ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.84 by root, Thu Aug 21 19:13:05 2008 UTC vs.
Revision 1.182 by root, Thu Sep 3 12:35:01 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17=cut
18
19our $VERSION = 4.232;
20 4
21=head1 SYNOPSIS 5=head1 SYNOPSIS
22 6
23 use AnyEvent; 7 use AnyEvent;
24 use AnyEvent::Handle; 8 use AnyEvent::Handle;
25 9
26 my $cv = AnyEvent->condvar; 10 my $cv = AnyEvent->condvar;
27 11
28 my $handle = 12 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 13 fh => \*STDIN,
31 on_eof => sub { 14 on_error => sub {
32 $cv->broadcast; 15 my ($hdl, $fatal, $msg) = @_;
33 }, 16 warn "got error $msg\n";
17 $hdl->destroy;
18 $cv->send;
34 ); 19 );
35 20
36 # send some request line 21 # send some request line
37 $handle->push_write ("getinfo\015\012"); 22 $hdl->push_write ("getinfo\015\012");
38 23
39 # read the response line 24 # read the response line
40 $handle->push_read (line => sub { 25 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 26 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 27 warn "got line <$line>\n";
43 $cv->send; 28 $cv->send;
44 }); 29 });
45 30
46 $cv->recv; 31 $cv->recv;
47 32
48=head1 DESCRIPTION 33=head1 DESCRIPTION
49 34
50This module is a helper module to make it easier to do event-based I/O on 35This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 36filehandles.
52on sockets see L<AnyEvent::Util>.
53 37
54The L<AnyEvent::Intro> tutorial contains some well-documented 38The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples. 39AnyEvent::Handle examples.
56 40
57In the following, when the documentation refers to of "bytes" then this 41In the following, when the documentation refers to of "bytes" then this
58means characters. As sysread and syswrite are used for all I/O, their 42means characters. As sysread and syswrite are used for all I/O, their
59treatment of characters applies to this module as well. 43treatment of characters applies to this module as well.
60 44
45At the very minimum, you should specify C<fh> or C<connect>, and the
46C<on_error> callback.
47
61All callbacks will be invoked with the handle object as their first 48All callbacks will be invoked with the handle object as their first
62argument. 49argument.
63 50
51=cut
52
53package AnyEvent::Handle;
54
55use Scalar::Util ();
56use List::Util ();
57use Carp ();
58use Errno qw(EAGAIN EINTR);
59
60use AnyEvent (); BEGIN { AnyEvent::common_sense }
61use AnyEvent::Util qw(WSAEWOULDBLOCK);
62
63our $VERSION = $AnyEvent::VERSION;
64
64=head1 METHODS 65=head1 METHODS
65 66
66=over 4 67=over 4
67 68
68=item B<new (%args)> 69=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
69 70
70The constructor supports these arguments (all as key => value pairs). 71The constructor supports these arguments (all as C<< key => value >> pairs).
71 72
72=over 4 73=over 4
73 74
74=item fh => $filehandle [MANDATORY] 75=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
75 76
76The filehandle this L<AnyEvent::Handle> object will operate on. 77The filehandle this L<AnyEvent::Handle> object will operate on.
77
78NOTE: The filehandle will be set to non-blocking mode (using 78NOTE: The filehandle will be set to non-blocking mode (using
79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode. 80that mode.
81 81
82=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
83
84Try to connect to the specified host and service (port), using
85C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
86default C<peername>.
87
88You have to specify either this parameter, or C<fh>, above.
89
90It is possible to push requests on the read and write queues, and modify
91properties of the stream, even while AnyEvent::Handle is connecting.
92
93When this parameter is specified, then the C<on_prepare>,
94C<on_connect_error> and C<on_connect> callbacks will be called under the
95appropriate circumstances:
96
97=over 4
98
82=item on_eof => $cb->($handle) 99=item on_prepare => $cb->($handle)
83 100
84Set the callback to be called when an end-of-file condition is detected, 101This (rarely used) callback is called before a new connection is
85i.e. in the case of a socket, when the other side has closed the 102attempted, but after the file handle has been created. It could be used to
86connection cleanly. 103prepare the file handle with parameters required for the actual connect
104(as opposed to settings that can be changed when the connection is already
105established).
87 106
88For sockets, this just means that the other side has stopped sending data, 107The return value of this callback should be the connect timeout value in
89you can still try to write data, and, in fact, one can return from the eof 108seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
90callback and continue writing data, as only the read part has been shut 109timeout is to be used).
91down.
92 110
93While not mandatory, it is I<highly> recommended to set an eof callback, 111=item on_connect => $cb->($handle, $host, $port, $retry->())
94otherwise you might end up with a closed socket while you are still
95waiting for data.
96 112
97If an EOF condition has been detected but no C<on_eof> callback has been 113This callback is called when a connection has been successfully established.
98set, then a fatal error will be raised with C<$!> set to <0>.
99 114
115The actual numeric host and port (the socket peername) are passed as
116parameters, together with a retry callback.
117
118When, for some reason, the handle is not acceptable, then calling
119C<$retry> will continue with the next conenction target (in case of
120multi-homed hosts or SRV records there can be multiple connection
121endpoints). When it is called then the read and write queues, eof status,
122tls status and similar properties of the handle are being reset.
123
124In most cases, ignoring the C<$retry> parameter is the way to go.
125
126=item on_connect_error => $cb->($handle, $message)
127
128This callback is called when the conenction could not be
129established. C<$!> will contain the relevant error code, and C<$message> a
130message describing it (usually the same as C<"$!">).
131
132If this callback isn't specified, then C<on_error> will be called with a
133fatal error instead.
134
135=back
136
100=item on_error => $cb->($handle, $fatal) 137=item on_error => $cb->($handle, $fatal, $message)
101 138
102This is the error callback, which is called when, well, some error 139This is the error callback, which is called when, well, some error
103occured, such as not being able to resolve the hostname, failure to 140occured, such as not being able to resolve the hostname, failure to
104connect or a read error. 141connect or a read error.
105 142
106Some errors are fatal (which is indicated by C<$fatal> being true). On 143Some errors are fatal (which is indicated by C<$fatal> being true). On
107fatal errors the handle object will be shut down and will not be usable 144fatal errors the handle object will be destroyed (by a call to C<< ->
108(but you are free to look at the current C< ->rbuf >). Examples of fatal 145destroy >>) after invoking the error callback (which means you are free to
109errors are an EOF condition with active (but unsatisifable) read watchers 146examine the handle object). Examples of fatal errors are an EOF condition
110(C<EPIPE>) or I/O errors. 147with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
148cases where the other side can close the connection at their will it is
149often easiest to not report C<EPIPE> errors in this callback.
150
151AnyEvent::Handle tries to find an appropriate error code for you to check
152against, but in some cases (TLS errors), this does not work well. It is
153recommended to always output the C<$message> argument in human-readable
154error messages (it's usually the same as C<"$!">).
111 155
112Non-fatal errors can be retried by simply returning, but it is recommended 156Non-fatal errors can be retried by simply returning, but it is recommended
113to simply ignore this parameter and instead abondon the handle object 157to simply ignore this parameter and instead abondon the handle object
114when this callback is invoked. Examples of non-fatal errors are timeouts 158when this callback is invoked. Examples of non-fatal errors are timeouts
115C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>). 159C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
116 160
117On callback entrance, the value of C<$!> contains the operating system 161On callback entrance, the value of C<$!> contains the operating system
118error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 162error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
163C<EPROTO>).
119 164
120While not mandatory, it is I<highly> recommended to set this callback, as 165While not mandatory, it is I<highly> recommended to set this callback, as
121you will not be notified of errors otherwise. The default simply calls 166you will not be notified of errors otherwise. The default simply calls
122C<croak>. 167C<croak>.
123 168
127and no read request is in the queue (unlike read queue callbacks, this 172and no read request is in the queue (unlike read queue callbacks, this
128callback will only be called when at least one octet of data is in the 173callback will only be called when at least one octet of data is in the
129read buffer). 174read buffer).
130 175
131To access (and remove data from) the read buffer, use the C<< ->rbuf >> 176To access (and remove data from) the read buffer, use the C<< ->rbuf >>
132method or access the C<$handle->{rbuf}> member directly. 177method or access the C<< $handle->{rbuf} >> member directly. Note that you
178must not enlarge or modify the read buffer, you can only remove data at
179the beginning from it.
133 180
134When an EOF condition is detected then AnyEvent::Handle will first try to 181When an EOF condition is detected then AnyEvent::Handle will first try to
135feed all the remaining data to the queued callbacks and C<on_read> before 182feed all the remaining data to the queued callbacks and C<on_read> before
136calling the C<on_eof> callback. If no progress can be made, then a fatal 183calling the C<on_eof> callback. If no progress can be made, then a fatal
137error will be raised (with C<$!> set to C<EPIPE>). 184error will be raised (with C<$!> set to C<EPIPE>).
185
186Note that, unlike requests in the read queue, an C<on_read> callback
187doesn't mean you I<require> some data: if there is an EOF and there
188are outstanding read requests then an error will be flagged. With an
189C<on_read> callback, the C<on_eof> callback will be invoked.
190
191=item on_eof => $cb->($handle)
192
193Set the callback to be called when an end-of-file condition is detected,
194i.e. in the case of a socket, when the other side has closed the
195connection cleanly, and there are no outstanding read requests in the
196queue (if there are read requests, then an EOF counts as an unexpected
197connection close and will be flagged as an error).
198
199For sockets, this just means that the other side has stopped sending data,
200you can still try to write data, and, in fact, one can return from the EOF
201callback and continue writing data, as only the read part has been shut
202down.
203
204If an EOF condition has been detected but no C<on_eof> callback has been
205set, then a fatal error will be raised with C<$!> set to <0>.
138 206
139=item on_drain => $cb->($handle) 207=item on_drain => $cb->($handle)
140 208
141This sets the callback that is called when the write buffer becomes empty 209This sets the callback that is called when the write buffer becomes empty
142(or when the callback is set and the buffer is empty already). 210(or when the callback is set and the buffer is empty already).
149memory and push it into the queue, but instead only read more data from 217memory and push it into the queue, but instead only read more data from
150the file when the write queue becomes empty. 218the file when the write queue becomes empty.
151 219
152=item timeout => $fractional_seconds 220=item timeout => $fractional_seconds
153 221
222=item rtimeout => $fractional_seconds
223
224=item wtimeout => $fractional_seconds
225
154If non-zero, then this enables an "inactivity" timeout: whenever this many 226If non-zero, then these enables an "inactivity" timeout: whenever this
155seconds pass without a successful read or write on the underlying file 227many seconds pass without a successful read or write on the underlying
156handle, the C<on_timeout> callback will be invoked (and if that one is 228file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
157missing, an C<ETIMEDOUT> error will be raised). 229will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
230error will be raised).
231
232There are three variants of the timeouts that work fully independent
233of each other, for both read and write, just read, and just write:
234C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
235C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
236C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
158 237
159Note that timeout processing is also active when you currently do not have 238Note that timeout processing is also active when you currently do not have
160any outstanding read or write requests: If you plan to keep the connection 239any outstanding read or write requests: If you plan to keep the connection
161idle then you should disable the timout temporarily or ignore the timeout 240idle then you should disable the timout temporarily or ignore the timeout
162in the C<on_timeout> callback. 241in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
242restart the timeout.
163 243
164Zero (the default) disables this timeout. 244Zero (the default) disables this timeout.
165 245
166=item on_timeout => $cb->($handle) 246=item on_timeout => $cb->($handle)
167 247
171 251
172=item rbuf_max => <bytes> 252=item rbuf_max => <bytes>
173 253
174If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 254If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
175when the read buffer ever (strictly) exceeds this size. This is useful to 255when the read buffer ever (strictly) exceeds this size. This is useful to
176avoid denial-of-service attacks. 256avoid some forms of denial-of-service attacks.
177 257
178For example, a server accepting connections from untrusted sources should 258For example, a server accepting connections from untrusted sources should
179be configured to accept only so-and-so much data that it cannot act on 259be configured to accept only so-and-so much data that it cannot act on
180(for example, when expecting a line, an attacker could send an unlimited 260(for example, when expecting a line, an attacker could send an unlimited
181amount of data without a callback ever being called as long as the line 261amount of data without a callback ever being called as long as the line
182isn't finished). 262isn't finished).
183 263
184=item autocork => <boolean> 264=item autocork => <boolean>
185 265
186When disabled (the default), then C<push_write> will try to immediately 266When disabled (the default), then C<push_write> will try to immediately
187write the data to the handle if possible. This avoids having to register 267write the data to the handle, if possible. This avoids having to register
188a write watcher and wait for the next event loop iteration, but can be 268a write watcher and wait for the next event loop iteration, but can
189inefficient if you write multiple small chunks (this disadvantage is 269be inefficient if you write multiple small chunks (on the wire, this
190usually avoided by your kernel's nagle algorithm, see C<low_delay>). 270disadvantage is usually avoided by your kernel's nagle algorithm, see
271C<no_delay>, but this option can save costly syscalls).
191 272
192When enabled, then writes will always be queued till the next event loop 273When enabled, then writes will always be queued till the next event loop
193iteration. This is efficient when you do many small writes per iteration, 274iteration. This is efficient when you do many small writes per iteration,
194but less efficient when you do a single write only. 275but less efficient when you do a single write only per iteration (or when
276the write buffer often is full). It also increases write latency.
195 277
196=item no_delay => <boolean> 278=item no_delay => <boolean>
197 279
198When doing small writes on sockets, your operating system kernel might 280When doing small writes on sockets, your operating system kernel might
199wait a bit for more data before actually sending it out. This is called 281wait a bit for more data before actually sending it out. This is called
200the Nagle algorithm, and usually it is beneficial. 282the Nagle algorithm, and usually it is beneficial.
201 283
202In some situations you want as low a delay as possible, which cna be 284In some situations you want as low a delay as possible, which can be
203accomplishd by setting this option to true. 285accomplishd by setting this option to a true value.
204 286
205The default is your opertaing system's default behaviour, this option 287The default is your opertaing system's default behaviour (most likely
206explicitly enables or disables it, if possible. 288enabled), this option explicitly enables or disables it, if possible.
289
290=item keepalive => <boolean>
291
292Enables (default disable) the SO_KEEPALIVE option on the stream socket:
293normally, TCP connections have no time-out once established, so TCP
294conenctions, once established, can stay alive forever even when the other
295side has long gone. TCP keepalives are a cheap way to take down long-lived
296TCP connections whent he other side becomes unreachable. While the default
297is OS-dependent, TCP keepalives usually kick in after around two hours,
298and, if the other side doesn't reply, take down the TCP connection some 10
299to 15 minutes later.
300
301It is harmless to specify this option for file handles that do not support
302keepalives, and enabling it on connections that are potentially long-lived
303is usually a good idea.
304
305=item oobinline => <boolean>
306
307BSD majorly fucked up the implementation of TCP urgent data. The result
308is that almost no OS implements TCP according to the specs, and every OS
309implements it slightly differently.
310
311If you want to handle TCP urgent data, then setting this flag gives you
312the most portable way of getting urgent data, by putting it into the
313stream.
207 314
208=item read_size => <bytes> 315=item read_size => <bytes>
209 316
210The default read block size (the amount of bytes this module will try to read 317The default read block size (the amount of bytes this module will
211during each (loop iteration). Default: C<8192>. 318try to read during each loop iteration, which affects memory
319requirements). Default: C<8192>.
212 320
213=item low_water_mark => <bytes> 321=item low_water_mark => <bytes>
214 322
215Sets the amount of bytes (default: C<0>) that make up an "empty" write 323Sets the amount of bytes (default: C<0>) that make up an "empty" write
216buffer: If the write reaches this size or gets even samller it is 324buffer: If the write reaches this size or gets even samller it is
217considered empty. 325considered empty.
218 326
327Sometimes it can be beneficial (for performance reasons) to add data to
328the write buffer before it is fully drained, but this is a rare case, as
329the operating system kernel usually buffers data as well, so the default
330is good in almost all cases.
331
219=item linger => <seconds> 332=item linger => <seconds>
220 333
221If non-zero (default: C<3600>), then the destructor of the 334If non-zero (default: C<3600>), then the destructor of the
222AnyEvent::Handle object will check wether there is still outstanding write 335AnyEvent::Handle object will check whether there is still outstanding
223data and will install a watcher that will write out this data. No errors 336write data and will install a watcher that will write this data to the
224will be reported (this mostly matches how the operating system treats 337socket. No errors will be reported (this mostly matches how the operating
225outstanding data at socket close time). 338system treats outstanding data at socket close time).
226 339
227This will not work for partial TLS data that could not yet been 340This will not work for partial TLS data that could not be encoded
228encoded. This data will be lost. 341yet. This data will be lost. Calling the C<stoptls> method in time might
342help.
343
344=item peername => $string
345
346A string used to identify the remote site - usually the DNS hostname
347(I<not> IDN!) used to create the connection, rarely the IP address.
348
349Apart from being useful in error messages, this string is also used in TLS
350peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
351verification will be skipped when C<peername> is not specified or
352C<undef>.
229 353
230=item tls => "accept" | "connect" | Net::SSLeay::SSL object 354=item tls => "accept" | "connect" | Net::SSLeay::SSL object
231 355
232When this parameter is given, it enables TLS (SSL) mode, that means it 356When this parameter is given, it enables TLS (SSL) mode, that means
233will start making tls handshake and will transparently encrypt/decrypt 357AnyEvent will start a TLS handshake as soon as the conenction has been
234data. 358established and will transparently encrypt/decrypt data afterwards.
359
360All TLS protocol errors will be signalled as C<EPROTO>, with an
361appropriate error message.
235 362
236TLS mode requires Net::SSLeay to be installed (it will be loaded 363TLS mode requires Net::SSLeay to be installed (it will be loaded
237automatically when you try to create a TLS handle). 364automatically when you try to create a TLS handle): this module doesn't
365have a dependency on that module, so if your module requires it, you have
366to add the dependency yourself.
238 367
239For the TLS server side, use C<accept>, and for the TLS client side of a 368Unlike TCP, TLS has a server and client side: for the TLS server side, use
240connection, use C<connect> mode. 369C<accept>, and for the TLS client side of a connection, use C<connect>
370mode.
241 371
242You can also provide your own TLS connection object, but you have 372You can also provide your own TLS connection object, but you have
243to make sure that you call either C<Net::SSLeay::set_connect_state> 373to make sure that you call either C<Net::SSLeay::set_connect_state>
244or C<Net::SSLeay::set_accept_state> on it before you pass it to 374or C<Net::SSLeay::set_accept_state> on it before you pass it to
245AnyEvent::Handle. 375AnyEvent::Handle. Also, this module will take ownership of this connection
376object.
246 377
378At some future point, AnyEvent::Handle might switch to another TLS
379implementation, then the option to use your own session object will go
380away.
381
382B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
383passing in the wrong integer will lead to certain crash. This most often
384happens when one uses a stylish C<< tls => 1 >> and is surprised about the
385segmentation fault.
386
247See the C<starttls> method if you need to start TLS negotiation later. 387See the C<< ->starttls >> method for when need to start TLS negotiation later.
248 388
249=item tls_ctx => $ssl_ctx 389=item tls_ctx => $anyevent_tls
250 390
251Use the given Net::SSLeay::CTX object to create the new TLS connection 391Use the given C<AnyEvent::TLS> object to create the new TLS connection
252(unless a connection object was specified directly). If this parameter is 392(unless a connection object was specified directly). If this parameter is
253missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 393missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
254 394
395Instead of an object, you can also specify a hash reference with C<< key
396=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
397new TLS context object.
398
399=item on_starttls => $cb->($handle, $success[, $error_message])
400
401This callback will be invoked when the TLS/SSL handshake has finished. If
402C<$success> is true, then the TLS handshake succeeded, otherwise it failed
403(C<on_stoptls> will not be called in this case).
404
405The session in C<< $handle->{tls} >> can still be examined in this
406callback, even when the handshake was not successful.
407
408TLS handshake failures will not cause C<on_error> to be invoked when this
409callback is in effect, instead, the error message will be passed to C<on_starttls>.
410
411Without this callback, handshake failures lead to C<on_error> being
412called, as normal.
413
414Note that you cannot call C<starttls> right again in this callback. If you
415need to do that, start an zero-second timer instead whose callback can
416then call C<< ->starttls >> again.
417
418=item on_stoptls => $cb->($handle)
419
420When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
421set, then it will be invoked after freeing the TLS session. If it is not,
422then a TLS shutdown condition will be treated like a normal EOF condition
423on the handle.
424
425The session in C<< $handle->{tls} >> can still be examined in this
426callback.
427
428This callback will only be called on TLS shutdowns, not when the
429underlying handle signals EOF.
430
255=item json => JSON or JSON::XS object 431=item json => JSON or JSON::XS object
256 432
257This is the json coder object used by the C<json> read and write types. 433This is the json coder object used by the C<json> read and write types.
258 434
259If you don't supply it, then AnyEvent::Handle will create and use a 435If you don't supply it, then AnyEvent::Handle will create and use a
260suitable one, which will write and expect UTF-8 encoded JSON texts. 436suitable one (on demand), which will write and expect UTF-8 encoded JSON
437texts.
261 438
262Note that you are responsible to depend on the JSON module if you want to 439Note that you are responsible to depend on the JSON module if you want to
263use this functionality, as AnyEvent does not have a dependency itself. 440use this functionality, as AnyEvent does not have a dependency itself.
264 441
265=item filter_r => $cb
266
267=item filter_w => $cb
268
269These exist, but are undocumented at this time.
270
271=back 442=back
272 443
273=cut 444=cut
274 445
275sub new { 446sub new {
276 my $class = shift; 447 my $class = shift;
277
278 my $self = bless { @_ }, $class; 448 my $self = bless { @_ }, $class;
279 449
280 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 450 if ($self->{fh}) {
451 $self->_start;
452 return unless $self->{fh}; # could be gone by now
453
454 } elsif ($self->{connect}) {
455 require AnyEvent::Socket;
456
457 $self->{peername} = $self->{connect}[0]
458 unless exists $self->{peername};
459
460 $self->{_skip_drain_rbuf} = 1;
461
462 {
463 Scalar::Util::weaken (my $self = $self);
464
465 $self->{_connect} =
466 AnyEvent::Socket::tcp_connect (
467 $self->{connect}[0],
468 $self->{connect}[1],
469 sub {
470 my ($fh, $host, $port, $retry) = @_;
471
472 if ($fh) {
473 $self->{fh} = $fh;
474
475 delete $self->{_skip_drain_rbuf};
476 $self->_start;
477
478 $self->{on_connect}
479 and $self->{on_connect}($self, $host, $port, sub {
480 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
481 $self->{_skip_drain_rbuf} = 1;
482 &$retry;
483 });
484
485 } else {
486 if ($self->{on_connect_error}) {
487 $self->{on_connect_error}($self, "$!");
488 $self->destroy;
489 } else {
490 $self->_error ($!, 1);
491 }
492 }
493 },
494 sub {
495 local $self->{fh} = $_[0];
496
497 $self->{on_prepare}
498 ? $self->{on_prepare}->($self)
499 : ()
500 }
501 );
502 }
503
504 } else {
505 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
506 }
507
508 $self
509}
510
511sub _start {
512 my ($self) = @_;
281 513
282 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 514 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
283 515
284 if ($self->{tls}) { 516 $self->{_activity} =
285 require Net::SSLeay; 517 $self->{_ractivity} =
286 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
287 }
288
289 $self->{_activity} = AnyEvent->now; 518 $self->{_wactivity} = AE::now;
290 $self->_timeout;
291 519
292 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain}; 520 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
521 $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
522 $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
523
293 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay}; 524 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay};
525 $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive};
526 $self->oobinline (delete $self->{oobinline}) if exists $self->{oobinline};
527
528 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
529 if $self->{tls};
530
531 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
294 532
295 $self->start_read 533 $self->start_read
296 if $self->{on_read}; 534 if $self->{on_read} || @{ $self->{_queue} };
297 535
298 $self 536 $self->_drain_wbuf;
299}
300
301sub _shutdown {
302 my ($self) = @_;
303
304 delete $self->{_tw};
305 delete $self->{_rw};
306 delete $self->{_ww};
307 delete $self->{fh};
308
309 $self->stoptls;
310
311 delete $self->{on_read};
312 delete $self->{_queue};
313} 537}
314 538
315sub _error { 539sub _error {
316 my ($self, $errno, $fatal) = @_; 540 my ($self, $errno, $fatal, $message) = @_;
317
318 $self->_shutdown
319 if $fatal;
320 541
321 $! = $errno; 542 $! = $errno;
543 $message ||= "$!";
322 544
323 if ($self->{on_error}) { 545 if ($self->{on_error}) {
324 $self->{on_error}($self, $fatal); 546 $self->{on_error}($self, $fatal, $message);
325 } else { 547 $self->destroy if $fatal;
548 } elsif ($self->{fh}) {
549 $self->destroy;
326 Carp::croak "AnyEvent::Handle uncaught error: $!"; 550 Carp::croak "AnyEvent::Handle uncaught error: $message";
327 } 551 }
328} 552}
329 553
330=item $fh = $handle->fh 554=item $fh = $handle->fh
331 555
332This method returns the file handle of the L<AnyEvent::Handle> object. 556This method returns the file handle used to create the L<AnyEvent::Handle> object.
333 557
334=cut 558=cut
335 559
336sub fh { $_[0]{fh} } 560sub fh { $_[0]{fh} }
337 561
355 $_[0]{on_eof} = $_[1]; 579 $_[0]{on_eof} = $_[1];
356} 580}
357 581
358=item $handle->on_timeout ($cb) 582=item $handle->on_timeout ($cb)
359 583
360Replace the current C<on_timeout> callback, or disables the callback 584=item $handle->on_rtimeout ($cb)
361(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
362argument.
363 585
364=cut 586=item $handle->on_wtimeout ($cb)
365 587
366sub on_timeout { 588Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
367 $_[0]{on_timeout} = $_[1]; 589callback, or disables the callback (but not the timeout) if C<$cb> =
368} 590C<undef>. See the C<timeout> constructor argument and method.
591
592=cut
593
594# see below
369 595
370=item $handle->autocork ($boolean) 596=item $handle->autocork ($boolean)
371 597
372Enables or disables the current autocork behaviour (see C<autocork> 598Enables or disables the current autocork behaviour (see C<autocork>
373constructor argument). 599constructor argument). Changes will only take effect on the next write.
374 600
375=cut 601=cut
602
603sub autocork {
604 $_[0]{autocork} = $_[1];
605}
376 606
377=item $handle->no_delay ($boolean) 607=item $handle->no_delay ($boolean)
378 608
379Enables or disables the C<no_delay> setting (see constructor argument of 609Enables or disables the C<no_delay> setting (see constructor argument of
380the same name for details). 610the same name for details).
384sub no_delay { 614sub no_delay {
385 $_[0]{no_delay} = $_[1]; 615 $_[0]{no_delay} = $_[1];
386 616
387 eval { 617 eval {
388 local $SIG{__DIE__}; 618 local $SIG{__DIE__};
389 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 619 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
620 if $_[0]{fh};
390 }; 621 };
391} 622}
392 623
624=item $handle->keepalive ($boolean)
625
626Enables or disables the C<keepalive> setting (see constructor argument of
627the same name for details).
628
629=cut
630
631sub keepalive {
632 $_[0]{keepalive} = $_[1];
633
634 eval {
635 local $SIG{__DIE__};
636 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
637 if $_[0]{fh};
638 };
639}
640
641=item $handle->oobinline ($boolean)
642
643Enables or disables the C<oobinline> setting (see constructor argument of
644the same name for details).
645
646=cut
647
648sub oobinline {
649 $_[0]{oobinline} = $_[1];
650
651 eval {
652 local $SIG{__DIE__};
653 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
654 if $_[0]{fh};
655 };
656}
657
658=item $handle->keepalive ($boolean)
659
660Enables or disables the C<keepalive> setting (see constructor argument of
661the same name for details).
662
663=cut
664
665sub keepalive {
666 $_[0]{keepalive} = $_[1];
667
668 eval {
669 local $SIG{__DIE__};
670 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
671 if $_[0]{fh};
672 };
673}
674
675=item $handle->on_starttls ($cb)
676
677Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
678
679=cut
680
681sub on_starttls {
682 $_[0]{on_starttls} = $_[1];
683}
684
685=item $handle->on_stoptls ($cb)
686
687Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
688
689=cut
690
691sub on_starttls {
692 $_[0]{on_stoptls} = $_[1];
693}
694
695=item $handle->rbuf_max ($max_octets)
696
697Configures the C<rbuf_max> setting (C<undef> disables it).
698
699=cut
700
701sub rbuf_max {
702 $_[0]{rbuf_max} = $_[1];
703}
704
393############################################################################# 705#############################################################################
394 706
395=item $handle->timeout ($seconds) 707=item $handle->timeout ($seconds)
396 708
709=item $handle->rtimeout ($seconds)
710
711=item $handle->wtimeout ($seconds)
712
397Configures (or disables) the inactivity timeout. 713Configures (or disables) the inactivity timeout.
398 714
399=cut 715=item $handle->timeout_reset
400 716
401sub timeout { 717=item $handle->rtimeout_reset
718
719=item $handle->wtimeout_reset
720
721Reset the activity timeout, as if data was received or sent.
722
723These methods are cheap to call.
724
725=cut
726
727for my $dir ("", "r", "w") {
728 my $timeout = "${dir}timeout";
729 my $tw = "_${dir}tw";
730 my $on_timeout = "on_${dir}timeout";
731 my $activity = "_${dir}activity";
732 my $cb;
733
734 *$on_timeout = sub {
735 $_[0]{$on_timeout} = $_[1];
736 };
737
738 *$timeout = sub {
402 my ($self, $timeout) = @_; 739 my ($self, $new_value) = @_;
403 740
404 $self->{timeout} = $timeout; 741 $self->{$timeout} = $new_value;
405 $self->_timeout; 742 delete $self->{$tw}; &$cb;
406} 743 };
407 744
745 *{"${dir}timeout_reset"} = sub {
746 $_[0]{$activity} = AE::now;
747 };
748
749 # main workhorse:
408# reset the timeout watcher, as neccessary 750 # reset the timeout watcher, as neccessary
409# also check for time-outs 751 # also check for time-outs
410sub _timeout { 752 $cb = sub {
411 my ($self) = @_; 753 my ($self) = @_;
412 754
413 if ($self->{timeout}) { 755 if ($self->{$timeout} && $self->{fh}) {
414 my $NOW = AnyEvent->now; 756 my $NOW = AE::now;
415 757
416 # when would the timeout trigger? 758 # when would the timeout trigger?
417 my $after = $self->{_activity} + $self->{timeout} - $NOW; 759 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
418 760
419 # now or in the past already? 761 # now or in the past already?
420 if ($after <= 0) { 762 if ($after <= 0) {
421 $self->{_activity} = $NOW; 763 $self->{$activity} = $NOW;
422 764
423 if ($self->{on_timeout}) { 765 if ($self->{$on_timeout}) {
424 $self->{on_timeout}($self); 766 $self->{$on_timeout}($self);
425 } else { 767 } else {
426 $self->_error (&Errno::ETIMEDOUT); 768 $self->_error (Errno::ETIMEDOUT);
769 }
770
771 # callback could have changed timeout value, optimise
772 return unless $self->{$timeout};
773
774 # calculate new after
775 $after = $self->{$timeout};
427 } 776 }
428 777
429 # callback could have changed timeout value, optimise 778 Scalar::Util::weaken $self;
430 return unless $self->{timeout}; 779 return unless $self; # ->error could have destroyed $self
431 780
432 # calculate new after 781 $self->{$tw} ||= AE::timer $after, 0, sub {
433 $after = $self->{timeout}; 782 delete $self->{$tw};
783 $cb->($self);
784 };
785 } else {
786 delete $self->{$tw};
434 } 787 }
435
436 Scalar::Util::weaken $self;
437 return unless $self; # ->error could have destroyed $self
438
439 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
440 delete $self->{_tw};
441 $self->_timeout;
442 });
443 } else {
444 delete $self->{_tw};
445 } 788 }
446} 789}
447 790
448############################################################################# 791#############################################################################
449 792
473 my ($self, $cb) = @_; 816 my ($self, $cb) = @_;
474 817
475 $self->{on_drain} = $cb; 818 $self->{on_drain} = $cb;
476 819
477 $cb->($self) 820 $cb->($self)
478 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 821 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
479} 822}
480 823
481=item $handle->push_write ($data) 824=item $handle->push_write ($data)
482 825
483Queues the given scalar to be written. You can push as much data as you 826Queues the given scalar to be written. You can push as much data as you
494 Scalar::Util::weaken $self; 837 Scalar::Util::weaken $self;
495 838
496 my $cb = sub { 839 my $cb = sub {
497 my $len = syswrite $self->{fh}, $self->{wbuf}; 840 my $len = syswrite $self->{fh}, $self->{wbuf};
498 841
499 if ($len >= 0) { 842 if (defined $len) {
500 substr $self->{wbuf}, 0, $len, ""; 843 substr $self->{wbuf}, 0, $len, "";
501 844
502 $self->{_activity} = AnyEvent->now; 845 $self->{_activity} = $self->{_wactivity} = AE::now;
503 846
504 $self->{on_drain}($self) 847 $self->{on_drain}($self)
505 if $self->{low_water_mark} >= length $self->{wbuf} 848 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
506 && $self->{on_drain}; 849 && $self->{on_drain};
507 850
508 delete $self->{_ww} unless length $self->{wbuf}; 851 delete $self->{_ww} unless length $self->{wbuf};
509 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 852 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
510 $self->_error ($!, 1); 853 $self->_error ($!, 1);
513 856
514 # try to write data immediately 857 # try to write data immediately
515 $cb->() unless $self->{autocork}; 858 $cb->() unless $self->{autocork};
516 859
517 # if still data left in wbuf, we need to poll 860 # if still data left in wbuf, we need to poll
518 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 861 $self->{_ww} = AE::io $self->{fh}, 1, $cb
519 if length $self->{wbuf}; 862 if length $self->{wbuf};
520 }; 863 };
521} 864}
522 865
523our %WH; 866our %WH;
534 877
535 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 878 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
536 ->($self, @_); 879 ->($self, @_);
537 } 880 }
538 881
539 if ($self->{filter_w}) { 882 if ($self->{tls}) {
540 $self->{filter_w}($self, \$_[0]); 883 $self->{_tls_wbuf} .= $_[0];
884 &_dotls ($self) if $self->{fh};
541 } else { 885 } else {
542 $self->{wbuf} .= $_[0]; 886 $self->{wbuf} .= $_[0];
543 $self->_drain_wbuf; 887 $self->_drain_wbuf if $self->{fh};
544 } 888 }
545} 889}
546 890
547=item $handle->push_write (type => @args) 891=item $handle->push_write (type => @args)
548 892
562=cut 906=cut
563 907
564register_write_type netstring => sub { 908register_write_type netstring => sub {
565 my ($self, $string) = @_; 909 my ($self, $string) = @_;
566 910
567 sprintf "%d:%s,", (length $string), $string 911 (length $string) . ":$string,"
568}; 912};
569 913
570=item packstring => $format, $data 914=item packstring => $format, $data
571 915
572An octet string prefixed with an encoded length. The encoding C<$format> 916An octet string prefixed with an encoded length. The encoding C<$format>
612Other languages could read single lines terminated by a newline and pass 956Other languages could read single lines terminated by a newline and pass
613this line into their JSON decoder of choice. 957this line into their JSON decoder of choice.
614 958
615=cut 959=cut
616 960
961sub json_coder() {
962 eval { require JSON::XS; JSON::XS->new->utf8 }
963 || do { require JSON; JSON->new->utf8 }
964}
965
617register_write_type json => sub { 966register_write_type json => sub {
618 my ($self, $ref) = @_; 967 my ($self, $ref) = @_;
619 968
620 require JSON; 969 my $json = $self->{json} ||= json_coder;
621 970
622 $self->{json} ? $self->{json}->encode ($ref) 971 $json->encode ($ref)
623 : JSON::encode_json ($ref)
624}; 972};
625 973
626=item storable => $reference 974=item storable => $reference
627 975
628Freezes the given reference using L<Storable> and writes it to the 976Freezes the given reference using L<Storable> and writes it to the
637 985
638 pack "w/a*", Storable::nfreeze ($ref) 986 pack "w/a*", Storable::nfreeze ($ref)
639}; 987};
640 988
641=back 989=back
990
991=item $handle->push_shutdown
992
993Sometimes you know you want to close the socket after writing your data
994before it was actually written. One way to do that is to replace your
995C<on_drain> handler by a callback that shuts down the socket (and set
996C<low_water_mark> to C<0>). This method is a shorthand for just that, and
997replaces the C<on_drain> callback with:
998
999 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
1000
1001This simply shuts down the write side and signals an EOF condition to the
1002the peer.
1003
1004You can rely on the normal read queue and C<on_eof> handling
1005afterwards. This is the cleanest way to close a connection.
1006
1007=cut
1008
1009sub push_shutdown {
1010 my ($self) = @_;
1011
1012 delete $self->{low_water_mark};
1013 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1014}
642 1015
643=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 1016=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
644 1017
645This function (not method) lets you add your own types to C<push_write>. 1018This function (not method) lets you add your own types to C<push_write>.
646Whenever the given C<type> is used, C<push_write> will invoke the code 1019Whenever the given C<type> is used, C<push_write> will invoke the code
740=cut 1113=cut
741 1114
742sub _drain_rbuf { 1115sub _drain_rbuf {
743 my ($self) = @_; 1116 my ($self) = @_;
744 1117
1118 # avoid recursion
1119 return if $self->{_skip_drain_rbuf};
745 local $self->{_in_drain} = 1; 1120 local $self->{_skip_drain_rbuf} = 1;
746
747 if (
748 defined $self->{rbuf_max}
749 && $self->{rbuf_max} < length $self->{rbuf}
750 ) {
751 $self->_error (&Errno::ENOSPC, 1), return;
752 }
753 1121
754 while () { 1122 while () {
1123 # we need to use a separate tls read buffer, as we must not receive data while
1124 # we are draining the buffer, and this can only happen with TLS.
1125 $self->{rbuf} .= delete $self->{_tls_rbuf}
1126 if exists $self->{_tls_rbuf};
1127
755 my $len = length $self->{rbuf}; 1128 my $len = length $self->{rbuf};
756 1129
757 if (my $cb = shift @{ $self->{_queue} }) { 1130 if (my $cb = shift @{ $self->{_queue} }) {
758 unless ($cb->($self)) { 1131 unless ($cb->($self)) {
759 if ($self->{_eof}) { 1132 # no progress can be made
760 # no progress can be made (not enough data and no data forthcoming) 1133 # (not enough data and no data forthcoming)
761 $self->_error (&Errno::EPIPE, 1), return; 1134 $self->_error (Errno::EPIPE, 1), return
762 } 1135 if $self->{_eof};
763 1136
764 unshift @{ $self->{_queue} }, $cb; 1137 unshift @{ $self->{_queue} }, $cb;
765 last; 1138 last;
766 } 1139 }
767 } elsif ($self->{on_read}) { 1140 } elsif ($self->{on_read}) {
774 && !@{ $self->{_queue} } # and the queue is still empty 1147 && !@{ $self->{_queue} } # and the queue is still empty
775 && $self->{on_read} # but we still have on_read 1148 && $self->{on_read} # but we still have on_read
776 ) { 1149 ) {
777 # no further data will arrive 1150 # no further data will arrive
778 # so no progress can be made 1151 # so no progress can be made
779 $self->_error (&Errno::EPIPE, 1), return 1152 $self->_error (Errno::EPIPE, 1), return
780 if $self->{_eof}; 1153 if $self->{_eof};
781 1154
782 last; # more data might arrive 1155 last; # more data might arrive
783 } 1156 }
784 } else { 1157 } else {
785 # read side becomes idle 1158 # read side becomes idle
786 delete $self->{_rw}; 1159 delete $self->{_rw} unless $self->{tls};
787 last; 1160 last;
788 } 1161 }
789 } 1162 }
790 1163
791 if ($self->{_eof}) { 1164 if ($self->{_eof}) {
792 if ($self->{on_eof}) { 1165 $self->{on_eof}
793 $self->{on_eof}($self) 1166 ? $self->{on_eof}($self)
794 } else { 1167 : $self->_error (0, 1, "Unexpected end-of-file");
795 $self->_error (0, 1); 1168
796 } 1169 return;
1170 }
1171
1172 if (
1173 defined $self->{rbuf_max}
1174 && $self->{rbuf_max} < length $self->{rbuf}
1175 ) {
1176 $self->_error (Errno::ENOSPC, 1), return;
797 } 1177 }
798 1178
799 # may need to restart read watcher 1179 # may need to restart read watcher
800 unless ($self->{_rw}) { 1180 unless ($self->{_rw}) {
801 $self->start_read 1181 $self->start_read
813 1193
814sub on_read { 1194sub on_read {
815 my ($self, $cb) = @_; 1195 my ($self, $cb) = @_;
816 1196
817 $self->{on_read} = $cb; 1197 $self->{on_read} = $cb;
818 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1198 $self->_drain_rbuf if $cb;
819} 1199}
820 1200
821=item $handle->rbuf 1201=item $handle->rbuf
822 1202
823Returns the read buffer (as a modifiable lvalue). 1203Returns the read buffer (as a modifiable lvalue).
824 1204
825You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1205You can access the read buffer directly as the C<< ->{rbuf} >>
826you want. 1206member, if you want. However, the only operation allowed on the
1207read buffer (apart from looking at it) is removing data from its
1208beginning. Otherwise modifying or appending to it is not allowed and will
1209lead to hard-to-track-down bugs.
827 1210
828NOTE: The read buffer should only be used or modified if the C<on_read>, 1211NOTE: The read buffer should only be used or modified if the C<on_read>,
829C<push_read> or C<unshift_read> methods are used. The other read methods 1212C<push_read> or C<unshift_read> methods are used. The other read methods
830automatically manage the read buffer. 1213automatically manage the read buffer.
831 1214
872 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1255 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
873 ->($self, $cb, @_); 1256 ->($self, $cb, @_);
874 } 1257 }
875 1258
876 push @{ $self->{_queue} }, $cb; 1259 push @{ $self->{_queue} }, $cb;
877 $self->_drain_rbuf unless $self->{_in_drain}; 1260 $self->_drain_rbuf;
878} 1261}
879 1262
880sub unshift_read { 1263sub unshift_read {
881 my $self = shift; 1264 my $self = shift;
882 my $cb = pop; 1265 my $cb = pop;
886 1269
887 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read") 1270 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
888 ->($self, $cb, @_); 1271 ->($self, $cb, @_);
889 } 1272 }
890 1273
891
892 unshift @{ $self->{_queue} }, $cb; 1274 unshift @{ $self->{_queue} }, $cb;
893 $self->_drain_rbuf unless $self->{_in_drain}; 1275 $self->_drain_rbuf;
894} 1276}
895 1277
896=item $handle->push_read (type => @args, $cb) 1278=item $handle->push_read (type => @args, $cb)
897 1279
898=item $handle->unshift_read (type => @args, $cb) 1280=item $handle->unshift_read (type => @args, $cb)
1031 return 1; 1413 return 1;
1032 } 1414 }
1033 1415
1034 # reject 1416 # reject
1035 if ($reject && $$rbuf =~ $reject) { 1417 if ($reject && $$rbuf =~ $reject) {
1036 $self->_error (&Errno::EBADMSG); 1418 $self->_error (Errno::EBADMSG);
1037 } 1419 }
1038 1420
1039 # skip 1421 # skip
1040 if ($skip && $$rbuf =~ $skip) { 1422 if ($skip && $$rbuf =~ $skip) {
1041 $data .= substr $$rbuf, 0, $+[0], ""; 1423 $data .= substr $$rbuf, 0, $+[0], "";
1057 my ($self, $cb) = @_; 1439 my ($self, $cb) = @_;
1058 1440
1059 sub { 1441 sub {
1060 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1442 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1061 if ($_[0]{rbuf} =~ /[^0-9]/) { 1443 if ($_[0]{rbuf} =~ /[^0-9]/) {
1062 $self->_error (&Errno::EBADMSG); 1444 $self->_error (Errno::EBADMSG);
1063 } 1445 }
1064 return; 1446 return;
1065 } 1447 }
1066 1448
1067 my $len = $1; 1449 my $len = $1;
1070 my $string = $_[1]; 1452 my $string = $_[1];
1071 $_[0]->unshift_read (chunk => 1, sub { 1453 $_[0]->unshift_read (chunk => 1, sub {
1072 if ($_[1] eq ",") { 1454 if ($_[1] eq ",") {
1073 $cb->($_[0], $string); 1455 $cb->($_[0], $string);
1074 } else { 1456 } else {
1075 $self->_error (&Errno::EBADMSG); 1457 $self->_error (Errno::EBADMSG);
1076 } 1458 }
1077 }); 1459 });
1078 }); 1460 });
1079 1461
1080 1 1462 1
1086An octet string prefixed with an encoded length. The encoding C<$format> 1468An octet string prefixed with an encoded length. The encoding C<$format>
1087uses the same format as a Perl C<pack> format, but must specify a single 1469uses the same format as a Perl C<pack> format, but must specify a single
1088integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1470integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1089optional C<!>, C<< < >> or C<< > >> modifier). 1471optional C<!>, C<< < >> or C<< > >> modifier).
1090 1472
1091DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1473For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1474EPP uses a prefix of C<N> (4 octtes).
1092 1475
1093Example: read a block of data prefixed by its length in BER-encoded 1476Example: read a block of data prefixed by its length in BER-encoded
1094format (very efficient). 1477format (very efficient).
1095 1478
1096 $handle->push_read (packstring => "w", sub { 1479 $handle->push_read (packstring => "w", sub {
1126 } 1509 }
1127}; 1510};
1128 1511
1129=item json => $cb->($handle, $hash_or_arrayref) 1512=item json => $cb->($handle, $hash_or_arrayref)
1130 1513
1131Reads a JSON object or array, decodes it and passes it to the callback. 1514Reads a JSON object or array, decodes it and passes it to the
1515callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1132 1516
1133If a C<json> object was passed to the constructor, then that will be used 1517If a C<json> object was passed to the constructor, then that will be used
1134for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1518for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1135 1519
1136This read type uses the incremental parser available with JSON version 1520This read type uses the incremental parser available with JSON version
1145=cut 1529=cut
1146 1530
1147register_read_type json => sub { 1531register_read_type json => sub {
1148 my ($self, $cb) = @_; 1532 my ($self, $cb) = @_;
1149 1533
1150 require JSON; 1534 my $json = $self->{json} ||= json_coder;
1151 1535
1152 my $data; 1536 my $data;
1153 my $rbuf = \$self->{rbuf}; 1537 my $rbuf = \$self->{rbuf};
1154 1538
1155 my $json = $self->{json} ||= JSON->new->utf8;
1156
1157 sub { 1539 sub {
1158 my $ref = $json->incr_parse ($self->{rbuf}); 1540 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1159 1541
1160 if ($ref) { 1542 if ($ref) {
1161 $self->{rbuf} = $json->incr_text; 1543 $self->{rbuf} = $json->incr_text;
1162 $json->incr_text = ""; 1544 $json->incr_text = "";
1163 $cb->($self, $ref); 1545 $cb->($self, $ref);
1164 1546
1165 1 1547 1
1548 } elsif ($@) {
1549 # error case
1550 $json->incr_skip;
1551
1552 $self->{rbuf} = $json->incr_text;
1553 $json->incr_text = "";
1554
1555 $self->_error (Errno::EBADMSG);
1556
1557 ()
1166 } else { 1558 } else {
1167 $self->{rbuf} = ""; 1559 $self->{rbuf} = "";
1560
1168 () 1561 ()
1169 } 1562 }
1170 } 1563 }
1171}; 1564};
1172 1565
1204 # read remaining chunk 1597 # read remaining chunk
1205 $_[0]->unshift_read (chunk => $len, sub { 1598 $_[0]->unshift_read (chunk => $len, sub {
1206 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1599 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1207 $cb->($_[0], $ref); 1600 $cb->($_[0], $ref);
1208 } else { 1601 } else {
1209 $self->_error (&Errno::EBADMSG); 1602 $self->_error (Errno::EBADMSG);
1210 } 1603 }
1211 }); 1604 });
1212 } 1605 }
1213 1606
1214 1 1607 1
1249Note that AnyEvent::Handle will automatically C<start_read> for you when 1642Note that AnyEvent::Handle will automatically C<start_read> for you when
1250you change the C<on_read> callback or push/unshift a read callback, and it 1643you change the C<on_read> callback or push/unshift a read callback, and it
1251will automatically C<stop_read> for you when neither C<on_read> is set nor 1644will automatically C<stop_read> for you when neither C<on_read> is set nor
1252there are any read requests in the queue. 1645there are any read requests in the queue.
1253 1646
1647These methods will have no effect when in TLS mode (as TLS doesn't support
1648half-duplex connections).
1649
1254=cut 1650=cut
1255 1651
1256sub stop_read { 1652sub stop_read {
1257 my ($self) = @_; 1653 my ($self) = @_;
1258 1654
1259 delete $self->{_rw}; 1655 delete $self->{_rw} unless $self->{tls};
1260} 1656}
1261 1657
1262sub start_read { 1658sub start_read {
1263 my ($self) = @_; 1659 my ($self) = @_;
1264 1660
1265 unless ($self->{_rw} || $self->{_eof}) { 1661 unless ($self->{_rw} || $self->{_eof}) {
1266 Scalar::Util::weaken $self; 1662 Scalar::Util::weaken $self;
1267 1663
1268 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1664 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1269 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1665 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1270 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1666 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1271 1667
1272 if ($len > 0) { 1668 if ($len > 0) {
1273 $self->{_activity} = AnyEvent->now; 1669 $self->{_activity} = $self->{_ractivity} = AE::now;
1274 1670
1275 $self->{filter_r} 1671 if ($self->{tls}) {
1276 ? $self->{filter_r}($self, $rbuf) 1672 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1277 : $self->{_in_drain} || $self->_drain_rbuf; 1673
1674 &_dotls ($self);
1675 } else {
1676 $self->_drain_rbuf;
1677 }
1278 1678
1279 } elsif (defined $len) { 1679 } elsif (defined $len) {
1280 delete $self->{_rw}; 1680 delete $self->{_rw};
1281 $self->{_eof} = 1; 1681 $self->{_eof} = 1;
1282 $self->_drain_rbuf unless $self->{_in_drain}; 1682 $self->_drain_rbuf;
1283 1683
1284 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1684 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1285 return $self->_error ($!, 1); 1685 return $self->_error ($!, 1);
1286 } 1686 }
1287 }); 1687 };
1288 } 1688 }
1289} 1689}
1290 1690
1691our $ERROR_SYSCALL;
1692our $ERROR_WANT_READ;
1693
1694sub _tls_error {
1695 my ($self, $err) = @_;
1696
1697 return $self->_error ($!, 1)
1698 if $err == Net::SSLeay::ERROR_SYSCALL ();
1699
1700 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1701
1702 # reduce error string to look less scary
1703 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1704
1705 if ($self->{_on_starttls}) {
1706 (delete $self->{_on_starttls})->($self, undef, $err);
1707 &_freetls;
1708 } else {
1709 &_freetls;
1710 $self->_error (Errno::EPROTO, 1, $err);
1711 }
1712}
1713
1714# poll the write BIO and send the data if applicable
1715# also decode read data if possible
1716# this is basiclaly our TLS state machine
1717# more efficient implementations are possible with openssl,
1718# but not with the buggy and incomplete Net::SSLeay.
1291sub _dotls { 1719sub _dotls {
1292 my ($self) = @_; 1720 my ($self) = @_;
1293 1721
1294 my $buf; 1722 my $tmp;
1295 1723
1296 if (length $self->{_tls_wbuf}) { 1724 if (length $self->{_tls_wbuf}) {
1297 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1725 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1298 substr $self->{_tls_wbuf}, 0, $len, ""; 1726 substr $self->{_tls_wbuf}, 0, $tmp, "";
1299 } 1727 }
1300 }
1301 1728
1729 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1730 return $self->_tls_error ($tmp)
1731 if $tmp != $ERROR_WANT_READ
1732 && ($tmp != $ERROR_SYSCALL || $!);
1733 }
1734
1735 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1736 unless (length $tmp) {
1737 $self->{_on_starttls}
1738 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1739 &_freetls;
1740
1741 if ($self->{on_stoptls}) {
1742 $self->{on_stoptls}($self);
1743 return;
1744 } else {
1745 # let's treat SSL-eof as we treat normal EOF
1746 delete $self->{_rw};
1747 $self->{_eof} = 1;
1748 }
1749 }
1750
1751 $self->{_tls_rbuf} .= $tmp;
1752 $self->_drain_rbuf;
1753 $self->{tls} or return; # tls session might have gone away in callback
1754 }
1755
1756 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1757 return $self->_tls_error ($tmp)
1758 if $tmp != $ERROR_WANT_READ
1759 && ($tmp != $ERROR_SYSCALL || $!);
1760
1302 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1761 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1303 $self->{wbuf} .= $buf; 1762 $self->{wbuf} .= $tmp;
1304 $self->_drain_wbuf; 1763 $self->_drain_wbuf;
1305 } 1764 }
1306 1765
1307 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1766 $self->{_on_starttls}
1308 if (length $buf) { 1767 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1309 $self->{rbuf} .= $buf; 1768 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1310 $self->_drain_rbuf unless $self->{_in_drain};
1311 } else {
1312 # let's treat SSL-eof as we treat normal EOF
1313 $self->{_eof} = 1;
1314 $self->_shutdown;
1315 return;
1316 }
1317 }
1318
1319 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1320
1321 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1322 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1323 return $self->_error ($!, 1);
1324 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1325 return $self->_error (&Errno::EIO, 1);
1326 }
1327
1328 # all others are fine for our purposes
1329 }
1330} 1769}
1331 1770
1332=item $handle->starttls ($tls[, $tls_ctx]) 1771=item $handle->starttls ($tls[, $tls_ctx])
1333 1772
1334Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1773Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1335object is created, you can also do that at a later time by calling 1774object is created, you can also do that at a later time by calling
1336C<starttls>. 1775C<starttls>.
1337 1776
1777Starting TLS is currently an asynchronous operation - when you push some
1778write data and then call C<< ->starttls >> then TLS negotiation will start
1779immediately, after which the queued write data is then sent.
1780
1338The first argument is the same as the C<tls> constructor argument (either 1781The first argument is the same as the C<tls> constructor argument (either
1339C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1782C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1340 1783
1341The second argument is the optional C<Net::SSLeay::CTX> object that is 1784The second argument is the optional C<AnyEvent::TLS> object that is used
1342used when AnyEvent::Handle has to create its own TLS connection object. 1785when AnyEvent::Handle has to create its own TLS connection object, or
1786a hash reference with C<< key => value >> pairs that will be used to
1787construct a new context.
1343 1788
1344The TLS connection object will end up in C<< $handle->{tls} >> after this 1789The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1345call and can be used or changed to your liking. Note that the handshake 1790context in C<< $handle->{tls_ctx} >> after this call and can be used or
1346might have already started when this function returns. 1791changed to your liking. Note that the handshake might have already started
1792when this function returns.
1347 1793
1794Due to bugs in OpenSSL, it might or might not be possible to do multiple
1795handshakes on the same stream. Best do not attempt to use the stream after
1796stopping TLS.
1797
1348=cut 1798=cut
1799
1800our %TLS_CACHE; #TODO not yet documented, should we?
1349 1801
1350sub starttls { 1802sub starttls {
1351 my ($self, $ssl, $ctx) = @_; 1803 my ($self, $tls, $ctx) = @_;
1352 1804
1353 $self->stoptls; 1805 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1806 if $self->{tls};
1354 1807
1355 if ($ssl eq "accept") { 1808 $self->{tls} = $tls;
1356 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1809 $self->{tls_ctx} = $ctx if @_ > 2;
1357 Net::SSLeay::set_accept_state ($ssl); 1810
1358 } elsif ($ssl eq "connect") { 1811 return unless $self->{fh};
1359 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1812
1360 Net::SSLeay::set_connect_state ($ssl); 1813 require Net::SSLeay;
1814
1815 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1816 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1817
1818 $tls = delete $self->{tls};
1819 $ctx = $self->{tls_ctx};
1820
1821 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1822
1823 if ("HASH" eq ref $ctx) {
1824 require AnyEvent::TLS;
1825
1826 if ($ctx->{cache}) {
1827 my $key = $ctx+0;
1828 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1829 } else {
1830 $ctx = new AnyEvent::TLS %$ctx;
1831 }
1832 }
1361 } 1833
1362 1834 $self->{tls_ctx} = $ctx || TLS_CTX ();
1363 $self->{tls} = $ssl; 1835 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1364 1836
1365 # basically, this is deep magic (because SSL_read should have the same issues) 1837 # basically, this is deep magic (because SSL_read should have the same issues)
1366 # but the openssl maintainers basically said: "trust us, it just works". 1838 # but the openssl maintainers basically said: "trust us, it just works".
1367 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1839 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1368 # and mismaintained ssleay-module doesn't even offer them). 1840 # and mismaintained ssleay-module doesn't even offer them).
1369 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1841 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1842 #
1843 # in short: this is a mess.
1844 #
1845 # note that we do not try to keep the length constant between writes as we are required to do.
1846 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1847 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1848 # have identity issues in that area.
1370 Net::SSLeay::CTX_set_mode ($self->{tls}, 1849# Net::SSLeay::CTX_set_mode ($ssl,
1371 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1850# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1372 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1851# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1852 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1373 1853
1374 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1854 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1375 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1855 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1376 1856
1857 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1858
1377 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1859 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1378 1860
1379 $self->{filter_w} = sub { 1861 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1380 $_[0]{_tls_wbuf} .= ${$_[1]}; 1862 if $self->{on_starttls};
1381 &_dotls; 1863
1382 }; 1864 &_dotls; # need to trigger the initial handshake
1383 $self->{filter_r} = sub { 1865 $self->start_read; # make sure we actually do read
1384 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1385 &_dotls;
1386 };
1387} 1866}
1388 1867
1389=item $handle->stoptls 1868=item $handle->stoptls
1390 1869
1391Destroys the SSL connection, if any. Partial read or write data will be 1870Shuts down the SSL connection - this makes a proper EOF handshake by
1392lost. 1871sending a close notify to the other side, but since OpenSSL doesn't
1872support non-blocking shut downs, it is not guarenteed that you can re-use
1873the stream afterwards.
1393 1874
1394=cut 1875=cut
1395 1876
1396sub stoptls { 1877sub stoptls {
1397 my ($self) = @_; 1878 my ($self) = @_;
1398 1879
1399 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1880 if ($self->{tls}) {
1881 Net::SSLeay::shutdown ($self->{tls});
1400 1882
1401 delete $self->{_rbio}; 1883 &_dotls;
1402 delete $self->{_wbio}; 1884
1403 delete $self->{_tls_wbuf}; 1885# # we don't give a shit. no, we do, but we can't. no...#d#
1404 delete $self->{filter_r}; 1886# # we, we... have to use openssl :/#d#
1405 delete $self->{filter_w}; 1887# &_freetls;#d#
1888 }
1889}
1890
1891sub _freetls {
1892 my ($self) = @_;
1893
1894 return unless $self->{tls};
1895
1896 $self->{tls_ctx}->_put_session (delete $self->{tls})
1897 if $self->{tls} > 0;
1898
1899 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1406} 1900}
1407 1901
1408sub DESTROY { 1902sub DESTROY {
1409 my $self = shift; 1903 my ($self) = @_;
1410 1904
1411 $self->stoptls; 1905 &_freetls;
1412 1906
1413 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1907 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1414 1908
1415 if ($linger && length $self->{wbuf}) { 1909 if ($linger && length $self->{wbuf} && $self->{fh}) {
1416 my $fh = delete $self->{fh}; 1910 my $fh = delete $self->{fh};
1417 my $wbuf = delete $self->{wbuf}; 1911 my $wbuf = delete $self->{wbuf};
1418 1912
1419 my @linger; 1913 my @linger;
1420 1914
1421 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub { 1915 push @linger, AE::io $fh, 1, sub {
1422 my $len = syswrite $fh, $wbuf, length $wbuf; 1916 my $len = syswrite $fh, $wbuf, length $wbuf;
1423 1917
1424 if ($len > 0) { 1918 if ($len > 0) {
1425 substr $wbuf, 0, $len, ""; 1919 substr $wbuf, 0, $len, "";
1426 } else { 1920 } else {
1427 @linger = (); # end 1921 @linger = (); # end
1428 } 1922 }
1429 }); 1923 };
1430 push @linger, AnyEvent->timer (after => $linger, cb => sub { 1924 push @linger, AE::timer $linger, 0, sub {
1431 @linger = (); 1925 @linger = ();
1432 }); 1926 };
1433 } 1927 }
1928}
1929
1930=item $handle->destroy
1931
1932Shuts down the handle object as much as possible - this call ensures that
1933no further callbacks will be invoked and as many resources as possible
1934will be freed. Any method you will call on the handle object after
1935destroying it in this way will be silently ignored (and it will return the
1936empty list).
1937
1938Normally, you can just "forget" any references to an AnyEvent::Handle
1939object and it will simply shut down. This works in fatal error and EOF
1940callbacks, as well as code outside. It does I<NOT> work in a read or write
1941callback, so when you want to destroy the AnyEvent::Handle object from
1942within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1943that case.
1944
1945Destroying the handle object in this way has the advantage that callbacks
1946will be removed as well, so if those are the only reference holders (as
1947is common), then one doesn't need to do anything special to break any
1948reference cycles.
1949
1950The handle might still linger in the background and write out remaining
1951data, as specified by the C<linger> option, however.
1952
1953=cut
1954
1955sub destroy {
1956 my ($self) = @_;
1957
1958 $self->DESTROY;
1959 %$self = ();
1960 bless $self, "AnyEvent::Handle::destroyed";
1961}
1962
1963sub AnyEvent::Handle::destroyed::AUTOLOAD {
1964 #nop
1434} 1965}
1435 1966
1436=item AnyEvent::Handle::TLS_CTX 1967=item AnyEvent::Handle::TLS_CTX
1437 1968
1438This function creates and returns the Net::SSLeay::CTX object used by 1969This function creates and returns the AnyEvent::TLS object used by default
1439default for TLS mode. 1970for TLS mode.
1440 1971
1441The context is created like this: 1972The context is created by calling L<AnyEvent::TLS> without any arguments.
1442
1443 Net::SSLeay::load_error_strings;
1444 Net::SSLeay::SSLeay_add_ssl_algorithms;
1445 Net::SSLeay::randomize;
1446
1447 my $CTX = Net::SSLeay::CTX_new;
1448
1449 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1450 1973
1451=cut 1974=cut
1452 1975
1453our $TLS_CTX; 1976our $TLS_CTX;
1454 1977
1455sub TLS_CTX() { 1978sub TLS_CTX() {
1456 $TLS_CTX || do { 1979 $TLS_CTX ||= do {
1457 require Net::SSLeay; 1980 require AnyEvent::TLS;
1458 1981
1459 Net::SSLeay::load_error_strings (); 1982 new AnyEvent::TLS
1460 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1461 Net::SSLeay::randomize ();
1462
1463 $TLS_CTX = Net::SSLeay::CTX_new ();
1464
1465 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1466
1467 $TLS_CTX
1468 } 1983 }
1469} 1984}
1470 1985
1471=back 1986=back
1987
1988
1989=head1 NONFREQUENTLY ASKED QUESTIONS
1990
1991=over 4
1992
1993=item I C<undef> the AnyEvent::Handle reference inside my callback and
1994still get further invocations!
1995
1996That's because AnyEvent::Handle keeps a reference to itself when handling
1997read or write callbacks.
1998
1999It is only safe to "forget" the reference inside EOF or error callbacks,
2000from within all other callbacks, you need to explicitly call the C<<
2001->destroy >> method.
2002
2003=item I get different callback invocations in TLS mode/Why can't I pause
2004reading?
2005
2006Unlike, say, TCP, TLS connections do not consist of two independent
2007communication channels, one for each direction. Or put differently. The
2008read and write directions are not independent of each other: you cannot
2009write data unless you are also prepared to read, and vice versa.
2010
2011This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
2012callback invocations when you are not expecting any read data - the reason
2013is that AnyEvent::Handle always reads in TLS mode.
2014
2015During the connection, you have to make sure that you always have a
2016non-empty read-queue, or an C<on_read> watcher. At the end of the
2017connection (or when you no longer want to use it) you can call the
2018C<destroy> method.
2019
2020=item How do I read data until the other side closes the connection?
2021
2022If you just want to read your data into a perl scalar, the easiest way
2023to achieve this is by setting an C<on_read> callback that does nothing,
2024clearing the C<on_eof> callback and in the C<on_error> callback, the data
2025will be in C<$_[0]{rbuf}>:
2026
2027 $handle->on_read (sub { });
2028 $handle->on_eof (undef);
2029 $handle->on_error (sub {
2030 my $data = delete $_[0]{rbuf};
2031 });
2032
2033The reason to use C<on_error> is that TCP connections, due to latencies
2034and packets loss, might get closed quite violently with an error, when in
2035fact, all data has been received.
2036
2037It is usually better to use acknowledgements when transferring data,
2038to make sure the other side hasn't just died and you got the data
2039intact. This is also one reason why so many internet protocols have an
2040explicit QUIT command.
2041
2042=item I don't want to destroy the handle too early - how do I wait until
2043all data has been written?
2044
2045After writing your last bits of data, set the C<on_drain> callback
2046and destroy the handle in there - with the default setting of
2047C<low_water_mark> this will be called precisely when all data has been
2048written to the socket:
2049
2050 $handle->push_write (...);
2051 $handle->on_drain (sub {
2052 warn "all data submitted to the kernel\n";
2053 undef $handle;
2054 });
2055
2056If you just want to queue some data and then signal EOF to the other side,
2057consider using C<< ->push_shutdown >> instead.
2058
2059=item I want to contact a TLS/SSL server, I don't care about security.
2060
2061If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2062simply connect to it and then create the AnyEvent::Handle with the C<tls>
2063parameter:
2064
2065 tcp_connect $host, $port, sub {
2066 my ($fh) = @_;
2067
2068 my $handle = new AnyEvent::Handle
2069 fh => $fh,
2070 tls => "connect",
2071 on_error => sub { ... };
2072
2073 $handle->push_write (...);
2074 };
2075
2076=item I want to contact a TLS/SSL server, I do care about security.
2077
2078Then you should additionally enable certificate verification, including
2079peername verification, if the protocol you use supports it (see
2080L<AnyEvent::TLS>, C<verify_peername>).
2081
2082E.g. for HTTPS:
2083
2084 tcp_connect $host, $port, sub {
2085 my ($fh) = @_;
2086
2087 my $handle = new AnyEvent::Handle
2088 fh => $fh,
2089 peername => $host,
2090 tls => "connect",
2091 tls_ctx => { verify => 1, verify_peername => "https" },
2092 ...
2093
2094Note that you must specify the hostname you connected to (or whatever
2095"peername" the protocol needs) as the C<peername> argument, otherwise no
2096peername verification will be done.
2097
2098The above will use the system-dependent default set of trusted CA
2099certificates. If you want to check against a specific CA, add the
2100C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2101
2102 tls_ctx => {
2103 verify => 1,
2104 verify_peername => "https",
2105 ca_file => "my-ca-cert.pem",
2106 },
2107
2108=item I want to create a TLS/SSL server, how do I do that?
2109
2110Well, you first need to get a server certificate and key. You have
2111three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2112self-signed certificate (cheap. check the search engine of your choice,
2113there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2114nice program for that purpose).
2115
2116Then create a file with your private key (in PEM format, see
2117L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2118file should then look like this:
2119
2120 -----BEGIN RSA PRIVATE KEY-----
2121 ...header data
2122 ... lots of base64'y-stuff
2123 -----END RSA PRIVATE KEY-----
2124
2125 -----BEGIN CERTIFICATE-----
2126 ... lots of base64'y-stuff
2127 -----END CERTIFICATE-----
2128
2129The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2130specify this file as C<cert_file>:
2131
2132 tcp_server undef, $port, sub {
2133 my ($fh) = @_;
2134
2135 my $handle = new AnyEvent::Handle
2136 fh => $fh,
2137 tls => "accept",
2138 tls_ctx => { cert_file => "my-server-keycert.pem" },
2139 ...
2140
2141When you have intermediate CA certificates that your clients might not
2142know about, just append them to the C<cert_file>.
2143
2144=back
2145
1472 2146
1473=head1 SUBCLASSING AnyEvent::Handle 2147=head1 SUBCLASSING AnyEvent::Handle
1474 2148
1475In many cases, you might want to subclass AnyEvent::Handle. 2149In many cases, you might want to subclass AnyEvent::Handle.
1476 2150

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines