ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.93 by root, Wed Oct 1 14:49:23 2008 UTC vs.
Revision 1.175 by root, Sat Aug 8 22:20:43 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 3use Scalar::Util ();
9use Carp (); 4use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR); 5use Errno qw(EAGAIN EINTR);
12 6
7use AnyEvent (); BEGIN { AnyEvent::common_sense }
8use AnyEvent::Util qw(WSAEWOULDBLOCK);
9
13=head1 NAME 10=head1 NAME
14 11
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 12AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 13
17=cut 14=cut
18 15
19our $VERSION = 4.3; 16our $VERSION = 4.91;
20 17
21=head1 SYNOPSIS 18=head1 SYNOPSIS
22 19
23 use AnyEvent; 20 use AnyEvent;
24 use AnyEvent::Handle; 21 use AnyEvent::Handle;
25 22
26 my $cv = AnyEvent->condvar; 23 my $cv = AnyEvent->condvar;
27 24
28 my $handle = 25 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 26 fh => \*STDIN,
31 on_eof => sub { 27 on_error => sub {
32 $cv->broadcast; 28 my ($hdl, $fatal, $msg) = @_;
33 }, 29 warn "got error $msg\n";
30 $hdl->destroy;
31 $cv->send;
34 ); 32 );
35 33
36 # send some request line 34 # send some request line
37 $handle->push_write ("getinfo\015\012"); 35 $hdl->push_write ("getinfo\015\012");
38 36
39 # read the response line 37 # read the response line
40 $handle->push_read (line => sub { 38 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 39 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 40 warn "got line <$line>\n";
43 $cv->send; 41 $cv->send;
44 }); 42 });
45 43
46 $cv->recv; 44 $cv->recv;
47 45
48=head1 DESCRIPTION 46=head1 DESCRIPTION
49 47
50This module is a helper module to make it easier to do event-based I/O on 48This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 49filehandles.
52on sockets see L<AnyEvent::Util>.
53 50
54The L<AnyEvent::Intro> tutorial contains some well-documented 51The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples. 52AnyEvent::Handle examples.
56 53
57In the following, when the documentation refers to of "bytes" then this 54In the following, when the documentation refers to of "bytes" then this
58means characters. As sysread and syswrite are used for all I/O, their 55means characters. As sysread and syswrite are used for all I/O, their
59treatment of characters applies to this module as well. 56treatment of characters applies to this module as well.
60 57
58At the very minimum, you should specify C<fh> or C<connect>, and the
59C<on_error> callback.
60
61All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
62argument. 62argument.
63 63
64=head2 SIGPIPE is not handled by this module
65
66SIGPIPE is not handled by this module, so one of the practical
67requirements of using it is to ignore SIGPIPE (C<$SIG{PIPE} =
68'IGNORE'>). At least, this is highly recommend in a networked program: If
69you use AnyEvent::Handle in a filter program (like sort), exiting on
70SIGPIPE is probably the right thing to do.
71
72=head1 METHODS 64=head1 METHODS
73 65
74=over 4 66=over 4
75 67
76=item B<new (%args)> 68=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
77 69
78The constructor supports these arguments (all as key => value pairs). 70The constructor supports these arguments (all as C<< key => value >> pairs).
79 71
80=over 4 72=over 4
81 73
82=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
83 75
84The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
85
86NOTE: The filehandle will be set to non-blocking mode (using 77NOTE: The filehandle will be set to non-blocking mode (using
87C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in 78C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
88that mode. 79that mode.
89 80
81=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
82
83Try to connect to the specified host and service (port), using
84C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
85default C<peername>.
86
87You have to specify either this parameter, or C<fh>, above.
88
89It is possible to push requests on the read and write queues, and modify
90properties of the stream, even while AnyEvent::Handle is connecting.
91
92When this parameter is specified, then the C<on_prepare>,
93C<on_connect_error> and C<on_connect> callbacks will be called under the
94appropriate circumstances:
95
96=over 4
97
90=item on_eof => $cb->($handle) 98=item on_prepare => $cb->($handle)
91 99
92Set the callback to be called when an end-of-file condition is detected, 100This (rarely used) callback is called before a new connection is
93i.e. in the case of a socket, when the other side has closed the 101attempted, but after the file handle has been created. It could be used to
94connection cleanly. 102prepare the file handle with parameters required for the actual connect
103(as opposed to settings that can be changed when the connection is already
104established).
95 105
96For sockets, this just means that the other side has stopped sending data, 106The return value of this callback should be the connect timeout value in
97you can still try to write data, and, in fact, one can return from the eof 107seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
98callback and continue writing data, as only the read part has been shut 108timeout is to be used).
99down.
100 109
101While not mandatory, it is I<highly> recommended to set an eof callback, 110=item on_connect => $cb->($handle, $host, $port, $retry->())
102otherwise you might end up with a closed socket while you are still
103waiting for data.
104 111
105If an EOF condition has been detected but no C<on_eof> callback has been 112This callback is called when a connection has been successfully established.
106set, then a fatal error will be raised with C<$!> set to <0>.
107 113
114The actual numeric host and port (the socket peername) are passed as
115parameters, together with a retry callback.
116
117When, for some reason, the handle is not acceptable, then calling
118C<$retry> will continue with the next conenction target (in case of
119multi-homed hosts or SRV records there can be multiple connection
120endpoints). When it is called then the read and write queues, eof status,
121tls status and similar properties of the handle are being reset.
122
123In most cases, ignoring the C<$retry> parameter is the way to go.
124
125=item on_connect_error => $cb->($handle, $message)
126
127This callback is called when the conenction could not be
128established. C<$!> will contain the relevant error code, and C<$message> a
129message describing it (usually the same as C<"$!">).
130
131If this callback isn't specified, then C<on_error> will be called with a
132fatal error instead.
133
134=back
135
108=item on_error => $cb->($handle, $fatal) 136=item on_error => $cb->($handle, $fatal, $message)
109 137
110This is the error callback, which is called when, well, some error 138This is the error callback, which is called when, well, some error
111occured, such as not being able to resolve the hostname, failure to 139occured, such as not being able to resolve the hostname, failure to
112connect or a read error. 140connect or a read error.
113 141
114Some errors are fatal (which is indicated by C<$fatal> being true). On 142Some errors are fatal (which is indicated by C<$fatal> being true). On
115fatal errors the handle object will be shut down and will not be usable 143fatal errors the handle object will be destroyed (by a call to C<< ->
116(but you are free to look at the current C<< ->rbuf >>). Examples of fatal 144destroy >>) after invoking the error callback (which means you are free to
117errors are an EOF condition with active (but unsatisifable) read watchers 145examine the handle object). Examples of fatal errors are an EOF condition
118(C<EPIPE>) or I/O errors. 146with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
147cases where the other side can close the connection at their will it is
148often easiest to not report C<EPIPE> errors in this callback.
149
150AnyEvent::Handle tries to find an appropriate error code for you to check
151against, but in some cases (TLS errors), this does not work well. It is
152recommended to always output the C<$message> argument in human-readable
153error messages (it's usually the same as C<"$!">).
119 154
120Non-fatal errors can be retried by simply returning, but it is recommended 155Non-fatal errors can be retried by simply returning, but it is recommended
121to simply ignore this parameter and instead abondon the handle object 156to simply ignore this parameter and instead abondon the handle object
122when this callback is invoked. Examples of non-fatal errors are timeouts 157when this callback is invoked. Examples of non-fatal errors are timeouts
123C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>). 158C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
124 159
125On callback entrance, the value of C<$!> contains the operating system 160On callback entrance, the value of C<$!> contains the operating system
126error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 161error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
162C<EPROTO>).
127 163
128While not mandatory, it is I<highly> recommended to set this callback, as 164While not mandatory, it is I<highly> recommended to set this callback, as
129you will not be notified of errors otherwise. The default simply calls 165you will not be notified of errors otherwise. The default simply calls
130C<croak>. 166C<croak>.
131 167
135and no read request is in the queue (unlike read queue callbacks, this 171and no read request is in the queue (unlike read queue callbacks, this
136callback will only be called when at least one octet of data is in the 172callback will only be called when at least one octet of data is in the
137read buffer). 173read buffer).
138 174
139To access (and remove data from) the read buffer, use the C<< ->rbuf >> 175To access (and remove data from) the read buffer, use the C<< ->rbuf >>
140method or access the C<$handle->{rbuf}> member directly. 176method or access the C<< $handle->{rbuf} >> member directly. Note that you
177must not enlarge or modify the read buffer, you can only remove data at
178the beginning from it.
141 179
142When an EOF condition is detected then AnyEvent::Handle will first try to 180When an EOF condition is detected then AnyEvent::Handle will first try to
143feed all the remaining data to the queued callbacks and C<on_read> before 181feed all the remaining data to the queued callbacks and C<on_read> before
144calling the C<on_eof> callback. If no progress can be made, then a fatal 182calling the C<on_eof> callback. If no progress can be made, then a fatal
145error will be raised (with C<$!> set to C<EPIPE>). 183error will be raised (with C<$!> set to C<EPIPE>).
184
185Note that, unlike requests in the read queue, an C<on_read> callback
186doesn't mean you I<require> some data: if there is an EOF and there
187are outstanding read requests then an error will be flagged. With an
188C<on_read> callback, the C<on_eof> callback will be invoked.
189
190=item on_eof => $cb->($handle)
191
192Set the callback to be called when an end-of-file condition is detected,
193i.e. in the case of a socket, when the other side has closed the
194connection cleanly, and there are no outstanding read requests in the
195queue (if there are read requests, then an EOF counts as an unexpected
196connection close and will be flagged as an error).
197
198For sockets, this just means that the other side has stopped sending data,
199you can still try to write data, and, in fact, one can return from the EOF
200callback and continue writing data, as only the read part has been shut
201down.
202
203If an EOF condition has been detected but no C<on_eof> callback has been
204set, then a fatal error will be raised with C<$!> set to <0>.
146 205
147=item on_drain => $cb->($handle) 206=item on_drain => $cb->($handle)
148 207
149This sets the callback that is called when the write buffer becomes empty 208This sets the callback that is called when the write buffer becomes empty
150(or when the callback is set and the buffer is empty already). 209(or when the callback is set and the buffer is empty already).
243 302
244This will not work for partial TLS data that could not be encoded 303This will not work for partial TLS data that could not be encoded
245yet. This data will be lost. Calling the C<stoptls> method in time might 304yet. This data will be lost. Calling the C<stoptls> method in time might
246help. 305help.
247 306
307=item peername => $string
308
309A string used to identify the remote site - usually the DNS hostname
310(I<not> IDN!) used to create the connection, rarely the IP address.
311
312Apart from being useful in error messages, this string is also used in TLS
313peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
314verification will be skipped when C<peername> is not specified or
315C<undef>.
316
248=item tls => "accept" | "connect" | Net::SSLeay::SSL object 317=item tls => "accept" | "connect" | Net::SSLeay::SSL object
249 318
250When this parameter is given, it enables TLS (SSL) mode, that means 319When this parameter is given, it enables TLS (SSL) mode, that means
251AnyEvent will start a TLS handshake as soon as the conenction has been 320AnyEvent will start a TLS handshake as soon as the conenction has been
252established and will transparently encrypt/decrypt data afterwards. 321established and will transparently encrypt/decrypt data afterwards.
322
323All TLS protocol errors will be signalled as C<EPROTO>, with an
324appropriate error message.
253 325
254TLS mode requires Net::SSLeay to be installed (it will be loaded 326TLS mode requires Net::SSLeay to be installed (it will be loaded
255automatically when you try to create a TLS handle): this module doesn't 327automatically when you try to create a TLS handle): this module doesn't
256have a dependency on that module, so if your module requires it, you have 328have a dependency on that module, so if your module requires it, you have
257to add the dependency yourself. 329to add the dependency yourself.
261mode. 333mode.
262 334
263You can also provide your own TLS connection object, but you have 335You can also provide your own TLS connection object, but you have
264to make sure that you call either C<Net::SSLeay::set_connect_state> 336to make sure that you call either C<Net::SSLeay::set_connect_state>
265or C<Net::SSLeay::set_accept_state> on it before you pass it to 337or C<Net::SSLeay::set_accept_state> on it before you pass it to
266AnyEvent::Handle. 338AnyEvent::Handle. Also, this module will take ownership of this connection
339object.
340
341At some future point, AnyEvent::Handle might switch to another TLS
342implementation, then the option to use your own session object will go
343away.
344
345B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
346passing in the wrong integer will lead to certain crash. This most often
347happens when one uses a stylish C<< tls => 1 >> and is surprised about the
348segmentation fault.
267 349
268See the C<< ->starttls >> method for when need to start TLS negotiation later. 350See the C<< ->starttls >> method for when need to start TLS negotiation later.
269 351
270=item tls_ctx => $ssl_ctx 352=item tls_ctx => $anyevent_tls
271 353
272Use the given C<Net::SSLeay::CTX> object to create the new TLS connection 354Use the given C<AnyEvent::TLS> object to create the new TLS connection
273(unless a connection object was specified directly). If this parameter is 355(unless a connection object was specified directly). If this parameter is
274missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 356missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
357
358Instead of an object, you can also specify a hash reference with C<< key
359=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
360new TLS context object.
361
362=item on_starttls => $cb->($handle, $success[, $error_message])
363
364This callback will be invoked when the TLS/SSL handshake has finished. If
365C<$success> is true, then the TLS handshake succeeded, otherwise it failed
366(C<on_stoptls> will not be called in this case).
367
368The session in C<< $handle->{tls} >> can still be examined in this
369callback, even when the handshake was not successful.
370
371TLS handshake failures will not cause C<on_error> to be invoked when this
372callback is in effect, instead, the error message will be passed to C<on_starttls>.
373
374Without this callback, handshake failures lead to C<on_error> being
375called, as normal.
376
377Note that you cannot call C<starttls> right again in this callback. If you
378need to do that, start an zero-second timer instead whose callback can
379then call C<< ->starttls >> again.
380
381=item on_stoptls => $cb->($handle)
382
383When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
384set, then it will be invoked after freeing the TLS session. If it is not,
385then a TLS shutdown condition will be treated like a normal EOF condition
386on the handle.
387
388The session in C<< $handle->{tls} >> can still be examined in this
389callback.
390
391This callback will only be called on TLS shutdowns, not when the
392underlying handle signals EOF.
275 393
276=item json => JSON or JSON::XS object 394=item json => JSON or JSON::XS object
277 395
278This is the json coder object used by the C<json> read and write types. 396This is the json coder object used by the C<json> read and write types.
279 397
288 406
289=cut 407=cut
290 408
291sub new { 409sub new {
292 my $class = shift; 410 my $class = shift;
293
294 my $self = bless { @_ }, $class; 411 my $self = bless { @_ }, $class;
295 412
296 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 413 if ($self->{fh}) {
414 $self->_start;
415 return unless $self->{fh}; # could be gone by now
416
417 } elsif ($self->{connect}) {
418 require AnyEvent::Socket;
419
420 $self->{peername} = $self->{connect}[0]
421 unless exists $self->{peername};
422
423 $self->{_skip_drain_rbuf} = 1;
424
425 {
426 Scalar::Util::weaken (my $self = $self);
427
428 $self->{_connect} =
429 AnyEvent::Socket::tcp_connect (
430 $self->{connect}[0],
431 $self->{connect}[1],
432 sub {
433 my ($fh, $host, $port, $retry) = @_;
434
435 if ($fh) {
436 $self->{fh} = $fh;
437
438 delete $self->{_skip_drain_rbuf};
439 $self->_start;
440
441 $self->{on_connect}
442 and $self->{on_connect}($self, $host, $port, sub {
443 delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
444 $self->{_skip_drain_rbuf} = 1;
445 &$retry;
446 });
447
448 } else {
449 if ($self->{on_connect_error}) {
450 $self->{on_connect_error}($self, "$!");
451 $self->destroy;
452 } else {
453 $self->_error ($!, 1);
454 }
455 }
456 },
457 sub {
458 local $self->{fh} = $_[0];
459
460 $self->{on_prepare}
461 ? $self->{on_prepare}->($self)
462 : ()
463 }
464 );
465 }
466
467 } else {
468 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
469 }
470
471 $self
472}
473
474sub _start {
475 my ($self) = @_;
297 476
298 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 477 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
299 478
300 if ($self->{tls}) {
301 require Net::SSLeay;
302 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
303 }
304
305 $self->{_activity} = AnyEvent->now; 479 $self->{_activity} = AE::now;
306 $self->_timeout; 480 $self->_timeout;
307 481
308 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
309 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay}; 482 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
310 483
484 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
485 if $self->{tls};
486
487 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
488
311 $self->start_read 489 $self->start_read
312 if $self->{on_read}; 490 if $self->{on_read} || @{ $self->{_queue} };
313 491
314 $self 492 $self->_drain_wbuf;
315} 493}
316 494
317sub _shutdown { 495#sub _shutdown {
318 my ($self) = @_; 496# my ($self) = @_;
319 497#
320 delete $self->{_tw}; 498# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
321 delete $self->{_rw}; 499# $self->{_eof} = 1; # tell starttls et. al to stop trying
322 delete $self->{_ww}; 500#
323 delete $self->{fh};
324
325 &_freetls; 501# &_freetls;
326 502#}
327 delete $self->{on_read};
328 delete $self->{_queue};
329}
330 503
331sub _error { 504sub _error {
332 my ($self, $errno, $fatal) = @_; 505 my ($self, $errno, $fatal, $message) = @_;
333
334 $self->_shutdown
335 if $fatal;
336 506
337 $! = $errno; 507 $! = $errno;
508 $message ||= "$!";
338 509
339 if ($self->{on_error}) { 510 if ($self->{on_error}) {
340 $self->{on_error}($self, $fatal); 511 $self->{on_error}($self, $fatal, $message);
341 } else { 512 $self->destroy if $fatal;
513 } elsif ($self->{fh}) {
514 $self->destroy;
342 Carp::croak "AnyEvent::Handle uncaught error: $!"; 515 Carp::croak "AnyEvent::Handle uncaught error: $message";
343 } 516 }
344} 517}
345 518
346=item $fh = $handle->fh 519=item $fh = $handle->fh
347 520
384} 557}
385 558
386=item $handle->autocork ($boolean) 559=item $handle->autocork ($boolean)
387 560
388Enables or disables the current autocork behaviour (see C<autocork> 561Enables or disables the current autocork behaviour (see C<autocork>
389constructor argument). 562constructor argument). Changes will only take effect on the next write.
390 563
391=cut 564=cut
565
566sub autocork {
567 $_[0]{autocork} = $_[1];
568}
392 569
393=item $handle->no_delay ($boolean) 570=item $handle->no_delay ($boolean)
394 571
395Enables or disables the C<no_delay> setting (see constructor argument of 572Enables or disables the C<no_delay> setting (see constructor argument of
396the same name for details). 573the same name for details).
400sub no_delay { 577sub no_delay {
401 $_[0]{no_delay} = $_[1]; 578 $_[0]{no_delay} = $_[1];
402 579
403 eval { 580 eval {
404 local $SIG{__DIE__}; 581 local $SIG{__DIE__};
405 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 582 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
583 if $_[0]{fh};
406 }; 584 };
585}
586
587=item $handle->on_starttls ($cb)
588
589Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
590
591=cut
592
593sub on_starttls {
594 $_[0]{on_starttls} = $_[1];
595}
596
597=item $handle->on_stoptls ($cb)
598
599Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
600
601=cut
602
603sub on_starttls {
604 $_[0]{on_stoptls} = $_[1];
605}
606
607=item $handle->rbuf_max ($max_octets)
608
609Configures the C<rbuf_max> setting (C<undef> disables it).
610
611=cut
612
613sub rbuf_max {
614 $_[0]{rbuf_max} = $_[1];
407} 615}
408 616
409############################################################################# 617#############################################################################
410 618
411=item $handle->timeout ($seconds) 619=item $handle->timeout ($seconds)
416 624
417sub timeout { 625sub timeout {
418 my ($self, $timeout) = @_; 626 my ($self, $timeout) = @_;
419 627
420 $self->{timeout} = $timeout; 628 $self->{timeout} = $timeout;
629 delete $self->{_tw};
421 $self->_timeout; 630 $self->_timeout;
422} 631}
423 632
424# reset the timeout watcher, as neccessary 633# reset the timeout watcher, as neccessary
425# also check for time-outs 634# also check for time-outs
426sub _timeout { 635sub _timeout {
427 my ($self) = @_; 636 my ($self) = @_;
428 637
429 if ($self->{timeout}) { 638 if ($self->{timeout} && $self->{fh}) {
430 my $NOW = AnyEvent->now; 639 my $NOW = AE::now;
431 640
432 # when would the timeout trigger? 641 # when would the timeout trigger?
433 my $after = $self->{_activity} + $self->{timeout} - $NOW; 642 my $after = $self->{_activity} + $self->{timeout} - $NOW;
434 643
435 # now or in the past already? 644 # now or in the past already?
437 $self->{_activity} = $NOW; 646 $self->{_activity} = $NOW;
438 647
439 if ($self->{on_timeout}) { 648 if ($self->{on_timeout}) {
440 $self->{on_timeout}($self); 649 $self->{on_timeout}($self);
441 } else { 650 } else {
442 $self->_error (&Errno::ETIMEDOUT); 651 $self->_error (Errno::ETIMEDOUT);
443 } 652 }
444 653
445 # callback could have changed timeout value, optimise 654 # callback could have changed timeout value, optimise
446 return unless $self->{timeout}; 655 return unless $self->{timeout};
447 656
450 } 659 }
451 660
452 Scalar::Util::weaken $self; 661 Scalar::Util::weaken $self;
453 return unless $self; # ->error could have destroyed $self 662 return unless $self; # ->error could have destroyed $self
454 663
455 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub { 664 $self->{_tw} ||= AE::timer $after, 0, sub {
456 delete $self->{_tw}; 665 delete $self->{_tw};
457 $self->_timeout; 666 $self->_timeout;
458 }); 667 };
459 } else { 668 } else {
460 delete $self->{_tw}; 669 delete $self->{_tw};
461 } 670 }
462} 671}
463 672
510 Scalar::Util::weaken $self; 719 Scalar::Util::weaken $self;
511 720
512 my $cb = sub { 721 my $cb = sub {
513 my $len = syswrite $self->{fh}, $self->{wbuf}; 722 my $len = syswrite $self->{fh}, $self->{wbuf};
514 723
515 if ($len >= 0) { 724 if (defined $len) {
516 substr $self->{wbuf}, 0, $len, ""; 725 substr $self->{wbuf}, 0, $len, "";
517 726
518 $self->{_activity} = AnyEvent->now; 727 $self->{_activity} = AE::now;
519 728
520 $self->{on_drain}($self) 729 $self->{on_drain}($self)
521 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf}) 730 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
522 && $self->{on_drain}; 731 && $self->{on_drain};
523 732
529 738
530 # try to write data immediately 739 # try to write data immediately
531 $cb->() unless $self->{autocork}; 740 $cb->() unless $self->{autocork};
532 741
533 # if still data left in wbuf, we need to poll 742 # if still data left in wbuf, we need to poll
534 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 743 $self->{_ww} = AE::io $self->{fh}, 1, $cb
535 if length $self->{wbuf}; 744 if length $self->{wbuf};
536 }; 745 };
537} 746}
538 747
539our %WH; 748our %WH;
552 ->($self, @_); 761 ->($self, @_);
553 } 762 }
554 763
555 if ($self->{tls}) { 764 if ($self->{tls}) {
556 $self->{_tls_wbuf} .= $_[0]; 765 $self->{_tls_wbuf} .= $_[0];
557 &_dotls ($self); 766 &_dotls ($self) if $self->{fh};
558 } else { 767 } else {
559 $self->{wbuf} .= $_[0]; 768 $self->{wbuf} .= $_[0];
560 $self->_drain_wbuf; 769 $self->_drain_wbuf if $self->{fh};
561 } 770 }
562} 771}
563 772
564=item $handle->push_write (type => @args) 773=item $handle->push_write (type => @args)
565 774
579=cut 788=cut
580 789
581register_write_type netstring => sub { 790register_write_type netstring => sub {
582 my ($self, $string) = @_; 791 my ($self, $string) = @_;
583 792
584 sprintf "%d:%s,", (length $string), $string 793 (length $string) . ":$string,"
585}; 794};
586 795
587=item packstring => $format, $data 796=item packstring => $format, $data
588 797
589An octet string prefixed with an encoded length. The encoding C<$format> 798An octet string prefixed with an encoded length. The encoding C<$format>
654 863
655 pack "w/a*", Storable::nfreeze ($ref) 864 pack "w/a*", Storable::nfreeze ($ref)
656}; 865};
657 866
658=back 867=back
868
869=item $handle->push_shutdown
870
871Sometimes you know you want to close the socket after writing your data
872before it was actually written. One way to do that is to replace your
873C<on_drain> handler by a callback that shuts down the socket (and set
874C<low_water_mark> to C<0>). This method is a shorthand for just that, and
875replaces the C<on_drain> callback with:
876
877 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
878
879This simply shuts down the write side and signals an EOF condition to the
880the peer.
881
882You can rely on the normal read queue and C<on_eof> handling
883afterwards. This is the cleanest way to close a connection.
884
885=cut
886
887sub push_shutdown {
888 my ($self) = @_;
889
890 delete $self->{low_water_mark};
891 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
892}
659 893
660=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 894=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
661 895
662This function (not method) lets you add your own types to C<push_write>. 896This function (not method) lets you add your own types to C<push_write>.
663Whenever the given C<type> is used, C<push_write> will invoke the code 897Whenever the given C<type> is used, C<push_write> will invoke the code
757=cut 991=cut
758 992
759sub _drain_rbuf { 993sub _drain_rbuf {
760 my ($self) = @_; 994 my ($self) = @_;
761 995
996 # avoid recursion
997 return if $self->{_skip_drain_rbuf};
762 local $self->{_in_drain} = 1; 998 local $self->{_skip_drain_rbuf} = 1;
763
764 if (
765 defined $self->{rbuf_max}
766 && $self->{rbuf_max} < length $self->{rbuf}
767 ) {
768 $self->_error (&Errno::ENOSPC, 1), return;
769 }
770 999
771 while () { 1000 while () {
1001 # we need to use a separate tls read buffer, as we must not receive data while
1002 # we are draining the buffer, and this can only happen with TLS.
1003 $self->{rbuf} .= delete $self->{_tls_rbuf}
1004 if exists $self->{_tls_rbuf};
1005
772 my $len = length $self->{rbuf}; 1006 my $len = length $self->{rbuf};
773 1007
774 if (my $cb = shift @{ $self->{_queue} }) { 1008 if (my $cb = shift @{ $self->{_queue} }) {
775 unless ($cb->($self)) { 1009 unless ($cb->($self)) {
776 if ($self->{_eof}) { 1010 # no progress can be made
777 # no progress can be made (not enough data and no data forthcoming) 1011 # (not enough data and no data forthcoming)
778 $self->_error (&Errno::EPIPE, 1), return; 1012 $self->_error (Errno::EPIPE, 1), return
779 } 1013 if $self->{_eof};
780 1014
781 unshift @{ $self->{_queue} }, $cb; 1015 unshift @{ $self->{_queue} }, $cb;
782 last; 1016 last;
783 } 1017 }
784 } elsif ($self->{on_read}) { 1018 } elsif ($self->{on_read}) {
791 && !@{ $self->{_queue} } # and the queue is still empty 1025 && !@{ $self->{_queue} } # and the queue is still empty
792 && $self->{on_read} # but we still have on_read 1026 && $self->{on_read} # but we still have on_read
793 ) { 1027 ) {
794 # no further data will arrive 1028 # no further data will arrive
795 # so no progress can be made 1029 # so no progress can be made
796 $self->_error (&Errno::EPIPE, 1), return 1030 $self->_error (Errno::EPIPE, 1), return
797 if $self->{_eof}; 1031 if $self->{_eof};
798 1032
799 last; # more data might arrive 1033 last; # more data might arrive
800 } 1034 }
801 } else { 1035 } else {
804 last; 1038 last;
805 } 1039 }
806 } 1040 }
807 1041
808 if ($self->{_eof}) { 1042 if ($self->{_eof}) {
809 if ($self->{on_eof}) { 1043 $self->{on_eof}
810 $self->{on_eof}($self) 1044 ? $self->{on_eof}($self)
811 } else { 1045 : $self->_error (0, 1, "Unexpected end-of-file");
812 $self->_error (0, 1); 1046
813 } 1047 return;
1048 }
1049
1050 if (
1051 defined $self->{rbuf_max}
1052 && $self->{rbuf_max} < length $self->{rbuf}
1053 ) {
1054 $self->_error (Errno::ENOSPC, 1), return;
814 } 1055 }
815 1056
816 # may need to restart read watcher 1057 # may need to restart read watcher
817 unless ($self->{_rw}) { 1058 unless ($self->{_rw}) {
818 $self->start_read 1059 $self->start_read
830 1071
831sub on_read { 1072sub on_read {
832 my ($self, $cb) = @_; 1073 my ($self, $cb) = @_;
833 1074
834 $self->{on_read} = $cb; 1075 $self->{on_read} = $cb;
835 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1076 $self->_drain_rbuf if $cb;
836} 1077}
837 1078
838=item $handle->rbuf 1079=item $handle->rbuf
839 1080
840Returns the read buffer (as a modifiable lvalue). 1081Returns the read buffer (as a modifiable lvalue).
841 1082
842You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1083You can access the read buffer directly as the C<< ->{rbuf} >>
843you want. 1084member, if you want. However, the only operation allowed on the
1085read buffer (apart from looking at it) is removing data from its
1086beginning. Otherwise modifying or appending to it is not allowed and will
1087lead to hard-to-track-down bugs.
844 1088
845NOTE: The read buffer should only be used or modified if the C<on_read>, 1089NOTE: The read buffer should only be used or modified if the C<on_read>,
846C<push_read> or C<unshift_read> methods are used. The other read methods 1090C<push_read> or C<unshift_read> methods are used. The other read methods
847automatically manage the read buffer. 1091automatically manage the read buffer.
848 1092
889 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1133 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
890 ->($self, $cb, @_); 1134 ->($self, $cb, @_);
891 } 1135 }
892 1136
893 push @{ $self->{_queue} }, $cb; 1137 push @{ $self->{_queue} }, $cb;
894 $self->_drain_rbuf unless $self->{_in_drain}; 1138 $self->_drain_rbuf;
895} 1139}
896 1140
897sub unshift_read { 1141sub unshift_read {
898 my $self = shift; 1142 my $self = shift;
899 my $cb = pop; 1143 my $cb = pop;
905 ->($self, $cb, @_); 1149 ->($self, $cb, @_);
906 } 1150 }
907 1151
908 1152
909 unshift @{ $self->{_queue} }, $cb; 1153 unshift @{ $self->{_queue} }, $cb;
910 $self->_drain_rbuf unless $self->{_in_drain}; 1154 $self->_drain_rbuf;
911} 1155}
912 1156
913=item $handle->push_read (type => @args, $cb) 1157=item $handle->push_read (type => @args, $cb)
914 1158
915=item $handle->unshift_read (type => @args, $cb) 1159=item $handle->unshift_read (type => @args, $cb)
1048 return 1; 1292 return 1;
1049 } 1293 }
1050 1294
1051 # reject 1295 # reject
1052 if ($reject && $$rbuf =~ $reject) { 1296 if ($reject && $$rbuf =~ $reject) {
1053 $self->_error (&Errno::EBADMSG); 1297 $self->_error (Errno::EBADMSG);
1054 } 1298 }
1055 1299
1056 # skip 1300 # skip
1057 if ($skip && $$rbuf =~ $skip) { 1301 if ($skip && $$rbuf =~ $skip) {
1058 $data .= substr $$rbuf, 0, $+[0], ""; 1302 $data .= substr $$rbuf, 0, $+[0], "";
1074 my ($self, $cb) = @_; 1318 my ($self, $cb) = @_;
1075 1319
1076 sub { 1320 sub {
1077 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1321 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1078 if ($_[0]{rbuf} =~ /[^0-9]/) { 1322 if ($_[0]{rbuf} =~ /[^0-9]/) {
1079 $self->_error (&Errno::EBADMSG); 1323 $self->_error (Errno::EBADMSG);
1080 } 1324 }
1081 return; 1325 return;
1082 } 1326 }
1083 1327
1084 my $len = $1; 1328 my $len = $1;
1087 my $string = $_[1]; 1331 my $string = $_[1];
1088 $_[0]->unshift_read (chunk => 1, sub { 1332 $_[0]->unshift_read (chunk => 1, sub {
1089 if ($_[1] eq ",") { 1333 if ($_[1] eq ",") {
1090 $cb->($_[0], $string); 1334 $cb->($_[0], $string);
1091 } else { 1335 } else {
1092 $self->_error (&Errno::EBADMSG); 1336 $self->_error (Errno::EBADMSG);
1093 } 1337 }
1094 }); 1338 });
1095 }); 1339 });
1096 1340
1097 1 1341 1
1103An octet string prefixed with an encoded length. The encoding C<$format> 1347An octet string prefixed with an encoded length. The encoding C<$format>
1104uses the same format as a Perl C<pack> format, but must specify a single 1348uses the same format as a Perl C<pack> format, but must specify a single
1105integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1349integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1106optional C<!>, C<< < >> or C<< > >> modifier). 1350optional C<!>, C<< < >> or C<< > >> modifier).
1107 1351
1108DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1352For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1353EPP uses a prefix of C<N> (4 octtes).
1109 1354
1110Example: read a block of data prefixed by its length in BER-encoded 1355Example: read a block of data prefixed by its length in BER-encoded
1111format (very efficient). 1356format (very efficient).
1112 1357
1113 $handle->push_read (packstring => "w", sub { 1358 $handle->push_read (packstring => "w", sub {
1143 } 1388 }
1144}; 1389};
1145 1390
1146=item json => $cb->($handle, $hash_or_arrayref) 1391=item json => $cb->($handle, $hash_or_arrayref)
1147 1392
1148Reads a JSON object or array, decodes it and passes it to the callback. 1393Reads a JSON object or array, decodes it and passes it to the
1394callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1149 1395
1150If a C<json> object was passed to the constructor, then that will be used 1396If a C<json> object was passed to the constructor, then that will be used
1151for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1397for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1152 1398
1153This read type uses the incremental parser available with JSON version 1399This read type uses the incremental parser available with JSON version
1162=cut 1408=cut
1163 1409
1164register_read_type json => sub { 1410register_read_type json => sub {
1165 my ($self, $cb) = @_; 1411 my ($self, $cb) = @_;
1166 1412
1167 require JSON; 1413 my $json = $self->{json} ||=
1414 eval { require JSON::XS; JSON::XS->new->utf8 }
1415 || do { require JSON; JSON->new->utf8 };
1168 1416
1169 my $data; 1417 my $data;
1170 my $rbuf = \$self->{rbuf}; 1418 my $rbuf = \$self->{rbuf};
1171 1419
1172 my $json = $self->{json} ||= JSON->new->utf8;
1173
1174 sub { 1420 sub {
1175 my $ref = $json->incr_parse ($self->{rbuf}); 1421 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1176 1422
1177 if ($ref) { 1423 if ($ref) {
1178 $self->{rbuf} = $json->incr_text; 1424 $self->{rbuf} = $json->incr_text;
1179 $json->incr_text = ""; 1425 $json->incr_text = "";
1180 $cb->($self, $ref); 1426 $cb->($self, $ref);
1181 1427
1182 1 1428 1
1429 } elsif ($@) {
1430 # error case
1431 $json->incr_skip;
1432
1433 $self->{rbuf} = $json->incr_text;
1434 $json->incr_text = "";
1435
1436 $self->_error (Errno::EBADMSG);
1437
1438 ()
1183 } else { 1439 } else {
1184 $self->{rbuf} = ""; 1440 $self->{rbuf} = "";
1441
1185 () 1442 ()
1186 } 1443 }
1187 } 1444 }
1188}; 1445};
1189 1446
1221 # read remaining chunk 1478 # read remaining chunk
1222 $_[0]->unshift_read (chunk => $len, sub { 1479 $_[0]->unshift_read (chunk => $len, sub {
1223 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1480 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1224 $cb->($_[0], $ref); 1481 $cb->($_[0], $ref);
1225 } else { 1482 } else {
1226 $self->_error (&Errno::EBADMSG); 1483 $self->_error (Errno::EBADMSG);
1227 } 1484 }
1228 }); 1485 });
1229 } 1486 }
1230 1487
1231 1 1488 1
1283 my ($self) = @_; 1540 my ($self) = @_;
1284 1541
1285 unless ($self->{_rw} || $self->{_eof}) { 1542 unless ($self->{_rw} || $self->{_eof}) {
1286 Scalar::Util::weaken $self; 1543 Scalar::Util::weaken $self;
1287 1544
1288 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1545 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1289 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf}); 1546 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1290 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1547 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1291 1548
1292 if ($len > 0) { 1549 if ($len > 0) {
1293 $self->{_activity} = AnyEvent->now; 1550 $self->{_activity} = AE::now;
1294 1551
1295 if ($self->{tls}) { 1552 if ($self->{tls}) {
1296 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf); 1553 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1554
1297 &_dotls ($self); 1555 &_dotls ($self);
1298 } else { 1556 } else {
1299 $self->_drain_rbuf unless $self->{_in_drain}; 1557 $self->_drain_rbuf;
1300 } 1558 }
1301 1559
1302 } elsif (defined $len) { 1560 } elsif (defined $len) {
1303 delete $self->{_rw}; 1561 delete $self->{_rw};
1304 $self->{_eof} = 1; 1562 $self->{_eof} = 1;
1305 $self->_drain_rbuf unless $self->{_in_drain}; 1563 $self->_drain_rbuf;
1306 1564
1307 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1565 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1308 return $self->_error ($!, 1); 1566 return $self->_error ($!, 1);
1309 } 1567 }
1310 }); 1568 };
1311 } 1569 }
1312} 1570}
1313 1571
1572our $ERROR_SYSCALL;
1573our $ERROR_WANT_READ;
1574
1575sub _tls_error {
1576 my ($self, $err) = @_;
1577
1578 return $self->_error ($!, 1)
1579 if $err == Net::SSLeay::ERROR_SYSCALL ();
1580
1581 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1582
1583 # reduce error string to look less scary
1584 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1585
1586 if ($self->{_on_starttls}) {
1587 (delete $self->{_on_starttls})->($self, undef, $err);
1588 &_freetls;
1589 } else {
1590 &_freetls;
1591 $self->_error (Errno::EPROTO, 1, $err);
1592 }
1593}
1594
1595# poll the write BIO and send the data if applicable
1596# also decode read data if possible
1597# this is basiclaly our TLS state machine
1598# more efficient implementations are possible with openssl,
1599# but not with the buggy and incomplete Net::SSLeay.
1314sub _dotls { 1600sub _dotls {
1315 my ($self) = @_; 1601 my ($self) = @_;
1316 1602
1317 my $buf; 1603 my $tmp;
1318 1604
1319 if (length $self->{_tls_wbuf}) { 1605 if (length $self->{_tls_wbuf}) {
1320 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1606 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1321 substr $self->{_tls_wbuf}, 0, $len, ""; 1607 substr $self->{_tls_wbuf}, 0, $tmp, "";
1322 } 1608 }
1323 }
1324 1609
1610 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1611 return $self->_tls_error ($tmp)
1612 if $tmp != $ERROR_WANT_READ
1613 && ($tmp != $ERROR_SYSCALL || $!);
1614 }
1615
1325 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1616 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1326 unless (length $buf) { 1617 unless (length $tmp) {
1327 # let's treat SSL-eof as we treat normal EOF 1618 $self->{_on_starttls}
1328 delete $self->{_rw}; 1619 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1329 $self->{_eof} = 1;
1330 &_freetls; 1620 &_freetls;
1621
1622 if ($self->{on_stoptls}) {
1623 $self->{on_stoptls}($self);
1624 return;
1625 } else {
1626 # let's treat SSL-eof as we treat normal EOF
1627 delete $self->{_rw};
1628 $self->{_eof} = 1;
1629 }
1331 } 1630 }
1332 1631
1333 $self->{rbuf} .= $buf; 1632 $self->{_tls_rbuf} .= $tmp;
1334 $self->_drain_rbuf unless $self->{_in_drain}; 1633 $self->_drain_rbuf;
1335 $self->{tls} or return; # tls session might have gone away in callback 1634 $self->{tls} or return; # tls session might have gone away in callback
1336 } 1635 }
1337 1636
1338 my $err = Net::SSLeay::get_error ($self->{tls}, -1); 1637 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1339
1340 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1341 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1342 return $self->_error ($!, 1); 1638 return $self->_tls_error ($tmp)
1343 } elsif ($err == Net::SSLeay::ERROR_SSL ()) { 1639 if $tmp != $ERROR_WANT_READ
1344 return $self->_error (&Errno::EIO, 1); 1640 && ($tmp != $ERROR_SYSCALL || $!);
1345 }
1346 1641
1347 # all others are fine for our purposes
1348 }
1349
1350 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1642 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1351 $self->{wbuf} .= $buf; 1643 $self->{wbuf} .= $tmp;
1352 $self->_drain_wbuf; 1644 $self->_drain_wbuf;
1353 } 1645 }
1646
1647 $self->{_on_starttls}
1648 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1649 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1354} 1650}
1355 1651
1356=item $handle->starttls ($tls[, $tls_ctx]) 1652=item $handle->starttls ($tls[, $tls_ctx])
1357 1653
1358Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1654Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1359object is created, you can also do that at a later time by calling 1655object is created, you can also do that at a later time by calling
1360C<starttls>. 1656C<starttls>.
1361 1657
1658Starting TLS is currently an asynchronous operation - when you push some
1659write data and then call C<< ->starttls >> then TLS negotiation will start
1660immediately, after which the queued write data is then sent.
1661
1362The first argument is the same as the C<tls> constructor argument (either 1662The first argument is the same as the C<tls> constructor argument (either
1363C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1663C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1364 1664
1365The second argument is the optional C<Net::SSLeay::CTX> object that is 1665The second argument is the optional C<AnyEvent::TLS> object that is used
1366used when AnyEvent::Handle has to create its own TLS connection object. 1666when AnyEvent::Handle has to create its own TLS connection object, or
1667a hash reference with C<< key => value >> pairs that will be used to
1668construct a new context.
1367 1669
1368The TLS connection object will end up in C<< $handle->{tls} >> after this 1670The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1369call and can be used or changed to your liking. Note that the handshake 1671context in C<< $handle->{tls_ctx} >> after this call and can be used or
1370might have already started when this function returns. 1672changed to your liking. Note that the handshake might have already started
1673when this function returns.
1371 1674
1372If it an error to start a TLS handshake more than once per 1675Due to bugs in OpenSSL, it might or might not be possible to do multiple
1373AnyEvent::Handle object (this is due to bugs in OpenSSL). 1676handshakes on the same stream. Best do not attempt to use the stream after
1677stopping TLS.
1374 1678
1375=cut 1679=cut
1680
1681our %TLS_CACHE; #TODO not yet documented, should we?
1376 1682
1377sub starttls { 1683sub starttls {
1378 my ($self, $ssl, $ctx) = @_; 1684 my ($self, $tls, $ctx) = @_;
1379 1685
1380 Carp::croak "it is an error to call starttls more than once on an Anyevent::Handle object" 1686 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1381 if $self->{tls}; 1687 if $self->{tls};
1688
1689 $self->{tls} = $tls;
1690 $self->{tls_ctx} = $ctx if @_ > 2;
1691
1692 return unless $self->{fh};
1693
1694 require Net::SSLeay;
1695
1696 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1697 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1698
1699 $tls = $self->{tls};
1700 $ctx = $self->{tls_ctx};
1701
1702 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1703
1704 if ("HASH" eq ref $ctx) {
1705 require AnyEvent::TLS;
1706
1707 if ($ctx->{cache}) {
1708 my $key = $ctx+0;
1709 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1710 } else {
1711 $ctx = new AnyEvent::TLS %$ctx;
1712 }
1713 }
1382 1714
1383 if ($ssl eq "accept") { 1715 $self->{tls_ctx} = $ctx || TLS_CTX ();
1384 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1716 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1385 Net::SSLeay::set_accept_state ($ssl);
1386 } elsif ($ssl eq "connect") {
1387 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1388 Net::SSLeay::set_connect_state ($ssl);
1389 }
1390
1391 $self->{tls} = $ssl;
1392 1717
1393 # basically, this is deep magic (because SSL_read should have the same issues) 1718 # basically, this is deep magic (because SSL_read should have the same issues)
1394 # but the openssl maintainers basically said: "trust us, it just works". 1719 # but the openssl maintainers basically said: "trust us, it just works".
1395 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1720 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1396 # and mismaintained ssleay-module doesn't even offer them). 1721 # and mismaintained ssleay-module doesn't even offer them).
1400 # 1725 #
1401 # note that we do not try to keep the length constant between writes as we are required to do. 1726 # note that we do not try to keep the length constant between writes as we are required to do.
1402 # we assume that most (but not all) of this insanity only applies to non-blocking cases, 1727 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1403 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to 1728 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1404 # have identity issues in that area. 1729 # have identity issues in that area.
1405 Net::SSLeay::CTX_set_mode ($self->{tls}, 1730# Net::SSLeay::CTX_set_mode ($ssl,
1406 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1731# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1407 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1732# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1733 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1408 1734
1409 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1735 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1410 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1736 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1411 1737
1738 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1739
1412 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1740 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1741
1742 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1743 if $self->{on_starttls};
1413 1744
1414 &_dotls; # need to trigger the initial handshake 1745 &_dotls; # need to trigger the initial handshake
1415 $self->start_read; # make sure we actually do read 1746 $self->start_read; # make sure we actually do read
1416} 1747}
1417 1748
1418=item $handle->stoptls 1749=item $handle->stoptls
1419 1750
1420Shuts down the SSL connection - this makes a proper EOF handshake by 1751Shuts down the SSL connection - this makes a proper EOF handshake by
1421sending a close notify to the other side, but since OpenSSL doesn't 1752sending a close notify to the other side, but since OpenSSL doesn't
1422support non-blocking shut downs, it is not possible to re-use the stream 1753support non-blocking shut downs, it is not guarenteed that you can re-use
1423afterwards. 1754the stream afterwards.
1424 1755
1425=cut 1756=cut
1426 1757
1427sub stoptls { 1758sub stoptls {
1428 my ($self) = @_; 1759 my ($self) = @_;
1429 1760
1430 if ($self->{tls}) { 1761 if ($self->{tls}) {
1431 Net::SSLeay::shutdown $self->{tls}; 1762 Net::SSLeay::shutdown ($self->{tls});
1432 1763
1433 &_dotls; 1764 &_dotls;
1434 1765
1435 # we don't give a shit. no, we do, but we can't. no... 1766# # we don't give a shit. no, we do, but we can't. no...#d#
1436 # we, we... have to use openssl :/ 1767# # we, we... have to use openssl :/#d#
1437 &_freetls; 1768# &_freetls;#d#
1438 } 1769 }
1439} 1770}
1440 1771
1441sub _freetls { 1772sub _freetls {
1442 my ($self) = @_; 1773 my ($self) = @_;
1443 1774
1444 return unless $self->{tls}; 1775 return unless $self->{tls};
1445 1776
1446 Net::SSLeay::free (delete $self->{tls}); 1777 $self->{tls_ctx}->_put_session (delete $self->{tls})
1778 if $self->{tls} > 0;
1447 1779
1448 delete @$self{qw(_rbio _wbio _tls_wbuf)}; 1780 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1449} 1781}
1450 1782
1451sub DESTROY { 1783sub DESTROY {
1452 my $self = shift; 1784 my ($self) = @_;
1453 1785
1454 &_freetls; 1786 &_freetls;
1455 1787
1456 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1788 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1457 1789
1458 if ($linger && length $self->{wbuf}) { 1790 if ($linger && length $self->{wbuf} && $self->{fh}) {
1459 my $fh = delete $self->{fh}; 1791 my $fh = delete $self->{fh};
1460 my $wbuf = delete $self->{wbuf}; 1792 my $wbuf = delete $self->{wbuf};
1461 1793
1462 my @linger; 1794 my @linger;
1463 1795
1464 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub { 1796 push @linger, AE::io $fh, 1, sub {
1465 my $len = syswrite $fh, $wbuf, length $wbuf; 1797 my $len = syswrite $fh, $wbuf, length $wbuf;
1466 1798
1467 if ($len > 0) { 1799 if ($len > 0) {
1468 substr $wbuf, 0, $len, ""; 1800 substr $wbuf, 0, $len, "";
1469 } else { 1801 } else {
1470 @linger = (); # end 1802 @linger = (); # end
1471 } 1803 }
1472 }); 1804 };
1473 push @linger, AnyEvent->timer (after => $linger, cb => sub { 1805 push @linger, AE::timer $linger, 0, sub {
1474 @linger = (); 1806 @linger = ();
1475 }); 1807 };
1476 } 1808 }
1809}
1810
1811=item $handle->destroy
1812
1813Shuts down the handle object as much as possible - this call ensures that
1814no further callbacks will be invoked and as many resources as possible
1815will be freed. Any method you will call on the handle object after
1816destroying it in this way will be silently ignored (and it will return the
1817empty list).
1818
1819Normally, you can just "forget" any references to an AnyEvent::Handle
1820object and it will simply shut down. This works in fatal error and EOF
1821callbacks, as well as code outside. It does I<NOT> work in a read or write
1822callback, so when you want to destroy the AnyEvent::Handle object from
1823within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1824that case.
1825
1826Destroying the handle object in this way has the advantage that callbacks
1827will be removed as well, so if those are the only reference holders (as
1828is common), then one doesn't need to do anything special to break any
1829reference cycles.
1830
1831The handle might still linger in the background and write out remaining
1832data, as specified by the C<linger> option, however.
1833
1834=cut
1835
1836sub destroy {
1837 my ($self) = @_;
1838
1839 $self->DESTROY;
1840 %$self = ();
1841 bless $self, "AnyEvent::Handle::destroyed";
1842}
1843
1844sub AnyEvent::Handle::destroyed::AUTOLOAD {
1845 #nop
1477} 1846}
1478 1847
1479=item AnyEvent::Handle::TLS_CTX 1848=item AnyEvent::Handle::TLS_CTX
1480 1849
1481This function creates and returns the Net::SSLeay::CTX object used by 1850This function creates and returns the AnyEvent::TLS object used by default
1482default for TLS mode. 1851for TLS mode.
1483 1852
1484The context is created like this: 1853The context is created by calling L<AnyEvent::TLS> without any arguments.
1485
1486 Net::SSLeay::load_error_strings;
1487 Net::SSLeay::SSLeay_add_ssl_algorithms;
1488 Net::SSLeay::randomize;
1489
1490 my $CTX = Net::SSLeay::CTX_new;
1491
1492 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1493 1854
1494=cut 1855=cut
1495 1856
1496our $TLS_CTX; 1857our $TLS_CTX;
1497 1858
1498sub TLS_CTX() { 1859sub TLS_CTX() {
1499 $TLS_CTX || do { 1860 $TLS_CTX ||= do {
1500 require Net::SSLeay; 1861 require AnyEvent::TLS;
1501 1862
1502 Net::SSLeay::load_error_strings (); 1863 new AnyEvent::TLS
1503 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1504 Net::SSLeay::randomize ();
1505
1506 $TLS_CTX = Net::SSLeay::CTX_new ();
1507
1508 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1509
1510 $TLS_CTX
1511 } 1864 }
1512} 1865}
1513 1866
1514=back 1867=back
1868
1869
1870=head1 NONFREQUENTLY ASKED QUESTIONS
1871
1872=over 4
1873
1874=item I C<undef> the AnyEvent::Handle reference inside my callback and
1875still get further invocations!
1876
1877That's because AnyEvent::Handle keeps a reference to itself when handling
1878read or write callbacks.
1879
1880It is only safe to "forget" the reference inside EOF or error callbacks,
1881from within all other callbacks, you need to explicitly call the C<<
1882->destroy >> method.
1883
1884=item I get different callback invocations in TLS mode/Why can't I pause
1885reading?
1886
1887Unlike, say, TCP, TLS connections do not consist of two independent
1888communication channels, one for each direction. Or put differently. The
1889read and write directions are not independent of each other: you cannot
1890write data unless you are also prepared to read, and vice versa.
1891
1892This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1893callback invocations when you are not expecting any read data - the reason
1894is that AnyEvent::Handle always reads in TLS mode.
1895
1896During the connection, you have to make sure that you always have a
1897non-empty read-queue, or an C<on_read> watcher. At the end of the
1898connection (or when you no longer want to use it) you can call the
1899C<destroy> method.
1900
1901=item How do I read data until the other side closes the connection?
1902
1903If you just want to read your data into a perl scalar, the easiest way
1904to achieve this is by setting an C<on_read> callback that does nothing,
1905clearing the C<on_eof> callback and in the C<on_error> callback, the data
1906will be in C<$_[0]{rbuf}>:
1907
1908 $handle->on_read (sub { });
1909 $handle->on_eof (undef);
1910 $handle->on_error (sub {
1911 my $data = delete $_[0]{rbuf};
1912 });
1913
1914The reason to use C<on_error> is that TCP connections, due to latencies
1915and packets loss, might get closed quite violently with an error, when in
1916fact, all data has been received.
1917
1918It is usually better to use acknowledgements when transferring data,
1919to make sure the other side hasn't just died and you got the data
1920intact. This is also one reason why so many internet protocols have an
1921explicit QUIT command.
1922
1923=item I don't want to destroy the handle too early - how do I wait until
1924all data has been written?
1925
1926After writing your last bits of data, set the C<on_drain> callback
1927and destroy the handle in there - with the default setting of
1928C<low_water_mark> this will be called precisely when all data has been
1929written to the socket:
1930
1931 $handle->push_write (...);
1932 $handle->on_drain (sub {
1933 warn "all data submitted to the kernel\n";
1934 undef $handle;
1935 });
1936
1937If you just want to queue some data and then signal EOF to the other side,
1938consider using C<< ->push_shutdown >> instead.
1939
1940=item I want to contact a TLS/SSL server, I don't care about security.
1941
1942If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1943simply connect to it and then create the AnyEvent::Handle with the C<tls>
1944parameter:
1945
1946 tcp_connect $host, $port, sub {
1947 my ($fh) = @_;
1948
1949 my $handle = new AnyEvent::Handle
1950 fh => $fh,
1951 tls => "connect",
1952 on_error => sub { ... };
1953
1954 $handle->push_write (...);
1955 };
1956
1957=item I want to contact a TLS/SSL server, I do care about security.
1958
1959Then you should additionally enable certificate verification, including
1960peername verification, if the protocol you use supports it (see
1961L<AnyEvent::TLS>, C<verify_peername>).
1962
1963E.g. for HTTPS:
1964
1965 tcp_connect $host, $port, sub {
1966 my ($fh) = @_;
1967
1968 my $handle = new AnyEvent::Handle
1969 fh => $fh,
1970 peername => $host,
1971 tls => "connect",
1972 tls_ctx => { verify => 1, verify_peername => "https" },
1973 ...
1974
1975Note that you must specify the hostname you connected to (or whatever
1976"peername" the protocol needs) as the C<peername> argument, otherwise no
1977peername verification will be done.
1978
1979The above will use the system-dependent default set of trusted CA
1980certificates. If you want to check against a specific CA, add the
1981C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1982
1983 tls_ctx => {
1984 verify => 1,
1985 verify_peername => "https",
1986 ca_file => "my-ca-cert.pem",
1987 },
1988
1989=item I want to create a TLS/SSL server, how do I do that?
1990
1991Well, you first need to get a server certificate and key. You have
1992three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1993self-signed certificate (cheap. check the search engine of your choice,
1994there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1995nice program for that purpose).
1996
1997Then create a file with your private key (in PEM format, see
1998L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1999file should then look like this:
2000
2001 -----BEGIN RSA PRIVATE KEY-----
2002 ...header data
2003 ... lots of base64'y-stuff
2004 -----END RSA PRIVATE KEY-----
2005
2006 -----BEGIN CERTIFICATE-----
2007 ... lots of base64'y-stuff
2008 -----END CERTIFICATE-----
2009
2010The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2011specify this file as C<cert_file>:
2012
2013 tcp_server undef, $port, sub {
2014 my ($fh) = @_;
2015
2016 my $handle = new AnyEvent::Handle
2017 fh => $fh,
2018 tls => "accept",
2019 tls_ctx => { cert_file => "my-server-keycert.pem" },
2020 ...
2021
2022When you have intermediate CA certificates that your clients might not
2023know about, just append them to the C<cert_file>.
2024
2025=back
2026
1515 2027
1516=head1 SUBCLASSING AnyEvent::Handle 2028=head1 SUBCLASSING AnyEvent::Handle
1517 2029
1518In many cases, you might want to subclass AnyEvent::Handle. 2030In many cases, you might want to subclass AnyEvent::Handle.
1519 2031

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines