ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.72 by root, Wed Jul 16 21:17:59 2008 UTC vs.
Revision 1.177 by root, Sun Aug 9 00:24:35 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict;
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17=cut
18
19our $VERSION = 4.21;
20 4
21=head1 SYNOPSIS 5=head1 SYNOPSIS
22 6
23 use AnyEvent; 7 use AnyEvent;
24 use AnyEvent::Handle; 8 use AnyEvent::Handle;
25 9
26 my $cv = AnyEvent->condvar; 10 my $cv = AnyEvent->condvar;
27 11
28 my $handle = 12 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 13 fh => \*STDIN,
31 on_eof => sub { 14 on_error => sub {
32 $cv->broadcast; 15 my ($hdl, $fatal, $msg) = @_;
33 }, 16 warn "got error $msg\n";
17 $hdl->destroy;
18 $cv->send;
34 ); 19 );
35 20
36 # send some request line 21 # send some request line
37 $handle->push_write ("getinfo\015\012"); 22 $hdl->push_write ("getinfo\015\012");
38 23
39 # read the response line 24 # read the response line
40 $handle->push_read (line => sub { 25 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 26 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 27 warn "got line <$line>\n";
43 $cv->send; 28 $cv->send;
44 }); 29 });
45 30
46 $cv->recv; 31 $cv->recv;
47 32
48=head1 DESCRIPTION 33=head1 DESCRIPTION
49 34
50This module is a helper module to make it easier to do event-based I/O on 35This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 36filehandles.
52on sockets see L<AnyEvent::Util>. 37
38The L<AnyEvent::Intro> tutorial contains some well-documented
39AnyEvent::Handle examples.
53 40
54In the following, when the documentation refers to of "bytes" then this 41In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 42means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 43treatment of characters applies to this module as well.
57 44
45At the very minimum, you should specify C<fh> or C<connect>, and the
46C<on_error> callback.
47
58All callbacks will be invoked with the handle object as their first 48All callbacks will be invoked with the handle object as their first
59argument. 49argument.
60 50
51=cut
52
53package AnyEvent::Handle;
54
55use Scalar::Util ();
56use List::Util ();
57use Carp ();
58use Errno qw(EAGAIN EINTR);
59
60use AnyEvent (); BEGIN { AnyEvent::common_sense }
61use AnyEvent::Util qw(WSAEWOULDBLOCK);
62
63our $VERSION = $AnyEvent::VERSION;
64
61=head1 METHODS 65=head1 METHODS
62 66
63=over 4 67=over 4
64 68
65=item B<new (%args)> 69=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 70
67The constructor supports these arguments (all as key => value pairs). 71The constructor supports these arguments (all as C<< key => value >> pairs).
68 72
69=over 4 73=over 4
70 74
71=item fh => $filehandle [MANDATORY] 75=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
72 76
73The filehandle this L<AnyEvent::Handle> object will operate on. 77The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
77 81
82=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
83
84Try to connect to the specified host and service (port), using
85C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
86default C<peername>.
87
88You have to specify either this parameter, or C<fh>, above.
89
90It is possible to push requests on the read and write queues, and modify
91properties of the stream, even while AnyEvent::Handle is connecting.
92
93When this parameter is specified, then the C<on_prepare>,
94C<on_connect_error> and C<on_connect> callbacks will be called under the
95appropriate circumstances:
96
97=over 4
98
78=item on_eof => $cb->($handle) 99=item on_prepare => $cb->($handle)
79 100
80Set the callback to be called when an end-of-file condition is detcted, 101This (rarely used) callback is called before a new connection is
81i.e. in the case of a socket, when the other side has closed the 102attempted, but after the file handle has been created. It could be used to
82connection cleanly. 103prepare the file handle with parameters required for the actual connect
104(as opposed to settings that can be changed when the connection is already
105established).
83 106
84While not mandatory, it is highly recommended to set an eof callback, 107The return value of this callback should be the connect timeout value in
85otherwise you might end up with a closed socket while you are still 108seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
86waiting for data. 109timeout is to be used).
87 110
111=item on_connect => $cb->($handle, $host, $port, $retry->())
112
113This callback is called when a connection has been successfully established.
114
115The actual numeric host and port (the socket peername) are passed as
116parameters, together with a retry callback.
117
118When, for some reason, the handle is not acceptable, then calling
119C<$retry> will continue with the next conenction target (in case of
120multi-homed hosts or SRV records there can be multiple connection
121endpoints). When it is called then the read and write queues, eof status,
122tls status and similar properties of the handle are being reset.
123
124In most cases, ignoring the C<$retry> parameter is the way to go.
125
126=item on_connect_error => $cb->($handle, $message)
127
128This callback is called when the conenction could not be
129established. C<$!> will contain the relevant error code, and C<$message> a
130message describing it (usually the same as C<"$!">).
131
132If this callback isn't specified, then C<on_error> will be called with a
133fatal error instead.
134
135=back
136
88=item on_error => $cb->($handle, $fatal) 137=item on_error => $cb->($handle, $fatal, $message)
89 138
90This is the error callback, which is called when, well, some error 139This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 140occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 141connect or a read error.
93 142
94Some errors are fatal (which is indicated by C<$fatal> being true). On 143Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 144fatal errors the handle object will be destroyed (by a call to C<< ->
145destroy >>) after invoking the error callback (which means you are free to
146examine the handle object). Examples of fatal errors are an EOF condition
147with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
148cases where the other side can close the connection at their will it is
149often easiest to not report C<EPIPE> errors in this callback.
150
151AnyEvent::Handle tries to find an appropriate error code for you to check
152against, but in some cases (TLS errors), this does not work well. It is
153recommended to always output the C<$message> argument in human-readable
154error messages (it's usually the same as C<"$!">).
155
96usable. Non-fatal errors can be retried by simply returning, but it is 156Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 157to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 158when this callback is invoked. Examples of non-fatal errors are timeouts
159C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 160
100On callback entrance, the value of C<$!> contains the operating system 161On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 162error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
163C<EPROTO>).
102 164
103While not mandatory, it is I<highly> recommended to set this callback, as 165While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 166you will not be notified of errors otherwise. The default simply calls
105C<croak>. 167C<croak>.
106 168
110and no read request is in the queue (unlike read queue callbacks, this 172and no read request is in the queue (unlike read queue callbacks, this
111callback will only be called when at least one octet of data is in the 173callback will only be called when at least one octet of data is in the
112read buffer). 174read buffer).
113 175
114To access (and remove data from) the read buffer, use the C<< ->rbuf >> 176To access (and remove data from) the read buffer, use the C<< ->rbuf >>
115method or access the C<$handle->{rbuf}> member directly. 177method or access the C<< $handle->{rbuf} >> member directly. Note that you
178must not enlarge or modify the read buffer, you can only remove data at
179the beginning from it.
116 180
117When an EOF condition is detected then AnyEvent::Handle will first try to 181When an EOF condition is detected then AnyEvent::Handle will first try to
118feed all the remaining data to the queued callbacks and C<on_read> before 182feed all the remaining data to the queued callbacks and C<on_read> before
119calling the C<on_eof> callback. If no progress can be made, then a fatal 183calling the C<on_eof> callback. If no progress can be made, then a fatal
120error will be raised (with C<$!> set to C<EPIPE>). 184error will be raised (with C<$!> set to C<EPIPE>).
185
186Note that, unlike requests in the read queue, an C<on_read> callback
187doesn't mean you I<require> some data: if there is an EOF and there
188are outstanding read requests then an error will be flagged. With an
189C<on_read> callback, the C<on_eof> callback will be invoked.
190
191=item on_eof => $cb->($handle)
192
193Set the callback to be called when an end-of-file condition is detected,
194i.e. in the case of a socket, when the other side has closed the
195connection cleanly, and there are no outstanding read requests in the
196queue (if there are read requests, then an EOF counts as an unexpected
197connection close and will be flagged as an error).
198
199For sockets, this just means that the other side has stopped sending data,
200you can still try to write data, and, in fact, one can return from the EOF
201callback and continue writing data, as only the read part has been shut
202down.
203
204If an EOF condition has been detected but no C<on_eof> callback has been
205set, then a fatal error will be raised with C<$!> set to <0>.
121 206
122=item on_drain => $cb->($handle) 207=item on_drain => $cb->($handle)
123 208
124This sets the callback that is called when the write buffer becomes empty 209This sets the callback that is called when the write buffer becomes empty
125(or when the callback is set and the buffer is empty already). 210(or when the callback is set and the buffer is empty already).
132memory and push it into the queue, but instead only read more data from 217memory and push it into the queue, but instead only read more data from
133the file when the write queue becomes empty. 218the file when the write queue becomes empty.
134 219
135=item timeout => $fractional_seconds 220=item timeout => $fractional_seconds
136 221
222=item rtimeout => $fractional_seconds
223
224=item wtimeout => $fractional_seconds
225
137If non-zero, then this enables an "inactivity" timeout: whenever this many 226If non-zero, then these enables an "inactivity" timeout: whenever this
138seconds pass without a successful read or write on the underlying file 227many seconds pass without a successful read or write on the underlying
139handle, the C<on_timeout> callback will be invoked (and if that one is 228file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
140missing, an C<ETIMEDOUT> error will be raised). 229will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
230error will be raised).
231
232There are three variants of the timeouts that work fully independent
233of each other, for both read and write, just read, and just write:
234C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
235C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
236C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
141 237
142Note that timeout processing is also active when you currently do not have 238Note that timeout processing is also active when you currently do not have
143any outstanding read or write requests: If you plan to keep the connection 239any outstanding read or write requests: If you plan to keep the connection
144idle then you should disable the timout temporarily or ignore the timeout 240idle then you should disable the timout temporarily or ignore the timeout
145in the C<on_timeout> callback. 241in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
242restart the timeout.
146 243
147Zero (the default) disables this timeout. 244Zero (the default) disables this timeout.
148 245
149=item on_timeout => $cb->($handle) 246=item on_timeout => $cb->($handle)
150 247
154 251
155=item rbuf_max => <bytes> 252=item rbuf_max => <bytes>
156 253
157If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 254If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
158when the read buffer ever (strictly) exceeds this size. This is useful to 255when the read buffer ever (strictly) exceeds this size. This is useful to
159avoid denial-of-service attacks. 256avoid some forms of denial-of-service attacks.
160 257
161For example, a server accepting connections from untrusted sources should 258For example, a server accepting connections from untrusted sources should
162be configured to accept only so-and-so much data that it cannot act on 259be configured to accept only so-and-so much data that it cannot act on
163(for example, when expecting a line, an attacker could send an unlimited 260(for example, when expecting a line, an attacker could send an unlimited
164amount of data without a callback ever being called as long as the line 261amount of data without a callback ever being called as long as the line
165isn't finished). 262isn't finished).
166 263
167=item autocork => <boolean> 264=item autocork => <boolean>
168 265
169When disabled (the default), then C<push_write> will try to immediately 266When disabled (the default), then C<push_write> will try to immediately
170write the data to the handle if possible. This avoids having to register 267write the data to the handle, if possible. This avoids having to register
171a write watcher and wait for the next event loop iteration, but can be 268a write watcher and wait for the next event loop iteration, but can
172inefficient if you write multiple small chunks (this disadvantage is 269be inefficient if you write multiple small chunks (on the wire, this
173usually avoided by your kernel's nagle algorithm, see C<low_delay>). 270disadvantage is usually avoided by your kernel's nagle algorithm, see
271C<no_delay>, but this option can save costly syscalls).
174 272
175When enabled, then writes will always be queued till the next event loop 273When enabled, then writes will always be queued till the next event loop
176iteration. This is efficient when you do many small writes per iteration, 274iteration. This is efficient when you do many small writes per iteration,
177but less efficient when you do a single write only. 275but less efficient when you do a single write only per iteration (or when
276the write buffer often is full). It also increases write latency.
178 277
179=item no_delay => <boolean> 278=item no_delay => <boolean>
180 279
181When doing small writes on sockets, your operating system kernel might 280When doing small writes on sockets, your operating system kernel might
182wait a bit for more data before actually sending it out. This is called 281wait a bit for more data before actually sending it out. This is called
183the Nagle algorithm, and usually it is beneficial. 282the Nagle algorithm, and usually it is beneficial.
184 283
185In some situations you want as low a delay as possible, which cna be 284In some situations you want as low a delay as possible, which can be
186accomplishd by setting this option to true. 285accomplishd by setting this option to a true value.
187 286
188The default is your opertaing system's default behaviour, this option 287The default is your opertaing system's default behaviour (most likely
189explicitly enables or disables it, if possible. 288enabled), this option explicitly enables or disables it, if possible.
190 289
191=item read_size => <bytes> 290=item read_size => <bytes>
192 291
193The default read block size (the amount of bytes this module will try to read 292The default read block size (the amount of bytes this module will
194during each (loop iteration). Default: C<8192>. 293try to read during each loop iteration, which affects memory
294requirements). Default: C<8192>.
195 295
196=item low_water_mark => <bytes> 296=item low_water_mark => <bytes>
197 297
198Sets the amount of bytes (default: C<0>) that make up an "empty" write 298Sets the amount of bytes (default: C<0>) that make up an "empty" write
199buffer: If the write reaches this size or gets even samller it is 299buffer: If the write reaches this size or gets even samller it is
200considered empty. 300considered empty.
201 301
302Sometimes it can be beneficial (for performance reasons) to add data to
303the write buffer before it is fully drained, but this is a rare case, as
304the operating system kernel usually buffers data as well, so the default
305is good in almost all cases.
306
202=item linger => <seconds> 307=item linger => <seconds>
203 308
204If non-zero (default: C<3600>), then the destructor of the 309If non-zero (default: C<3600>), then the destructor of the
205AnyEvent::Handle object will check wether there is still outstanding write 310AnyEvent::Handle object will check whether there is still outstanding
206data and will install a watcher that will write out this data. No errors 311write data and will install a watcher that will write this data to the
207will be reported (this mostly matches how the operating system treats 312socket. No errors will be reported (this mostly matches how the operating
208outstanding data at socket close time). 313system treats outstanding data at socket close time).
209 314
210This will not work for partial TLS data that could not yet been 315This will not work for partial TLS data that could not be encoded
211encoded. This data will be lost. 316yet. This data will be lost. Calling the C<stoptls> method in time might
317help.
318
319=item peername => $string
320
321A string used to identify the remote site - usually the DNS hostname
322(I<not> IDN!) used to create the connection, rarely the IP address.
323
324Apart from being useful in error messages, this string is also used in TLS
325peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
326verification will be skipped when C<peername> is not specified or
327C<undef>.
212 328
213=item tls => "accept" | "connect" | Net::SSLeay::SSL object 329=item tls => "accept" | "connect" | Net::SSLeay::SSL object
214 330
215When this parameter is given, it enables TLS (SSL) mode, that means it 331When this parameter is given, it enables TLS (SSL) mode, that means
216will start making tls handshake and will transparently encrypt/decrypt 332AnyEvent will start a TLS handshake as soon as the conenction has been
217data. 333established and will transparently encrypt/decrypt data afterwards.
334
335All TLS protocol errors will be signalled as C<EPROTO>, with an
336appropriate error message.
218 337
219TLS mode requires Net::SSLeay to be installed (it will be loaded 338TLS mode requires Net::SSLeay to be installed (it will be loaded
220automatically when you try to create a TLS handle). 339automatically when you try to create a TLS handle): this module doesn't
340have a dependency on that module, so if your module requires it, you have
341to add the dependency yourself.
221 342
222For the TLS server side, use C<accept>, and for the TLS client side of a 343Unlike TCP, TLS has a server and client side: for the TLS server side, use
223connection, use C<connect> mode. 344C<accept>, and for the TLS client side of a connection, use C<connect>
345mode.
224 346
225You can also provide your own TLS connection object, but you have 347You can also provide your own TLS connection object, but you have
226to make sure that you call either C<Net::SSLeay::set_connect_state> 348to make sure that you call either C<Net::SSLeay::set_connect_state>
227or C<Net::SSLeay::set_accept_state> on it before you pass it to 349or C<Net::SSLeay::set_accept_state> on it before you pass it to
228AnyEvent::Handle. 350AnyEvent::Handle. Also, this module will take ownership of this connection
351object.
229 352
353At some future point, AnyEvent::Handle might switch to another TLS
354implementation, then the option to use your own session object will go
355away.
356
357B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
358passing in the wrong integer will lead to certain crash. This most often
359happens when one uses a stylish C<< tls => 1 >> and is surprised about the
360segmentation fault.
361
230See the C<starttls> method if you need to start TLs negotiation later. 362See the C<< ->starttls >> method for when need to start TLS negotiation later.
231 363
232=item tls_ctx => $ssl_ctx 364=item tls_ctx => $anyevent_tls
233 365
234Use the given Net::SSLeay::CTX object to create the new TLS connection 366Use the given C<AnyEvent::TLS> object to create the new TLS connection
235(unless a connection object was specified directly). If this parameter is 367(unless a connection object was specified directly). If this parameter is
236missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 368missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
237 369
370Instead of an object, you can also specify a hash reference with C<< key
371=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
372new TLS context object.
373
374=item on_starttls => $cb->($handle, $success[, $error_message])
375
376This callback will be invoked when the TLS/SSL handshake has finished. If
377C<$success> is true, then the TLS handshake succeeded, otherwise it failed
378(C<on_stoptls> will not be called in this case).
379
380The session in C<< $handle->{tls} >> can still be examined in this
381callback, even when the handshake was not successful.
382
383TLS handshake failures will not cause C<on_error> to be invoked when this
384callback is in effect, instead, the error message will be passed to C<on_starttls>.
385
386Without this callback, handshake failures lead to C<on_error> being
387called, as normal.
388
389Note that you cannot call C<starttls> right again in this callback. If you
390need to do that, start an zero-second timer instead whose callback can
391then call C<< ->starttls >> again.
392
393=item on_stoptls => $cb->($handle)
394
395When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
396set, then it will be invoked after freeing the TLS session. If it is not,
397then a TLS shutdown condition will be treated like a normal EOF condition
398on the handle.
399
400The session in C<< $handle->{tls} >> can still be examined in this
401callback.
402
403This callback will only be called on TLS shutdowns, not when the
404underlying handle signals EOF.
405
238=item json => JSON or JSON::XS object 406=item json => JSON or JSON::XS object
239 407
240This is the json coder object used by the C<json> read and write types. 408This is the json coder object used by the C<json> read and write types.
241 409
242If you don't supply it, then AnyEvent::Handle will create and use a 410If you don't supply it, then AnyEvent::Handle will create and use a
243suitable one, which will write and expect UTF-8 encoded JSON texts. 411suitable one (on demand), which will write and expect UTF-8 encoded JSON
412texts.
244 413
245Note that you are responsible to depend on the JSON module if you want to 414Note that you are responsible to depend on the JSON module if you want to
246use this functionality, as AnyEvent does not have a dependency itself. 415use this functionality, as AnyEvent does not have a dependency itself.
247 416
248=item filter_r => $cb
249
250=item filter_w => $cb
251
252These exist, but are undocumented at this time.
253
254=back 417=back
255 418
256=cut 419=cut
257 420
258sub new { 421sub new {
259 my $class = shift; 422 my $class = shift;
260
261 my $self = bless { @_ }, $class; 423 my $self = bless { @_ }, $class;
262 424
263 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 425 if ($self->{fh}) {
426 $self->_start;
427 return unless $self->{fh}; # could be gone by now
428
429 } elsif ($self->{connect}) {
430 require AnyEvent::Socket;
431
432 $self->{peername} = $self->{connect}[0]
433 unless exists $self->{peername};
434
435 $self->{_skip_drain_rbuf} = 1;
436
437 {
438 Scalar::Util::weaken (my $self = $self);
439
440 $self->{_connect} =
441 AnyEvent::Socket::tcp_connect (
442 $self->{connect}[0],
443 $self->{connect}[1],
444 sub {
445 my ($fh, $host, $port, $retry) = @_;
446
447 if ($fh) {
448 $self->{fh} = $fh;
449
450 delete $self->{_skip_drain_rbuf};
451 $self->_start;
452
453 $self->{on_connect}
454 and $self->{on_connect}($self, $host, $port, sub {
455 delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
456 $self->{_skip_drain_rbuf} = 1;
457 &$retry;
458 });
459
460 } else {
461 if ($self->{on_connect_error}) {
462 $self->{on_connect_error}($self, "$!");
463 $self->destroy;
464 } else {
465 $self->_error ($!, 1);
466 }
467 }
468 },
469 sub {
470 local $self->{fh} = $_[0];
471
472 $self->{on_prepare}
473 ? $self->{on_prepare}->($self)
474 : ()
475 }
476 );
477 }
478
479 } else {
480 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
481 }
482
483 $self
484}
485
486sub _start {
487 my ($self) = @_;
264 488
265 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 489 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
266 490
267 if ($self->{tls}) { 491 $self->{_activity} =
268 require Net::SSLeay; 492 $self->{_ractivity} =
269 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
270 }
271
272 $self->{_activity} = AnyEvent->now; 493 $self->{_wactivity} = AE::now;
273 $self->_timeout;
274 494
275 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain}; 495 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
496 $self->rtimeout (delete $self->{rtimeout}) if $self->{rtimeout};
497 $self->wtimeout (delete $self->{wtimeout}) if $self->{wtimeout};
498
276 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay}; 499 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
277 500
501 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
502 if $self->{tls};
503
504 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
505
278 $self->start_read 506 $self->start_read
279 if $self->{on_read}; 507 if $self->{on_read} || @{ $self->{_queue} };
280 508
281 $self 509 $self->_drain_wbuf;
282} 510}
283 511
284sub _shutdown { 512#sub _shutdown {
285 my ($self) = @_; 513# my ($self) = @_;
286 514#
287 delete $self->{_tw}; 515# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
288 delete $self->{_rw}; 516# $self->{_eof} = 1; # tell starttls et. al to stop trying
289 delete $self->{_ww}; 517#
290 delete $self->{fh}; 518# &_freetls;
291 519#}
292 $self->stoptls;
293}
294 520
295sub _error { 521sub _error {
296 my ($self, $errno, $fatal) = @_; 522 my ($self, $errno, $fatal, $message) = @_;
297
298 $self->_shutdown
299 if $fatal;
300 523
301 $! = $errno; 524 $! = $errno;
525 $message ||= "$!";
302 526
303 if ($self->{on_error}) { 527 if ($self->{on_error}) {
304 $self->{on_error}($self, $fatal); 528 $self->{on_error}($self, $fatal, $message);
305 } else { 529 $self->destroy if $fatal;
530 } elsif ($self->{fh}) {
531 $self->destroy;
306 Carp::croak "AnyEvent::Handle uncaught error: $!"; 532 Carp::croak "AnyEvent::Handle uncaught error: $message";
307 } 533 }
308} 534}
309 535
310=item $fh = $handle->fh 536=item $fh = $handle->fh
311 537
312This method returns the file handle of the L<AnyEvent::Handle> object. 538This method returns the file handle used to create the L<AnyEvent::Handle> object.
313 539
314=cut 540=cut
315 541
316sub fh { $_[0]{fh} } 542sub fh { $_[0]{fh} }
317 543
335 $_[0]{on_eof} = $_[1]; 561 $_[0]{on_eof} = $_[1];
336} 562}
337 563
338=item $handle->on_timeout ($cb) 564=item $handle->on_timeout ($cb)
339 565
340Replace the current C<on_timeout> callback, or disables the callback 566=item $handle->on_rtimeout ($cb)
341(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
342argument.
343 567
344=cut 568=item $handle->on_wtimeout ($cb)
345 569
346sub on_timeout { 570Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
347 $_[0]{on_timeout} = $_[1]; 571callback, or disables the callback (but not the timeout) if C<$cb> =
348} 572C<undef>. See the C<timeout> constructor argument and method.
573
574=cut
575
576# see below
349 577
350=item $handle->autocork ($boolean) 578=item $handle->autocork ($boolean)
351 579
352Enables or disables the current autocork behaviour (see C<autocork> 580Enables or disables the current autocork behaviour (see C<autocork>
353constructor argument). 581constructor argument). Changes will only take effect on the next write.
354 582
355=cut 583=cut
584
585sub autocork {
586 $_[0]{autocork} = $_[1];
587}
356 588
357=item $handle->no_delay ($boolean) 589=item $handle->no_delay ($boolean)
358 590
359Enables or disables the C<no_delay> setting (see constructor argument of 591Enables or disables the C<no_delay> setting (see constructor argument of
360the same name for details). 592the same name for details).
364sub no_delay { 596sub no_delay {
365 $_[0]{no_delay} = $_[1]; 597 $_[0]{no_delay} = $_[1];
366 598
367 eval { 599 eval {
368 local $SIG{__DIE__}; 600 local $SIG{__DIE__};
369 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 601 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
602 if $_[0]{fh};
370 }; 603 };
371} 604}
372 605
606=item $handle->on_starttls ($cb)
607
608Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
609
610=cut
611
612sub on_starttls {
613 $_[0]{on_starttls} = $_[1];
614}
615
616=item $handle->on_stoptls ($cb)
617
618Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
619
620=cut
621
622sub on_starttls {
623 $_[0]{on_stoptls} = $_[1];
624}
625
626=item $handle->rbuf_max ($max_octets)
627
628Configures the C<rbuf_max> setting (C<undef> disables it).
629
630=cut
631
632sub rbuf_max {
633 $_[0]{rbuf_max} = $_[1];
634}
635
373############################################################################# 636#############################################################################
374 637
375=item $handle->timeout ($seconds) 638=item $handle->timeout ($seconds)
376 639
640=item $handle->rtimeout ($seconds)
641
642=item $handle->wtimeout ($seconds)
643
377Configures (or disables) the inactivity timeout. 644Configures (or disables) the inactivity timeout.
378 645
379=cut 646=item $handle->timeout_reset
380 647
381sub timeout { 648=item $handle->rtimeout_reset
649
650=item $handle->wtimeout_reset
651
652Reset the activity timeout, as if data was received or sent.
653
654These methods are cheap to call.
655
656=cut
657
658for my $dir ("", "r", "w") {
659 my $timeout = "${dir}timeout";
660 my $tw = "_${dir}tw";
661 my $on_timeout = "on_${dir}timeout";
662 my $activity = "_${dir}activity";
663 my $cb;
664
665 *$on_timeout = sub {
666 $_[0]{$on_timeout} = $_[1];
667 };
668
669 *$timeout = sub {
382 my ($self, $timeout) = @_; 670 my ($self, $new_value) = @_;
383 671
384 $self->{timeout} = $timeout; 672 $self->{$timeout} = $new_value;
385 $self->_timeout; 673 delete $self->{$tw}; &$cb;
386} 674 };
387 675
676 *{"${dir}timeout_reset"} = sub {
677 $_[0]{$activity} = AE::now;
678 };
679
680 # main workhorse:
388# reset the timeout watcher, as neccessary 681 # reset the timeout watcher, as neccessary
389# also check for time-outs 682 # also check for time-outs
390sub _timeout { 683 $cb = sub {
391 my ($self) = @_; 684 my ($self) = @_;
392 685
393 if ($self->{timeout}) { 686 if ($self->{$timeout} && $self->{fh}) {
394 my $NOW = AnyEvent->now; 687 my $NOW = AE::now;
395 688
396 # when would the timeout trigger? 689 # when would the timeout trigger?
397 my $after = $self->{_activity} + $self->{timeout} - $NOW; 690 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
398 691
399 # now or in the past already? 692 # now or in the past already?
400 if ($after <= 0) { 693 if ($after <= 0) {
401 $self->{_activity} = $NOW; 694 $self->{$activity} = $NOW;
402 695
403 if ($self->{on_timeout}) { 696 if ($self->{$on_timeout}) {
404 $self->{on_timeout}($self); 697 $self->{$on_timeout}($self);
405 } else { 698 } else {
406 $self->_error (&Errno::ETIMEDOUT); 699 $self->_error (Errno::ETIMEDOUT);
700 }
701
702 # callback could have changed timeout value, optimise
703 return unless $self->{$timeout};
704
705 # calculate new after
706 $after = $self->{$timeout};
407 } 707 }
408 708
409 # callback could have changed timeout value, optimise 709 Scalar::Util::weaken $self;
410 return unless $self->{timeout}; 710 return unless $self; # ->error could have destroyed $self
411 711
412 # calculate new after 712 $self->{$tw} ||= AE::timer $after, 0, sub {
413 $after = $self->{timeout}; 713 delete $self->{$tw};
714 $cb->($self);
715 };
716 } else {
717 delete $self->{$tw};
414 } 718 }
415
416 Scalar::Util::weaken $self;
417 return unless $self; # ->error could have destroyed $self
418
419 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
420 delete $self->{_tw};
421 $self->_timeout;
422 });
423 } else {
424 delete $self->{_tw};
425 } 719 }
426} 720}
427 721
428############################################################################# 722#############################################################################
429 723
453 my ($self, $cb) = @_; 747 my ($self, $cb) = @_;
454 748
455 $self->{on_drain} = $cb; 749 $self->{on_drain} = $cb;
456 750
457 $cb->($self) 751 $cb->($self)
458 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 752 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
459} 753}
460 754
461=item $handle->push_write ($data) 755=item $handle->push_write ($data)
462 756
463Queues the given scalar to be written. You can push as much data as you 757Queues the given scalar to be written. You can push as much data as you
474 Scalar::Util::weaken $self; 768 Scalar::Util::weaken $self;
475 769
476 my $cb = sub { 770 my $cb = sub {
477 my $len = syswrite $self->{fh}, $self->{wbuf}; 771 my $len = syswrite $self->{fh}, $self->{wbuf};
478 772
479 if ($len >= 0) { 773 if (defined $len) {
480 substr $self->{wbuf}, 0, $len, ""; 774 substr $self->{wbuf}, 0, $len, "";
481 775
482 $self->{_activity} = AnyEvent->now; 776 $self->{_activity} = $self->{_wactivity} = AE::now;
483 777
484 $self->{on_drain}($self) 778 $self->{on_drain}($self)
485 if $self->{low_water_mark} >= length $self->{wbuf} 779 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
486 && $self->{on_drain}; 780 && $self->{on_drain};
487 781
488 delete $self->{_ww} unless length $self->{wbuf}; 782 delete $self->{_ww} unless length $self->{wbuf};
489 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 783 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
490 $self->_error ($!, 1); 784 $self->_error ($!, 1);
493 787
494 # try to write data immediately 788 # try to write data immediately
495 $cb->() unless $self->{autocork}; 789 $cb->() unless $self->{autocork};
496 790
497 # if still data left in wbuf, we need to poll 791 # if still data left in wbuf, we need to poll
498 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 792 $self->{_ww} = AE::io $self->{fh}, 1, $cb
499 if length $self->{wbuf}; 793 if length $self->{wbuf};
500 }; 794 };
501} 795}
502 796
503our %WH; 797our %WH;
514 808
515 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 809 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
516 ->($self, @_); 810 ->($self, @_);
517 } 811 }
518 812
519 if ($self->{filter_w}) { 813 if ($self->{tls}) {
520 $self->{filter_w}($self, \$_[0]); 814 $self->{_tls_wbuf} .= $_[0];
815 &_dotls ($self) if $self->{fh};
521 } else { 816 } else {
522 $self->{wbuf} .= $_[0]; 817 $self->{wbuf} .= $_[0];
523 $self->_drain_wbuf; 818 $self->_drain_wbuf if $self->{fh};
524 } 819 }
525} 820}
526 821
527=item $handle->push_write (type => @args) 822=item $handle->push_write (type => @args)
528 823
542=cut 837=cut
543 838
544register_write_type netstring => sub { 839register_write_type netstring => sub {
545 my ($self, $string) = @_; 840 my ($self, $string) = @_;
546 841
547 sprintf "%d:%s,", (length $string), $string 842 (length $string) . ":$string,"
548}; 843};
549 844
550=item packstring => $format, $data 845=item packstring => $format, $data
551 846
552An octet string prefixed with an encoded length. The encoding C<$format> 847An octet string prefixed with an encoded length. The encoding C<$format>
617 912
618 pack "w/a*", Storable::nfreeze ($ref) 913 pack "w/a*", Storable::nfreeze ($ref)
619}; 914};
620 915
621=back 916=back
917
918=item $handle->push_shutdown
919
920Sometimes you know you want to close the socket after writing your data
921before it was actually written. One way to do that is to replace your
922C<on_drain> handler by a callback that shuts down the socket (and set
923C<low_water_mark> to C<0>). This method is a shorthand for just that, and
924replaces the C<on_drain> callback with:
925
926 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
927
928This simply shuts down the write side and signals an EOF condition to the
929the peer.
930
931You can rely on the normal read queue and C<on_eof> handling
932afterwards. This is the cleanest way to close a connection.
933
934=cut
935
936sub push_shutdown {
937 my ($self) = @_;
938
939 delete $self->{low_water_mark};
940 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
941}
622 942
623=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 943=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
624 944
625This function (not method) lets you add your own types to C<push_write>. 945This function (not method) lets you add your own types to C<push_write>.
626Whenever the given C<type> is used, C<push_write> will invoke the code 946Whenever the given C<type> is used, C<push_write> will invoke the code
720=cut 1040=cut
721 1041
722sub _drain_rbuf { 1042sub _drain_rbuf {
723 my ($self) = @_; 1043 my ($self) = @_;
724 1044
1045 # avoid recursion
1046 return if $self->{_skip_drain_rbuf};
725 local $self->{_in_drain} = 1; 1047 local $self->{_skip_drain_rbuf} = 1;
726
727 if (
728 defined $self->{rbuf_max}
729 && $self->{rbuf_max} < length $self->{rbuf}
730 ) {
731 return $self->_error (&Errno::ENOSPC, 1);
732 }
733 1048
734 while () { 1049 while () {
735 no strict 'refs'; 1050 # we need to use a separate tls read buffer, as we must not receive data while
1051 # we are draining the buffer, and this can only happen with TLS.
1052 $self->{rbuf} .= delete $self->{_tls_rbuf}
1053 if exists $self->{_tls_rbuf};
736 1054
737 my $len = length $self->{rbuf}; 1055 my $len = length $self->{rbuf};
738 1056
739 if (my $cb = shift @{ $self->{_queue} }) { 1057 if (my $cb = shift @{ $self->{_queue} }) {
740 unless ($cb->($self)) { 1058 unless ($cb->($self)) {
741 if ($self->{_eof}) { 1059 # no progress can be made
742 # no progress can be made (not enough data and no data forthcoming) 1060 # (not enough data and no data forthcoming)
743 $self->_error (&Errno::EPIPE, 1), last; 1061 $self->_error (Errno::EPIPE, 1), return
744 } 1062 if $self->{_eof};
745 1063
746 unshift @{ $self->{_queue} }, $cb; 1064 unshift @{ $self->{_queue} }, $cb;
747 last; 1065 last;
748 } 1066 }
749 } elsif ($self->{on_read}) { 1067 } elsif ($self->{on_read}) {
756 && !@{ $self->{_queue} } # and the queue is still empty 1074 && !@{ $self->{_queue} } # and the queue is still empty
757 && $self->{on_read} # but we still have on_read 1075 && $self->{on_read} # but we still have on_read
758 ) { 1076 ) {
759 # no further data will arrive 1077 # no further data will arrive
760 # so no progress can be made 1078 # so no progress can be made
761 $self->_error (&Errno::EPIPE, 1), last 1079 $self->_error (Errno::EPIPE, 1), return
762 if $self->{_eof}; 1080 if $self->{_eof};
763 1081
764 last; # more data might arrive 1082 last; # more data might arrive
765 } 1083 }
766 } else { 1084 } else {
767 # read side becomes idle 1085 # read side becomes idle
768 delete $self->{_rw}; 1086 delete $self->{_rw} unless $self->{tls};
769 last; 1087 last;
770 } 1088 }
771 } 1089 }
772 1090
1091 if ($self->{_eof}) {
1092 $self->{on_eof}
773 $self->{on_eof}($self) 1093 ? $self->{on_eof}($self)
774 if $self->{_eof} && $self->{on_eof}; 1094 : $self->_error (0, 1, "Unexpected end-of-file");
1095
1096 return;
1097 }
1098
1099 if (
1100 defined $self->{rbuf_max}
1101 && $self->{rbuf_max} < length $self->{rbuf}
1102 ) {
1103 $self->_error (Errno::ENOSPC, 1), return;
1104 }
775 1105
776 # may need to restart read watcher 1106 # may need to restart read watcher
777 unless ($self->{_rw}) { 1107 unless ($self->{_rw}) {
778 $self->start_read 1108 $self->start_read
779 if $self->{on_read} || @{ $self->{_queue} }; 1109 if $self->{on_read} || @{ $self->{_queue} };
790 1120
791sub on_read { 1121sub on_read {
792 my ($self, $cb) = @_; 1122 my ($self, $cb) = @_;
793 1123
794 $self->{on_read} = $cb; 1124 $self->{on_read} = $cb;
795 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1125 $self->_drain_rbuf if $cb;
796} 1126}
797 1127
798=item $handle->rbuf 1128=item $handle->rbuf
799 1129
800Returns the read buffer (as a modifiable lvalue). 1130Returns the read buffer (as a modifiable lvalue).
801 1131
802You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1132You can access the read buffer directly as the C<< ->{rbuf} >>
803you want. 1133member, if you want. However, the only operation allowed on the
1134read buffer (apart from looking at it) is removing data from its
1135beginning. Otherwise modifying or appending to it is not allowed and will
1136lead to hard-to-track-down bugs.
804 1137
805NOTE: The read buffer should only be used or modified if the C<on_read>, 1138NOTE: The read buffer should only be used or modified if the C<on_read>,
806C<push_read> or C<unshift_read> methods are used. The other read methods 1139C<push_read> or C<unshift_read> methods are used. The other read methods
807automatically manage the read buffer. 1140automatically manage the read buffer.
808 1141
849 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1182 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
850 ->($self, $cb, @_); 1183 ->($self, $cb, @_);
851 } 1184 }
852 1185
853 push @{ $self->{_queue} }, $cb; 1186 push @{ $self->{_queue} }, $cb;
854 $self->_drain_rbuf unless $self->{_in_drain}; 1187 $self->_drain_rbuf;
855} 1188}
856 1189
857sub unshift_read { 1190sub unshift_read {
858 my $self = shift; 1191 my $self = shift;
859 my $cb = pop; 1192 my $cb = pop;
865 ->($self, $cb, @_); 1198 ->($self, $cb, @_);
866 } 1199 }
867 1200
868 1201
869 unshift @{ $self->{_queue} }, $cb; 1202 unshift @{ $self->{_queue} }, $cb;
870 $self->_drain_rbuf unless $self->{_in_drain}; 1203 $self->_drain_rbuf;
871} 1204}
872 1205
873=item $handle->push_read (type => @args, $cb) 1206=item $handle->push_read (type => @args, $cb)
874 1207
875=item $handle->unshift_read (type => @args, $cb) 1208=item $handle->unshift_read (type => @args, $cb)
905 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1238 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
906 1 1239 1
907 } 1240 }
908}; 1241};
909 1242
910# compatibility with older API
911sub push_read_chunk {
912 $_[0]->push_read (chunk => $_[1], $_[2]);
913}
914
915sub unshift_read_chunk {
916 $_[0]->unshift_read (chunk => $_[1], $_[2]);
917}
918
919=item line => [$eol, ]$cb->($handle, $line, $eol) 1243=item line => [$eol, ]$cb->($handle, $line, $eol)
920 1244
921The callback will be called only once a full line (including the end of 1245The callback will be called only once a full line (including the end of
922line marker, C<$eol>) has been read. This line (excluding the end of line 1246line marker, C<$eol>) has been read. This line (excluding the end of line
923marker) will be passed to the callback as second argument (C<$line>), and 1247marker) will be passed to the callback as second argument (C<$line>), and
938=cut 1262=cut
939 1263
940register_read_type line => sub { 1264register_read_type line => sub {
941 my ($self, $cb, $eol) = @_; 1265 my ($self, $cb, $eol) = @_;
942 1266
943 $eol = qr|(\015?\012)| if @_ < 3; 1267 if (@_ < 3) {
1268 # this is more than twice as fast as the generic code below
1269 sub {
1270 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1271
1272 $cb->($_[0], $1, $2);
1273 1
1274 }
1275 } else {
944 $eol = quotemeta $eol unless ref $eol; 1276 $eol = quotemeta $eol unless ref $eol;
945 $eol = qr|^(.*?)($eol)|s; 1277 $eol = qr|^(.*?)($eol)|s;
946 1278
947 sub { 1279 sub {
948 $_[0]{rbuf} =~ s/$eol// or return; 1280 $_[0]{rbuf} =~ s/$eol// or return;
949 1281
950 $cb->($_[0], $1, $2); 1282 $cb->($_[0], $1, $2);
1283 1
951 1 1284 }
952 } 1285 }
953}; 1286};
954
955# compatibility with older API
956sub push_read_line {
957 my $self = shift;
958 $self->push_read (line => @_);
959}
960
961sub unshift_read_line {
962 my $self = shift;
963 $self->unshift_read (line => @_);
964}
965 1287
966=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1288=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
967 1289
968Makes a regex match against the regex object C<$accept> and returns 1290Makes a regex match against the regex object C<$accept> and returns
969everything up to and including the match. 1291everything up to and including the match.
1019 return 1; 1341 return 1;
1020 } 1342 }
1021 1343
1022 # reject 1344 # reject
1023 if ($reject && $$rbuf =~ $reject) { 1345 if ($reject && $$rbuf =~ $reject) {
1024 $self->_error (&Errno::EBADMSG); 1346 $self->_error (Errno::EBADMSG);
1025 } 1347 }
1026 1348
1027 # skip 1349 # skip
1028 if ($skip && $$rbuf =~ $skip) { 1350 if ($skip && $$rbuf =~ $skip) {
1029 $data .= substr $$rbuf, 0, $+[0], ""; 1351 $data .= substr $$rbuf, 0, $+[0], "";
1045 my ($self, $cb) = @_; 1367 my ($self, $cb) = @_;
1046 1368
1047 sub { 1369 sub {
1048 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1370 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1049 if ($_[0]{rbuf} =~ /[^0-9]/) { 1371 if ($_[0]{rbuf} =~ /[^0-9]/) {
1050 $self->_error (&Errno::EBADMSG); 1372 $self->_error (Errno::EBADMSG);
1051 } 1373 }
1052 return; 1374 return;
1053 } 1375 }
1054 1376
1055 my $len = $1; 1377 my $len = $1;
1058 my $string = $_[1]; 1380 my $string = $_[1];
1059 $_[0]->unshift_read (chunk => 1, sub { 1381 $_[0]->unshift_read (chunk => 1, sub {
1060 if ($_[1] eq ",") { 1382 if ($_[1] eq ",") {
1061 $cb->($_[0], $string); 1383 $cb->($_[0], $string);
1062 } else { 1384 } else {
1063 $self->_error (&Errno::EBADMSG); 1385 $self->_error (Errno::EBADMSG);
1064 } 1386 }
1065 }); 1387 });
1066 }); 1388 });
1067 1389
1068 1 1390 1
1074An octet string prefixed with an encoded length. The encoding C<$format> 1396An octet string prefixed with an encoded length. The encoding C<$format>
1075uses the same format as a Perl C<pack> format, but must specify a single 1397uses the same format as a Perl C<pack> format, but must specify a single
1076integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1398integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1077optional C<!>, C<< < >> or C<< > >> modifier). 1399optional C<!>, C<< < >> or C<< > >> modifier).
1078 1400
1079DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1401For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1402EPP uses a prefix of C<N> (4 octtes).
1080 1403
1081Example: read a block of data prefixed by its length in BER-encoded 1404Example: read a block of data prefixed by its length in BER-encoded
1082format (very efficient). 1405format (very efficient).
1083 1406
1084 $handle->push_read (packstring => "w", sub { 1407 $handle->push_read (packstring => "w", sub {
1090register_read_type packstring => sub { 1413register_read_type packstring => sub {
1091 my ($self, $cb, $format) = @_; 1414 my ($self, $cb, $format) = @_;
1092 1415
1093 sub { 1416 sub {
1094 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1417 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1095 defined (my $len = eval { unpack $format, $_[0]->{rbuf} }) 1418 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1096 or return; 1419 or return;
1097 1420
1421 $format = length pack $format, $len;
1422
1423 # bypass unshift if we already have the remaining chunk
1424 if ($format + $len <= length $_[0]{rbuf}) {
1425 my $data = substr $_[0]{rbuf}, $format, $len;
1426 substr $_[0]{rbuf}, 0, $format + $len, "";
1427 $cb->($_[0], $data);
1428 } else {
1098 # remove prefix 1429 # remove prefix
1099 substr $_[0]->{rbuf}, 0, (length pack $format, $len), ""; 1430 substr $_[0]{rbuf}, 0, $format, "";
1100 1431
1101 # read rest 1432 # read remaining chunk
1102 $_[0]->unshift_read (chunk => $len, $cb); 1433 $_[0]->unshift_read (chunk => $len, $cb);
1434 }
1103 1435
1104 1 1436 1
1105 } 1437 }
1106}; 1438};
1107 1439
1108=item json => $cb->($handle, $hash_or_arrayref) 1440=item json => $cb->($handle, $hash_or_arrayref)
1109 1441
1110Reads a JSON object or array, decodes it and passes it to the callback. 1442Reads a JSON object or array, decodes it and passes it to the
1443callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1111 1444
1112If a C<json> object was passed to the constructor, then that will be used 1445If a C<json> object was passed to the constructor, then that will be used
1113for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1446for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1114 1447
1115This read type uses the incremental parser available with JSON version 1448This read type uses the incremental parser available with JSON version
1124=cut 1457=cut
1125 1458
1126register_read_type json => sub { 1459register_read_type json => sub {
1127 my ($self, $cb) = @_; 1460 my ($self, $cb) = @_;
1128 1461
1129 require JSON; 1462 my $json = $self->{json} ||=
1463 eval { require JSON::XS; JSON::XS->new->utf8 }
1464 || do { require JSON; JSON->new->utf8 };
1130 1465
1131 my $data; 1466 my $data;
1132 my $rbuf = \$self->{rbuf}; 1467 my $rbuf = \$self->{rbuf};
1133 1468
1134 my $json = $self->{json} ||= JSON->new->utf8;
1135
1136 sub { 1469 sub {
1137 my $ref = $json->incr_parse ($self->{rbuf}); 1470 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1138 1471
1139 if ($ref) { 1472 if ($ref) {
1140 $self->{rbuf} = $json->incr_text; 1473 $self->{rbuf} = $json->incr_text;
1141 $json->incr_text = ""; 1474 $json->incr_text = "";
1142 $cb->($self, $ref); 1475 $cb->($self, $ref);
1143 1476
1144 1 1477 1
1478 } elsif ($@) {
1479 # error case
1480 $json->incr_skip;
1481
1482 $self->{rbuf} = $json->incr_text;
1483 $json->incr_text = "";
1484
1485 $self->_error (Errno::EBADMSG);
1486
1487 ()
1145 } else { 1488 } else {
1146 $self->{rbuf} = ""; 1489 $self->{rbuf} = "";
1490
1147 () 1491 ()
1148 } 1492 }
1149 } 1493 }
1150}; 1494};
1151 1495
1164 1508
1165 require Storable; 1509 require Storable;
1166 1510
1167 sub { 1511 sub {
1168 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1512 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1169 defined (my $len = eval { unpack "w", $_[0]->{rbuf} }) 1513 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1170 or return; 1514 or return;
1171 1515
1516 my $format = length pack "w", $len;
1517
1518 # bypass unshift if we already have the remaining chunk
1519 if ($format + $len <= length $_[0]{rbuf}) {
1520 my $data = substr $_[0]{rbuf}, $format, $len;
1521 substr $_[0]{rbuf}, 0, $format + $len, "";
1522 $cb->($_[0], Storable::thaw ($data));
1523 } else {
1172 # remove prefix 1524 # remove prefix
1173 substr $_[0]->{rbuf}, 0, (length pack "w", $len), ""; 1525 substr $_[0]{rbuf}, 0, $format, "";
1174 1526
1175 # read rest 1527 # read remaining chunk
1176 $_[0]->unshift_read (chunk => $len, sub { 1528 $_[0]->unshift_read (chunk => $len, sub {
1177 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1529 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1178 $cb->($_[0], $ref); 1530 $cb->($_[0], $ref);
1179 } else { 1531 } else {
1180 $self->_error (&Errno::EBADMSG); 1532 $self->_error (Errno::EBADMSG);
1533 }
1181 } 1534 });
1182 }); 1535 }
1536
1537 1
1183 } 1538 }
1184}; 1539};
1185 1540
1186=back 1541=back
1187 1542
1217Note that AnyEvent::Handle will automatically C<start_read> for you when 1572Note that AnyEvent::Handle will automatically C<start_read> for you when
1218you change the C<on_read> callback or push/unshift a read callback, and it 1573you change the C<on_read> callback or push/unshift a read callback, and it
1219will automatically C<stop_read> for you when neither C<on_read> is set nor 1574will automatically C<stop_read> for you when neither C<on_read> is set nor
1220there are any read requests in the queue. 1575there are any read requests in the queue.
1221 1576
1577These methods will have no effect when in TLS mode (as TLS doesn't support
1578half-duplex connections).
1579
1222=cut 1580=cut
1223 1581
1224sub stop_read { 1582sub stop_read {
1225 my ($self) = @_; 1583 my ($self) = @_;
1226 1584
1227 delete $self->{_rw}; 1585 delete $self->{_rw} unless $self->{tls};
1228} 1586}
1229 1587
1230sub start_read { 1588sub start_read {
1231 my ($self) = @_; 1589 my ($self) = @_;
1232 1590
1233 unless ($self->{_rw} || $self->{_eof}) { 1591 unless ($self->{_rw} || $self->{_eof}) {
1234 Scalar::Util::weaken $self; 1592 Scalar::Util::weaken $self;
1235 1593
1236 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1594 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1237 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1595 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1238 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1596 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1239 1597
1240 if ($len > 0) { 1598 if ($len > 0) {
1241 $self->{_activity} = AnyEvent->now; 1599 $self->{_activity} = $self->{_ractivity} = AE::now;
1242 1600
1243 $self->{filter_r} 1601 if ($self->{tls}) {
1244 ? $self->{filter_r}($self, $rbuf) 1602 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1245 : $self->{_in_drain} || $self->_drain_rbuf; 1603
1604 &_dotls ($self);
1605 } else {
1606 $self->_drain_rbuf;
1607 }
1246 1608
1247 } elsif (defined $len) { 1609 } elsif (defined $len) {
1248 delete $self->{_rw}; 1610 delete $self->{_rw};
1249 $self->{_eof} = 1; 1611 $self->{_eof} = 1;
1250 $self->_drain_rbuf unless $self->{_in_drain}; 1612 $self->_drain_rbuf;
1251 1613
1252 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1614 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1253 return $self->_error ($!, 1); 1615 return $self->_error ($!, 1);
1254 } 1616 }
1255 }); 1617 };
1256 } 1618 }
1257} 1619}
1258 1620
1621our $ERROR_SYSCALL;
1622our $ERROR_WANT_READ;
1623
1624sub _tls_error {
1625 my ($self, $err) = @_;
1626
1627 return $self->_error ($!, 1)
1628 if $err == Net::SSLeay::ERROR_SYSCALL ();
1629
1630 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1631
1632 # reduce error string to look less scary
1633 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1634
1635 if ($self->{_on_starttls}) {
1636 (delete $self->{_on_starttls})->($self, undef, $err);
1637 &_freetls;
1638 } else {
1639 &_freetls;
1640 $self->_error (Errno::EPROTO, 1, $err);
1641 }
1642}
1643
1644# poll the write BIO and send the data if applicable
1645# also decode read data if possible
1646# this is basiclaly our TLS state machine
1647# more efficient implementations are possible with openssl,
1648# but not with the buggy and incomplete Net::SSLeay.
1259sub _dotls { 1649sub _dotls {
1260 my ($self) = @_; 1650 my ($self) = @_;
1261 1651
1262 my $buf; 1652 my $tmp;
1263 1653
1264 if (length $self->{_tls_wbuf}) { 1654 if (length $self->{_tls_wbuf}) {
1265 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1655 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1266 substr $self->{_tls_wbuf}, 0, $len, ""; 1656 substr $self->{_tls_wbuf}, 0, $tmp, "";
1267 } 1657 }
1268 }
1269 1658
1659 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1660 return $self->_tls_error ($tmp)
1661 if $tmp != $ERROR_WANT_READ
1662 && ($tmp != $ERROR_SYSCALL || $!);
1663 }
1664
1665 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1666 unless (length $tmp) {
1667 $self->{_on_starttls}
1668 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1669 &_freetls;
1670
1671 if ($self->{on_stoptls}) {
1672 $self->{on_stoptls}($self);
1673 return;
1674 } else {
1675 # let's treat SSL-eof as we treat normal EOF
1676 delete $self->{_rw};
1677 $self->{_eof} = 1;
1678 }
1679 }
1680
1681 $self->{_tls_rbuf} .= $tmp;
1682 $self->_drain_rbuf;
1683 $self->{tls} or return; # tls session might have gone away in callback
1684 }
1685
1686 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1687 return $self->_tls_error ($tmp)
1688 if $tmp != $ERROR_WANT_READ
1689 && ($tmp != $ERROR_SYSCALL || $!);
1690
1270 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1691 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1271 $self->{wbuf} .= $buf; 1692 $self->{wbuf} .= $tmp;
1272 $self->_drain_wbuf; 1693 $self->_drain_wbuf;
1273 } 1694 }
1274 1695
1275 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1696 $self->{_on_starttls}
1276 if (length $buf) { 1697 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1277 $self->{rbuf} .= $buf; 1698 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1278 $self->_drain_rbuf unless $self->{_in_drain};
1279 } else {
1280 # let's treat SSL-eof as we treat normal EOF
1281 $self->{_eof} = 1;
1282 $self->_shutdown;
1283 return;
1284 }
1285 }
1286
1287 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1288
1289 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1290 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1291 return $self->_error ($!, 1);
1292 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1293 return $self->_error (&Errno::EIO, 1);
1294 }
1295
1296 # all others are fine for our purposes
1297 }
1298} 1699}
1299 1700
1300=item $handle->starttls ($tls[, $tls_ctx]) 1701=item $handle->starttls ($tls[, $tls_ctx])
1301 1702
1302Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1703Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1303object is created, you can also do that at a later time by calling 1704object is created, you can also do that at a later time by calling
1304C<starttls>. 1705C<starttls>.
1305 1706
1707Starting TLS is currently an asynchronous operation - when you push some
1708write data and then call C<< ->starttls >> then TLS negotiation will start
1709immediately, after which the queued write data is then sent.
1710
1306The first argument is the same as the C<tls> constructor argument (either 1711The first argument is the same as the C<tls> constructor argument (either
1307C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1712C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1308 1713
1309The second argument is the optional C<Net::SSLeay::CTX> object that is 1714The second argument is the optional C<AnyEvent::TLS> object that is used
1310used when AnyEvent::Handle has to create its own TLS connection object. 1715when AnyEvent::Handle has to create its own TLS connection object, or
1716a hash reference with C<< key => value >> pairs that will be used to
1717construct a new context.
1311 1718
1312The TLS connection object will end up in C<< $handle->{tls} >> after this 1719The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1313call and can be used or changed to your liking. Note that the handshake 1720context in C<< $handle->{tls_ctx} >> after this call and can be used or
1314might have already started when this function returns. 1721changed to your liking. Note that the handshake might have already started
1722when this function returns.
1315 1723
1724Due to bugs in OpenSSL, it might or might not be possible to do multiple
1725handshakes on the same stream. Best do not attempt to use the stream after
1726stopping TLS.
1727
1316=cut 1728=cut
1729
1730our %TLS_CACHE; #TODO not yet documented, should we?
1317 1731
1318sub starttls { 1732sub starttls {
1319 my ($self, $ssl, $ctx) = @_; 1733 my ($self, $tls, $ctx) = @_;
1320 1734
1321 $self->stoptls; 1735 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1736 if $self->{tls};
1322 1737
1323 if ($ssl eq "accept") { 1738 $self->{tls} = $tls;
1324 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1739 $self->{tls_ctx} = $ctx if @_ > 2;
1325 Net::SSLeay::set_accept_state ($ssl); 1740
1326 } elsif ($ssl eq "connect") { 1741 return unless $self->{fh};
1327 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1742
1328 Net::SSLeay::set_connect_state ($ssl); 1743 require Net::SSLeay;
1744
1745 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1746 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1747
1748 $tls = $self->{tls};
1749 $ctx = $self->{tls_ctx};
1750
1751 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1752
1753 if ("HASH" eq ref $ctx) {
1754 require AnyEvent::TLS;
1755
1756 if ($ctx->{cache}) {
1757 my $key = $ctx+0;
1758 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1759 } else {
1760 $ctx = new AnyEvent::TLS %$ctx;
1761 }
1762 }
1329 } 1763
1330 1764 $self->{tls_ctx} = $ctx || TLS_CTX ();
1331 $self->{tls} = $ssl; 1765 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1332 1766
1333 # basically, this is deep magic (because SSL_read should have the same issues) 1767 # basically, this is deep magic (because SSL_read should have the same issues)
1334 # but the openssl maintainers basically said: "trust us, it just works". 1768 # but the openssl maintainers basically said: "trust us, it just works".
1335 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1769 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1336 # and mismaintained ssleay-module doesn't even offer them). 1770 # and mismaintained ssleay-module doesn't even offer them).
1337 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1771 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1772 #
1773 # in short: this is a mess.
1774 #
1775 # note that we do not try to keep the length constant between writes as we are required to do.
1776 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1777 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1778 # have identity issues in that area.
1338 Net::SSLeay::CTX_set_mode ($self->{tls}, 1779# Net::SSLeay::CTX_set_mode ($ssl,
1339 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1780# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1340 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1781# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1782 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1341 1783
1342 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1784 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1343 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1785 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1344 1786
1787 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1788
1345 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1789 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1346 1790
1347 $self->{filter_w} = sub { 1791 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1348 $_[0]{_tls_wbuf} .= ${$_[1]}; 1792 if $self->{on_starttls};
1349 &_dotls; 1793
1350 }; 1794 &_dotls; # need to trigger the initial handshake
1351 $self->{filter_r} = sub { 1795 $self->start_read; # make sure we actually do read
1352 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1353 &_dotls;
1354 };
1355} 1796}
1356 1797
1357=item $handle->stoptls 1798=item $handle->stoptls
1358 1799
1359Destroys the SSL connection, if any. Partial read or write data will be 1800Shuts down the SSL connection - this makes a proper EOF handshake by
1360lost. 1801sending a close notify to the other side, but since OpenSSL doesn't
1802support non-blocking shut downs, it is not guarenteed that you can re-use
1803the stream afterwards.
1361 1804
1362=cut 1805=cut
1363 1806
1364sub stoptls { 1807sub stoptls {
1365 my ($self) = @_; 1808 my ($self) = @_;
1366 1809
1367 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1810 if ($self->{tls}) {
1811 Net::SSLeay::shutdown ($self->{tls});
1368 1812
1369 delete $self->{_rbio}; 1813 &_dotls;
1370 delete $self->{_wbio}; 1814
1371 delete $self->{_tls_wbuf}; 1815# # we don't give a shit. no, we do, but we can't. no...#d#
1372 delete $self->{filter_r}; 1816# # we, we... have to use openssl :/#d#
1373 delete $self->{filter_w}; 1817# &_freetls;#d#
1818 }
1819}
1820
1821sub _freetls {
1822 my ($self) = @_;
1823
1824 return unless $self->{tls};
1825
1826 $self->{tls_ctx}->_put_session (delete $self->{tls})
1827 if $self->{tls} > 0;
1828
1829 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1374} 1830}
1375 1831
1376sub DESTROY { 1832sub DESTROY {
1377 my $self = shift; 1833 my ($self) = @_;
1378 1834
1379 $self->stoptls; 1835 &_freetls;
1380 1836
1381 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1837 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1382 1838
1383 if ($linger && length $self->{wbuf}) { 1839 if ($linger && length $self->{wbuf} && $self->{fh}) {
1384 my $fh = delete $self->{fh}; 1840 my $fh = delete $self->{fh};
1385 my $wbuf = delete $self->{wbuf}; 1841 my $wbuf = delete $self->{wbuf};
1386 1842
1387 my @linger; 1843 my @linger;
1388 1844
1389 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub { 1845 push @linger, AE::io $fh, 1, sub {
1390 my $len = syswrite $fh, $wbuf, length $wbuf; 1846 my $len = syswrite $fh, $wbuf, length $wbuf;
1391 1847
1392 if ($len > 0) { 1848 if ($len > 0) {
1393 substr $wbuf, 0, $len, ""; 1849 substr $wbuf, 0, $len, "";
1394 } else { 1850 } else {
1395 @linger = (); # end 1851 @linger = (); # end
1396 } 1852 }
1397 }); 1853 };
1398 push @linger, AnyEvent->timer (after => $linger, cb => sub { 1854 push @linger, AE::timer $linger, 0, sub {
1399 @linger = (); 1855 @linger = ();
1400 }); 1856 };
1401 } 1857 }
1858}
1859
1860=item $handle->destroy
1861
1862Shuts down the handle object as much as possible - this call ensures that
1863no further callbacks will be invoked and as many resources as possible
1864will be freed. Any method you will call on the handle object after
1865destroying it in this way will be silently ignored (and it will return the
1866empty list).
1867
1868Normally, you can just "forget" any references to an AnyEvent::Handle
1869object and it will simply shut down. This works in fatal error and EOF
1870callbacks, as well as code outside. It does I<NOT> work in a read or write
1871callback, so when you want to destroy the AnyEvent::Handle object from
1872within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1873that case.
1874
1875Destroying the handle object in this way has the advantage that callbacks
1876will be removed as well, so if those are the only reference holders (as
1877is common), then one doesn't need to do anything special to break any
1878reference cycles.
1879
1880The handle might still linger in the background and write out remaining
1881data, as specified by the C<linger> option, however.
1882
1883=cut
1884
1885sub destroy {
1886 my ($self) = @_;
1887
1888 $self->DESTROY;
1889 %$self = ();
1890 bless $self, "AnyEvent::Handle::destroyed";
1891}
1892
1893sub AnyEvent::Handle::destroyed::AUTOLOAD {
1894 #nop
1402} 1895}
1403 1896
1404=item AnyEvent::Handle::TLS_CTX 1897=item AnyEvent::Handle::TLS_CTX
1405 1898
1406This function creates and returns the Net::SSLeay::CTX object used by 1899This function creates and returns the AnyEvent::TLS object used by default
1407default for TLS mode. 1900for TLS mode.
1408 1901
1409The context is created like this: 1902The context is created by calling L<AnyEvent::TLS> without any arguments.
1410
1411 Net::SSLeay::load_error_strings;
1412 Net::SSLeay::SSLeay_add_ssl_algorithms;
1413 Net::SSLeay::randomize;
1414
1415 my $CTX = Net::SSLeay::CTX_new;
1416
1417 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1418 1903
1419=cut 1904=cut
1420 1905
1421our $TLS_CTX; 1906our $TLS_CTX;
1422 1907
1423sub TLS_CTX() { 1908sub TLS_CTX() {
1424 $TLS_CTX || do { 1909 $TLS_CTX ||= do {
1425 require Net::SSLeay; 1910 require AnyEvent::TLS;
1426 1911
1427 Net::SSLeay::load_error_strings (); 1912 new AnyEvent::TLS
1428 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1429 Net::SSLeay::randomize ();
1430
1431 $TLS_CTX = Net::SSLeay::CTX_new ();
1432
1433 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1434
1435 $TLS_CTX
1436 } 1913 }
1437} 1914}
1438 1915
1439=back 1916=back
1917
1918
1919=head1 NONFREQUENTLY ASKED QUESTIONS
1920
1921=over 4
1922
1923=item I C<undef> the AnyEvent::Handle reference inside my callback and
1924still get further invocations!
1925
1926That's because AnyEvent::Handle keeps a reference to itself when handling
1927read or write callbacks.
1928
1929It is only safe to "forget" the reference inside EOF or error callbacks,
1930from within all other callbacks, you need to explicitly call the C<<
1931->destroy >> method.
1932
1933=item I get different callback invocations in TLS mode/Why can't I pause
1934reading?
1935
1936Unlike, say, TCP, TLS connections do not consist of two independent
1937communication channels, one for each direction. Or put differently. The
1938read and write directions are not independent of each other: you cannot
1939write data unless you are also prepared to read, and vice versa.
1940
1941This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1942callback invocations when you are not expecting any read data - the reason
1943is that AnyEvent::Handle always reads in TLS mode.
1944
1945During the connection, you have to make sure that you always have a
1946non-empty read-queue, or an C<on_read> watcher. At the end of the
1947connection (or when you no longer want to use it) you can call the
1948C<destroy> method.
1949
1950=item How do I read data until the other side closes the connection?
1951
1952If you just want to read your data into a perl scalar, the easiest way
1953to achieve this is by setting an C<on_read> callback that does nothing,
1954clearing the C<on_eof> callback and in the C<on_error> callback, the data
1955will be in C<$_[0]{rbuf}>:
1956
1957 $handle->on_read (sub { });
1958 $handle->on_eof (undef);
1959 $handle->on_error (sub {
1960 my $data = delete $_[0]{rbuf};
1961 });
1962
1963The reason to use C<on_error> is that TCP connections, due to latencies
1964and packets loss, might get closed quite violently with an error, when in
1965fact, all data has been received.
1966
1967It is usually better to use acknowledgements when transferring data,
1968to make sure the other side hasn't just died and you got the data
1969intact. This is also one reason why so many internet protocols have an
1970explicit QUIT command.
1971
1972=item I don't want to destroy the handle too early - how do I wait until
1973all data has been written?
1974
1975After writing your last bits of data, set the C<on_drain> callback
1976and destroy the handle in there - with the default setting of
1977C<low_water_mark> this will be called precisely when all data has been
1978written to the socket:
1979
1980 $handle->push_write (...);
1981 $handle->on_drain (sub {
1982 warn "all data submitted to the kernel\n";
1983 undef $handle;
1984 });
1985
1986If you just want to queue some data and then signal EOF to the other side,
1987consider using C<< ->push_shutdown >> instead.
1988
1989=item I want to contact a TLS/SSL server, I don't care about security.
1990
1991If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1992simply connect to it and then create the AnyEvent::Handle with the C<tls>
1993parameter:
1994
1995 tcp_connect $host, $port, sub {
1996 my ($fh) = @_;
1997
1998 my $handle = new AnyEvent::Handle
1999 fh => $fh,
2000 tls => "connect",
2001 on_error => sub { ... };
2002
2003 $handle->push_write (...);
2004 };
2005
2006=item I want to contact a TLS/SSL server, I do care about security.
2007
2008Then you should additionally enable certificate verification, including
2009peername verification, if the protocol you use supports it (see
2010L<AnyEvent::TLS>, C<verify_peername>).
2011
2012E.g. for HTTPS:
2013
2014 tcp_connect $host, $port, sub {
2015 my ($fh) = @_;
2016
2017 my $handle = new AnyEvent::Handle
2018 fh => $fh,
2019 peername => $host,
2020 tls => "connect",
2021 tls_ctx => { verify => 1, verify_peername => "https" },
2022 ...
2023
2024Note that you must specify the hostname you connected to (or whatever
2025"peername" the protocol needs) as the C<peername> argument, otherwise no
2026peername verification will be done.
2027
2028The above will use the system-dependent default set of trusted CA
2029certificates. If you want to check against a specific CA, add the
2030C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2031
2032 tls_ctx => {
2033 verify => 1,
2034 verify_peername => "https",
2035 ca_file => "my-ca-cert.pem",
2036 },
2037
2038=item I want to create a TLS/SSL server, how do I do that?
2039
2040Well, you first need to get a server certificate and key. You have
2041three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2042self-signed certificate (cheap. check the search engine of your choice,
2043there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2044nice program for that purpose).
2045
2046Then create a file with your private key (in PEM format, see
2047L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2048file should then look like this:
2049
2050 -----BEGIN RSA PRIVATE KEY-----
2051 ...header data
2052 ... lots of base64'y-stuff
2053 -----END RSA PRIVATE KEY-----
2054
2055 -----BEGIN CERTIFICATE-----
2056 ... lots of base64'y-stuff
2057 -----END CERTIFICATE-----
2058
2059The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2060specify this file as C<cert_file>:
2061
2062 tcp_server undef, $port, sub {
2063 my ($fh) = @_;
2064
2065 my $handle = new AnyEvent::Handle
2066 fh => $fh,
2067 tls => "accept",
2068 tls_ctx => { cert_file => "my-server-keycert.pem" },
2069 ...
2070
2071When you have intermediate CA certificates that your clients might not
2072know about, just append them to the C<cert_file>.
2073
2074=back
2075
1440 2076
1441=head1 SUBCLASSING AnyEvent::Handle 2077=head1 SUBCLASSING AnyEvent::Handle
1442 2078
1443In many cases, you might want to subclass AnyEvent::Handle. 2079In many cases, you might want to subclass AnyEvent::Handle.
1444 2080
1448=over 4 2084=over 4
1449 2085
1450=item * all constructor arguments become object members. 2086=item * all constructor arguments become object members.
1451 2087
1452At least initially, when you pass a C<tls>-argument to the constructor it 2088At least initially, when you pass a C<tls>-argument to the constructor it
1453will end up in C<< $handle->{tls} >>. Those members might be changes or 2089will end up in C<< $handle->{tls} >>. Those members might be changed or
1454mutated later on (for example C<tls> will hold the TLS connection object). 2090mutated later on (for example C<tls> will hold the TLS connection object).
1455 2091
1456=item * other object member names are prefixed with an C<_>. 2092=item * other object member names are prefixed with an C<_>.
1457 2093
1458All object members not explicitly documented (internal use) are prefixed 2094All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines