ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.5 by elmex, Mon Apr 28 08:01:05 2008 UTC vs.
Revision 1.84 by root, Thu Aug 21 19:13:05 2008 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3use warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent; 6use AnyEvent ();
7use IO::Handle; 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
8use Errno qw/EAGAIN EINTR/; 11use Errno qw(EAGAIN EINTR);
9 12
10=head1 NAME 13=head1 NAME
11 14
12AnyEvent::Handle - non-blocking I/O on filehandles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
13 16
14=head1 VERSION
15
16Version 0.01
17
18=cut 17=cut
19 18
20our $VERSION = '0.01'; 19our $VERSION = 4.232;
21 20
22=head1 SYNOPSIS 21=head1 SYNOPSIS
23 22
24 use AnyEvent; 23 use AnyEvent;
25 use AnyEvent::Handle; 24 use AnyEvent::Handle;
26 25
27 my $cv = AnyEvent->condvar; 26 my $cv = AnyEvent->condvar;
28 27
29 my $ae_fh = AnyEvent::Handle->new (fh => \*STDIN); 28 my $handle =
30
31 $ae_fh->on_eof (sub { $cv->broadcast });
32
33 $ae_fh->readlines (sub {
34 my ($ae_fh, @lines) = @_;
35 for (@lines) {
36 chomp;
37 print "Line: $_";
38 }
39 });
40
41 # or use the constructor to pass the callback:
42
43 my $ae_fh2 =
44 AnyEvent::Handle->new ( 29 AnyEvent::Handle->new (
45 fh => \*STDIN, 30 fh => \*STDIN,
46 on_eof => sub { 31 on_eof => sub {
47 $cv->broadcast; 32 $cv->broadcast;
48 }, 33 },
34 );
35
36 # send some request line
37 $handle->push_write ("getinfo\015\012");
38
39 # read the response line
40 $handle->push_read (line => sub {
41 my ($handle, $line) = @_;
42 warn "read line <$line>\n";
43 $cv->send;
44 });
45
46 $cv->recv;
47
48=head1 DESCRIPTION
49
50This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts
52on sockets see L<AnyEvent::Util>.
53
54The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples.
56
57In the following, when the documentation refers to of "bytes" then this
58means characters. As sysread and syswrite are used for all I/O, their
59treatment of characters applies to this module as well.
60
61All callbacks will be invoked with the handle object as their first
62argument.
63
64=head1 METHODS
65
66=over 4
67
68=item B<new (%args)>
69
70The constructor supports these arguments (all as key => value pairs).
71
72=over 4
73
74=item fh => $filehandle [MANDATORY]
75
76The filehandle this L<AnyEvent::Handle> object will operate on.
77
78NOTE: The filehandle will be set to non-blocking mode (using
79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
81
82=item on_eof => $cb->($handle)
83
84Set the callback to be called when an end-of-file condition is detected,
85i.e. in the case of a socket, when the other side has closed the
86connection cleanly.
87
88For sockets, this just means that the other side has stopped sending data,
89you can still try to write data, and, in fact, one can return from the eof
90callback and continue writing data, as only the read part has been shut
91down.
92
93While not mandatory, it is I<highly> recommended to set an eof callback,
94otherwise you might end up with a closed socket while you are still
95waiting for data.
96
97If an EOF condition has been detected but no C<on_eof> callback has been
98set, then a fatal error will be raised with C<$!> set to <0>.
99
100=item on_error => $cb->($handle, $fatal)
101
102This is the error callback, which is called when, well, some error
103occured, such as not being able to resolve the hostname, failure to
104connect or a read error.
105
106Some errors are fatal (which is indicated by C<$fatal> being true). On
107fatal errors the handle object will be shut down and will not be usable
108(but you are free to look at the current C< ->rbuf >). Examples of fatal
109errors are an EOF condition with active (but unsatisifable) read watchers
110(C<EPIPE>) or I/O errors.
111
112Non-fatal errors can be retried by simply returning, but it is recommended
113to simply ignore this parameter and instead abondon the handle object
114when this callback is invoked. Examples of non-fatal errors are timeouts
115C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
116
117On callback entrance, the value of C<$!> contains the operating system
118error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
119
120While not mandatory, it is I<highly> recommended to set this callback, as
121you will not be notified of errors otherwise. The default simply calls
122C<croak>.
123
124=item on_read => $cb->($handle)
125
126This sets the default read callback, which is called when data arrives
127and no read request is in the queue (unlike read queue callbacks, this
128callback will only be called when at least one octet of data is in the
129read buffer).
130
131To access (and remove data from) the read buffer, use the C<< ->rbuf >>
132method or access the C<$handle->{rbuf}> member directly.
133
134When an EOF condition is detected then AnyEvent::Handle will first try to
135feed all the remaining data to the queued callbacks and C<on_read> before
136calling the C<on_eof> callback. If no progress can be made, then a fatal
137error will be raised (with C<$!> set to C<EPIPE>).
138
139=item on_drain => $cb->($handle)
140
141This sets the callback that is called when the write buffer becomes empty
142(or when the callback is set and the buffer is empty already).
143
144To append to the write buffer, use the C<< ->push_write >> method.
145
146This callback is useful when you don't want to put all of your write data
147into the queue at once, for example, when you want to write the contents
148of some file to the socket you might not want to read the whole file into
149memory and push it into the queue, but instead only read more data from
150the file when the write queue becomes empty.
151
152=item timeout => $fractional_seconds
153
154If non-zero, then this enables an "inactivity" timeout: whenever this many
155seconds pass without a successful read or write on the underlying file
156handle, the C<on_timeout> callback will be invoked (and if that one is
157missing, an C<ETIMEDOUT> error will be raised).
158
159Note that timeout processing is also active when you currently do not have
160any outstanding read or write requests: If you plan to keep the connection
161idle then you should disable the timout temporarily or ignore the timeout
162in the C<on_timeout> callback.
163
164Zero (the default) disables this timeout.
165
166=item on_timeout => $cb->($handle)
167
168Called whenever the inactivity timeout passes. If you return from this
169callback, then the timeout will be reset as if some activity had happened,
170so this condition is not fatal in any way.
171
172=item rbuf_max => <bytes>
173
174If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
175when the read buffer ever (strictly) exceeds this size. This is useful to
176avoid denial-of-service attacks.
177
178For example, a server accepting connections from untrusted sources should
179be configured to accept only so-and-so much data that it cannot act on
180(for example, when expecting a line, an attacker could send an unlimited
181amount of data without a callback ever being called as long as the line
182isn't finished).
183
184=item autocork => <boolean>
185
186When disabled (the default), then C<push_write> will try to immediately
187write the data to the handle if possible. This avoids having to register
188a write watcher and wait for the next event loop iteration, but can be
189inefficient if you write multiple small chunks (this disadvantage is
190usually avoided by your kernel's nagle algorithm, see C<low_delay>).
191
192When enabled, then writes will always be queued till the next event loop
193iteration. This is efficient when you do many small writes per iteration,
194but less efficient when you do a single write only.
195
196=item no_delay => <boolean>
197
198When doing small writes on sockets, your operating system kernel might
199wait a bit for more data before actually sending it out. This is called
200the Nagle algorithm, and usually it is beneficial.
201
202In some situations you want as low a delay as possible, which cna be
203accomplishd by setting this option to true.
204
205The default is your opertaing system's default behaviour, this option
206explicitly enables or disables it, if possible.
207
208=item read_size => <bytes>
209
210The default read block size (the amount of bytes this module will try to read
211during each (loop iteration). Default: C<8192>.
212
213=item low_water_mark => <bytes>
214
215Sets the amount of bytes (default: C<0>) that make up an "empty" write
216buffer: If the write reaches this size or gets even samller it is
217considered empty.
218
219=item linger => <seconds>
220
221If non-zero (default: C<3600>), then the destructor of the
222AnyEvent::Handle object will check wether there is still outstanding write
223data and will install a watcher that will write out this data. No errors
224will be reported (this mostly matches how the operating system treats
225outstanding data at socket close time).
226
227This will not work for partial TLS data that could not yet been
228encoded. This data will be lost.
229
230=item tls => "accept" | "connect" | Net::SSLeay::SSL object
231
232When this parameter is given, it enables TLS (SSL) mode, that means it
233will start making tls handshake and will transparently encrypt/decrypt
234data.
235
236TLS mode requires Net::SSLeay to be installed (it will be loaded
237automatically when you try to create a TLS handle).
238
239For the TLS server side, use C<accept>, and for the TLS client side of a
240connection, use C<connect> mode.
241
242You can also provide your own TLS connection object, but you have
243to make sure that you call either C<Net::SSLeay::set_connect_state>
244or C<Net::SSLeay::set_accept_state> on it before you pass it to
245AnyEvent::Handle.
246
247See the C<starttls> method if you need to start TLS negotiation later.
248
249=item tls_ctx => $ssl_ctx
250
251Use the given Net::SSLeay::CTX object to create the new TLS connection
252(unless a connection object was specified directly). If this parameter is
253missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
254
255=item json => JSON or JSON::XS object
256
257This is the json coder object used by the C<json> read and write types.
258
259If you don't supply it, then AnyEvent::Handle will create and use a
260suitable one, which will write and expect UTF-8 encoded JSON texts.
261
262Note that you are responsible to depend on the JSON module if you want to
263use this functionality, as AnyEvent does not have a dependency itself.
264
265=item filter_r => $cb
266
267=item filter_w => $cb
268
269These exist, but are undocumented at this time.
270
271=back
272
273=cut
274
275sub new {
276 my $class = shift;
277
278 my $self = bless { @_ }, $class;
279
280 $self->{fh} or Carp::croak "mandatory argument fh is missing";
281
282 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
283
284 if ($self->{tls}) {
285 require Net::SSLeay;
286 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
287 }
288
289 $self->{_activity} = AnyEvent->now;
290 $self->_timeout;
291
292 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
293 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
294
295 $self->start_read
296 if $self->{on_read};
297
298 $self
299}
300
301sub _shutdown {
302 my ($self) = @_;
303
304 delete $self->{_tw};
305 delete $self->{_rw};
306 delete $self->{_ww};
307 delete $self->{fh};
308
309 $self->stoptls;
310
311 delete $self->{on_read};
312 delete $self->{_queue};
313}
314
315sub _error {
316 my ($self, $errno, $fatal) = @_;
317
318 $self->_shutdown
319 if $fatal;
320
321 $! = $errno;
322
323 if ($self->{on_error}) {
324 $self->{on_error}($self, $fatal);
325 } else {
326 Carp::croak "AnyEvent::Handle uncaught error: $!";
327 }
328}
329
330=item $fh = $handle->fh
331
332This method returns the file handle of the L<AnyEvent::Handle> object.
333
334=cut
335
336sub fh { $_[0]{fh} }
337
338=item $handle->on_error ($cb)
339
340Replace the current C<on_error> callback (see the C<on_error> constructor argument).
341
342=cut
343
344sub on_error {
345 $_[0]{on_error} = $_[1];
346}
347
348=item $handle->on_eof ($cb)
349
350Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
351
352=cut
353
354sub on_eof {
355 $_[0]{on_eof} = $_[1];
356}
357
358=item $handle->on_timeout ($cb)
359
360Replace the current C<on_timeout> callback, or disables the callback
361(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
362argument.
363
364=cut
365
366sub on_timeout {
367 $_[0]{on_timeout} = $_[1];
368}
369
370=item $handle->autocork ($boolean)
371
372Enables or disables the current autocork behaviour (see C<autocork>
373constructor argument).
374
375=cut
376
377=item $handle->no_delay ($boolean)
378
379Enables or disables the C<no_delay> setting (see constructor argument of
380the same name for details).
381
382=cut
383
384sub no_delay {
385 $_[0]{no_delay} = $_[1];
386
387 eval {
388 local $SIG{__DIE__};
389 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
390 };
391}
392
393#############################################################################
394
395=item $handle->timeout ($seconds)
396
397Configures (or disables) the inactivity timeout.
398
399=cut
400
401sub timeout {
402 my ($self, $timeout) = @_;
403
404 $self->{timeout} = $timeout;
405 $self->_timeout;
406}
407
408# reset the timeout watcher, as neccessary
409# also check for time-outs
410sub _timeout {
411 my ($self) = @_;
412
413 if ($self->{timeout}) {
414 my $NOW = AnyEvent->now;
415
416 # when would the timeout trigger?
417 my $after = $self->{_activity} + $self->{timeout} - $NOW;
418
419 # now or in the past already?
420 if ($after <= 0) {
421 $self->{_activity} = $NOW;
422
423 if ($self->{on_timeout}) {
424 $self->{on_timeout}($self);
425 } else {
426 $self->_error (&Errno::ETIMEDOUT);
427 }
428
429 # callback could have changed timeout value, optimise
430 return unless $self->{timeout};
431
432 # calculate new after
433 $after = $self->{timeout};
434 }
435
436 Scalar::Util::weaken $self;
437 return unless $self; # ->error could have destroyed $self
438
439 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
440 delete $self->{_tw};
441 $self->_timeout;
442 });
443 } else {
444 delete $self->{_tw};
445 }
446}
447
448#############################################################################
449
450=back
451
452=head2 WRITE QUEUE
453
454AnyEvent::Handle manages two queues per handle, one for writing and one
455for reading.
456
457The write queue is very simple: you can add data to its end, and
458AnyEvent::Handle will automatically try to get rid of it for you.
459
460When data could be written and the write buffer is shorter then the low
461water mark, the C<on_drain> callback will be invoked.
462
463=over 4
464
465=item $handle->on_drain ($cb)
466
467Sets the C<on_drain> callback or clears it (see the description of
468C<on_drain> in the constructor).
469
470=cut
471
472sub on_drain {
473 my ($self, $cb) = @_;
474
475 $self->{on_drain} = $cb;
476
477 $cb->($self)
478 if $cb && $self->{low_water_mark} >= length $self->{wbuf};
479}
480
481=item $handle->push_write ($data)
482
483Queues the given scalar to be written. You can push as much data as you
484want (only limited by the available memory), as C<AnyEvent::Handle>
485buffers it independently of the kernel.
486
487=cut
488
489sub _drain_wbuf {
490 my ($self) = @_;
491
492 if (!$self->{_ww} && length $self->{wbuf}) {
493
494 Scalar::Util::weaken $self;
495
496 my $cb = sub {
497 my $len = syswrite $self->{fh}, $self->{wbuf};
498
499 if ($len >= 0) {
500 substr $self->{wbuf}, 0, $len, "";
501
502 $self->{_activity} = AnyEvent->now;
503
504 $self->{on_drain}($self)
505 if $self->{low_water_mark} >= length $self->{wbuf}
506 && $self->{on_drain};
507
508 delete $self->{_ww} unless length $self->{wbuf};
509 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
510 $self->_error ($!, 1);
511 }
512 };
513
514 # try to write data immediately
515 $cb->() unless $self->{autocork};
516
517 # if still data left in wbuf, we need to poll
518 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
519 if length $self->{wbuf};
520 };
521}
522
523our %WH;
524
525sub register_write_type($$) {
526 $WH{$_[0]} = $_[1];
527}
528
529sub push_write {
530 my $self = shift;
531
532 if (@_ > 1) {
533 my $type = shift;
534
535 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
536 ->($self, @_);
537 }
538
539 if ($self->{filter_w}) {
540 $self->{filter_w}($self, \$_[0]);
541 } else {
542 $self->{wbuf} .= $_[0];
543 $self->_drain_wbuf;
544 }
545}
546
547=item $handle->push_write (type => @args)
548
549Instead of formatting your data yourself, you can also let this module do
550the job by specifying a type and type-specific arguments.
551
552Predefined types are (if you have ideas for additional types, feel free to
553drop by and tell us):
554
555=over 4
556
557=item netstring => $string
558
559Formats the given value as netstring
560(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
561
562=cut
563
564register_write_type netstring => sub {
565 my ($self, $string) = @_;
566
567 sprintf "%d:%s,", (length $string), $string
568};
569
570=item packstring => $format, $data
571
572An octet string prefixed with an encoded length. The encoding C<$format>
573uses the same format as a Perl C<pack> format, but must specify a single
574integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
575optional C<!>, C<< < >> or C<< > >> modifier).
576
577=cut
578
579register_write_type packstring => sub {
580 my ($self, $format, $string) = @_;
581
582 pack "$format/a*", $string
583};
584
585=item json => $array_or_hashref
586
587Encodes the given hash or array reference into a JSON object. Unless you
588provide your own JSON object, this means it will be encoded to JSON text
589in UTF-8.
590
591JSON objects (and arrays) are self-delimiting, so you can write JSON at
592one end of a handle and read them at the other end without using any
593additional framing.
594
595The generated JSON text is guaranteed not to contain any newlines: While
596this module doesn't need delimiters after or between JSON texts to be
597able to read them, many other languages depend on that.
598
599A simple RPC protocol that interoperates easily with others is to send
600JSON arrays (or objects, although arrays are usually the better choice as
601they mimic how function argument passing works) and a newline after each
602JSON text:
603
604 $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
605 $handle->push_write ("\012");
606
607An AnyEvent::Handle receiver would simply use the C<json> read type and
608rely on the fact that the newline will be skipped as leading whitespace:
609
610 $handle->push_read (json => sub { my $array = $_[1]; ... });
611
612Other languages could read single lines terminated by a newline and pass
613this line into their JSON decoder of choice.
614
615=cut
616
617register_write_type json => sub {
618 my ($self, $ref) = @_;
619
620 require JSON;
621
622 $self->{json} ? $self->{json}->encode ($ref)
623 : JSON::encode_json ($ref)
624};
625
626=item storable => $reference
627
628Freezes the given reference using L<Storable> and writes it to the
629handle. Uses the C<nfreeze> format.
630
631=cut
632
633register_write_type storable => sub {
634 my ($self, $ref) = @_;
635
636 require Storable;
637
638 pack "w/a*", Storable::nfreeze ($ref)
639};
640
641=back
642
643=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
644
645This function (not method) lets you add your own types to C<push_write>.
646Whenever the given C<type> is used, C<push_write> will invoke the code
647reference with the handle object and the remaining arguments.
648
649The code reference is supposed to return a single octet string that will
650be appended to the write buffer.
651
652Note that this is a function, and all types registered this way will be
653global, so try to use unique names.
654
655=cut
656
657#############################################################################
658
659=back
660
661=head2 READ QUEUE
662
663AnyEvent::Handle manages two queues per handle, one for writing and one
664for reading.
665
666The read queue is more complex than the write queue. It can be used in two
667ways, the "simple" way, using only C<on_read> and the "complex" way, using
668a queue.
669
670In the simple case, you just install an C<on_read> callback and whenever
671new data arrives, it will be called. You can then remove some data (if
672enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
673leave the data there if you want to accumulate more (e.g. when only a
674partial message has been received so far).
675
676In the more complex case, you want to queue multiple callbacks. In this
677case, AnyEvent::Handle will call the first queued callback each time new
678data arrives (also the first time it is queued) and removes it when it has
679done its job (see C<push_read>, below).
680
681This way you can, for example, push three line-reads, followed by reading
682a chunk of data, and AnyEvent::Handle will execute them in order.
683
684Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
685the specified number of bytes which give an XML datagram.
686
687 # in the default state, expect some header bytes
688 $handle->on_read (sub {
689 # some data is here, now queue the length-header-read (4 octets)
690 shift->unshift_read (chunk => 4, sub {
691 # header arrived, decode
692 my $len = unpack "N", $_[1];
693
694 # now read the payload
695 shift->unshift_read (chunk => $len, sub {
696 my $xml = $_[1];
697 # handle xml
698 });
699 });
700 });
701
702Example 2: Implement a client for a protocol that replies either with "OK"
703and another line or "ERROR" for the first request that is sent, and 64
704bytes for the second request. Due to the availability of a queue, we can
705just pipeline sending both requests and manipulate the queue as necessary
706in the callbacks.
707
708When the first callback is called and sees an "OK" response, it will
709C<unshift> another line-read. This line-read will be queued I<before> the
71064-byte chunk callback.
711
712 # request one, returns either "OK + extra line" or "ERROR"
713 $handle->push_write ("request 1\015\012");
714
715 # we expect "ERROR" or "OK" as response, so push a line read
716 $handle->push_read (line => sub {
717 # if we got an "OK", we have to _prepend_ another line,
718 # so it will be read before the second request reads its 64 bytes
719 # which are already in the queue when this callback is called
720 # we don't do this in case we got an error
721 if ($_[1] eq "OK") {
49 on_readline => sub { 722 $_[0]->unshift_read (line => sub {
50 my ($ae_fh, @lines) = @_; 723 my $response = $_[1];
51 for (@lines) { 724 ...
52 chomp; 725 });
53 print "Line: $_"; 726 }
727 });
728
729 # request two, simply returns 64 octets
730 $handle->push_write ("request 2\015\012");
731
732 # simply read 64 bytes, always
733 $handle->push_read (chunk => 64, sub {
734 my $response = $_[1];
735 ...
736 });
737
738=over 4
739
740=cut
741
742sub _drain_rbuf {
743 my ($self) = @_;
744
745 local $self->{_in_drain} = 1;
746
747 if (
748 defined $self->{rbuf_max}
749 && $self->{rbuf_max} < length $self->{rbuf}
750 ) {
751 $self->_error (&Errno::ENOSPC, 1), return;
752 }
753
754 while () {
755 my $len = length $self->{rbuf};
756
757 if (my $cb = shift @{ $self->{_queue} }) {
758 unless ($cb->($self)) {
759 if ($self->{_eof}) {
760 # no progress can be made (not enough data and no data forthcoming)
761 $self->_error (&Errno::EPIPE, 1), return;
54 } 762 }
763
764 unshift @{ $self->{_queue} }, $cb;
765 last;
55 } 766 }
56 );
57
58 $cv->wait;
59
60=head1 DESCRIPTION
61
62This module is a helper module to make it easier to do non-blocking I/O
63on filehandles (and sockets, see L<AnyEvent::Socket>).
64
65The event loop is provided by L<AnyEvent>.
66
67=head1 METHODS
68
69=over 4
70
71=item B<new (%args)>
72
73The constructor has these arguments:
74
75=over 4
76
77=item fh => $filehandle
78
79The filehandle this L<AnyEvent::Handle> object will operate on.
80
81NOTE: The filehandle will be set to non-blocking.
82
83=item read_block_size => $size
84
85The default read block size use for reads via the C<on_read>
86method.
87
88=item on_read => $cb
89
90=item on_eof => $cb
91
92=item on_error => $cb
93
94These are shortcuts, that will call the corresponding method and set the callback to C<$cb>.
95
96=item on_readline => $cb
97
98The C<readlines> method is called with the default seperator and C<$cb> as callback
99for you.
100
101=back
102
103=cut
104
105sub new {
106 my $this = shift;
107 my $class = ref($this) || $this;
108 my $self = {
109 read_block_size => 4096,
110 rbuf => '',
111 @_
112 };
113 bless $self, $class;
114
115 $self->{fh}->blocking (0) if $self->{fh};
116
117 if ($self->{on_read}) {
118 $self->on_read ($self->{on_read});
119
120 } elsif ($self->{on_readline}) { 767 } elsif ($self->{on_read}) {
121 $self->readlines ($self->{on_readline}); 768 last unless $len;
122 769
770 $self->{on_read}($self);
771
772 if (
773 $len == length $self->{rbuf} # if no data has been consumed
774 && !@{ $self->{_queue} } # and the queue is still empty
775 && $self->{on_read} # but we still have on_read
776 ) {
777 # no further data will arrive
778 # so no progress can be made
779 $self->_error (&Errno::EPIPE, 1), return
780 if $self->{_eof};
781
782 last; # more data might arrive
783 }
784 } else {
785 # read side becomes idle
786 delete $self->{_rw};
787 last;
788 }
789 }
790
123 } elsif ($self->{on_eof}) { 791 if ($self->{_eof}) {
124 $self->on_eof ($self->{on_eof});
125
126 } elsif ($self->{on_error}) { 792 if ($self->{on_eof}) {
127 $self->on_eof ($self->{on_error}); 793 $self->{on_eof}($self)
794 } else {
795 $self->_error (0, 1);
796 }
128 } 797 }
129 798
130 return $self 799 # may need to restart read watcher
800 unless ($self->{_rw}) {
801 $self->start_read
802 if $self->{on_read} || @{ $self->{_queue} };
803 }
131} 804}
132 805
133=item B<fh> 806=item $handle->on_read ($cb)
134 807
135This method returns the filehandle of the L<AnyEvent::Handle> object. 808This replaces the currently set C<on_read> callback, or clears it (when
136 809the new callback is C<undef>). See the description of C<on_read> in the
137=cut 810constructor.
138
139sub fh { $_[0]->{fh} }
140
141=item B<on_read ($callback)>
142
143This method installs a C<$callback> that will be called
144when new data arrived. You can access the read buffer via the C<rbuf>
145method (see below).
146
147The first argument of the C<$callback> will be the L<AnyEvent::Handle> object.
148 811
149=cut 812=cut
150 813
151sub on_read { 814sub on_read {
152 my ($self, $cb) = @_; 815 my ($self, $cb) = @_;
816
153 $self->{on_read} = $cb; 817 $self->{on_read} = $cb;
818 $self->_drain_rbuf if $cb && !$self->{_in_drain};
819}
154 820
155 unless (defined $self->{on_read}) { 821=item $handle->rbuf
156 delete $self->{on_read_w}; 822
823Returns the read buffer (as a modifiable lvalue).
824
825You can access the read buffer directly as the C<< ->{rbuf} >> member, if
826you want.
827
828NOTE: The read buffer should only be used or modified if the C<on_read>,
829C<push_read> or C<unshift_read> methods are used. The other read methods
830automatically manage the read buffer.
831
832=cut
833
834sub rbuf : lvalue {
835 $_[0]{rbuf}
836}
837
838=item $handle->push_read ($cb)
839
840=item $handle->unshift_read ($cb)
841
842Append the given callback to the end of the queue (C<push_read>) or
843prepend it (C<unshift_read>).
844
845The callback is called each time some additional read data arrives.
846
847It must check whether enough data is in the read buffer already.
848
849If not enough data is available, it must return the empty list or a false
850value, in which case it will be called repeatedly until enough data is
851available (or an error condition is detected).
852
853If enough data was available, then the callback must remove all data it is
854interested in (which can be none at all) and return a true value. After returning
855true, it will be removed from the queue.
856
857=cut
858
859our %RH;
860
861sub register_read_type($$) {
862 $RH{$_[0]} = $_[1];
863}
864
865sub push_read {
866 my $self = shift;
867 my $cb = pop;
868
869 if (@_) {
870 my $type = shift;
871
872 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
873 ->($self, $cb, @_);
874 }
875
876 push @{ $self->{_queue} }, $cb;
877 $self->_drain_rbuf unless $self->{_in_drain};
878}
879
880sub unshift_read {
881 my $self = shift;
882 my $cb = pop;
883
884 if (@_) {
885 my $type = shift;
886
887 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
888 ->($self, $cb, @_);
889 }
890
891
892 unshift @{ $self->{_queue} }, $cb;
893 $self->_drain_rbuf unless $self->{_in_drain};
894}
895
896=item $handle->push_read (type => @args, $cb)
897
898=item $handle->unshift_read (type => @args, $cb)
899
900Instead of providing a callback that parses the data itself you can chose
901between a number of predefined parsing formats, for chunks of data, lines
902etc.
903
904Predefined types are (if you have ideas for additional types, feel free to
905drop by and tell us):
906
907=over 4
908
909=item chunk => $octets, $cb->($handle, $data)
910
911Invoke the callback only once C<$octets> bytes have been read. Pass the
912data read to the callback. The callback will never be called with less
913data.
914
915Example: read 2 bytes.
916
917 $handle->push_read (chunk => 2, sub {
918 warn "yay ", unpack "H*", $_[1];
919 });
920
921=cut
922
923register_read_type chunk => sub {
924 my ($self, $cb, $len) = @_;
925
926 sub {
927 $len <= length $_[0]{rbuf} or return;
928 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
929 1
930 }
931};
932
933=item line => [$eol, ]$cb->($handle, $line, $eol)
934
935The callback will be called only once a full line (including the end of
936line marker, C<$eol>) has been read. This line (excluding the end of line
937marker) will be passed to the callback as second argument (C<$line>), and
938the end of line marker as the third argument (C<$eol>).
939
940The end of line marker, C<$eol>, can be either a string, in which case it
941will be interpreted as a fixed record end marker, or it can be a regex
942object (e.g. created by C<qr>), in which case it is interpreted as a
943regular expression.
944
945The end of line marker argument C<$eol> is optional, if it is missing (NOT
946undef), then C<qr|\015?\012|> is used (which is good for most internet
947protocols).
948
949Partial lines at the end of the stream will never be returned, as they are
950not marked by the end of line marker.
951
952=cut
953
954register_read_type line => sub {
955 my ($self, $cb, $eol) = @_;
956
957 if (@_ < 3) {
958 # this is more than twice as fast as the generic code below
959 sub {
960 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
961
962 $cb->($_[0], $1, $2);
963 1
964 }
965 } else {
966 $eol = quotemeta $eol unless ref $eol;
967 $eol = qr|^(.*?)($eol)|s;
968
969 sub {
970 $_[0]{rbuf} =~ s/$eol// or return;
971
972 $cb->($_[0], $1, $2);
973 1
974 }
975 }
976};
977
978=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
979
980Makes a regex match against the regex object C<$accept> and returns
981everything up to and including the match.
982
983Example: read a single line terminated by '\n'.
984
985 $handle->push_read (regex => qr<\n>, sub { ... });
986
987If C<$reject> is given and not undef, then it determines when the data is
988to be rejected: it is matched against the data when the C<$accept> regex
989does not match and generates an C<EBADMSG> error when it matches. This is
990useful to quickly reject wrong data (to avoid waiting for a timeout or a
991receive buffer overflow).
992
993Example: expect a single decimal number followed by whitespace, reject
994anything else (not the use of an anchor).
995
996 $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
997
998If C<$skip> is given and not C<undef>, then it will be matched against
999the receive buffer when neither C<$accept> nor C<$reject> match,
1000and everything preceding and including the match will be accepted
1001unconditionally. This is useful to skip large amounts of data that you
1002know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1003have to start matching from the beginning. This is purely an optimisation
1004and is usually worth only when you expect more than a few kilobytes.
1005
1006Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1007expect the header to be very large (it isn't in practise, but...), we use
1008a skip regex to skip initial portions. The skip regex is tricky in that
1009it only accepts something not ending in either \015 or \012, as these are
1010required for the accept regex.
1011
1012 $handle->push_read (regex =>
1013 qr<\015\012\015\012>,
1014 undef, # no reject
1015 qr<^.*[^\015\012]>,
1016 sub { ... });
1017
1018=cut
1019
1020register_read_type regex => sub {
1021 my ($self, $cb, $accept, $reject, $skip) = @_;
1022
1023 my $data;
1024 my $rbuf = \$self->{rbuf};
1025
1026 sub {
1027 # accept
1028 if ($$rbuf =~ $accept) {
1029 $data .= substr $$rbuf, 0, $+[0], "";
1030 $cb->($self, $data);
157 return; 1031 return 1;
1032 }
1033
1034 # reject
1035 if ($reject && $$rbuf =~ $reject) {
1036 $self->_error (&Errno::EBADMSG);
1037 }
1038
1039 # skip
1040 if ($skip && $$rbuf =~ $skip) {
1041 $data .= substr $$rbuf, 0, $+[0], "";
1042 }
1043
1044 ()
158 } 1045 }
159 1046};
160 $self->{on_read_w} = 1047
161 AnyEvent->io (poll => 'r', fh => $self->{fh}, cb => sub { 1048=item netstring => $cb->($handle, $string)
162 #d# warn "READ:[$self->{read_size}] $self->{read_block_size} : ".length ($self->{rbuf})."\n"; 1049
163 my $rbuf_len = length $self->{rbuf}; 1050A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
164 my $l; 1051
165 if (defined $self->{read_size}) { 1052Throws an error with C<$!> set to EBADMSG on format violations.
166 $l = sysread $self->{fh}, $self->{rbuf}, 1053
167 ($self->{read_size} - $rbuf_len), $rbuf_len; 1054=cut
168 } else { 1055
169 $l = sysread $self->{fh}, $self->{rbuf}, $self->{read_block_size}, $rbuf_len; 1056register_read_type netstring => sub {
1057 my ($self, $cb) = @_;
1058
1059 sub {
1060 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1061 if ($_[0]{rbuf} =~ /[^0-9]/) {
1062 $self->_error (&Errno::EBADMSG);
170 } 1063 }
171 #d# warn "READL $l [$self->{rbuf}]\n"; 1064 return;
1065 }
172 1066
173 if (not defined $l) { 1067 my $len = $1;
174 return if $! == EAGAIN || $! == EINTR;
175 $self->{on_error}->($self) if $self->{on_error};
176 delete $self->{on_read_w};
177 1068
178 } elsif ($l == 0) { 1069 $self->unshift_read (chunk => $len, sub {
179 $self->{on_eof}->($self) if $self->{on_eof}; 1070 my $string = $_[1];
180 delete $self->{on_read_w}; 1071 $_[0]->unshift_read (chunk => 1, sub {
181 1072 if ($_[1] eq ",") {
1073 $cb->($_[0], $string);
182 } else { 1074 } else {
183 $self->{on_read}->($self); 1075 $self->_error (&Errno::EBADMSG);
1076 }
1077 });
1078 });
1079
1080 1
1081 }
1082};
1083
1084=item packstring => $format, $cb->($handle, $string)
1085
1086An octet string prefixed with an encoded length. The encoding C<$format>
1087uses the same format as a Perl C<pack> format, but must specify a single
1088integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1089optional C<!>, C<< < >> or C<< > >> modifier).
1090
1091DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>.
1092
1093Example: read a block of data prefixed by its length in BER-encoded
1094format (very efficient).
1095
1096 $handle->push_read (packstring => "w", sub {
1097 my ($handle, $data) = @_;
1098 });
1099
1100=cut
1101
1102register_read_type packstring => sub {
1103 my ($self, $cb, $format) = @_;
1104
1105 sub {
1106 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1107 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1108 or return;
1109
1110 $format = length pack $format, $len;
1111
1112 # bypass unshift if we already have the remaining chunk
1113 if ($format + $len <= length $_[0]{rbuf}) {
1114 my $data = substr $_[0]{rbuf}, $format, $len;
1115 substr $_[0]{rbuf}, 0, $format + $len, "";
1116 $cb->($_[0], $data);
1117 } else {
1118 # remove prefix
1119 substr $_[0]{rbuf}, 0, $format, "";
1120
1121 # read remaining chunk
1122 $_[0]->unshift_read (chunk => $len, $cb);
1123 }
1124
1125 1
1126 }
1127};
1128
1129=item json => $cb->($handle, $hash_or_arrayref)
1130
1131Reads a JSON object or array, decodes it and passes it to the callback.
1132
1133If a C<json> object was passed to the constructor, then that will be used
1134for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1135
1136This read type uses the incremental parser available with JSON version
11372.09 (and JSON::XS version 2.2) and above. You have to provide a
1138dependency on your own: this module will load the JSON module, but
1139AnyEvent does not depend on it itself.
1140
1141Since JSON texts are fully self-delimiting, the C<json> read and write
1142types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1143the C<json> write type description, above, for an actual example.
1144
1145=cut
1146
1147register_read_type json => sub {
1148 my ($self, $cb) = @_;
1149
1150 require JSON;
1151
1152 my $data;
1153 my $rbuf = \$self->{rbuf};
1154
1155 my $json = $self->{json} ||= JSON->new->utf8;
1156
1157 sub {
1158 my $ref = $json->incr_parse ($self->{rbuf});
1159
1160 if ($ref) {
1161 $self->{rbuf} = $json->incr_text;
1162 $json->incr_text = "";
1163 $cb->($self, $ref);
1164
1165 1
1166 } else {
1167 $self->{rbuf} = "";
1168 ()
1169 }
1170 }
1171};
1172
1173=item storable => $cb->($handle, $ref)
1174
1175Deserialises a L<Storable> frozen representation as written by the
1176C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1177data).
1178
1179Raises C<EBADMSG> error if the data could not be decoded.
1180
1181=cut
1182
1183register_read_type storable => sub {
1184 my ($self, $cb) = @_;
1185
1186 require Storable;
1187
1188 sub {
1189 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1190 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1191 or return;
1192
1193 my $format = length pack "w", $len;
1194
1195 # bypass unshift if we already have the remaining chunk
1196 if ($format + $len <= length $_[0]{rbuf}) {
1197 my $data = substr $_[0]{rbuf}, $format, $len;
1198 substr $_[0]{rbuf}, 0, $format + $len, "";
1199 $cb->($_[0], Storable::thaw ($data));
1200 } else {
1201 # remove prefix
1202 substr $_[0]{rbuf}, 0, $format, "";
1203
1204 # read remaining chunk
1205 $_[0]->unshift_read (chunk => $len, sub {
1206 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1207 $cb->($_[0], $ref);
1208 } else {
1209 $self->_error (&Errno::EBADMSG);
1210 }
1211 });
1212 }
1213
1214 1
1215 }
1216};
1217
1218=back
1219
1220=item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1221
1222This function (not method) lets you add your own types to C<push_read>.
1223
1224Whenever the given C<type> is used, C<push_read> will invoke the code
1225reference with the handle object, the callback and the remaining
1226arguments.
1227
1228The code reference is supposed to return a callback (usually a closure)
1229that works as a plain read callback (see C<< ->push_read ($cb) >>).
1230
1231It should invoke the passed callback when it is done reading (remember to
1232pass C<$handle> as first argument as all other callbacks do that).
1233
1234Note that this is a function, and all types registered this way will be
1235global, so try to use unique names.
1236
1237For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1238search for C<register_read_type>)).
1239
1240=item $handle->stop_read
1241
1242=item $handle->start_read
1243
1244In rare cases you actually do not want to read anything from the
1245socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1246any queued callbacks will be executed then. To start reading again, call
1247C<start_read>.
1248
1249Note that AnyEvent::Handle will automatically C<start_read> for you when
1250you change the C<on_read> callback or push/unshift a read callback, and it
1251will automatically C<stop_read> for you when neither C<on_read> is set nor
1252there are any read requests in the queue.
1253
1254=cut
1255
1256sub stop_read {
1257 my ($self) = @_;
1258
1259 delete $self->{_rw};
1260}
1261
1262sub start_read {
1263 my ($self) = @_;
1264
1265 unless ($self->{_rw} || $self->{_eof}) {
1266 Scalar::Util::weaken $self;
1267
1268 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1269 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
1270 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1271
1272 if ($len > 0) {
1273 $self->{_activity} = AnyEvent->now;
1274
1275 $self->{filter_r}
1276 ? $self->{filter_r}($self, $rbuf)
1277 : $self->{_in_drain} || $self->_drain_rbuf;
1278
1279 } elsif (defined $len) {
1280 delete $self->{_rw};
1281 $self->{_eof} = 1;
1282 $self->_drain_rbuf unless $self->{_in_drain};
1283
1284 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1285 return $self->_error ($!, 1);
184 } 1286 }
185 }); 1287 });
1288 }
186} 1289}
187 1290
188=item B<on_error ($callback)> 1291sub _dotls {
189
190Whenever a read or write operation resulted in an error the C<$callback>
191will be called.
192
193The first argument of C<$callback> will be the L<AnyEvent::Handle> object itself.
194The error is given as errno in C<$!>.
195
196=cut
197
198sub on_error {
199 $_[0]->{on_error} = $_[1];
200}
201
202=item B<on_eof ($callback)>
203
204Installs the C<$callback> that will be called when the end of file is
205encountered in a read operation this C<$callback> will be called. The first
206argument will be the L<AnyEvent::Handle> object itself.
207
208=cut
209
210sub on_eof {
211 $_[0]->{on_eof} = $_[1];
212}
213
214=item B<rbuf>
215
216Returns a reference to the read buffer.
217
218NOTE: The read buffer should only be used or modified if the C<on_read>
219method is used directly. The C<read> and C<readlines> methods will provide
220the read data to their callbacks.
221
222=cut
223
224sub rbuf : lvalue {
225 $_[0]->{rbuf}
226}
227
228=item B<read ($len, $callback)>
229
230Will read exactly C<$len> bytes from the filehandle and call the C<$callback>
231if done so. The first argument to the C<$callback> will be the L<AnyEvent::Handle>
232object itself and the second argument the read data.
233
234NOTE: This method will override any callbacks installed via the C<on_read> method.
235
236=cut
237
238sub read {
239 my ($self, $len, $cb) = @_; 1292 my ($self) = @_;
240 1293
241 $self->{read_cb} = $cb; 1294 my $buf;
242 my $old_blk_size = $self->{read_block_size};
243 $self->{read_block_size} = $len;
244 1295
245 $self->on_read (sub { 1296 if (length $self->{_tls_wbuf}) {
246 #d# warn "OFOFO $len || ".length($_[0]->{rbuf})."||\n"; 1297 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
247 1298 substr $self->{_tls_wbuf}, 0, $len, "";
248 if ($len == length $_[0]->{rbuf}) {
249 $_[0]->{read_block_size} = $old_blk_size;
250 $_[0]->on_read (undef);
251 $_[0]->{read_cb}->($_[0], (substr $self->{rbuf}, 0, $len, ''));
252 } 1299 }
253 }); 1300 }
254}
255 1301
256=item B<readlines ($callback)> 1302 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
257 1303 $self->{wbuf} .= $buf;
258=item B<readlines ($sep, $callback)> 1304 $self->_drain_wbuf;
259
260This method will read lines from the filehandle, seperated by C<$sep> or C<"\n">
261if C<$sep> is not provided. C<$sep> will be used as "line" seperator.
262
263The C<$callback> will be called when at least one
264line could be read. The first argument to the C<$callback> will be the L<AnyEvent::Handle>
265object itself and the rest of the arguments will be the read lines.
266
267NOTE: This method will override any callbacks installed via the C<on_read> method.
268
269=cut
270
271sub readlines {
272 my ($self, $sep, $cb) = @_;
273
274 if (ref $sep) {
275 $cb = $sep;
276 $sep = "\n";
277
278 } elsif (not defined $sep) {
279 $sep = "\n";
280 } 1305 }
281 1306
282 my $sep_len = length $sep; 1307 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
283 1308 if (length $buf) {
284 $self->{on_readline} = $cb; 1309 $self->{rbuf} .= $buf;
285 1310 $self->_drain_rbuf unless $self->{_in_drain};
286 $self->on_read (sub { 1311 } else {
287 my @lines; 1312 # let's treat SSL-eof as we treat normal EOF
288 my $rb = \$_[0]->{rbuf}; 1313 $self->{_eof} = 1;
289 my $pos; 1314 $self->_shutdown;
290 while (($pos = index ($$rb, $sep)) >= 0) { 1315 return;
291 push @lines, substr $$rb, 0, $pos + $sep_len, '';
292 } 1316 }
293 $self->{on_readline}->($_[0], @lines); 1317 }
1318
1319 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1320
1321 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1322 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1323 return $self->_error ($!, 1);
1324 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1325 return $self->_error (&Errno::EIO, 1);
1326 }
1327
1328 # all others are fine for our purposes
1329 }
1330}
1331
1332=item $handle->starttls ($tls[, $tls_ctx])
1333
1334Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1335object is created, you can also do that at a later time by calling
1336C<starttls>.
1337
1338The first argument is the same as the C<tls> constructor argument (either
1339C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1340
1341The second argument is the optional C<Net::SSLeay::CTX> object that is
1342used when AnyEvent::Handle has to create its own TLS connection object.
1343
1344The TLS connection object will end up in C<< $handle->{tls} >> after this
1345call and can be used or changed to your liking. Note that the handshake
1346might have already started when this function returns.
1347
1348=cut
1349
1350sub starttls {
1351 my ($self, $ssl, $ctx) = @_;
1352
1353 $self->stoptls;
1354
1355 if ($ssl eq "accept") {
1356 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1357 Net::SSLeay::set_accept_state ($ssl);
1358 } elsif ($ssl eq "connect") {
1359 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1360 Net::SSLeay::set_connect_state ($ssl);
1361 }
1362
1363 $self->{tls} = $ssl;
1364
1365 # basically, this is deep magic (because SSL_read should have the same issues)
1366 # but the openssl maintainers basically said: "trust us, it just works".
1367 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1368 # and mismaintained ssleay-module doesn't even offer them).
1369 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1370 Net::SSLeay::CTX_set_mode ($self->{tls},
1371 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1372 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1373
1374 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1375 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1376
1377 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1378
1379 $self->{filter_w} = sub {
1380 $_[0]{_tls_wbuf} .= ${$_[1]};
1381 &_dotls;
294 }); 1382 };
1383 $self->{filter_r} = sub {
1384 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1385 &_dotls;
1386 };
295} 1387}
296 1388
297=item B<write ($data)> 1389=item $handle->stoptls
298 1390
299=item B<write ($callback)> 1391Destroys the SSL connection, if any. Partial read or write data will be
1392lost.
300 1393
301=item B<write ($data, $callback)>
302
303This method will write C<$data> to the filehandle and call the C<$callback>
304afterwards. If only C<$callback> is provided it will be called when the
305write buffer becomes empty the next time (or immediately if it already is empty).
306
307=cut 1394=cut
308 1395
309sub write { 1396sub stoptls {
310 my ($self, $data, $cb) = @_;
311 if (ref $data) { $cb = $data; undef $data }
312 push @{$self->{write_bufs}}, [$data, $cb];
313 $self->_check_writer;
314}
315
316sub _check_writer {
317 my ($self) = @_; 1397 my ($self) = @_;
318 1398
319 if ($self->{write_w}) { 1399 Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
320 unless ($self->{write_cb}) {
321 while (@{$self->{write_bufs}} && not defined $self->{write_bufs}->[0]->[1]) {
322 my $wba = shift @{$self->{write_bufs}};
323 $self->{wbuf} .= $wba->[0];
324 }
325 }
326 return;
327 }
328 1400
329 my $wba = shift @{$self->{write_bufs}} 1401 delete $self->{_rbio};
330 or return; 1402 delete $self->{_wbio};
1403 delete $self->{_tls_wbuf};
1404 delete $self->{filter_r};
1405 delete $self->{filter_w};
1406}
331 1407
332 unless (defined $wba->[0]) { 1408sub DESTROY {
333 $wba->[1]->($self) if $wba->[1]; 1409 my $self = shift;
334 $self->_check_writer;
335 return;
336 }
337 1410
338 $self->{wbuf} = $wba->[0]; 1411 $self->stoptls;
339 $self->{write_cb} = $wba->[1];
340 1412
341 $self->{write_w} = 1413 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
342 AnyEvent->io (poll => 'w', fh => $self->{fh}, cb => sub { 1414
1415 if ($linger && length $self->{wbuf}) {
1416 my $fh = delete $self->{fh};
1417 my $wbuf = delete $self->{wbuf};
1418
1419 my @linger;
1420
1421 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
343 my $l = syswrite $self->{fh}, $self->{wbuf}, length $self->{wbuf}; 1422 my $len = syswrite $fh, $wbuf, length $wbuf;
344 1423
345 if (not defined $l) { 1424 if ($len > 0) {
346 return if $! == EAGAIN || $! == EINTR; 1425 substr $wbuf, 0, $len, "";
347 delete $self->{write_w};
348 $self->{on_error}->($self) if $self->{on_error};
349
350 } else { 1426 } else {
351 substr $self->{wbuf}, 0, $l, ''; 1427 @linger = (); # end
352
353 if (length ($self->{wbuf}) == 0) {
354 $self->{write_cb}->($self) if $self->{write_cb};
355
356 delete $self->{write_w};
357 delete $self->{wbuf};
358 delete $self->{write_cb};
359
360 $self->_check_writer;
361 }
362 } 1428 }
363 }); 1429 });
1430 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1431 @linger = ();
1432 });
1433 }
1434}
1435
1436=item AnyEvent::Handle::TLS_CTX
1437
1438This function creates and returns the Net::SSLeay::CTX object used by
1439default for TLS mode.
1440
1441The context is created like this:
1442
1443 Net::SSLeay::load_error_strings;
1444 Net::SSLeay::SSLeay_add_ssl_algorithms;
1445 Net::SSLeay::randomize;
1446
1447 my $CTX = Net::SSLeay::CTX_new;
1448
1449 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1450
1451=cut
1452
1453our $TLS_CTX;
1454
1455sub TLS_CTX() {
1456 $TLS_CTX || do {
1457 require Net::SSLeay;
1458
1459 Net::SSLeay::load_error_strings ();
1460 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1461 Net::SSLeay::randomize ();
1462
1463 $TLS_CTX = Net::SSLeay::CTX_new ();
1464
1465 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1466
1467 $TLS_CTX
1468 }
364} 1469}
365 1470
366=back 1471=back
367 1472
1473=head1 SUBCLASSING AnyEvent::Handle
1474
1475In many cases, you might want to subclass AnyEvent::Handle.
1476
1477To make this easier, a given version of AnyEvent::Handle uses these
1478conventions:
1479
1480=over 4
1481
1482=item * all constructor arguments become object members.
1483
1484At least initially, when you pass a C<tls>-argument to the constructor it
1485will end up in C<< $handle->{tls} >>. Those members might be changed or
1486mutated later on (for example C<tls> will hold the TLS connection object).
1487
1488=item * other object member names are prefixed with an C<_>.
1489
1490All object members not explicitly documented (internal use) are prefixed
1491with an underscore character, so the remaining non-C<_>-namespace is free
1492for use for subclasses.
1493
1494=item * all members not documented here and not prefixed with an underscore
1495are free to use in subclasses.
1496
1497Of course, new versions of AnyEvent::Handle may introduce more "public"
1498member variables, but thats just life, at least it is documented.
1499
1500=back
1501
368=head1 AUTHOR 1502=head1 AUTHOR
369 1503
370Robin Redeker, C<< <elmex at ta-sa.org> >> 1504Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
371 1505
372=cut 1506=cut
373 1507
3741; # End of AnyEvent::Handle 15081; # End of AnyEvent::Handle

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines