246into the queue at once, for example, when you want to write the contents
359already have occured on BSD systems), but at least it will protect you 370already have occured on BSD systems), but at least it will protect you
360from most attacks. 371from most attacks.
361 372
362=item read_size => <bytes> 373=item read_size => <bytes>
363 374
364The initial read block size, the number of bytes this module will try to 375The initial read block size, the number of bytes this module will try
365read during each loop iteration. Each handle object will consume at least 376to read during each loop iteration. Each handle object will consume
366this amount of memory for the read buffer as well, so when handling many 377at least this amount of memory for the read buffer as well, so when
367connections requirements). See also C<max_read_size>. Default: C<2048>. 378handling many connections watch out for memory requirements). See also
379C<max_read_size>. Default: C<2048>.
368 380
369=item max_read_size => <bytes> 381=item max_read_size => <bytes>
370 382
371The maximum read buffer size used by the dynamic adjustment 383The maximum read buffer size used by the dynamic adjustment
372algorithm: Each time AnyEvent::Handle can read C<read_size> bytes in 384algorithm: Each time AnyEvent::Handle can read C<read_size> bytes in
416appropriate error message. 428appropriate error message.
417 429
418TLS mode requires Net::SSLeay to be installed (it will be loaded 430TLS mode requires Net::SSLeay to be installed (it will be loaded
419automatically when you try to create a TLS handle): this module doesn't 431automatically when you try to create a TLS handle): this module doesn't
420have a dependency on that module, so if your module requires it, you have 432have a dependency on that module, so if your module requires it, you have
421to add the dependency yourself. 433to add the dependency yourself. If Net::SSLeay cannot be loaded or is too
434old, you get an C<EPROTO> error.
422 435
423Unlike TCP, TLS has a server and client side: for the TLS server side, use 436Unlike TCP, TLS has a server and client side: for the TLS server side, use
424C<accept>, and for the TLS client side of a connection, use C<connect> 437C<accept>, and for the TLS client side of a connection, use C<connect>
425mode. 438mode.
426 439
482callback. 495callback.
483 496
484This callback will only be called on TLS shutdowns, not when the 497This callback will only be called on TLS shutdowns, not when the
485underlying handle signals EOF. 498underlying handle signals EOF.
486 499
487=item json => JSON or JSON::XS object 500=item json => L<JSON>, L<JSON::PP> or L<JSON::XS> object
488 501
489This is the json coder object used by the C<json> read and write types. 502This is the json coder object used by the C<json> read and write types.
490 503
491If you don't supply it, then AnyEvent::Handle will create and use a 504If you don't supply it, then AnyEvent::Handle will create and use a
492suitable one (on demand), which will write and expect UTF-8 encoded JSON 505suitable one (on demand), which will write and expect UTF-8 encoded
506JSON texts (either using L<JSON::XS> or L<JSON>). The written texts are
507guaranteed not to contain any newline character.
508
509For security reasons, this encoder will likely I<not> handle numbers and
510strings, only arrays and objects/hashes. The reason is that originally
511JSON was self-delimited, but Dougles Crockford thought it was a splendid
512idea to redefine JSON incompatibly, so this is no longer true.
513
514For protocols that used back-to-back JSON texts, this might lead to
515run-ins, where two or more JSON texts will be interpreted as one JSON
493texts. 516text.
494 517
518For this reason, if the default encoder uses L<JSON::XS>, it will default
519to not allowing anything but arrays and objects/hashes, at least for the
520forseeable future (it will change at some point). This might or might not
521be true for the L<JSON> module, so this might cause a security issue.
522
523If you depend on either behaviour, you should create your own json object
524and pass it in explicitly.
525
526=item cbor => L<CBOR::XS> object
527
528This is the cbor coder object used by the C<cbor> read and write types.
529
530If you don't supply it, then AnyEvent::Handle will create and use a
531suitable one (on demand), which will write CBOR without using extensions,
532if possible.
533
495Note that you are responsible to depend on the JSON module if you want to 534Note that you are responsible to depend on the L<CBOR::XS> module if you
496use this functionality, as AnyEvent does not have a dependency itself. 535want to use this functionality, as AnyEvent does not have a dependency on
536it itself.
497 537
498=back 538=back
499 539
500=cut 540=cut
501 541
543 } else { 583 } else {
544 if ($self->{on_connect_error}) { 584 if ($self->{on_connect_error}) {
545 $self->{on_connect_error}($self, "$!"); 585 $self->{on_connect_error}($self, "$!");
546 $self->destroy if $self; 586 $self->destroy if $self;
547 } else { 587 } else {
548 $self->_error ($!, 1); 588 $self->error ($!, 1);
549 } 589 }
550 } 590 }
551 }, 591 },
552 sub { 592 sub {
553 local $self->{fh} = $_[0]; 593 local $self->{fh} = $_[0];
573 # with AnyEvent::Handle, do them a favour. 613 # with AnyEvent::Handle, do them a favour.
574 my $type = getsockopt $self->{fh}, Socket::SOL_SOCKET (), Socket::SO_TYPE (); 614 my $type = getsockopt $self->{fh}, Socket::SOL_SOCKET (), Socket::SO_TYPE ();
575 Carp::croak "AnyEvent::Handle: only stream sockets supported, anything else will NOT work!" 615 Carp::croak "AnyEvent::Handle: only stream sockets supported, anything else will NOT work!"
576 if Socket::SOCK_STREAM () != (unpack "I", $type) && defined $type; 616 if Socket::SOCK_STREAM () != (unpack "I", $type) && defined $type;
577 617
578 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 618 AnyEvent::fh_unblock $self->{fh};
579 619
580 $self->{_activity} = 620 $self->{_activity} =
581 $self->{_ractivity} = 621 $self->{_ractivity} =
582 $self->{_wactivity} = AE::now; 622 $self->{_wactivity} = AE::now;
583 623
603 if $self->{on_read} || @{ $self->{_queue} }; 643 if $self->{on_read} || @{ $self->{_queue} };
604 644
605 $self->_drain_wbuf; 645 $self->_drain_wbuf;
606} 646}
607 647
648=item $handle->error ($errno[, $fatal[, $message]])
649
650Generates an error event, just like AnyEvent::Handle itself would do, i.e.
651calls the C<on_error> callback.
652
653The only rerquired parameter is C<$errno>, which sets C<$!>. C<$fatal>
654defaults to false and C<$message> defaults to the stringified version
655of C<$1>.
656
657Example: generate C<EIO> when you read unexpected data.
658
659 $handle->push_read (line => sub {
660 $_[1] eq "hello"
661 or return $handle->error (Errno::EIO);
662 });
663
664=cut
665
608sub _error { 666sub error {
609 my ($self, $errno, $fatal, $message) = @_; 667 my ($self, $errno, $fatal, $message) = @_;
610 668
611 $! = $errno; 669 $! = $errno;
612 $message ||= "$!"; 670 $message ||= "$!";
613 671
719 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1] 777 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
720 if $_[0]{fh}; 778 if $_[0]{fh};
721 }; 779 };
722} 780}
723 781
724=item $handle->keepalive ($boolean)
725
726Enables or disables the C<keepalive> setting (see constructor argument of
727the same name for details).
728
729=cut
730
731sub keepalive {
732 $_[0]{keepalive} = $_[1];
733
734 eval {
735 local $SIG{__DIE__};
736 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
737 if $_[0]{fh};
738 };
739}
740
741=item $handle->on_starttls ($cb) 782=item $handle->on_starttls ($cb)
742 783
743Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument). 784Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
744 785
745=cut 786=cut
843 $self->{$activity} = $NOW; 884 $self->{$activity} = $NOW;
844 885
845 if ($self->{$on_timeout}) { 886 if ($self->{$on_timeout}) {
846 $self->{$on_timeout}($self); 887 $self->{$on_timeout}($self);
847 } else { 888 } else {
848 $self->_error (Errno::ETIMEDOUT); 889 $self->error (Errno::ETIMEDOUT);
849 } 890 }
850 891
851 # callback could have changed timeout value, optimise 892 # callback could have changed timeout value, optimise
852 return unless $self->{$timeout}; 893 return unless $self->{$timeout};
853 894
879 920
880The write queue is very simple: you can add data to its end, and 921The write queue is very simple: you can add data to its end, and
881AnyEvent::Handle will automatically try to get rid of it for you. 922AnyEvent::Handle will automatically try to get rid of it for you.
882 923
883When data could be written and the write buffer is shorter then the low 924When data could be written and the write buffer is shorter then the low
884water mark, the C<on_drain> callback will be invoked. 925water mark, the C<on_drain> callback will be invoked once.
885 926
886=over 4 927=over 4
887 928
888=item $handle->on_drain ($cb) 929=item $handle->on_drain ($cb)
889 930
933 $self->{on_drain}($self) 974 $self->{on_drain}($self)
934 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf}) 975 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
935 && $self->{on_drain}; 976 && $self->{on_drain};
936 977
937 delete $self->{_ww} unless length $self->{wbuf}; 978 delete $self->{_ww} unless length $self->{wbuf};
938 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 979 } elsif ($! != EAGAIN && $! != EINTR && $! != EWOULDBLOCK && $! != WSAEWOULDBLOCK) {
939 $self->_error ($!, 1); 980 $self->error ($!, 1);
940 } 981 }
941 }; 982 };
942 983
943 # try to write data immediately 984 # try to write data immediately
944 $cb->() unless $self->{autocork}; 985 $cb->() unless $self->{autocork};
949 990
950 if ( 991 if (
951 defined $self->{wbuf_max} 992 defined $self->{wbuf_max}
952 && $self->{wbuf_max} < length $self->{wbuf} 993 && $self->{wbuf_max} < length $self->{wbuf}
953 ) { 994 ) {
954 $self->_error (Errno::ENOSPC, 1), return; 995 $self->error (Errno::ENOSPC, 1), return;
955 } 996 }
956 }; 997 };
957} 998}
958 999
959our %WH; 1000our %WH;
1031 1072
1032Encodes the given hash or array reference into a JSON object. Unless you 1073Encodes the given hash or array reference into a JSON object. Unless you
1033provide your own JSON object, this means it will be encoded to JSON text 1074provide your own JSON object, this means it will be encoded to JSON text
1034in UTF-8. 1075in UTF-8.
1035 1076
1077The default encoder might or might not handle every type of JSON value -
1078it might be limited to arrays and objects for security reasons. See the
1079C<json> constructor attribute for more details.
1080
1036JSON objects (and arrays) are self-delimiting, so you can write JSON at 1081JSON objects (and arrays) are self-delimiting, so if you only use arrays
1037one end of a handle and read them at the other end without using any 1082and hashes, you can write JSON at one end of a handle and read them at the
1038additional framing. 1083other end without using any additional framing.
1039 1084
1040The generated JSON text is guaranteed not to contain any newlines: While 1085The JSON text generated by the default encoder is guaranteed not to
1041this module doesn't need delimiters after or between JSON texts to be 1086contain any newlines: While this module doesn't need delimiters after or
1042able to read them, many other languages depend on that. 1087between JSON texts to be able to read them, many other languages depend on
1088them.
1043 1089
1044A simple RPC protocol that interoperates easily with others is to send 1090A simple RPC protocol that interoperates easily with other languages is
1045JSON arrays (or objects, although arrays are usually the better choice as 1091to send JSON arrays (or objects, although arrays are usually the better
1046they mimic how function argument passing works) and a newline after each 1092choice as they mimic how function argument passing works) and a newline
1047JSON text: 1093after each JSON text:
1048 1094
1049 $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever 1095 $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
1050 $handle->push_write ("\012"); 1096 $handle->push_write ("\012");
1051 1097
1052An AnyEvent::Handle receiver would simply use the C<json> read type and 1098An AnyEvent::Handle receiver would simply use the C<json> read type and
1055 $handle->push_read (json => sub { my $array = $_[1]; ... }); 1101 $handle->push_read (json => sub { my $array = $_[1]; ... });
1056 1102
1057Other languages could read single lines terminated by a newline and pass 1103Other languages could read single lines terminated by a newline and pass
1058this line into their JSON decoder of choice. 1104this line into their JSON decoder of choice.
1059 1105
1106=item cbor => $perl_scalar
1107
1108Encodes the given scalar into a CBOR value. Unless you provide your own
1109L<CBOR::XS> object, this means it will be encoded to a CBOR string not
1110using any extensions, if possible.
1111
1112CBOR values are self-delimiting, so you can write CBOR at one end of
1113a handle and read them at the other end without using any additional
1114framing.
1115
1116A simple nd very very fast RPC protocol that interoperates with
1117other languages is to send CBOR and receive CBOR values (arrays are
1118recommended):
1119
1120 $handle->push_write (cbor => ["method", "arg1", "arg2"]); # whatever
1121
1122An AnyEvent::Handle receiver would simply use the C<cbor> read type:
1123
1124 $handle->push_read (cbor => sub { my $array = $_[1]; ... });
1125
1060=cut 1126=cut
1061 1127
1062sub json_coder() { 1128sub json_coder() {
1063 eval { require JSON::XS; JSON::XS->new->utf8 } 1129 eval { require JSON::XS; JSON::XS->new->utf8 }
1064 || do { require JSON; JSON->new->utf8 } 1130 || do { require JSON::PP; JSON::PP->new->utf8 }
1065} 1131}
1066 1132
1067register_write_type json => sub { 1133register_write_type json => sub {
1068 my ($self, $ref) = @_; 1134 my ($self, $ref) = @_;
1069 1135
1070 my $json = $self->{json} ||= json_coder; 1136 ($self->{json} ||= json_coder)
1071
1072 $json->encode ($ref) 1137 ->encode ($ref)
1138};
1139
1140sub cbor_coder() {
1141 require CBOR::XS;
1142 CBOR::XS->new
1143}
1144
1145register_write_type cbor => sub {
1146 my ($self, $scalar) = @_;
1147
1148 ($self->{cbor} ||= cbor_coder)
1149 ->encode ($scalar)
1073}; 1150};
1074 1151
1075=item storable => $reference 1152=item storable => $reference
1076 1153
1077Freezes the given reference using L<Storable> and writes it to the 1154Freezes the given reference using L<Storable> and writes it to the
1080=cut 1157=cut
1081 1158
1082register_write_type storable => sub { 1159register_write_type storable => sub {
1083 my ($self, $ref) = @_; 1160 my ($self, $ref) = @_;
1084 1161
1085 require Storable; 1162 require Storable unless $Storable::VERSION;
1086 1163
1087 pack "w/a*", Storable::nfreeze ($ref) 1164 pack "w/a*", Storable::nfreeze ($ref)
1088}; 1165};
1089 1166
1090=back 1167=back
1127 1204
1128Whenever the given C<type> is used, C<push_write> will the function with 1205Whenever the given C<type> is used, C<push_write> will the function with
1129the handle object and the remaining arguments. 1206the handle object and the remaining arguments.
1130 1207
1131The function is supposed to return a single octet string that will be 1208The function is supposed to return a single octet string that will be
1132appended to the write buffer, so you cna mentally treat this function as a 1209appended to the write buffer, so you can mentally treat this function as a
1133"arguments to on-the-wire-format" converter. 1210"arguments to on-the-wire-format" converter.
1134 1211
1135Example: implement a custom write type C<join> that joins the remaining 1212Example: implement a custom write type C<join> that joins the remaining
1136arguments using the first one. 1213arguments using the first one.
1137 1214
1254 1331
1255 if (my $cb = shift @{ $self->{_queue} }) { 1332 if (my $cb = shift @{ $self->{_queue} }) {
1256 unless ($cb->($self)) { 1333 unless ($cb->($self)) {
1257 # no progress can be made 1334 # no progress can be made
1258 # (not enough data and no data forthcoming) 1335 # (not enough data and no data forthcoming)
1259 $self->_error (Errno::EPIPE, 1), return 1336 $self->error (Errno::EPIPE, 1), return
1260 if $self->{_eof}; 1337 if $self->{_eof};
1261 1338
1262 unshift @{ $self->{_queue} }, $cb; 1339 unshift @{ $self->{_queue} }, $cb;
1263 last; 1340 last;
1264 } 1341 }
1272 && !@{ $self->{_queue} } # and the queue is still empty 1349 && !@{ $self->{_queue} } # and the queue is still empty
1273 && $self->{on_read} # but we still have on_read 1350 && $self->{on_read} # but we still have on_read
1274 ) { 1351 ) {
1275 # no further data will arrive 1352 # no further data will arrive
1276 # so no progress can be made 1353 # so no progress can be made
1277 $self->_error (Errno::EPIPE, 1), return 1354 $self->error (Errno::EPIPE, 1), return
1278 if $self->{_eof}; 1355 if $self->{_eof};
1279 1356
1280 last; # more data might arrive 1357 last; # more data might arrive
1281 } 1358 }
1282 } else { 1359 } else {
1287 } 1364 }
1288 1365
1289 if ($self->{_eof}) { 1366 if ($self->{_eof}) {
1290 $self->{on_eof} 1367 $self->{on_eof}
1291 ? $self->{on_eof}($self) 1368 ? $self->{on_eof}($self)
1292 : $self->_error (0, 1, "Unexpected end-of-file"); 1369 : $self->error (0, 1, "Unexpected end-of-file");
1293 1370
1294 return; 1371 return;
1295 } 1372 }
1296 1373
1297 if ( 1374 if (
1298 defined $self->{rbuf_max} 1375 defined $self->{rbuf_max}
1299 && $self->{rbuf_max} < length $self->{rbuf} 1376 && $self->{rbuf_max} < length $self->{rbuf}
1300 ) { 1377 ) {
1301 $self->_error (Errno::ENOSPC, 1), return; 1378 $self->error (Errno::ENOSPC, 1), return;
1302 } 1379 }
1303 1380
1304 # may need to restart read watcher 1381 # may need to restart read watcher
1305 unless ($self->{_rw}) { 1382 unless ($self->{_rw}) {
1306 $self->start_read 1383 $self->start_read
1431data. 1508data.
1432 1509
1433Example: read 2 bytes. 1510Example: read 2 bytes.
1434 1511
1435 $handle->push_read (chunk => 2, sub { 1512 $handle->push_read (chunk => 2, sub {
1436 warn "yay ", unpack "H*", $_[1]; 1513 say "yay " . unpack "H*", $_[1];
1437 }); 1514 });
1438 1515
1439=cut 1516=cut
1440 1517
1441register_read_type chunk => sub { 1518register_read_type chunk => sub {
1471 1548
1472register_read_type line => sub { 1549register_read_type line => sub {
1473 my ($self, $cb, $eol) = @_; 1550 my ($self, $cb, $eol) = @_;
1474 1551
1475 if (@_ < 3) { 1552 if (@_ < 3) {
1476 # this is more than twice as fast as the generic code below 1553 # this is faster then the generic code below
1477 sub { 1554 sub {
1478 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return; 1555 (my $pos = index $_[0]{rbuf}, "\012") >= 0
1556 or return;
1479 1557
1558 (my $str = substr $_[0]{rbuf}, 0, $pos + 1, "") =~ s/(\015?\012)\Z// or die;
1480 $cb->($_[0], $1, $2); 1559 $cb->($_[0], $str, "$1");
1481 1 1560 1
1482 } 1561 }
1483 } else { 1562 } else {
1484 $eol = quotemeta $eol unless ref $eol; 1563 $eol = quotemeta $eol unless ref $eol;
1485 $eol = qr|^(.*?)($eol)|s; 1564 $eol = qr|^(.*?)($eol)|s;
1486 1565
1487 sub { 1566 sub {
1488 $_[0]{rbuf} =~ s/$eol// or return; 1567 $_[0]{rbuf} =~ s/$eol// or return;
1489 1568
1490 $cb->($_[0], $1, $2); 1569 $cb->($_[0], "$1", "$2");
1491 1 1570 1
1492 } 1571 }
1493 } 1572 }
1494}; 1573};
1495 1574
1496=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1575=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1497 1576
1498Makes a regex match against the regex object C<$accept> and returns 1577Makes a regex match against the regex object C<$accept> and returns
1499everything up to and including the match. 1578everything up to and including the match. All the usual regex variables
1579($1, %+ etc.) from the regex match are available in the callback.
1500 1580
1501Example: read a single line terminated by '\n'. 1581Example: read a single line terminated by '\n'.
1502 1582
1503 $handle->push_read (regex => qr<\n>, sub { ... }); 1583 $handle->push_read (regex => qr<\n>, sub { ... });
1504 1584
1543 1623
1544 sub { 1624 sub {
1545 # accept 1625 # accept
1546 if ($$rbuf =~ $accept) { 1626 if ($$rbuf =~ $accept) {
1547 $data .= substr $$rbuf, 0, $+[0], ""; 1627 $data .= substr $$rbuf, 0, $+[0], "";
1548 $cb->($self, $data); 1628 $cb->($_[0], $data);
1549 return 1; 1629 return 1;
1550 } 1630 }
1551 1631
1552 # reject 1632 # reject
1553 if ($reject && $$rbuf =~ $reject) { 1633 if ($reject && $$rbuf =~ $reject) {
1554 $self->_error (Errno::EBADMSG); 1634 $_[0]->error (Errno::EBADMSG);
1555 } 1635 }
1556 1636
1557 # skip 1637 # skip
1558 if ($skip && $$rbuf =~ $skip) { 1638 if ($skip && $$rbuf =~ $skip) {
1559 $data .= substr $$rbuf, 0, $+[0], ""; 1639 $data .= substr $$rbuf, 0, $+[0], "";
1575 my ($self, $cb) = @_; 1655 my ($self, $cb) = @_;
1576 1656
1577 sub { 1657 sub {
1578 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1658 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1579 if ($_[0]{rbuf} =~ /[^0-9]/) { 1659 if ($_[0]{rbuf} =~ /[^0-9]/) {
1580 $self->_error (Errno::EBADMSG); 1660 $_[0]->error (Errno::EBADMSG);
1581 } 1661 }
1582 return; 1662 return;
1583 } 1663 }
1584 1664
1585 my $len = $1; 1665 my $len = $1;
1586 1666
1587 $self->unshift_read (chunk => $len, sub { 1667 $_[0]->unshift_read (chunk => $len, sub {
1588 my $string = $_[1]; 1668 my $string = $_[1];
1589 $_[0]->unshift_read (chunk => 1, sub { 1669 $_[0]->unshift_read (chunk => 1, sub {
1590 if ($_[1] eq ",") { 1670 if ($_[1] eq ",") {
1591 $cb->($_[0], $string); 1671 $cb->($_[0], $string);
1592 } else { 1672 } else {
1593 $self->_error (Errno::EBADMSG); 1673 $_[0]->error (Errno::EBADMSG);
1594 } 1674 }
1595 }); 1675 });
1596 }); 1676 });
1597 1677
1598 1 1678 1
1648=item json => $cb->($handle, $hash_or_arrayref) 1728=item json => $cb->($handle, $hash_or_arrayref)
1649 1729
1650Reads a JSON object or array, decodes it and passes it to the 1730Reads a JSON object or array, decodes it and passes it to the
1651callback. When a parse error occurs, an C<EBADMSG> error will be raised. 1731callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1652 1732
1653If a C<json> object was passed to the constructor, then that will be used 1733If a C<json> object was passed to the constructor, then that will be
1654for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1734used for the final decode, otherwise it will create a L<JSON::XS> or
1735L<JSON::PP> coder object expecting UTF-8.
1655 1736
1656This read type uses the incremental parser available with JSON version 1737This read type uses the incremental parser available with JSON version
16572.09 (and JSON::XS version 2.2) and above. You have to provide a 17382.09 (and JSON::XS version 2.2) and above.
1658dependency on your own: this module will load the JSON module, but
1659AnyEvent does not depend on it itself.
1660 1739
1661Since JSON texts are fully self-delimiting, the C<json> read and write 1740Since JSON texts are fully self-delimiting, the C<json> read and write
1662types are an ideal simple RPC protocol: just exchange JSON datagrams. See 1741types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1663the C<json> write type description, above, for an actual example. 1742the C<json> write type description, above, for an actual example.
1664 1743
1668 my ($self, $cb) = @_; 1747 my ($self, $cb) = @_;
1669 1748
1670 my $json = $self->{json} ||= json_coder; 1749 my $json = $self->{json} ||= json_coder;
1671 1750
1672 my $data; 1751 my $data;
1673 my $rbuf = \$self->{rbuf};
1674 1752
1675 sub { 1753 sub {
1676 my $ref = eval { $json->incr_parse ($self->{rbuf}) }; 1754 my $ref = eval { $json->incr_parse ($_[0]{rbuf}) };
1677 1755
1678 if ($ref) { 1756 if ($ref) {
1679 $self->{rbuf} = $json->incr_text; 1757 $_[0]{rbuf} = $json->incr_text;
1680 $json->incr_text = ""; 1758 $json->incr_text = "";
1681 $cb->($self, $ref); 1759 $cb->($_[0], $ref);
1682 1760
1683 1 1761 1
1684 } elsif ($@) { 1762 } elsif ($@) {
1685 # error case 1763 # error case
1686 $json->incr_skip; 1764 $json->incr_skip;
1687 1765
1688 $self->{rbuf} = $json->incr_text; 1766 $_[0]{rbuf} = $json->incr_text;
1689 $json->incr_text = ""; 1767 $json->incr_text = "";
1690 1768
1691 $self->_error (Errno::EBADMSG); 1769 $_[0]->error (Errno::EBADMSG);
1692 1770
1693 () 1771 ()
1694 } else { 1772 } else {
1695 $self->{rbuf} = ""; 1773 $_[0]{rbuf} = "";
1696 1774
1775 ()
1776 }
1777 }
1778};
1779
1780=item cbor => $cb->($handle, $scalar)
1781
1782Reads a CBOR value, decodes it and passes it to the callback. When a parse
1783error occurs, an C<EBADMSG> error will be raised.
1784
1785If a L<CBOR::XS> object was passed to the constructor, then that will be
1786used for the final decode, otherwise it will create a CBOR coder without
1787enabling any options.
1788
1789You have to provide a dependency to L<CBOR::XS> on your own: this module
1790will load the L<CBOR::XS> module, but AnyEvent does not depend on it
1791itself.
1792
1793Since CBOR values are fully self-delimiting, the C<cbor> read and write
1794types are an ideal simple RPC protocol: just exchange CBOR datagrams. See
1795the C<cbor> write type description, above, for an actual example.
1796
1797=cut
1798
1799register_read_type cbor => sub {
1800 my ($self, $cb) = @_;
1801
1802 my $cbor = $self->{cbor} ||= cbor_coder;
1803
1804 my $data;
1805
1806 sub {
1807 my (@value) = eval { $cbor->incr_parse ($_[0]{rbuf}) };
1808
1809 if (@value) {
1810 $cb->($_[0], @value);
1811
1812 1
1813 } elsif ($@) {
1814 # error case
1815 $cbor->incr_reset;
1816
1817 $_[0]->error (Errno::EBADMSG);
1818
1819 ()
1820 } else {
1697 () 1821 ()
1698 } 1822 }
1699 } 1823 }
1700}; 1824};
1701 1825
1710=cut 1834=cut
1711 1835
1712register_read_type storable => sub { 1836register_read_type storable => sub {
1713 my ($self, $cb) = @_; 1837 my ($self, $cb) = @_;
1714 1838
1715 require Storable; 1839 require Storable unless $Storable::VERSION;
1716 1840
1717 sub { 1841 sub {
1718 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1842 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1719 defined (my $len = eval { unpack "w", $_[0]{rbuf} }) 1843 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1720 or return; 1844 or return;
1723 1847
1724 # bypass unshift if we already have the remaining chunk 1848 # bypass unshift if we already have the remaining chunk
1725 if ($format + $len <= length $_[0]{rbuf}) { 1849 if ($format + $len <= length $_[0]{rbuf}) {
1726 my $data = substr $_[0]{rbuf}, $format, $len; 1850 my $data = substr $_[0]{rbuf}, $format, $len;
1727 substr $_[0]{rbuf}, 0, $format + $len, ""; 1851 substr $_[0]{rbuf}, 0, $format + $len, "";
1852
1728 $cb->($_[0], Storable::thaw ($data)); 1853 eval { $cb->($_[0], Storable::thaw ($data)); 1 }
1854 or return $_[0]->error (Errno::EBADMSG);
1729 } else { 1855 } else {
1730 # remove prefix 1856 # remove prefix
1731 substr $_[0]{rbuf}, 0, $format, ""; 1857 substr $_[0]{rbuf}, 0, $format, "";
1732 1858
1733 # read remaining chunk 1859 # read remaining chunk
1734 $_[0]->unshift_read (chunk => $len, sub { 1860 $_[0]->unshift_read (chunk => $len, sub {
1735 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1861 eval { $cb->($_[0], Storable::thaw ($_[1])); 1 }
1736 $cb->($_[0], $ref);
1737 } else {
1738 $self->_error (Errno::EBADMSG); 1862 or $_[0]->error (Errno::EBADMSG);
1739 }
1740 }); 1863 });
1741 } 1864 }
1742 1865
1743 1 1866 1
1744 } 1867 }
1868};
1869
1870=item tls_detect => $cb->($handle, $detect, $major, $minor)
1871
1872Checks the input stream for a valid SSL or TLS handshake TLSPaintext
1873record without consuming anything. Only SSL version 3 or higher
1874is handled, up to the fictituous protocol 4.x (but both SSL3+ and
1875SSL2-compatible framing is supported).
1876
1877If it detects that the input data is likely TLS, it calls the callback
1878with a true value for C<$detect> and the (on-wire) TLS version as second
1879and third argument (C<$major> is C<3>, and C<$minor> is 0..4 for SSL
18803.0, TLS 1.0, 1.1, 1.2 and 1.3, respectively). If it detects the input
1881to be definitely not TLS, it calls the callback with a false value for
1882C<$detect>.
1883
1884The callback could use this information to decide whether or not to start
1885TLS negotiation.
1886
1887In all cases the data read so far is passed to the following read
1888handlers.
1889
1890Usually you want to use the C<tls_autostart> read type instead.
1891
1892If you want to design a protocol that works in the presence of TLS
1893dtection, make sure that any non-TLS data doesn't start with the octet 22
1894(ASCII SYN, 16 hex) or 128-255 (i.e. highest bit set). The checks this
1895read type does are a bit more strict, but might losen in the future to
1896accomodate protocol changes.
1897
1898This read type does not rely on L<AnyEvent::TLS> (and thus, not on
1899L<Net::SSLeay>).
1900
1901=item tls_autostart => [$tls_ctx, ]$tls
1902
1903Tries to detect a valid SSL or TLS handshake. If one is detected, it tries
1904to start tls by calling C<starttls> with the given arguments.
1905
1906In practice, C<$tls> must be C<accept>, or a Net::SSLeay context that has
1907been configured to accept, as servers do not normally send a handshake on
1908their own and ths cannot be detected in this way.
1909
1910See C<tls_detect> above for more details.
1911
1912Example: give the client a chance to start TLS before accepting a text
1913line.
1914
1915 $hdl->push_read (tls_autostart => "accept");
1916 $hdl->push_read (line => sub {
1917 print "received ", ($_[0]{tls} ? "encrypted" : "cleartext"), " <$_[1]>\n";
1918 });
1919
1920=cut
1921
1922register_read_type tls_detect => sub {
1923 my ($self, $cb) = @_;
1924
1925 sub {
1926 # this regex matches a full or partial tls record
1927 if (
1928 # ssl3+: type(22=handshake) major(=3) minor(any) length_hi
1929 $self->{rbuf} =~ /^(?:\z| \x16 (\z| [\x03\x04] (?:\z| . (?:\z| [\x00-\x40] ))))/xs
1930 # ssl2 comapatible: len_hi len_lo type(1) major minor dummy(forlength)
1931 or $self->{rbuf} =~ /^(?:\z| [\x80-\xff] (?:\z| . (?:\z| \x01 (\z| [\x03\x04] (?:\z| . (?:\z| . ))))))/xs
1932 ) {
1933 return if 3 != length $1; # partial match, can't decide yet
1934
1935 # full match, valid TLS record
1936 my ($major, $minor) = unpack "CC", $1;
1937 $cb->($self, "accept", $major, $minor);
1938 } else {
1939 # mismatch == guaranteed not TLS
1940 $cb->($self, undef);
1941 }
1942
1943 1
1944 }
1945};
1946
1947register_read_type tls_autostart => sub {
1948 my ($self, @tls) = @_;
1949
1950 $RH{tls_detect}($self, sub {
1951 return unless $_[1];
1952 $_[0]->starttls (@tls);
1953 })
1745}; 1954};
1746 1955
1747=back 1956=back
1748 1957
1749=item custom read types - Package::anyevent_read_type $handle, $cb, @args 1958=item custom read types - Package::anyevent_read_type $handle, $cb, @args
1791some readings of the the SSL/TLS specifications basically require this 2000some readings of the the SSL/TLS specifications basically require this
1792attack to be working, as SSL/TLS implementations might stall sending data 2001attack to be working, as SSL/TLS implementations might stall sending data
1793during a rehandshake. 2002during a rehandshake.
1794 2003
1795As a guideline, during the initial handshake, you should not stop reading, 2004As a guideline, during the initial handshake, you should not stop reading,
1796and as a client, it might cause problems, depending on your applciation. 2005and as a client, it might cause problems, depending on your application.
1797 2006
1798=cut 2007=cut
1799 2008
1800sub stop_read { 2009sub stop_read {
1801 my ($self) = @_; 2010 my ($self) = @_;
1833 } elsif (defined $len) { 2042 } elsif (defined $len) {
1834 delete $self->{_rw}; 2043 delete $self->{_rw};
1835 $self->{_eof} = 1; 2044 $self->{_eof} = 1;
1836 $self->_drain_rbuf; 2045 $self->_drain_rbuf;
1837 2046
1838 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 2047 } elsif ($! != EAGAIN && $! != EINTR && $! != EWOULDBLOCK && $! != WSAEWOULDBLOCK) {
1839 return $self->_error ($!, 1); 2048 return $self->error ($!, 1);
1840 } 2049 }
1841 }; 2050 };
1842 } 2051 }
1843} 2052}
1844 2053
1846our $ERROR_WANT_READ; 2055our $ERROR_WANT_READ;
1847 2056
1848sub _tls_error { 2057sub _tls_error {
1849 my ($self, $err) = @_; 2058 my ($self, $err) = @_;
1850 2059
1851 return $self->_error ($!, 1) 2060 return $self->error ($!, 1)
1852 if $err == Net::SSLeay::ERROR_SYSCALL (); 2061 if $err == Net::SSLeay::ERROR_SYSCALL ();
1853 2062
1854 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ()); 2063 my $err = Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1855 2064
1856 # reduce error string to look less scary 2065 # reduce error string to look less scary
1857 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /; 2066 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1858 2067
1859 if ($self->{_on_starttls}) { 2068 if ($self->{_on_starttls}) {
1860 (delete $self->{_on_starttls})->($self, undef, $err); 2069 (delete $self->{_on_starttls})->($self, undef, $err);
1861 &_freetls; 2070 &_freetls;
1862 } else { 2071 } else {
1863 &_freetls; 2072 &_freetls;
1864 $self->_error (Errno::EPROTO, 1, $err); 2073 $self->error (Errno::EPROTO, 1, $err);
1865 } 2074 }
1866} 2075}
1867 2076
1868# poll the write BIO and send the data if applicable 2077# poll the write BIO and send the data if applicable
1869# also decode read data if possible 2078# also decode read data if possible
1870# this is basiclaly our TLS state machine 2079# this is basically our TLS state machine
1871# more efficient implementations are possible with openssl, 2080# more efficient implementations are possible with openssl,
1872# but not with the buggy and incomplete Net::SSLeay. 2081# but not with the buggy and incomplete Net::SSLeay.
1873sub _dotls { 2082sub _dotls {
1874 my ($self) = @_; 2083 my ($self) = @_;
1875 2084
1876 my $tmp; 2085 my $tmp;
1877 2086
1878 if (length $self->{_tls_wbuf}) { 2087 while (length $self->{_tls_wbuf}) {
1879 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 2088 if (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) <= 0) {
1880 substr $self->{_tls_wbuf}, 0, $tmp, ""; 2089 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
2090
2091 return $self->_tls_error ($tmp)
2092 if $tmp != $ERROR_WANT_READ
2093 && ($tmp != $ERROR_SYSCALL || $!);
2094
2095 last;
1881 } 2096 }
1882 2097
1883 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp); 2098 substr $self->{_tls_wbuf}, 0, $tmp, "";
1884 return $self->_tls_error ($tmp)
1885 if $tmp != $ERROR_WANT_READ
1886 && ($tmp != $ERROR_SYSCALL || $!);
1887 } 2099 }
1888 2100
1889 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) { 2101 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1890 unless (length $tmp) { 2102 unless (length $tmp) {
1891 $self->{_on_starttls} 2103 $self->{_on_starttls}
1905 $self->{_tls_rbuf} .= $tmp; 2117 $self->{_tls_rbuf} .= $tmp;
1906 $self->_drain_rbuf; 2118 $self->_drain_rbuf;
1907 $self->{tls} or return; # tls session might have gone away in callback 2119 $self->{tls} or return; # tls session might have gone away in callback
1908 } 2120 }
1909 2121
1910 $tmp = Net::SSLeay::get_error ($self->{tls}, -1); 2122 $tmp = Net::SSLeay::get_error ($self->{tls}, -1); # -1 is not neccessarily correct, but Net::SSLeay doesn't tell us
1911 return $self->_tls_error ($tmp) 2123 return $self->_tls_error ($tmp)
1912 if $tmp != $ERROR_WANT_READ 2124 if $tmp != $ERROR_WANT_READ
1913 && ($tmp != $ERROR_SYSCALL || $!); 2125 && ($tmp != $ERROR_SYSCALL || $!);
1914 2126
1915 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) { 2127 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1925 2137
1926=item $handle->starttls ($tls[, $tls_ctx]) 2138=item $handle->starttls ($tls[, $tls_ctx])
1927 2139
1928Instead of starting TLS negotiation immediately when the AnyEvent::Handle 2140Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1929object is created, you can also do that at a later time by calling 2141object is created, you can also do that at a later time by calling
1930C<starttls>. 2142C<starttls>. See the C<tls> constructor argument for general info.
1931 2143
1932Starting TLS is currently an asynchronous operation - when you push some 2144Starting TLS is currently an asynchronous operation - when you push some
1933write data and then call C<< ->starttls >> then TLS negotiation will start 2145write data and then call C<< ->starttls >> then TLS negotiation will start
1934immediately, after which the queued write data is then sent. 2146immediately, after which the queued write data is then sent. This might
2147change in future versions, so best make sure you have no outstanding write
2148data when calling this method.
1935 2149
1936The first argument is the same as the C<tls> constructor argument (either 2150The first argument is the same as the C<tls> constructor argument (either
1937C<"connect">, C<"accept"> or an existing Net::SSLeay object). 2151C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1938 2152
1939The second argument is the optional C<AnyEvent::TLS> object that is used 2153The second argument is the optional C<AnyEvent::TLS> object that is used
1961 my ($self, $tls, $ctx) = @_; 2175 my ($self, $tls, $ctx) = @_;
1962 2176
1963 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught" 2177 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1964 if $self->{tls}; 2178 if $self->{tls};
1965 2179
2180 unless (defined $AnyEvent::TLS::VERSION) {
2181 eval {
2182 require Net::SSLeay;
2183 require AnyEvent::TLS;
2184 1
2185 } or return $self->error (Errno::EPROTO, 1, "TLS support not available on this system");
2186 }
2187
1966 $self->{tls} = $tls; 2188 $self->{tls} = $tls;
1967 $self->{tls_ctx} = $ctx if @_ > 2; 2189 $self->{tls_ctx} = $ctx if @_ > 2;
1968 2190
1969 return unless $self->{fh}; 2191 return unless $self->{fh};
1970 2192
1971 require Net::SSLeay;
1972
1973 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL (); 2193 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1974 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ (); 2194 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1975 2195
1976 $tls = delete $self->{tls}; 2196 $tls = delete $self->{tls};
1977 $ctx = $self->{tls_ctx}; 2197 $ctx = $self->{tls_ctx};
1978 2198
1979 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session 2199 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1980 2200
1981 if ("HASH" eq ref $ctx) { 2201 if ("HASH" eq ref $ctx) {
1982 require AnyEvent::TLS;
1983
1984 if ($ctx->{cache}) { 2202 if ($ctx->{cache}) {
1985 my $key = $ctx+0; 2203 my $key = $ctx+0;
1986 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx; 2204 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1987 } else { 2205 } else {
1988 $ctx = new AnyEvent::TLS %$ctx; 2206 $ctx = new AnyEvent::TLS %$ctx;
1993 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername}); 2211 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1994 2212
1995 # basically, this is deep magic (because SSL_read should have the same issues) 2213 # basically, this is deep magic (because SSL_read should have the same issues)
1996 # but the openssl maintainers basically said: "trust us, it just works". 2214 # but the openssl maintainers basically said: "trust us, it just works".
1997 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 2215 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1998 # and mismaintained ssleay-module doesn't even offer them). 2216 # and mismaintained ssleay-module didn't offer them for a decade or so).
1999 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 2217 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
2000 # 2218 #
2001 # in short: this is a mess. 2219 # in short: this is a mess.
2002 # 2220 #
2003 # note that we do not try to keep the length constant between writes as we are required to do. 2221 # note that we do not try to keep the length constant between writes as we are required to do.
2004 # we assume that most (but not all) of this insanity only applies to non-blocking cases, 2222 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
2005 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to 2223 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
2006 # have identity issues in that area. 2224 # have identity issues in that area.
2007# Net::SSLeay::CTX_set_mode ($ssl, 2225# Net::SSLeay::set_mode ($ssl,
2008# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 2226# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
2009# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 2227# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
2010 Net::SSLeay::CTX_set_mode ($tls, 1|2); 2228 Net::SSLeay::set_mode ($tls, 1|2);
2011 2229
2012 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 2230 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
2013 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 2231 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
2014 2232
2015 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf}); 2233 Net::SSLeay::BIO_write ($self->{_rbio}, $self->{rbuf});
2234 $self->{rbuf} = "";
2016 2235
2017 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio}); 2236 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
2018 2237
2019 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) } 2238 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
2020 if $self->{on_starttls}; 2239 if $self->{on_starttls};
2054 2273
2055 return unless $self->{tls}; 2274 return unless $self->{tls};
2056 2275
2057 $self->{tls_ctx}->_put_session (delete $self->{tls}) 2276 $self->{tls_ctx}->_put_session (delete $self->{tls})
2058 if $self->{tls} > 0; 2277 if $self->{tls} > 0;
2059 2278
2060 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)}; 2279 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
2061} 2280}
2062 2281
2063=item $handle->resettls 2282=item $handle->resettls
2064 2283
2089 push @linger, AE::io $fh, 1, sub { 2308 push @linger, AE::io $fh, 1, sub {
2090 my $len = syswrite $fh, $wbuf, length $wbuf; 2309 my $len = syswrite $fh, $wbuf, length $wbuf;
2091 2310
2092 if ($len > 0) { 2311 if ($len > 0) {
2093 substr $wbuf, 0, $len, ""; 2312 substr $wbuf, 0, $len, "";
2094 } elsif (defined $len || ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK)) { 2313 } elsif (defined $len || ($! != EAGAIN && $! != EINTR && $! != EWOULDBLOCK && $! != WSAEWOULDBLOCK)) {
2095 @linger = (); # end 2314 @linger = (); # end
2096 } 2315 }
2097 }; 2316 };
2098 push @linger, AE::timer $linger, 0, sub { 2317 push @linger, AE::timer $linger, 0, sub {
2099 @linger = (); 2318 @linger = ();
2202Probably because your C<on_error> callback is being called instead: When 2421Probably because your C<on_error> callback is being called instead: When
2203you have outstanding requests in your read queue, then an EOF is 2422you have outstanding requests in your read queue, then an EOF is
2204considered an error as you clearly expected some data. 2423considered an error as you clearly expected some data.
2205 2424
2206To avoid this, make sure you have an empty read queue whenever your handle 2425To avoid this, make sure you have an empty read queue whenever your handle
2207is supposed to be "idle" (i.e. connection closes are O.K.). You cna set 2426is supposed to be "idle" (i.e. connection closes are O.K.). You can set
2208an C<on_read> handler that simply pushes the first read requests in the 2427an C<on_read> handler that simply pushes the first read requests in the
2209queue. 2428queue.
2210 2429
2211See also the next question, which explains this in a bit more detail. 2430See also the next question, which explains this in a bit more detail.
2212 2431
2220handles requests until the server gets some QUIT command, causing it to 2439handles requests until the server gets some QUIT command, causing it to
2221close the connection first (highly desirable for a busy TCP server). A 2440close the connection first (highly desirable for a busy TCP server). A
2222client dropping the connection is an error, which means this variant can 2441client dropping the connection is an error, which means this variant can
2223detect an unexpected detection close. 2442detect an unexpected detection close.
2224 2443
2225To handle this case, always make sure you have a on-empty read queue, by 2444To handle this case, always make sure you have a non-empty read queue, by
2226pushing the "read request start" handler on it: 2445pushing the "read request start" handler on it:
2227 2446
2228 # we assume a request starts with a single line 2447 # we assume a request starts with a single line
2229 my @start_request; @start_request = (line => sub { 2448 my @start_request; @start_request = (line => sub {
2230 my ($hdl, $line) = @_; 2449 my ($hdl, $line) = @_;
2243some data and raises the C<EPIPE> error when the connction is dropped 2462some data and raises the C<EPIPE> error when the connction is dropped
2244unexpectedly. 2463unexpectedly.
2245 2464
2246The second variant is a protocol where the client can drop the connection 2465The second variant is a protocol where the client can drop the connection
2247at any time. For TCP, this means that the server machine may run out of 2466at any time. For TCP, this means that the server machine may run out of
2248sockets easier, and in general, it means you cnanot distinguish a protocl 2467sockets easier, and in general, it means you cannot distinguish a protocl
2249failure/client crash from a normal connection close. Nevertheless, these 2468failure/client crash from a normal connection close. Nevertheless, these
2250kinds of protocols are common (and sometimes even the best solution to the 2469kinds of protocols are common (and sometimes even the best solution to the
2251problem). 2470problem).
2252 2471
2253Having an outstanding read request at all times is possible if you ignore 2472Having an outstanding read request at all times is possible if you ignore
2305 $handle->on_eof (undef); 2524 $handle->on_eof (undef);
2306 $handle->on_error (sub { 2525 $handle->on_error (sub {
2307 my $data = delete $_[0]{rbuf}; 2526 my $data = delete $_[0]{rbuf};
2308 }); 2527 });
2309 2528
2529Note that this example removes the C<rbuf> member from the handle object,
2530which is not normally allowed by the API. It is expressly permitted in
2531this case only, as the handle object needs to be destroyed afterwards.
2532
2310The reason to use C<on_error> is that TCP connections, due to latencies 2533The reason to use C<on_error> is that TCP connections, due to latencies
2311and packets loss, might get closed quite violently with an error, when in 2534and packets loss, might get closed quite violently with an error, when in
2312fact all data has been received. 2535fact all data has been received.
2313 2536
2314It is usually better to use acknowledgements when transferring data, 2537It is usually better to use acknowledgements when transferring data,
2324C<low_water_mark> this will be called precisely when all data has been 2547C<low_water_mark> this will be called precisely when all data has been
2325written to the socket: 2548written to the socket:
2326 2549
2327 $handle->push_write (...); 2550 $handle->push_write (...);
2328 $handle->on_drain (sub { 2551 $handle->on_drain (sub {
2329 warn "all data submitted to the kernel\n"; 2552 AE::log debug => "All data submitted to the kernel.";
2330 undef $handle; 2553 undef $handle;
2331 }); 2554 });
2332 2555
2333If you just want to queue some data and then signal EOF to the other side, 2556If you just want to queue some data and then signal EOF to the other side,
2334consider using C<< ->push_shutdown >> instead. 2557consider using C<< ->push_shutdown >> instead.
2418When you have intermediate CA certificates that your clients might not 2641When you have intermediate CA certificates that your clients might not
2419know about, just append them to the C<cert_file>. 2642know about, just append them to the C<cert_file>.
2420 2643
2421=back 2644=back
2422 2645
2423
2424=head1 SUBCLASSING AnyEvent::Handle 2646=head1 SUBCLASSING AnyEvent::Handle
2425 2647
2426In many cases, you might want to subclass AnyEvent::Handle. 2648In many cases, you might want to subclass AnyEvent::Handle.
2427 2649
2428To make this easier, a given version of AnyEvent::Handle uses these 2650To make this easier, a given version of AnyEvent::Handle uses these
2454 2676
2455Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>. 2677Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
2456 2678
2457=cut 2679=cut
2458 2680
24591; # End of AnyEvent::Handle 26811
2682

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines