ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.69 by root, Sun Jun 15 21:44:56 2008 UTC vs.
Revision 1.97 by root, Thu Oct 2 11:07:59 2008 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent (); 6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK); 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 8use Scalar::Util ();
9use Carp (); 9use Carp ();
14 14
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17=cut 17=cut
18 18
19our $VERSION = 4.151; 19our $VERSION = 4.3;
20 20
21=head1 SYNOPSIS 21=head1 SYNOPSIS
22 22
23 use AnyEvent; 23 use AnyEvent;
24 use AnyEvent::Handle; 24 use AnyEvent::Handle;
49 49
50This module is a helper module to make it easier to do event-based I/O on 50This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 51filehandles. For utility functions for doing non-blocking connects and accepts
52on sockets see L<AnyEvent::Util>. 52on sockets see L<AnyEvent::Util>.
53 53
54The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples.
56
54In the following, when the documentation refers to of "bytes" then this 57In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 58means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 59treatment of characters applies to this module as well.
57 60
58All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
59argument. 62argument.
60 63
64=head2 SIGPIPE is not handled by this module
65
66SIGPIPE is not handled by this module, so one of the practical
67requirements of using it is to ignore SIGPIPE (C<$SIG{PIPE} =
68'IGNORE'>). At least, this is highly recommend in a networked program: If
69you use AnyEvent::Handle in a filter program (like sort), exiting on
70SIGPIPE is probably the right thing to do.
71
61=head1 METHODS 72=head1 METHODS
62 73
63=over 4 74=over 4
64 75
65=item B<new (%args)> 76=item B<new (%args)>
70 81
71=item fh => $filehandle [MANDATORY] 82=item fh => $filehandle [MANDATORY]
72 83
73The filehandle this L<AnyEvent::Handle> object will operate on. 84The filehandle this L<AnyEvent::Handle> object will operate on.
74 85
75NOTE: The filehandle will be set to non-blocking (using 86NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 87C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
88that mode.
77 89
78=item on_eof => $cb->($handle) 90=item on_eof => $cb->($handle)
79 91
80Set the callback to be called when an end-of-file condition is detcted, 92Set the callback to be called when an end-of-file condition is detected,
81i.e. in the case of a socket, when the other side has closed the 93i.e. in the case of a socket, when the other side has closed the
82connection cleanly. 94connection cleanly.
83 95
96For sockets, this just means that the other side has stopped sending data,
97you can still try to write data, and, in fact, one can return from the eof
98callback and continue writing data, as only the read part has been shut
99down.
100
84While not mandatory, it is highly recommended to set an eof callback, 101While not mandatory, it is I<highly> recommended to set an eof callback,
85otherwise you might end up with a closed socket while you are still 102otherwise you might end up with a closed socket while you are still
86waiting for data. 103waiting for data.
104
105If an EOF condition has been detected but no C<on_eof> callback has been
106set, then a fatal error will be raised with C<$!> set to <0>.
87 107
88=item on_error => $cb->($handle, $fatal) 108=item on_error => $cb->($handle, $fatal)
89 109
90This is the error callback, which is called when, well, some error 110This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 111occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 112connect or a read error.
93 113
94Some errors are fatal (which is indicated by C<$fatal> being true). On 114Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 115fatal errors the handle object will be shut down and will not be usable
116(but you are free to look at the current C<< ->rbuf >>). Examples of fatal
117errors are an EOF condition with active (but unsatisifable) read watchers
118(C<EPIPE>) or I/O errors.
119
96usable. Non-fatal errors can be retried by simply returning, but it is 120Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 121to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 122when this callback is invoked. Examples of non-fatal errors are timeouts
123C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 124
100On callback entrance, the value of C<$!> contains the operating system 125On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 126error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
102 127
103While not mandatory, it is I<highly> recommended to set this callback, as 128While not mandatory, it is I<highly> recommended to set this callback, as
135=item timeout => $fractional_seconds 160=item timeout => $fractional_seconds
136 161
137If non-zero, then this enables an "inactivity" timeout: whenever this many 162If non-zero, then this enables an "inactivity" timeout: whenever this many
138seconds pass without a successful read or write on the underlying file 163seconds pass without a successful read or write on the underlying file
139handle, the C<on_timeout> callback will be invoked (and if that one is 164handle, the C<on_timeout> callback will be invoked (and if that one is
140missing, an C<ETIMEDOUT> error will be raised). 165missing, a non-fatal C<ETIMEDOUT> error will be raised).
141 166
142Note that timeout processing is also active when you currently do not have 167Note that timeout processing is also active when you currently do not have
143any outstanding read or write requests: If you plan to keep the connection 168any outstanding read or write requests: If you plan to keep the connection
144idle then you should disable the timout temporarily or ignore the timeout 169idle then you should disable the timout temporarily or ignore the timeout
145in the C<on_timeout> callback. 170in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
171restart the timeout.
146 172
147Zero (the default) disables this timeout. 173Zero (the default) disables this timeout.
148 174
149=item on_timeout => $cb->($handle) 175=item on_timeout => $cb->($handle)
150 176
154 180
155=item rbuf_max => <bytes> 181=item rbuf_max => <bytes>
156 182
157If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 183If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
158when the read buffer ever (strictly) exceeds this size. This is useful to 184when the read buffer ever (strictly) exceeds this size. This is useful to
159avoid denial-of-service attacks. 185avoid some forms of denial-of-service attacks.
160 186
161For example, a server accepting connections from untrusted sources should 187For example, a server accepting connections from untrusted sources should
162be configured to accept only so-and-so much data that it cannot act on 188be configured to accept only so-and-so much data that it cannot act on
163(for example, when expecting a line, an attacker could send an unlimited 189(for example, when expecting a line, an attacker could send an unlimited
164amount of data without a callback ever being called as long as the line 190amount of data without a callback ever being called as long as the line
165isn't finished). 191isn't finished).
166 192
193=item autocork => <boolean>
194
195When disabled (the default), then C<push_write> will try to immediately
196write the data to the handle, if possible. This avoids having to register
197a write watcher and wait for the next event loop iteration, but can
198be inefficient if you write multiple small chunks (on the wire, this
199disadvantage is usually avoided by your kernel's nagle algorithm, see
200C<no_delay>, but this option can save costly syscalls).
201
202When enabled, then writes will always be queued till the next event loop
203iteration. This is efficient when you do many small writes per iteration,
204but less efficient when you do a single write only per iteration (or when
205the write buffer often is full). It also increases write latency.
206
207=item no_delay => <boolean>
208
209When doing small writes on sockets, your operating system kernel might
210wait a bit for more data before actually sending it out. This is called
211the Nagle algorithm, and usually it is beneficial.
212
213In some situations you want as low a delay as possible, which can be
214accomplishd by setting this option to a true value.
215
216The default is your opertaing system's default behaviour (most likely
217enabled), this option explicitly enables or disables it, if possible.
218
167=item read_size => <bytes> 219=item read_size => <bytes>
168 220
169The default read block size (the amount of bytes this module will try to read 221The default read block size (the amount of bytes this module will
170during each (loop iteration). Default: C<8192>. 222try to read during each loop iteration, which affects memory
223requirements). Default: C<8192>.
171 224
172=item low_water_mark => <bytes> 225=item low_water_mark => <bytes>
173 226
174Sets the amount of bytes (default: C<0>) that make up an "empty" write 227Sets the amount of bytes (default: C<0>) that make up an "empty" write
175buffer: If the write reaches this size or gets even samller it is 228buffer: If the write reaches this size or gets even samller it is
176considered empty. 229considered empty.
177 230
231Sometimes it can be beneficial (for performance reasons) to add data to
232the write buffer before it is fully drained, but this is a rare case, as
233the operating system kernel usually buffers data as well, so the default
234is good in almost all cases.
235
178=item linger => <seconds> 236=item linger => <seconds>
179 237
180If non-zero (default: C<3600>), then the destructor of the 238If non-zero (default: C<3600>), then the destructor of the
181AnyEvent::Handle object will check wether there is still outstanding write 239AnyEvent::Handle object will check whether there is still outstanding
182data and will install a watcher that will write out this data. No errors 240write data and will install a watcher that will write this data to the
183will be reported (this mostly matches how the operating system treats 241socket. No errors will be reported (this mostly matches how the operating
184outstanding data at socket close time). 242system treats outstanding data at socket close time).
185 243
186This will not work for partial TLS data that could not yet been 244This will not work for partial TLS data that could not be encoded
187encoded. This data will be lost. 245yet. This data will be lost. Calling the C<stoptls> method in time might
246help.
188 247
189=item tls => "accept" | "connect" | Net::SSLeay::SSL object 248=item tls => "accept" | "connect" | Net::SSLeay::SSL object
190 249
191When this parameter is given, it enables TLS (SSL) mode, that means it 250When this parameter is given, it enables TLS (SSL) mode, that means
192will start making tls handshake and will transparently encrypt/decrypt 251AnyEvent will start a TLS handshake as soon as the conenction has been
193data. 252established and will transparently encrypt/decrypt data afterwards.
194 253
195TLS mode requires Net::SSLeay to be installed (it will be loaded 254TLS mode requires Net::SSLeay to be installed (it will be loaded
196automatically when you try to create a TLS handle). 255automatically when you try to create a TLS handle): this module doesn't
256have a dependency on that module, so if your module requires it, you have
257to add the dependency yourself.
197 258
198For the TLS server side, use C<accept>, and for the TLS client side of a 259Unlike TCP, TLS has a server and client side: for the TLS server side, use
199connection, use C<connect> mode. 260C<accept>, and for the TLS client side of a connection, use C<connect>
261mode.
200 262
201You can also provide your own TLS connection object, but you have 263You can also provide your own TLS connection object, but you have
202to make sure that you call either C<Net::SSLeay::set_connect_state> 264to make sure that you call either C<Net::SSLeay::set_connect_state>
203or C<Net::SSLeay::set_accept_state> on it before you pass it to 265or C<Net::SSLeay::set_accept_state> on it before you pass it to
204AnyEvent::Handle. 266AnyEvent::Handle.
205 267
206See the C<starttls> method if you need to start TLs negotiation later. 268See the C<< ->starttls >> method for when need to start TLS negotiation later.
207 269
208=item tls_ctx => $ssl_ctx 270=item tls_ctx => $ssl_ctx
209 271
210Use the given Net::SSLeay::CTX object to create the new TLS connection 272Use the given C<Net::SSLeay::CTX> object to create the new TLS connection
211(unless a connection object was specified directly). If this parameter is 273(unless a connection object was specified directly). If this parameter is
212missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 274missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
213 275
214=item json => JSON or JSON::XS object 276=item json => JSON or JSON::XS object
215 277
216This is the json coder object used by the C<json> read and write types. 278This is the json coder object used by the C<json> read and write types.
217 279
218If you don't supply it, then AnyEvent::Handle will create and use a 280If you don't supply it, then AnyEvent::Handle will create and use a
219suitable one, which will write and expect UTF-8 encoded JSON texts. 281suitable one (on demand), which will write and expect UTF-8 encoded JSON
282texts.
220 283
221Note that you are responsible to depend on the JSON module if you want to 284Note that you are responsible to depend on the JSON module if you want to
222use this functionality, as AnyEvent does not have a dependency itself. 285use this functionality, as AnyEvent does not have a dependency itself.
223 286
224=item filter_r => $cb
225
226=item filter_w => $cb
227
228These exist, but are undocumented at this time.
229
230=back 287=back
231 288
232=cut 289=cut
233 290
234sub new { 291sub new {
238 295
239 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 296 $self->{fh} or Carp::croak "mandatory argument fh is missing";
240 297
241 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 298 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
242 299
243 if ($self->{tls}) {
244 require Net::SSLeay;
245 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 300 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
246 } 301 if $self->{tls};
247 302
248 $self->{_activity} = AnyEvent->now; 303 $self->{_activity} = AnyEvent->now;
249 $self->_timeout; 304 $self->_timeout;
250 305
251 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 306 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
307 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
252 308
253 $self->start_read 309 $self->start_read
254 if $self->{on_read}; 310 if $self->{on_read};
255 311
256 $self 312 $self
262 delete $self->{_tw}; 318 delete $self->{_tw};
263 delete $self->{_rw}; 319 delete $self->{_rw};
264 delete $self->{_ww}; 320 delete $self->{_ww};
265 delete $self->{fh}; 321 delete $self->{fh};
266 322
267 $self->stoptls; 323 &_freetls;
324
325 delete $self->{on_read};
326 delete $self->{_queue};
268} 327}
269 328
270sub _error { 329sub _error {
271 my ($self, $errno, $fatal) = @_; 330 my ($self, $errno, $fatal) = @_;
272 331
282 } 341 }
283} 342}
284 343
285=item $fh = $handle->fh 344=item $fh = $handle->fh
286 345
287This method returns the file handle of the L<AnyEvent::Handle> object. 346This method returns the file handle used to create the L<AnyEvent::Handle> object.
288 347
289=cut 348=cut
290 349
291sub fh { $_[0]{fh} } 350sub fh { $_[0]{fh} }
292 351
310 $_[0]{on_eof} = $_[1]; 369 $_[0]{on_eof} = $_[1];
311} 370}
312 371
313=item $handle->on_timeout ($cb) 372=item $handle->on_timeout ($cb)
314 373
315Replace the current C<on_timeout> callback, or disables the callback 374Replace the current C<on_timeout> callback, or disables the callback (but
316(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor 375not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
317argument. 376argument and method.
318 377
319=cut 378=cut
320 379
321sub on_timeout { 380sub on_timeout {
322 $_[0]{on_timeout} = $_[1]; 381 $_[0]{on_timeout} = $_[1];
382}
383
384=item $handle->autocork ($boolean)
385
386Enables or disables the current autocork behaviour (see C<autocork>
387constructor argument).
388
389=cut
390
391=item $handle->no_delay ($boolean)
392
393Enables or disables the C<no_delay> setting (see constructor argument of
394the same name for details).
395
396=cut
397
398sub no_delay {
399 $_[0]{no_delay} = $_[1];
400
401 eval {
402 local $SIG{__DIE__};
403 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
404 };
323} 405}
324 406
325############################################################################# 407#############################################################################
326 408
327=item $handle->timeout ($seconds) 409=item $handle->timeout ($seconds)
405 my ($self, $cb) = @_; 487 my ($self, $cb) = @_;
406 488
407 $self->{on_drain} = $cb; 489 $self->{on_drain} = $cb;
408 490
409 $cb->($self) 491 $cb->($self)
410 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 492 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
411} 493}
412 494
413=item $handle->push_write ($data) 495=item $handle->push_write ($data)
414 496
415Queues the given scalar to be written. You can push as much data as you 497Queues the given scalar to be written. You can push as much data as you
432 substr $self->{wbuf}, 0, $len, ""; 514 substr $self->{wbuf}, 0, $len, "";
433 515
434 $self->{_activity} = AnyEvent->now; 516 $self->{_activity} = AnyEvent->now;
435 517
436 $self->{on_drain}($self) 518 $self->{on_drain}($self)
437 if $self->{low_water_mark} >= length $self->{wbuf} 519 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
438 && $self->{on_drain}; 520 && $self->{on_drain};
439 521
440 delete $self->{_ww} unless length $self->{wbuf}; 522 delete $self->{_ww} unless length $self->{wbuf};
441 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 523 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
442 $self->_error ($!, 1); 524 $self->_error ($!, 1);
443 } 525 }
444 }; 526 };
445 527
446 # try to write data immediately 528 # try to write data immediately
447 $cb->(); 529 $cb->() unless $self->{autocork};
448 530
449 # if still data left in wbuf, we need to poll 531 # if still data left in wbuf, we need to poll
450 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 532 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
451 if length $self->{wbuf}; 533 if length $self->{wbuf};
452 }; 534 };
466 548
467 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 549 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
468 ->($self, @_); 550 ->($self, @_);
469 } 551 }
470 552
471 if ($self->{filter_w}) { 553 if ($self->{tls}) {
472 $self->{filter_w}($self, \$_[0]); 554 $self->{_tls_wbuf} .= $_[0];
555
556 &_dotls ($self);
473 } else { 557 } else {
474 $self->{wbuf} .= $_[0]; 558 $self->{wbuf} .= $_[0];
475 $self->_drain_wbuf; 559 $self->_drain_wbuf;
476 } 560 }
477} 561}
494=cut 578=cut
495 579
496register_write_type netstring => sub { 580register_write_type netstring => sub {
497 my ($self, $string) = @_; 581 my ($self, $string) = @_;
498 582
499 sprintf "%d:%s,", (length $string), $string 583 (length $string) . ":$string,"
500}; 584};
501 585
502=item packstring => $format, $data 586=item packstring => $format, $data
503 587
504An octet string prefixed with an encoded length. The encoding C<$format> 588An octet string prefixed with an encoded length. The encoding C<$format>
678 762
679 if ( 763 if (
680 defined $self->{rbuf_max} 764 defined $self->{rbuf_max}
681 && $self->{rbuf_max} < length $self->{rbuf} 765 && $self->{rbuf_max} < length $self->{rbuf}
682 ) { 766 ) {
683 return $self->_error (&Errno::ENOSPC, 1); 767 $self->_error (&Errno::ENOSPC, 1), return;
684 } 768 }
685 769
686 while () { 770 while () {
687 no strict 'refs';
688
689 my $len = length $self->{rbuf}; 771 my $len = length $self->{rbuf};
690 772
691 if (my $cb = shift @{ $self->{_queue} }) { 773 if (my $cb = shift @{ $self->{_queue} }) {
692 unless ($cb->($self)) { 774 unless ($cb->($self)) {
693 if ($self->{_eof}) { 775 if ($self->{_eof}) {
694 # no progress can be made (not enough data and no data forthcoming) 776 # no progress can be made (not enough data and no data forthcoming)
695 $self->_error (&Errno::EPIPE, 1), last; 777 $self->_error (&Errno::EPIPE, 1), return;
696 } 778 }
697 779
698 unshift @{ $self->{_queue} }, $cb; 780 unshift @{ $self->{_queue} }, $cb;
699 last; 781 last;
700 } 782 }
708 && !@{ $self->{_queue} } # and the queue is still empty 790 && !@{ $self->{_queue} } # and the queue is still empty
709 && $self->{on_read} # but we still have on_read 791 && $self->{on_read} # but we still have on_read
710 ) { 792 ) {
711 # no further data will arrive 793 # no further data will arrive
712 # so no progress can be made 794 # so no progress can be made
713 $self->_error (&Errno::EPIPE, 1), last 795 $self->_error (&Errno::EPIPE, 1), return
714 if $self->{_eof}; 796 if $self->{_eof};
715 797
716 last; # more data might arrive 798 last; # more data might arrive
717 } 799 }
718 } else { 800 } else {
719 # read side becomes idle 801 # read side becomes idle
720 delete $self->{_rw}; 802 delete $self->{_rw} unless $self->{tls};
721 last; 803 last;
722 } 804 }
723 } 805 }
724 806
807 if ($self->{_eof}) {
808 if ($self->{on_eof}) {
725 $self->{on_eof}($self) 809 $self->{on_eof}($self)
726 if $self->{_eof} && $self->{on_eof}; 810 } else {
811 $self->_error (0, 1);
812 }
813 }
727 814
728 # may need to restart read watcher 815 # may need to restart read watcher
729 unless ($self->{_rw}) { 816 unless ($self->{_rw}) {
730 $self->start_read 817 $self->start_read
731 if $self->{on_read} || @{ $self->{_queue} }; 818 if $self->{on_read} || @{ $self->{_queue} };
857 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 944 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
858 1 945 1
859 } 946 }
860}; 947};
861 948
862# compatibility with older API
863sub push_read_chunk {
864 $_[0]->push_read (chunk => $_[1], $_[2]);
865}
866
867sub unshift_read_chunk {
868 $_[0]->unshift_read (chunk => $_[1], $_[2]);
869}
870
871=item line => [$eol, ]$cb->($handle, $line, $eol) 949=item line => [$eol, ]$cb->($handle, $line, $eol)
872 950
873The callback will be called only once a full line (including the end of 951The callback will be called only once a full line (including the end of
874line marker, C<$eol>) has been read. This line (excluding the end of line 952line marker, C<$eol>) has been read. This line (excluding the end of line
875marker) will be passed to the callback as second argument (C<$line>), and 953marker) will be passed to the callback as second argument (C<$line>), and
890=cut 968=cut
891 969
892register_read_type line => sub { 970register_read_type line => sub {
893 my ($self, $cb, $eol) = @_; 971 my ($self, $cb, $eol) = @_;
894 972
895 $eol = qr|(\015?\012)| if @_ < 3; 973 if (@_ < 3) {
974 # this is more than twice as fast as the generic code below
975 sub {
976 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
977
978 $cb->($_[0], $1, $2);
979 1
980 }
981 } else {
896 $eol = quotemeta $eol unless ref $eol; 982 $eol = quotemeta $eol unless ref $eol;
897 $eol = qr|^(.*?)($eol)|s; 983 $eol = qr|^(.*?)($eol)|s;
898 984
899 sub { 985 sub {
900 $_[0]{rbuf} =~ s/$eol// or return; 986 $_[0]{rbuf} =~ s/$eol// or return;
901 987
902 $cb->($_[0], $1, $2); 988 $cb->($_[0], $1, $2);
989 1
903 1 990 }
904 } 991 }
905}; 992};
906
907# compatibility with older API
908sub push_read_line {
909 my $self = shift;
910 $self->push_read (line => @_);
911}
912
913sub unshift_read_line {
914 my $self = shift;
915 $self->unshift_read (line => @_);
916}
917 993
918=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 994=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
919 995
920Makes a regex match against the regex object C<$accept> and returns 996Makes a regex match against the regex object C<$accept> and returns
921everything up to and including the match. 997everything up to and including the match.
1026An octet string prefixed with an encoded length. The encoding C<$format> 1102An octet string prefixed with an encoded length. The encoding C<$format>
1027uses the same format as a Perl C<pack> format, but must specify a single 1103uses the same format as a Perl C<pack> format, but must specify a single
1028integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1104integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1029optional C<!>, C<< < >> or C<< > >> modifier). 1105optional C<!>, C<< < >> or C<< > >> modifier).
1030 1106
1031DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1107For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1108EPP uses a prefix of C<N> (4 octtes).
1032 1109
1033Example: read a block of data prefixed by its length in BER-encoded 1110Example: read a block of data prefixed by its length in BER-encoded
1034format (very efficient). 1111format (very efficient).
1035 1112
1036 $handle->push_read (packstring => "w", sub { 1113 $handle->push_read (packstring => "w", sub {
1042register_read_type packstring => sub { 1119register_read_type packstring => sub {
1043 my ($self, $cb, $format) = @_; 1120 my ($self, $cb, $format) = @_;
1044 1121
1045 sub { 1122 sub {
1046 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1123 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1047 defined (my $len = eval { unpack $format, $_[0]->{rbuf} }) 1124 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1048 or return; 1125 or return;
1049 1126
1127 $format = length pack $format, $len;
1128
1129 # bypass unshift if we already have the remaining chunk
1130 if ($format + $len <= length $_[0]{rbuf}) {
1131 my $data = substr $_[0]{rbuf}, $format, $len;
1132 substr $_[0]{rbuf}, 0, $format + $len, "";
1133 $cb->($_[0], $data);
1134 } else {
1050 # remove prefix 1135 # remove prefix
1051 substr $_[0]->{rbuf}, 0, (length pack $format, $len), ""; 1136 substr $_[0]{rbuf}, 0, $format, "";
1052 1137
1053 # read rest 1138 # read remaining chunk
1054 $_[0]->unshift_read (chunk => $len, $cb); 1139 $_[0]->unshift_read (chunk => $len, $cb);
1140 }
1055 1141
1056 1 1142 1
1057 } 1143 }
1058}; 1144};
1059 1145
1116 1202
1117 require Storable; 1203 require Storable;
1118 1204
1119 sub { 1205 sub {
1120 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1206 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1121 defined (my $len = eval { unpack "w", $_[0]->{rbuf} }) 1207 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1122 or return; 1208 or return;
1123 1209
1210 my $format = length pack "w", $len;
1211
1212 # bypass unshift if we already have the remaining chunk
1213 if ($format + $len <= length $_[0]{rbuf}) {
1214 my $data = substr $_[0]{rbuf}, $format, $len;
1215 substr $_[0]{rbuf}, 0, $format + $len, "";
1216 $cb->($_[0], Storable::thaw ($data));
1217 } else {
1124 # remove prefix 1218 # remove prefix
1125 substr $_[0]->{rbuf}, 0, (length pack "w", $len), ""; 1219 substr $_[0]{rbuf}, 0, $format, "";
1126 1220
1127 # read rest 1221 # read remaining chunk
1128 $_[0]->unshift_read (chunk => $len, sub { 1222 $_[0]->unshift_read (chunk => $len, sub {
1129 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1223 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1130 $cb->($_[0], $ref); 1224 $cb->($_[0], $ref);
1131 } else { 1225 } else {
1132 $self->_error (&Errno::EBADMSG); 1226 $self->_error (&Errno::EBADMSG);
1227 }
1133 } 1228 });
1134 }); 1229 }
1230
1231 1
1135 } 1232 }
1136}; 1233};
1137 1234
1138=back 1235=back
1139 1236
1169Note that AnyEvent::Handle will automatically C<start_read> for you when 1266Note that AnyEvent::Handle will automatically C<start_read> for you when
1170you change the C<on_read> callback or push/unshift a read callback, and it 1267you change the C<on_read> callback or push/unshift a read callback, and it
1171will automatically C<stop_read> for you when neither C<on_read> is set nor 1268will automatically C<stop_read> for you when neither C<on_read> is set nor
1172there are any read requests in the queue. 1269there are any read requests in the queue.
1173 1270
1271These methods will have no effect when in TLS mode (as TLS doesn't support
1272half-duplex connections).
1273
1174=cut 1274=cut
1175 1275
1176sub stop_read { 1276sub stop_read {
1177 my ($self) = @_; 1277 my ($self) = @_;
1178 1278
1179 delete $self->{_rw}; 1279 delete $self->{_rw} unless $self->{tls};
1180} 1280}
1181 1281
1182sub start_read { 1282sub start_read {
1183 my ($self) = @_; 1283 my ($self) = @_;
1184 1284
1185 unless ($self->{_rw} || $self->{_eof}) { 1285 unless ($self->{_rw} || $self->{_eof}) {
1186 Scalar::Util::weaken $self; 1286 Scalar::Util::weaken $self;
1187 1287
1188 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1288 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1189 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1289 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1190 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1290 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1191 1291
1192 if ($len > 0) { 1292 if ($len > 0) {
1193 $self->{_activity} = AnyEvent->now; 1293 $self->{_activity} = AnyEvent->now;
1194 1294
1195 $self->{filter_r} 1295 if ($self->{tls}) {
1196 ? $self->{filter_r}($self, $rbuf) 1296 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1197 : $self->{_in_drain} || $self->_drain_rbuf; 1297
1298 &_dotls ($self);
1299 } else {
1300 $self->_drain_rbuf unless $self->{_in_drain};
1301 }
1198 1302
1199 } elsif (defined $len) { 1303 } elsif (defined $len) {
1200 delete $self->{_rw}; 1304 delete $self->{_rw};
1201 $self->{_eof} = 1; 1305 $self->{_eof} = 1;
1202 $self->_drain_rbuf unless $self->{_in_drain}; 1306 $self->_drain_rbuf unless $self->{_in_drain};
1206 } 1310 }
1207 }); 1311 });
1208 } 1312 }
1209} 1313}
1210 1314
1315# poll the write BIO and send the data if applicable
1211sub _dotls { 1316sub _dotls {
1212 my ($self) = @_; 1317 my ($self) = @_;
1213 1318
1214 my $buf; 1319 my $tmp;
1215 1320
1216 if (length $self->{_tls_wbuf}) { 1321 if (length $self->{_tls_wbuf}) {
1217 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1322 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1218 substr $self->{_tls_wbuf}, 0, $len, ""; 1323 substr $self->{_tls_wbuf}, 0, $tmp, "";
1219 } 1324 }
1220 } 1325 }
1221 1326
1222 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1223 $self->{wbuf} .= $buf;
1224 $self->_drain_wbuf;
1225 }
1226
1227 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1327 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1228 if (length $buf) { 1328 unless (length $tmp) {
1229 $self->{rbuf} .= $buf;
1230 $self->_drain_rbuf unless $self->{_in_drain};
1231 } else {
1232 # let's treat SSL-eof as we treat normal EOF 1329 # let's treat SSL-eof as we treat normal EOF
1330 delete $self->{_rw};
1233 $self->{_eof} = 1; 1331 $self->{_eof} = 1;
1234 $self->_shutdown; 1332 &_freetls;
1235 return;
1236 } 1333 }
1237 }
1238 1334
1335 $self->{rbuf} .= $tmp;
1336 $self->_drain_rbuf unless $self->{_in_drain};
1337 $self->{tls} or return; # tls session might have gone away in callback
1338 }
1339
1239 my $err = Net::SSLeay::get_error ($self->{tls}, -1); 1340 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1240 1341
1241 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) { 1342 if ($tmp != Net::SSLeay::ERROR_WANT_READ ()) {
1242 if ($err == Net::SSLeay::ERROR_SYSCALL ()) { 1343 if ($tmp == Net::SSLeay::ERROR_SYSCALL ()) {
1243 return $self->_error ($!, 1); 1344 return $self->_error ($!, 1);
1244 } elsif ($err == Net::SSLeay::ERROR_SSL ()) { 1345 } elsif ($tmp == Net::SSLeay::ERROR_SSL ()) {
1245 return $self->_error (&Errno::EIO, 1); 1346 return $self->_error (&Errno::EIO, 1);
1246 } 1347 }
1247 1348
1248 # all others are fine for our purposes 1349 # all other errors are fine for our purposes
1350 }
1351
1352 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1353 $self->{wbuf} .= $tmp;
1354 $self->_drain_wbuf;
1249 } 1355 }
1250} 1356}
1251 1357
1252=item $handle->starttls ($tls[, $tls_ctx]) 1358=item $handle->starttls ($tls[, $tls_ctx])
1253 1359
1263 1369
1264The TLS connection object will end up in C<< $handle->{tls} >> after this 1370The TLS connection object will end up in C<< $handle->{tls} >> after this
1265call and can be used or changed to your liking. Note that the handshake 1371call and can be used or changed to your liking. Note that the handshake
1266might have already started when this function returns. 1372might have already started when this function returns.
1267 1373
1374If it an error to start a TLS handshake more than once per
1375AnyEvent::Handle object (this is due to bugs in OpenSSL).
1376
1268=cut 1377=cut
1269 1378
1270sub starttls { 1379sub starttls {
1271 my ($self, $ssl, $ctx) = @_; 1380 my ($self, $ssl, $ctx) = @_;
1272 1381
1273 $self->stoptls; 1382 require Net::SSLeay;
1274 1383
1384 Carp::croak "it is an error to call starttls more than once on an Anyevent::Handle object"
1385 if $self->{tls};
1386
1275 if ($ssl eq "accept") { 1387 if ($ssl eq "accept") {
1276 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1388 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1277 Net::SSLeay::set_accept_state ($ssl); 1389 Net::SSLeay::set_accept_state ($ssl);
1278 } elsif ($ssl eq "connect") { 1390 } elsif ($ssl eq "connect") {
1279 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1391 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1285 # basically, this is deep magic (because SSL_read should have the same issues) 1397 # basically, this is deep magic (because SSL_read should have the same issues)
1286 # but the openssl maintainers basically said: "trust us, it just works". 1398 # but the openssl maintainers basically said: "trust us, it just works".
1287 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1399 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1288 # and mismaintained ssleay-module doesn't even offer them). 1400 # and mismaintained ssleay-module doesn't even offer them).
1289 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1401 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1402 #
1403 # in short: this is a mess.
1404 #
1405 # note that we do not try to keep the length constant between writes as we are required to do.
1406 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1407 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1408 # have identity issues in that area.
1290 Net::SSLeay::CTX_set_mode ($self->{tls}, 1409 Net::SSLeay::CTX_set_mode ($self->{tls},
1291 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1410 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1292 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1411 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1293 1412
1294 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1413 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1295 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1414 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1296 1415
1297 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1416 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1298 1417
1299 $self->{filter_w} = sub { 1418 &_dotls; # need to trigger the initial handshake
1300 $_[0]{_tls_wbuf} .= ${$_[1]}; 1419 $self->start_read; # make sure we actually do read
1301 &_dotls;
1302 };
1303 $self->{filter_r} = sub {
1304 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1305 &_dotls;
1306 };
1307} 1420}
1308 1421
1309=item $handle->stoptls 1422=item $handle->stoptls
1310 1423
1311Destroys the SSL connection, if any. Partial read or write data will be 1424Shuts down the SSL connection - this makes a proper EOF handshake by
1312lost. 1425sending a close notify to the other side, but since OpenSSL doesn't
1426support non-blocking shut downs, it is not possible to re-use the stream
1427afterwards.
1313 1428
1314=cut 1429=cut
1315 1430
1316sub stoptls { 1431sub stoptls {
1317 my ($self) = @_; 1432 my ($self) = @_;
1318 1433
1434 if ($self->{tls}) {
1435 Net::SSLeay::shutdown ($self->{tls});
1436
1437 &_dotls;
1438
1439 # we don't give a shit. no, we do, but we can't. no...
1440 # we, we... have to use openssl :/
1441 &_freetls;
1442 }
1443}
1444
1445sub _freetls {
1446 my ($self) = @_;
1447
1448 return unless $self->{tls};
1449
1319 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1450 Net::SSLeay::free (delete $self->{tls});
1320 1451
1321 delete $self->{_rbio}; 1452 delete @$self{qw(_rbio _wbio _tls_wbuf)};
1322 delete $self->{_wbio};
1323 delete $self->{_tls_wbuf};
1324 delete $self->{filter_r};
1325 delete $self->{filter_w};
1326} 1453}
1327 1454
1328sub DESTROY { 1455sub DESTROY {
1329 my $self = shift; 1456 my $self = shift;
1330 1457
1331 $self->stoptls; 1458 &_freetls;
1332 1459
1333 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1460 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1334 1461
1335 if ($linger && length $self->{wbuf}) { 1462 if ($linger && length $self->{wbuf}) {
1336 my $fh = delete $self->{fh}; 1463 my $fh = delete $self->{fh};
1388 } 1515 }
1389} 1516}
1390 1517
1391=back 1518=back
1392 1519
1520
1521=head1 NONFREQUENTLY ASKED QUESTIONS
1522
1523=over 4
1524
1525=item How do I read data until the other side closes the connection?
1526
1527If you just want to read your data into a perl scalar, the easiest way
1528to achieve this is by setting an C<on_read> callback that does nothing,
1529clearing the C<on_eof> callback and in the C<on_error> callback, the data
1530will be in C<$_[0]{rbuf}>:
1531
1532 $handle->on_read (sub { });
1533 $handle->on_eof (undef);
1534 $handle->on_error (sub {
1535 my $data = delete $_[0]{rbuf};
1536 undef $handle;
1537 });
1538
1539The reason to use C<on_error> is that TCP connections, due to latencies
1540and packets loss, might get closed quite violently with an error, when in
1541fact, all data has been received.
1542
1543It is usually better to use acknowledgements when transfering data,
1544to make sure the other side hasn't just died and you got the data
1545intact. This is also one reason why so many internet protocols have an
1546explicit QUIT command.
1547
1548
1549=item I don't want to destroy the handle too early - how do I wait until
1550all data has been written?
1551
1552After writing your last bits of data, set the C<on_drain> callback
1553and destroy the handle in there - with the default setting of
1554C<low_water_mark> this will be called precisely when all data has been
1555written to the socket:
1556
1557 $handle->push_write (...);
1558 $handle->on_drain (sub {
1559 warn "all data submitted to the kernel\n";
1560 undef $handle;
1561 });
1562
1563=back
1564
1565
1393=head1 SUBCLASSING AnyEvent::Handle 1566=head1 SUBCLASSING AnyEvent::Handle
1394 1567
1395In many cases, you might want to subclass AnyEvent::Handle. 1568In many cases, you might want to subclass AnyEvent::Handle.
1396 1569
1397To make this easier, a given version of AnyEvent::Handle uses these 1570To make this easier, a given version of AnyEvent::Handle uses these
1400=over 4 1573=over 4
1401 1574
1402=item * all constructor arguments become object members. 1575=item * all constructor arguments become object members.
1403 1576
1404At least initially, when you pass a C<tls>-argument to the constructor it 1577At least initially, when you pass a C<tls>-argument to the constructor it
1405will end up in C<< $handle->{tls} >>. Those members might be changes or 1578will end up in C<< $handle->{tls} >>. Those members might be changed or
1406mutated later on (for example C<tls> will hold the TLS connection object). 1579mutated later on (for example C<tls> will hold the TLS connection object).
1407 1580
1408=item * other object member names are prefixed with an C<_>. 1581=item * other object member names are prefixed with an C<_>.
1409 1582
1410All object members not explicitly documented (internal use) are prefixed 1583All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines