ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.85 by root, Thu Aug 21 19:53:19 2008 UTC vs.
Revision 1.151 by root, Thu Jul 16 04:20:23 2009 UTC

14 14
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17=cut 17=cut
18 18
19our $VERSION = 4.232; 19our $VERSION = 4.82;
20 20
21=head1 SYNOPSIS 21=head1 SYNOPSIS
22 22
23 use AnyEvent; 23 use AnyEvent;
24 use AnyEvent::Handle; 24 use AnyEvent::Handle;
25 25
26 my $cv = AnyEvent->condvar; 26 my $cv = AnyEvent->condvar;
27 27
28 my $handle = 28 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 29 fh => \*STDIN,
31 on_eof => sub { 30 on_error => sub {
32 $cv->broadcast; 31 my ($hdl, $fatal, $msg) = @_;
33 }, 32 warn "got error $msg\n";
33 $hdl->destroy;
34 $cv->send;
34 ); 35 );
35 36
36 # send some request line 37 # send some request line
37 $handle->push_write ("getinfo\015\012"); 38 $hdl->push_write ("getinfo\015\012");
38 39
39 # read the response line 40 # read the response line
40 $handle->push_read (line => sub { 41 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 42 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 43 warn "got line <$line>\n";
43 $cv->send; 44 $cv->send;
44 }); 45 });
45 46
46 $cv->recv; 47 $cv->recv;
47 48
63 64
64=head1 METHODS 65=head1 METHODS
65 66
66=over 4 67=over 4
67 68
68=item B<new (%args)> 69=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
69 70
70The constructor supports these arguments (all as key => value pairs). 71The constructor supports these arguments (all as C<< key => value >> pairs).
71 72
72=over 4 73=over 4
73 74
74=item fh => $filehandle [MANDATORY] 75=item fh => $filehandle [MANDATORY]
75 76
81 82
82=item on_eof => $cb->($handle) 83=item on_eof => $cb->($handle)
83 84
84Set the callback to be called when an end-of-file condition is detected, 85Set the callback to be called when an end-of-file condition is detected,
85i.e. in the case of a socket, when the other side has closed the 86i.e. in the case of a socket, when the other side has closed the
86connection cleanly. 87connection cleanly, and there are no outstanding read requests in the
88queue (if there are read requests, then an EOF counts as an unexpected
89connection close and will be flagged as an error).
87 90
88For sockets, this just means that the other side has stopped sending data, 91For sockets, this just means that the other side has stopped sending data,
89you can still try to write data, and, in fact, one can return from the eof 92you can still try to write data, and, in fact, one can return from the EOF
90callback and continue writing data, as only the read part has been shut 93callback and continue writing data, as only the read part has been shut
91down. 94down.
92 95
93While not mandatory, it is I<highly> recommended to set an eof callback,
94otherwise you might end up with a closed socket while you are still
95waiting for data.
96
97If an EOF condition has been detected but no C<on_eof> callback has been 96If an EOF condition has been detected but no C<on_eof> callback has been
98set, then a fatal error will be raised with C<$!> set to <0>. 97set, then a fatal error will be raised with C<$!> set to <0>.
99 98
100=item on_error => $cb->($handle, $fatal) 99=item on_error => $cb->($handle, $fatal, $message)
101 100
102This is the error callback, which is called when, well, some error 101This is the error callback, which is called when, well, some error
103occured, such as not being able to resolve the hostname, failure to 102occured, such as not being able to resolve the hostname, failure to
104connect or a read error. 103connect or a read error.
105 104
106Some errors are fatal (which is indicated by C<$fatal> being true). On 105Some errors are fatal (which is indicated by C<$fatal> being true). On
107fatal errors the handle object will be shut down and will not be usable 106fatal errors the handle object will be destroyed (by a call to C<< ->
108(but you are free to look at the current C< ->rbuf >). Examples of fatal 107destroy >>) after invoking the error callback (which means you are free to
109errors are an EOF condition with active (but unsatisifable) read watchers 108examine the handle object). Examples of fatal errors are an EOF condition
110(C<EPIPE>) or I/O errors. 109with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors.
110
111AnyEvent::Handle tries to find an appropriate error code for you to check
112against, but in some cases (TLS errors), this does not work well. It is
113recommended to always output the C<$message> argument in human-readable
114error messages (it's usually the same as C<"$!">).
111 115
112Non-fatal errors can be retried by simply returning, but it is recommended 116Non-fatal errors can be retried by simply returning, but it is recommended
113to simply ignore this parameter and instead abondon the handle object 117to simply ignore this parameter and instead abondon the handle object
114when this callback is invoked. Examples of non-fatal errors are timeouts 118when this callback is invoked. Examples of non-fatal errors are timeouts
115C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>). 119C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
116 120
117On callback entrance, the value of C<$!> contains the operating system 121On callback entrance, the value of C<$!> contains the operating system
118error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 122error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
123C<EPROTO>).
119 124
120While not mandatory, it is I<highly> recommended to set this callback, as 125While not mandatory, it is I<highly> recommended to set this callback, as
121you will not be notified of errors otherwise. The default simply calls 126you will not be notified of errors otherwise. The default simply calls
122C<croak>. 127C<croak>.
123 128
127and no read request is in the queue (unlike read queue callbacks, this 132and no read request is in the queue (unlike read queue callbacks, this
128callback will only be called when at least one octet of data is in the 133callback will only be called when at least one octet of data is in the
129read buffer). 134read buffer).
130 135
131To access (and remove data from) the read buffer, use the C<< ->rbuf >> 136To access (and remove data from) the read buffer, use the C<< ->rbuf >>
132method or access the C<$handle->{rbuf}> member directly. 137method or access the C<< $handle->{rbuf} >> member directly. Note that you
138must not enlarge or modify the read buffer, you can only remove data at
139the beginning from it.
133 140
134When an EOF condition is detected then AnyEvent::Handle will first try to 141When an EOF condition is detected then AnyEvent::Handle will first try to
135feed all the remaining data to the queued callbacks and C<on_read> before 142feed all the remaining data to the queued callbacks and C<on_read> before
136calling the C<on_eof> callback. If no progress can be made, then a fatal 143calling the C<on_eof> callback. If no progress can be made, then a fatal
137error will be raised (with C<$!> set to C<EPIPE>). 144error will be raised (with C<$!> set to C<EPIPE>).
145
146Note that, unlike requests in the read queue, an C<on_read> callback
147doesn't mean you I<require> some data: if there is an EOF and there
148are outstanding read requests then an error will be flagged. With an
149C<on_read> callback, the C<on_eof> callback will be invoked.
138 150
139=item on_drain => $cb->($handle) 151=item on_drain => $cb->($handle)
140 152
141This sets the callback that is called when the write buffer becomes empty 153This sets the callback that is called when the write buffer becomes empty
142(or when the callback is set and the buffer is empty already). 154(or when the callback is set and the buffer is empty already).
152=item timeout => $fractional_seconds 164=item timeout => $fractional_seconds
153 165
154If non-zero, then this enables an "inactivity" timeout: whenever this many 166If non-zero, then this enables an "inactivity" timeout: whenever this many
155seconds pass without a successful read or write on the underlying file 167seconds pass without a successful read or write on the underlying file
156handle, the C<on_timeout> callback will be invoked (and if that one is 168handle, the C<on_timeout> callback will be invoked (and if that one is
157missing, an C<ETIMEDOUT> error will be raised). 169missing, a non-fatal C<ETIMEDOUT> error will be raised).
158 170
159Note that timeout processing is also active when you currently do not have 171Note that timeout processing is also active when you currently do not have
160any outstanding read or write requests: If you plan to keep the connection 172any outstanding read or write requests: If you plan to keep the connection
161idle then you should disable the timout temporarily or ignore the timeout 173idle then you should disable the timout temporarily or ignore the timeout
162in the C<on_timeout> callback. 174in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
175restart the timeout.
163 176
164Zero (the default) disables this timeout. 177Zero (the default) disables this timeout.
165 178
166=item on_timeout => $cb->($handle) 179=item on_timeout => $cb->($handle)
167 180
171 184
172=item rbuf_max => <bytes> 185=item rbuf_max => <bytes>
173 186
174If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 187If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
175when the read buffer ever (strictly) exceeds this size. This is useful to 188when the read buffer ever (strictly) exceeds this size. This is useful to
176avoid denial-of-service attacks. 189avoid some forms of denial-of-service attacks.
177 190
178For example, a server accepting connections from untrusted sources should 191For example, a server accepting connections from untrusted sources should
179be configured to accept only so-and-so much data that it cannot act on 192be configured to accept only so-and-so much data that it cannot act on
180(for example, when expecting a line, an attacker could send an unlimited 193(for example, when expecting a line, an attacker could send an unlimited
181amount of data without a callback ever being called as long as the line 194amount of data without a callback ever being called as long as the line
182isn't finished). 195isn't finished).
183 196
184=item autocork => <boolean> 197=item autocork => <boolean>
185 198
186When disabled (the default), then C<push_write> will try to immediately 199When disabled (the default), then C<push_write> will try to immediately
187write the data to the handle if possible. This avoids having to register 200write the data to the handle, if possible. This avoids having to register
188a write watcher and wait for the next event loop iteration, but can be 201a write watcher and wait for the next event loop iteration, but can
189inefficient if you write multiple small chunks (this disadvantage is 202be inefficient if you write multiple small chunks (on the wire, this
190usually avoided by your kernel's nagle algorithm, see C<low_delay>). 203disadvantage is usually avoided by your kernel's nagle algorithm, see
204C<no_delay>, but this option can save costly syscalls).
191 205
192When enabled, then writes will always be queued till the next event loop 206When enabled, then writes will always be queued till the next event loop
193iteration. This is efficient when you do many small writes per iteration, 207iteration. This is efficient when you do many small writes per iteration,
194but less efficient when you do a single write only. 208but less efficient when you do a single write only per iteration (or when
209the write buffer often is full). It also increases write latency.
195 210
196=item no_delay => <boolean> 211=item no_delay => <boolean>
197 212
198When doing small writes on sockets, your operating system kernel might 213When doing small writes on sockets, your operating system kernel might
199wait a bit for more data before actually sending it out. This is called 214wait a bit for more data before actually sending it out. This is called
200the Nagle algorithm, and usually it is beneficial. 215the Nagle algorithm, and usually it is beneficial.
201 216
202In some situations you want as low a delay as possible, which cna be 217In some situations you want as low a delay as possible, which can be
203accomplishd by setting this option to true. 218accomplishd by setting this option to a true value.
204 219
205The default is your opertaing system's default behaviour, this option 220The default is your opertaing system's default behaviour (most likely
206explicitly enables or disables it, if possible. 221enabled), this option explicitly enables or disables it, if possible.
207 222
208=item read_size => <bytes> 223=item read_size => <bytes>
209 224
210The default read block size (the amount of bytes this module will try to read 225The default read block size (the amount of bytes this module will
211during each (loop iteration). Default: C<8192>. 226try to read during each loop iteration, which affects memory
227requirements). Default: C<8192>.
212 228
213=item low_water_mark => <bytes> 229=item low_water_mark => <bytes>
214 230
215Sets the amount of bytes (default: C<0>) that make up an "empty" write 231Sets the amount of bytes (default: C<0>) that make up an "empty" write
216buffer: If the write reaches this size or gets even samller it is 232buffer: If the write reaches this size or gets even samller it is
217considered empty. 233considered empty.
218 234
235Sometimes it can be beneficial (for performance reasons) to add data to
236the write buffer before it is fully drained, but this is a rare case, as
237the operating system kernel usually buffers data as well, so the default
238is good in almost all cases.
239
219=item linger => <seconds> 240=item linger => <seconds>
220 241
221If non-zero (default: C<3600>), then the destructor of the 242If non-zero (default: C<3600>), then the destructor of the
222AnyEvent::Handle object will check wether there is still outstanding write 243AnyEvent::Handle object will check whether there is still outstanding
223data and will install a watcher that will write out this data. No errors 244write data and will install a watcher that will write this data to the
224will be reported (this mostly matches how the operating system treats 245socket. No errors will be reported (this mostly matches how the operating
225outstanding data at socket close time). 246system treats outstanding data at socket close time).
226 247
227This will not work for partial TLS data that could not yet been 248This will not work for partial TLS data that could not be encoded
228encoded. This data will be lost. 249yet. This data will be lost. Calling the C<stoptls> method in time might
250help.
251
252=item peername => $string
253
254A string used to identify the remote site - usually the DNS hostname
255(I<not> IDN!) used to create the connection, rarely the IP address.
256
257Apart from being useful in error messages, this string is also used in TLS
258peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
259verification will be skipped when C<peername> is not specified or
260C<undef>.
229 261
230=item tls => "accept" | "connect" | Net::SSLeay::SSL object 262=item tls => "accept" | "connect" | Net::SSLeay::SSL object
231 263
232When this parameter is given, it enables TLS (SSL) mode, that means 264When this parameter is given, it enables TLS (SSL) mode, that means
233AnyEvent will start a TLS handshake and will transparently encrypt/decrypt 265AnyEvent will start a TLS handshake as soon as the conenction has been
234data. 266established and will transparently encrypt/decrypt data afterwards.
267
268All TLS protocol errors will be signalled as C<EPROTO>, with an
269appropriate error message.
235 270
236TLS mode requires Net::SSLeay to be installed (it will be loaded 271TLS mode requires Net::SSLeay to be installed (it will be loaded
237automatically when you try to create a TLS handle). 272automatically when you try to create a TLS handle): this module doesn't
273have a dependency on that module, so if your module requires it, you have
274to add the dependency yourself.
238 275
239Unlike TCP, TLS has a server and client side: for the TLS server side, use 276Unlike TCP, TLS has a server and client side: for the TLS server side, use
240C<accept>, and for the TLS client side of a connection, use C<connect> 277C<accept>, and for the TLS client side of a connection, use C<connect>
241mode. 278mode.
242 279
243You can also provide your own TLS connection object, but you have 280You can also provide your own TLS connection object, but you have
244to make sure that you call either C<Net::SSLeay::set_connect_state> 281to make sure that you call either C<Net::SSLeay::set_connect_state>
245or C<Net::SSLeay::set_accept_state> on it before you pass it to 282or C<Net::SSLeay::set_accept_state> on it before you pass it to
246AnyEvent::Handle. 283AnyEvent::Handle. Also, this module will take ownership of this connection
284object.
247 285
286At some future point, AnyEvent::Handle might switch to another TLS
287implementation, then the option to use your own session object will go
288away.
289
290B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
291passing in the wrong integer will lead to certain crash. This most often
292happens when one uses a stylish C<< tls => 1 >> and is surprised about the
293segmentation fault.
294
248See the C<starttls> method for when need to start TLS negotiation later. 295See the C<< ->starttls >> method for when need to start TLS negotiation later.
249 296
250=item tls_ctx => $ssl_ctx 297=item tls_ctx => $anyevent_tls
251 298
252Use the given Net::SSLeay::CTX object to create the new TLS connection 299Use the given C<AnyEvent::TLS> object to create the new TLS connection
253(unless a connection object was specified directly). If this parameter is 300(unless a connection object was specified directly). If this parameter is
254missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 301missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
255 302
303Instead of an object, you can also specify a hash reference with C<< key
304=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
305new TLS context object.
306
307=item on_starttls => $cb->($handle, $success[, $error_message])
308
309This callback will be invoked when the TLS/SSL handshake has finished. If
310C<$success> is true, then the TLS handshake succeeded, otherwise it failed
311(C<on_stoptls> will not be called in this case).
312
313The session in C<< $handle->{tls} >> can still be examined in this
314callback, even when the handshake was not successful.
315
316TLS handshake failures will not cause C<on_error> to be invoked when this
317callback is in effect, instead, the error message will be passed to C<on_starttls>.
318
319Without this callback, handshake failures lead to C<on_error> being
320called, as normal.
321
322Note that you cannot call C<starttls> right again in this callback. If you
323need to do that, start an zero-second timer instead whose callback can
324then call C<< ->starttls >> again.
325
326=item on_stoptls => $cb->($handle)
327
328When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
329set, then it will be invoked after freeing the TLS session. If it is not,
330then a TLS shutdown condition will be treated like a normal EOF condition
331on the handle.
332
333The session in C<< $handle->{tls} >> can still be examined in this
334callback.
335
336This callback will only be called on TLS shutdowns, not when the
337underlying handle signals EOF.
338
256=item json => JSON or JSON::XS object 339=item json => JSON or JSON::XS object
257 340
258This is the json coder object used by the C<json> read and write types. 341This is the json coder object used by the C<json> read and write types.
259 342
260If you don't supply it, then AnyEvent::Handle will create and use a 343If you don't supply it, then AnyEvent::Handle will create and use a
261suitable one, which will write and expect UTF-8 encoded JSON texts. 344suitable one (on demand), which will write and expect UTF-8 encoded JSON
345texts.
262 346
263Note that you are responsible to depend on the JSON module if you want to 347Note that you are responsible to depend on the JSON module if you want to
264use this functionality, as AnyEvent does not have a dependency itself. 348use this functionality, as AnyEvent does not have a dependency itself.
265 349
266=item filter_r => $cb
267
268=item filter_w => $cb
269
270These exist, but are undocumented at this time.
271
272=back 350=back
273 351
274=cut 352=cut
275 353
276sub new { 354sub new {
277 my $class = shift; 355 my $class = shift;
278
279 my $self = bless { @_ }, $class; 356 my $self = bless { @_ }, $class;
280 357
281 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 358 $self->{fh} or Carp::croak "mandatory argument fh is missing";
282 359
283 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 360 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
284
285 if ($self->{tls}) {
286 require Net::SSLeay;
287 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
288 }
289 361
290 $self->{_activity} = AnyEvent->now; 362 $self->{_activity} = AnyEvent->now;
291 $self->_timeout; 363 $self->_timeout;
292 364
293 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
294 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay}; 365 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
366
367 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
368 if $self->{tls};
369
370 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
295 371
296 $self->start_read 372 $self->start_read
297 if $self->{on_read}; 373 if $self->{on_read};
298 374
299 $self 375 $self->{fh} && $self
300} 376}
301 377
302sub _shutdown { 378#sub _shutdown {
303 my ($self) = @_; 379# my ($self) = @_;
304 380#
305 delete $self->{_tw}; 381# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
306 delete $self->{_rw}; 382# $self->{_eof} = 1; # tell starttls et. al to stop trying
307 delete $self->{_ww}; 383#
308 delete $self->{fh}; 384# &_freetls;
309 385#}
310 $self->stoptls;
311
312 delete $self->{on_read};
313 delete $self->{_queue};
314}
315 386
316sub _error { 387sub _error {
317 my ($self, $errno, $fatal) = @_; 388 my ($self, $errno, $fatal, $message) = @_;
318
319 $self->_shutdown
320 if $fatal;
321 389
322 $! = $errno; 390 $! = $errno;
391 $message ||= "$!";
323 392
324 if ($self->{on_error}) { 393 if ($self->{on_error}) {
325 $self->{on_error}($self, $fatal); 394 $self->{on_error}($self, $fatal, $message);
326 } else { 395 $self->destroy if $fatal;
396 } elsif ($self->{fh}) {
397 $self->destroy;
327 Carp::croak "AnyEvent::Handle uncaught error: $!"; 398 Carp::croak "AnyEvent::Handle uncaught error: $message";
328 } 399 }
329} 400}
330 401
331=item $fh = $handle->fh 402=item $fh = $handle->fh
332 403
333This method returns the file handle of the L<AnyEvent::Handle> object. 404This method returns the file handle used to create the L<AnyEvent::Handle> object.
334 405
335=cut 406=cut
336 407
337sub fh { $_[0]{fh} } 408sub fh { $_[0]{fh} }
338 409
356 $_[0]{on_eof} = $_[1]; 427 $_[0]{on_eof} = $_[1];
357} 428}
358 429
359=item $handle->on_timeout ($cb) 430=item $handle->on_timeout ($cb)
360 431
361Replace the current C<on_timeout> callback, or disables the callback 432Replace the current C<on_timeout> callback, or disables the callback (but
362(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor 433not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
363argument. 434argument and method.
364 435
365=cut 436=cut
366 437
367sub on_timeout { 438sub on_timeout {
368 $_[0]{on_timeout} = $_[1]; 439 $_[0]{on_timeout} = $_[1];
369} 440}
370 441
371=item $handle->autocork ($boolean) 442=item $handle->autocork ($boolean)
372 443
373Enables or disables the current autocork behaviour (see C<autocork> 444Enables or disables the current autocork behaviour (see C<autocork>
374constructor argument). 445constructor argument). Changes will only take effect on the next write.
375 446
376=cut 447=cut
448
449sub autocork {
450 $_[0]{autocork} = $_[1];
451}
377 452
378=item $handle->no_delay ($boolean) 453=item $handle->no_delay ($boolean)
379 454
380Enables or disables the C<no_delay> setting (see constructor argument of 455Enables or disables the C<no_delay> setting (see constructor argument of
381the same name for details). 456the same name for details).
389 local $SIG{__DIE__}; 464 local $SIG{__DIE__};
390 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 465 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
391 }; 466 };
392} 467}
393 468
469=item $handle->on_starttls ($cb)
470
471Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
472
473=cut
474
475sub on_starttls {
476 $_[0]{on_starttls} = $_[1];
477}
478
479=item $handle->on_stoptls ($cb)
480
481Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
482
483=cut
484
485sub on_starttls {
486 $_[0]{on_stoptls} = $_[1];
487}
488
394############################################################################# 489#############################################################################
395 490
396=item $handle->timeout ($seconds) 491=item $handle->timeout ($seconds)
397 492
398Configures (or disables) the inactivity timeout. 493Configures (or disables) the inactivity timeout.
422 $self->{_activity} = $NOW; 517 $self->{_activity} = $NOW;
423 518
424 if ($self->{on_timeout}) { 519 if ($self->{on_timeout}) {
425 $self->{on_timeout}($self); 520 $self->{on_timeout}($self);
426 } else { 521 } else {
427 $self->_error (&Errno::ETIMEDOUT); 522 $self->_error (Errno::ETIMEDOUT);
428 } 523 }
429 524
430 # callback could have changed timeout value, optimise 525 # callback could have changed timeout value, optimise
431 return unless $self->{timeout}; 526 return unless $self->{timeout};
432 527
474 my ($self, $cb) = @_; 569 my ($self, $cb) = @_;
475 570
476 $self->{on_drain} = $cb; 571 $self->{on_drain} = $cb;
477 572
478 $cb->($self) 573 $cb->($self)
479 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 574 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
480} 575}
481 576
482=item $handle->push_write ($data) 577=item $handle->push_write ($data)
483 578
484Queues the given scalar to be written. You can push as much data as you 579Queues the given scalar to be written. You can push as much data as you
495 Scalar::Util::weaken $self; 590 Scalar::Util::weaken $self;
496 591
497 my $cb = sub { 592 my $cb = sub {
498 my $len = syswrite $self->{fh}, $self->{wbuf}; 593 my $len = syswrite $self->{fh}, $self->{wbuf};
499 594
500 if ($len >= 0) { 595 if (defined $len) {
501 substr $self->{wbuf}, 0, $len, ""; 596 substr $self->{wbuf}, 0, $len, "";
502 597
503 $self->{_activity} = AnyEvent->now; 598 $self->{_activity} = AnyEvent->now;
504 599
505 $self->{on_drain}($self) 600 $self->{on_drain}($self)
506 if $self->{low_water_mark} >= length $self->{wbuf} 601 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
507 && $self->{on_drain}; 602 && $self->{on_drain};
508 603
509 delete $self->{_ww} unless length $self->{wbuf}; 604 delete $self->{_ww} unless length $self->{wbuf};
510 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 605 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
511 $self->_error ($!, 1); 606 $self->_error ($!, 1);
535 630
536 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 631 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
537 ->($self, @_); 632 ->($self, @_);
538 } 633 }
539 634
540 if ($self->{filter_w}) { 635 if ($self->{tls}) {
541 $self->{filter_w}($self, \$_[0]); 636 $self->{_tls_wbuf} .= $_[0];
637
638 &_dotls ($self);
542 } else { 639 } else {
543 $self->{wbuf} .= $_[0]; 640 $self->{wbuf} .= $_[0];
544 $self->_drain_wbuf; 641 $self->_drain_wbuf;
545 } 642 }
546} 643}
563=cut 660=cut
564 661
565register_write_type netstring => sub { 662register_write_type netstring => sub {
566 my ($self, $string) = @_; 663 my ($self, $string) = @_;
567 664
568 sprintf "%d:%s,", (length $string), $string 665 (length $string) . ":$string,"
569}; 666};
570 667
571=item packstring => $format, $data 668=item packstring => $format, $data
572 669
573An octet string prefixed with an encoded length. The encoding C<$format> 670An octet string prefixed with an encoded length. The encoding C<$format>
638 735
639 pack "w/a*", Storable::nfreeze ($ref) 736 pack "w/a*", Storable::nfreeze ($ref)
640}; 737};
641 738
642=back 739=back
740
741=item $handle->push_shutdown
742
743Sometimes you know you want to close the socket after writing your data
744before it was actually written. One way to do that is to replace your
745C<on_drain> handler by a callback that shuts down the socket (and set
746C<low_water_mark> to C<0>). This method is a shorthand for just that, and
747replaces the C<on_drain> callback with:
748
749 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
750
751This simply shuts down the write side and signals an EOF condition to the
752the peer.
753
754You can rely on the normal read queue and C<on_eof> handling
755afterwards. This is the cleanest way to close a connection.
756
757=cut
758
759sub push_shutdown {
760 my ($self) = @_;
761
762 delete $self->{low_water_mark};
763 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
764}
643 765
644=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 766=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
645 767
646This function (not method) lets you add your own types to C<push_write>. 768This function (not method) lets you add your own types to C<push_write>.
647Whenever the given C<type> is used, C<push_write> will invoke the code 769Whenever the given C<type> is used, C<push_write> will invoke the code
747 869
748 if ( 870 if (
749 defined $self->{rbuf_max} 871 defined $self->{rbuf_max}
750 && $self->{rbuf_max} < length $self->{rbuf} 872 && $self->{rbuf_max} < length $self->{rbuf}
751 ) { 873 ) {
752 $self->_error (&Errno::ENOSPC, 1), return; 874 $self->_error (Errno::ENOSPC, 1), return;
753 } 875 }
754 876
755 while () { 877 while () {
878 # we need to use a separate tls read buffer, as we must not receive data while
879 # we are draining the buffer, and this can only happen with TLS.
880 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
881
756 my $len = length $self->{rbuf}; 882 my $len = length $self->{rbuf};
757 883
758 if (my $cb = shift @{ $self->{_queue} }) { 884 if (my $cb = shift @{ $self->{_queue} }) {
759 unless ($cb->($self)) { 885 unless ($cb->($self)) {
760 if ($self->{_eof}) { 886 if ($self->{_eof}) {
761 # no progress can be made (not enough data and no data forthcoming) 887 # no progress can be made (not enough data and no data forthcoming)
762 $self->_error (&Errno::EPIPE, 1), return; 888 $self->_error (Errno::EPIPE, 1), return;
763 } 889 }
764 890
765 unshift @{ $self->{_queue} }, $cb; 891 unshift @{ $self->{_queue} }, $cb;
766 last; 892 last;
767 } 893 }
775 && !@{ $self->{_queue} } # and the queue is still empty 901 && !@{ $self->{_queue} } # and the queue is still empty
776 && $self->{on_read} # but we still have on_read 902 && $self->{on_read} # but we still have on_read
777 ) { 903 ) {
778 # no further data will arrive 904 # no further data will arrive
779 # so no progress can be made 905 # so no progress can be made
780 $self->_error (&Errno::EPIPE, 1), return 906 $self->_error (Errno::EPIPE, 1), return
781 if $self->{_eof}; 907 if $self->{_eof};
782 908
783 last; # more data might arrive 909 last; # more data might arrive
784 } 910 }
785 } else { 911 } else {
786 # read side becomes idle 912 # read side becomes idle
787 delete $self->{_rw}; 913 delete $self->{_rw} unless $self->{tls};
788 last; 914 last;
789 } 915 }
790 } 916 }
791 917
792 if ($self->{_eof}) { 918 if ($self->{_eof}) {
793 if ($self->{on_eof}) { 919 if ($self->{on_eof}) {
794 $self->{on_eof}($self) 920 $self->{on_eof}($self)
795 } else { 921 } else {
796 $self->_error (0, 1); 922 $self->_error (0, 1, "Unexpected end-of-file");
797 } 923 }
798 } 924 }
799 925
800 # may need to restart read watcher 926 # may need to restart read watcher
801 unless ($self->{_rw}) { 927 unless ($self->{_rw}) {
821 947
822=item $handle->rbuf 948=item $handle->rbuf
823 949
824Returns the read buffer (as a modifiable lvalue). 950Returns the read buffer (as a modifiable lvalue).
825 951
826You can access the read buffer directly as the C<< ->{rbuf} >> member, if 952You can access the read buffer directly as the C<< ->{rbuf} >>
827you want. 953member, if you want. However, the only operation allowed on the
954read buffer (apart from looking at it) is removing data from its
955beginning. Otherwise modifying or appending to it is not allowed and will
956lead to hard-to-track-down bugs.
828 957
829NOTE: The read buffer should only be used or modified if the C<on_read>, 958NOTE: The read buffer should only be used or modified if the C<on_read>,
830C<push_read> or C<unshift_read> methods are used. The other read methods 959C<push_read> or C<unshift_read> methods are used. The other read methods
831automatically manage the read buffer. 960automatically manage the read buffer.
832 961
1032 return 1; 1161 return 1;
1033 } 1162 }
1034 1163
1035 # reject 1164 # reject
1036 if ($reject && $$rbuf =~ $reject) { 1165 if ($reject && $$rbuf =~ $reject) {
1037 $self->_error (&Errno::EBADMSG); 1166 $self->_error (Errno::EBADMSG);
1038 } 1167 }
1039 1168
1040 # skip 1169 # skip
1041 if ($skip && $$rbuf =~ $skip) { 1170 if ($skip && $$rbuf =~ $skip) {
1042 $data .= substr $$rbuf, 0, $+[0], ""; 1171 $data .= substr $$rbuf, 0, $+[0], "";
1058 my ($self, $cb) = @_; 1187 my ($self, $cb) = @_;
1059 1188
1060 sub { 1189 sub {
1061 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1190 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1062 if ($_[0]{rbuf} =~ /[^0-9]/) { 1191 if ($_[0]{rbuf} =~ /[^0-9]/) {
1063 $self->_error (&Errno::EBADMSG); 1192 $self->_error (Errno::EBADMSG);
1064 } 1193 }
1065 return; 1194 return;
1066 } 1195 }
1067 1196
1068 my $len = $1; 1197 my $len = $1;
1071 my $string = $_[1]; 1200 my $string = $_[1];
1072 $_[0]->unshift_read (chunk => 1, sub { 1201 $_[0]->unshift_read (chunk => 1, sub {
1073 if ($_[1] eq ",") { 1202 if ($_[1] eq ",") {
1074 $cb->($_[0], $string); 1203 $cb->($_[0], $string);
1075 } else { 1204 } else {
1076 $self->_error (&Errno::EBADMSG); 1205 $self->_error (Errno::EBADMSG);
1077 } 1206 }
1078 }); 1207 });
1079 }); 1208 });
1080 1209
1081 1 1210 1
1087An octet string prefixed with an encoded length. The encoding C<$format> 1216An octet string prefixed with an encoded length. The encoding C<$format>
1088uses the same format as a Perl C<pack> format, but must specify a single 1217uses the same format as a Perl C<pack> format, but must specify a single
1089integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1218integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1090optional C<!>, C<< < >> or C<< > >> modifier). 1219optional C<!>, C<< < >> or C<< > >> modifier).
1091 1220
1092DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1221For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1222EPP uses a prefix of C<N> (4 octtes).
1093 1223
1094Example: read a block of data prefixed by its length in BER-encoded 1224Example: read a block of data prefixed by its length in BER-encoded
1095format (very efficient). 1225format (very efficient).
1096 1226
1097 $handle->push_read (packstring => "w", sub { 1227 $handle->push_read (packstring => "w", sub {
1127 } 1257 }
1128}; 1258};
1129 1259
1130=item json => $cb->($handle, $hash_or_arrayref) 1260=item json => $cb->($handle, $hash_or_arrayref)
1131 1261
1132Reads a JSON object or array, decodes it and passes it to the callback. 1262Reads a JSON object or array, decodes it and passes it to the
1263callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1133 1264
1134If a C<json> object was passed to the constructor, then that will be used 1265If a C<json> object was passed to the constructor, then that will be used
1135for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1266for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1136 1267
1137This read type uses the incremental parser available with JSON version 1268This read type uses the incremental parser available with JSON version
1146=cut 1277=cut
1147 1278
1148register_read_type json => sub { 1279register_read_type json => sub {
1149 my ($self, $cb) = @_; 1280 my ($self, $cb) = @_;
1150 1281
1151 require JSON; 1282 my $json = $self->{json} ||=
1283 eval { require JSON::XS; JSON::XS->new->utf8 }
1284 || do { require JSON; JSON->new->utf8 };
1152 1285
1153 my $data; 1286 my $data;
1154 my $rbuf = \$self->{rbuf}; 1287 my $rbuf = \$self->{rbuf};
1155 1288
1156 my $json = $self->{json} ||= JSON->new->utf8;
1157
1158 sub { 1289 sub {
1159 my $ref = $json->incr_parse ($self->{rbuf}); 1290 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1160 1291
1161 if ($ref) { 1292 if ($ref) {
1162 $self->{rbuf} = $json->incr_text; 1293 $self->{rbuf} = $json->incr_text;
1163 $json->incr_text = ""; 1294 $json->incr_text = "";
1164 $cb->($self, $ref); 1295 $cb->($self, $ref);
1165 1296
1166 1 1297 1
1298 } elsif ($@) {
1299 # error case
1300 $json->incr_skip;
1301
1302 $self->{rbuf} = $json->incr_text;
1303 $json->incr_text = "";
1304
1305 $self->_error (Errno::EBADMSG);
1306
1307 ()
1167 } else { 1308 } else {
1168 $self->{rbuf} = ""; 1309 $self->{rbuf} = "";
1310
1169 () 1311 ()
1170 } 1312 }
1171 } 1313 }
1172}; 1314};
1173 1315
1205 # read remaining chunk 1347 # read remaining chunk
1206 $_[0]->unshift_read (chunk => $len, sub { 1348 $_[0]->unshift_read (chunk => $len, sub {
1207 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1349 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1208 $cb->($_[0], $ref); 1350 $cb->($_[0], $ref);
1209 } else { 1351 } else {
1210 $self->_error (&Errno::EBADMSG); 1352 $self->_error (Errno::EBADMSG);
1211 } 1353 }
1212 }); 1354 });
1213 } 1355 }
1214 1356
1215 1 1357 1
1250Note that AnyEvent::Handle will automatically C<start_read> for you when 1392Note that AnyEvent::Handle will automatically C<start_read> for you when
1251you change the C<on_read> callback or push/unshift a read callback, and it 1393you change the C<on_read> callback or push/unshift a read callback, and it
1252will automatically C<stop_read> for you when neither C<on_read> is set nor 1394will automatically C<stop_read> for you when neither C<on_read> is set nor
1253there are any read requests in the queue. 1395there are any read requests in the queue.
1254 1396
1397These methods will have no effect when in TLS mode (as TLS doesn't support
1398half-duplex connections).
1399
1255=cut 1400=cut
1256 1401
1257sub stop_read { 1402sub stop_read {
1258 my ($self) = @_; 1403 my ($self) = @_;
1259 1404
1260 delete $self->{_rw}; 1405 delete $self->{_rw} unless $self->{tls};
1261} 1406}
1262 1407
1263sub start_read { 1408sub start_read {
1264 my ($self) = @_; 1409 my ($self) = @_;
1265 1410
1266 unless ($self->{_rw} || $self->{_eof}) { 1411 unless ($self->{_rw} || $self->{_eof}) {
1267 Scalar::Util::weaken $self; 1412 Scalar::Util::weaken $self;
1268 1413
1269 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1414 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1270 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1415 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1271 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1416 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1272 1417
1273 if ($len > 0) { 1418 if ($len > 0) {
1274 $self->{_activity} = AnyEvent->now; 1419 $self->{_activity} = AnyEvent->now;
1275 1420
1276 $self->{filter_r} 1421 if ($self->{tls}) {
1277 ? $self->{filter_r}($self, $rbuf) 1422 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1278 : $self->{_in_drain} || $self->_drain_rbuf; 1423
1424 &_dotls ($self);
1425 } else {
1426 $self->_drain_rbuf unless $self->{_in_drain};
1427 }
1279 1428
1280 } elsif (defined $len) { 1429 } elsif (defined $len) {
1281 delete $self->{_rw}; 1430 delete $self->{_rw};
1282 $self->{_eof} = 1; 1431 $self->{_eof} = 1;
1283 $self->_drain_rbuf unless $self->{_in_drain}; 1432 $self->_drain_rbuf unless $self->{_in_drain};
1287 } 1436 }
1288 }); 1437 });
1289 } 1438 }
1290} 1439}
1291 1440
1441our $ERROR_SYSCALL;
1442our $ERROR_WANT_READ;
1443
1444sub _tls_error {
1445 my ($self, $err) = @_;
1446
1447 return $self->_error ($!, 1)
1448 if $err == Net::SSLeay::ERROR_SYSCALL ();
1449
1450 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1451
1452 # reduce error string to look less scary
1453 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1454
1455 if ($self->{_on_starttls}) {
1456 (delete $self->{_on_starttls})->($self, undef, $err);
1457 &_freetls;
1458 } else {
1459 &_freetls;
1460 $self->_error (Errno::EPROTO, 1, $err);
1461 }
1462}
1463
1464# poll the write BIO and send the data if applicable
1465# also decode read data if possible
1466# this is basiclaly our TLS state machine
1467# more efficient implementations are possible with openssl,
1468# but not with the buggy and incomplete Net::SSLeay.
1292sub _dotls { 1469sub _dotls {
1293 my ($self) = @_; 1470 my ($self) = @_;
1294 1471
1295 my $buf; 1472 my $tmp;
1296 1473
1297 if (length $self->{_tls_wbuf}) { 1474 if (length $self->{_tls_wbuf}) {
1298 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1475 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1299 substr $self->{_tls_wbuf}, 0, $len, ""; 1476 substr $self->{_tls_wbuf}, 0, $tmp, "";
1300 } 1477 }
1301 }
1302 1478
1479 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1480 return $self->_tls_error ($tmp)
1481 if $tmp != $ERROR_WANT_READ
1482 && ($tmp != $ERROR_SYSCALL || $!);
1483 }
1484
1485 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1486 unless (length $tmp) {
1487 $self->{_on_starttls}
1488 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1489 &_freetls;
1490
1491 if ($self->{on_stoptls}) {
1492 $self->{on_stoptls}($self);
1493 return;
1494 } else {
1495 # let's treat SSL-eof as we treat normal EOF
1496 delete $self->{_rw};
1497 $self->{_eof} = 1;
1498 }
1499 }
1500
1501 $self->{_tls_rbuf} .= $tmp;
1502 $self->_drain_rbuf unless $self->{_in_drain};
1503 $self->{tls} or return; # tls session might have gone away in callback
1504 }
1505
1506 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1507 return $self->_tls_error ($tmp)
1508 if $tmp != $ERROR_WANT_READ
1509 && ($tmp != $ERROR_SYSCALL || $!);
1510
1303 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1511 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1304 $self->{wbuf} .= $buf; 1512 $self->{wbuf} .= $tmp;
1305 $self->_drain_wbuf; 1513 $self->_drain_wbuf;
1306 } 1514 }
1307 1515
1308 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1516 $self->{_on_starttls}
1309 if (length $buf) { 1517 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1310 $self->{rbuf} .= $buf; 1518 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1311 $self->_drain_rbuf unless $self->{_in_drain};
1312 } else {
1313 # let's treat SSL-eof as we treat normal EOF
1314 $self->{_eof} = 1;
1315 $self->_shutdown;
1316 return;
1317 }
1318 }
1319
1320 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1321
1322 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1323 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1324 return $self->_error ($!, 1);
1325 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1326 return $self->_error (&Errno::EIO, 1);
1327 }
1328
1329 # all others are fine for our purposes
1330 }
1331} 1519}
1332 1520
1333=item $handle->starttls ($tls[, $tls_ctx]) 1521=item $handle->starttls ($tls[, $tls_ctx])
1334 1522
1335Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1523Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1337C<starttls>. 1525C<starttls>.
1338 1526
1339The first argument is the same as the C<tls> constructor argument (either 1527The first argument is the same as the C<tls> constructor argument (either
1340C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1528C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1341 1529
1342The second argument is the optional C<Net::SSLeay::CTX> object that is 1530The second argument is the optional C<AnyEvent::TLS> object that is used
1343used when AnyEvent::Handle has to create its own TLS connection object. 1531when AnyEvent::Handle has to create its own TLS connection object, or
1532a hash reference with C<< key => value >> pairs that will be used to
1533construct a new context.
1344 1534
1345The TLS connection object will end up in C<< $handle->{tls} >> after this 1535The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1346call and can be used or changed to your liking. Note that the handshake 1536context in C<< $handle->{tls_ctx} >> after this call and can be used or
1347might have already started when this function returns. 1537changed to your liking. Note that the handshake might have already started
1538when this function returns.
1348 1539
1540If it an error to start a TLS handshake more than once per
1541AnyEvent::Handle object (this is due to bugs in OpenSSL).
1542
1349=cut 1543=cut
1544
1545our %TLS_CACHE; #TODO not yet documented, should we?
1350 1546
1351sub starttls { 1547sub starttls {
1352 my ($self, $ssl, $ctx) = @_; 1548 my ($self, $ssl, $ctx) = @_;
1353 1549
1354 $self->stoptls; 1550 require Net::SSLeay;
1355 1551
1356 if ($ssl eq "accept") { 1552 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1357 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1553 if $self->{tls};
1358 Net::SSLeay::set_accept_state ($ssl); 1554
1359 } elsif ($ssl eq "connect") { 1555 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1360 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1556 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1361 Net::SSLeay::set_connect_state ($ssl); 1557
1558 $ctx ||= $self->{tls_ctx};
1559
1560 if ("HASH" eq ref $ctx) {
1561 require AnyEvent::TLS;
1562
1563 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context
1564
1565 if ($ctx->{cache}) {
1566 my $key = $ctx+0;
1567 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1568 } else {
1569 $ctx = new AnyEvent::TLS %$ctx;
1570 }
1571 }
1362 } 1572
1363 1573 $self->{tls_ctx} = $ctx || TLS_CTX ();
1364 $self->{tls} = $ssl; 1574 $self->{tls} = $ssl = $self->{tls_ctx}->_get_session ($ssl, $self, $self->{peername});
1365 1575
1366 # basically, this is deep magic (because SSL_read should have the same issues) 1576 # basically, this is deep magic (because SSL_read should have the same issues)
1367 # but the openssl maintainers basically said: "trust us, it just works". 1577 # but the openssl maintainers basically said: "trust us, it just works".
1368 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1578 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1369 # and mismaintained ssleay-module doesn't even offer them). 1579 # and mismaintained ssleay-module doesn't even offer them).
1370 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1580 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1581 #
1582 # in short: this is a mess.
1583 #
1584 # note that we do not try to keep the length constant between writes as we are required to do.
1585 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1586 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1587 # have identity issues in that area.
1371 Net::SSLeay::CTX_set_mode ($self->{tls}, 1588# Net::SSLeay::CTX_set_mode ($ssl,
1372 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1589# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1373 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1590# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1591 Net::SSLeay::CTX_set_mode ($ssl, 1|2);
1374 1592
1375 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1593 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1376 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1594 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1377 1595
1378 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1596 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1379 1597
1380 $self->{filter_w} = sub { 1598 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1381 $_[0]{_tls_wbuf} .= ${$_[1]}; 1599 if $self->{on_starttls};
1382 &_dotls; 1600
1383 }; 1601 &_dotls; # need to trigger the initial handshake
1384 $self->{filter_r} = sub { 1602 $self->start_read; # make sure we actually do read
1385 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1386 &_dotls;
1387 };
1388} 1603}
1389 1604
1390=item $handle->stoptls 1605=item $handle->stoptls
1391 1606
1392Destroys the SSL connection, if any. Partial read or write data will be 1607Shuts down the SSL connection - this makes a proper EOF handshake by
1393lost. 1608sending a close notify to the other side, but since OpenSSL doesn't
1609support non-blocking shut downs, it is not possible to re-use the stream
1610afterwards.
1394 1611
1395=cut 1612=cut
1396 1613
1397sub stoptls { 1614sub stoptls {
1398 my ($self) = @_; 1615 my ($self) = @_;
1399 1616
1400 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1617 if ($self->{tls}) {
1618 Net::SSLeay::shutdown ($self->{tls});
1401 1619
1402 delete $self->{_rbio}; 1620 &_dotls;
1403 delete $self->{_wbio}; 1621
1404 delete $self->{_tls_wbuf}; 1622# # we don't give a shit. no, we do, but we can't. no...#d#
1405 delete $self->{filter_r}; 1623# # we, we... have to use openssl :/#d#
1406 delete $self->{filter_w}; 1624# &_freetls;#d#
1625 }
1626}
1627
1628sub _freetls {
1629 my ($self) = @_;
1630
1631 return unless $self->{tls};
1632
1633 $self->{tls_ctx}->_put_session (delete $self->{tls});
1634
1635 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1407} 1636}
1408 1637
1409sub DESTROY { 1638sub DESTROY {
1410 my $self = shift; 1639 my ($self) = @_;
1411 1640
1412 $self->stoptls; 1641 &_freetls;
1413 1642
1414 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1643 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1415 1644
1416 if ($linger && length $self->{wbuf}) { 1645 if ($linger && length $self->{wbuf}) {
1417 my $fh = delete $self->{fh}; 1646 my $fh = delete $self->{fh};
1432 @linger = (); 1661 @linger = ();
1433 }); 1662 });
1434 } 1663 }
1435} 1664}
1436 1665
1666=item $handle->destroy
1667
1668Shuts down the handle object as much as possible - this call ensures that
1669no further callbacks will be invoked and as many resources as possible
1670will be freed. You must not call any methods on the object afterwards.
1671
1672Normally, you can just "forget" any references to an AnyEvent::Handle
1673object and it will simply shut down. This works in fatal error and EOF
1674callbacks, as well as code outside. It does I<NOT> work in a read or write
1675callback, so when you want to destroy the AnyEvent::Handle object from
1676within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1677that case.
1678
1679Destroying the handle object in this way has the advantage that callbacks
1680will be removed as well, so if those are the only reference holders (as
1681is common), then one doesn't need to do anything special to break any
1682reference cycles.
1683
1684The handle might still linger in the background and write out remaining
1685data, as specified by the C<linger> option, however.
1686
1687=cut
1688
1689sub destroy {
1690 my ($self) = @_;
1691
1692 $self->DESTROY;
1693 %$self = ();
1694}
1695
1437=item AnyEvent::Handle::TLS_CTX 1696=item AnyEvent::Handle::TLS_CTX
1438 1697
1439This function creates and returns the Net::SSLeay::CTX object used by 1698This function creates and returns the AnyEvent::TLS object used by default
1440default for TLS mode. 1699for TLS mode.
1441 1700
1442The context is created like this: 1701The context is created by calling L<AnyEvent::TLS> without any arguments.
1443
1444 Net::SSLeay::load_error_strings;
1445 Net::SSLeay::SSLeay_add_ssl_algorithms;
1446 Net::SSLeay::randomize;
1447
1448 my $CTX = Net::SSLeay::CTX_new;
1449
1450 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1451 1702
1452=cut 1703=cut
1453 1704
1454our $TLS_CTX; 1705our $TLS_CTX;
1455 1706
1456sub TLS_CTX() { 1707sub TLS_CTX() {
1457 $TLS_CTX || do { 1708 $TLS_CTX ||= do {
1458 require Net::SSLeay; 1709 require AnyEvent::TLS;
1459 1710
1460 Net::SSLeay::load_error_strings (); 1711 new AnyEvent::TLS
1461 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1462 Net::SSLeay::randomize ();
1463
1464 $TLS_CTX = Net::SSLeay::CTX_new ();
1465
1466 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1467
1468 $TLS_CTX
1469 } 1712 }
1470} 1713}
1471 1714
1472=back 1715=back
1716
1717
1718=head1 NONFREQUENTLY ASKED QUESTIONS
1719
1720=over 4
1721
1722=item I C<undef> the AnyEvent::Handle reference inside my callback and
1723still get further invocations!
1724
1725That's because AnyEvent::Handle keeps a reference to itself when handling
1726read or write callbacks.
1727
1728It is only safe to "forget" the reference inside EOF or error callbacks,
1729from within all other callbacks, you need to explicitly call the C<<
1730->destroy >> method.
1731
1732=item I get different callback invocations in TLS mode/Why can't I pause
1733reading?
1734
1735Unlike, say, TCP, TLS connections do not consist of two independent
1736communication channels, one for each direction. Or put differently. The
1737read and write directions are not independent of each other: you cannot
1738write data unless you are also prepared to read, and vice versa.
1739
1740This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1741callback invocations when you are not expecting any read data - the reason
1742is that AnyEvent::Handle always reads in TLS mode.
1743
1744During the connection, you have to make sure that you always have a
1745non-empty read-queue, or an C<on_read> watcher. At the end of the
1746connection (or when you no longer want to use it) you can call the
1747C<destroy> method.
1748
1749=item How do I read data until the other side closes the connection?
1750
1751If you just want to read your data into a perl scalar, the easiest way
1752to achieve this is by setting an C<on_read> callback that does nothing,
1753clearing the C<on_eof> callback and in the C<on_error> callback, the data
1754will be in C<$_[0]{rbuf}>:
1755
1756 $handle->on_read (sub { });
1757 $handle->on_eof (undef);
1758 $handle->on_error (sub {
1759 my $data = delete $_[0]{rbuf};
1760 });
1761
1762The reason to use C<on_error> is that TCP connections, due to latencies
1763and packets loss, might get closed quite violently with an error, when in
1764fact, all data has been received.
1765
1766It is usually better to use acknowledgements when transferring data,
1767to make sure the other side hasn't just died and you got the data
1768intact. This is also one reason why so many internet protocols have an
1769explicit QUIT command.
1770
1771=item I don't want to destroy the handle too early - how do I wait until
1772all data has been written?
1773
1774After writing your last bits of data, set the C<on_drain> callback
1775and destroy the handle in there - with the default setting of
1776C<low_water_mark> this will be called precisely when all data has been
1777written to the socket:
1778
1779 $handle->push_write (...);
1780 $handle->on_drain (sub {
1781 warn "all data submitted to the kernel\n";
1782 undef $handle;
1783 });
1784
1785If you just want to queue some data and then signal EOF to the other side,
1786consider using C<< ->push_shutdown >> instead.
1787
1788=item I want to contact a TLS/SSL server, I don't care about security.
1789
1790If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1791simply connect to it and then create the AnyEvent::Handle with the C<tls>
1792parameter:
1793
1794 tcp_connect $host, $port, sub {
1795 my ($fh) = @_;
1796
1797 my $handle = new AnyEvent::Handle
1798 fh => $fh,
1799 tls => "connect",
1800 on_error => sub { ... };
1801
1802 $handle->push_write (...);
1803 };
1804
1805=item I want to contact a TLS/SSL server, I do care about security.
1806
1807Then you should additionally enable certificate verification, including
1808peername verification, if the protocol you use supports it (see
1809L<AnyEvent::TLS>, C<verify_peername>).
1810
1811E.g. for HTTPS:
1812
1813 tcp_connect $host, $port, sub {
1814 my ($fh) = @_;
1815
1816 my $handle = new AnyEvent::Handle
1817 fh => $fh,
1818 peername => $host,
1819 tls => "connect",
1820 tls_ctx => { verify => 1, verify_peername => "https" },
1821 ...
1822
1823Note that you must specify the hostname you connected to (or whatever
1824"peername" the protocol needs) as the C<peername> argument, otherwise no
1825peername verification will be done.
1826
1827The above will use the system-dependent default set of trusted CA
1828certificates. If you want to check against a specific CA, add the
1829C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1830
1831 tls_ctx => {
1832 verify => 1,
1833 verify_peername => "https",
1834 ca_file => "my-ca-cert.pem",
1835 },
1836
1837=item I want to create a TLS/SSL server, how do I do that?
1838
1839Well, you first need to get a server certificate and key. You have
1840three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1841self-signed certificate (cheap. check the search engine of your choice,
1842there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1843nice program for that purpose).
1844
1845Then create a file with your private key (in PEM format, see
1846L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1847file should then look like this:
1848
1849 -----BEGIN RSA PRIVATE KEY-----
1850 ...header data
1851 ... lots of base64'y-stuff
1852 -----END RSA PRIVATE KEY-----
1853
1854 -----BEGIN CERTIFICATE-----
1855 ... lots of base64'y-stuff
1856 -----END CERTIFICATE-----
1857
1858The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
1859specify this file as C<cert_file>:
1860
1861 tcp_server undef, $port, sub {
1862 my ($fh) = @_;
1863
1864 my $handle = new AnyEvent::Handle
1865 fh => $fh,
1866 tls => "accept",
1867 tls_ctx => { cert_file => "my-server-keycert.pem" },
1868 ...
1869
1870When you have intermediate CA certificates that your clients might not
1871know about, just append them to the C<cert_file>.
1872
1873=back
1874
1473 1875
1474=head1 SUBCLASSING AnyEvent::Handle 1876=head1 SUBCLASSING AnyEvent::Handle
1475 1877
1476In many cases, you might want to subclass AnyEvent::Handle. 1878In many cases, you might want to subclass AnyEvent::Handle.
1477 1879

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines