ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.95 by root, Thu Oct 2 06:42:39 2008 UTC vs.
Revision 1.165 by root, Mon Jul 27 22:49:23 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 3use Scalar::Util ();
9use Carp (); 4use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR); 5use Errno qw(EAGAIN EINTR);
12 6
7use AnyEvent (); BEGIN { AnyEvent::common_sense }
8use AnyEvent::Util qw(WSAEWOULDBLOCK);
9
13=head1 NAME 10=head1 NAME
14 11
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 12AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 13
17=cut 14=cut
18 15
19our $VERSION = 4.3; 16our $VERSION = 4.87;
20 17
21=head1 SYNOPSIS 18=head1 SYNOPSIS
22 19
23 use AnyEvent; 20 use AnyEvent;
24 use AnyEvent::Handle; 21 use AnyEvent::Handle;
25 22
26 my $cv = AnyEvent->condvar; 23 my $cv = AnyEvent->condvar;
27 24
28 my $handle = 25 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 26 fh => \*STDIN,
31 on_eof => sub { 27 on_error => sub {
32 $cv->broadcast; 28 my ($hdl, $fatal, $msg) = @_;
33 }, 29 warn "got error $msg\n";
30 $hdl->destroy;
31 $cv->send;
34 ); 32 );
35 33
36 # send some request line 34 # send some request line
37 $handle->push_write ("getinfo\015\012"); 35 $hdl->push_write ("getinfo\015\012");
38 36
39 # read the response line 37 # read the response line
40 $handle->push_read (line => sub { 38 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 39 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 40 warn "got line <$line>\n";
43 $cv->send; 41 $cv->send;
44 }); 42 });
45 43
46 $cv->recv; 44 $cv->recv;
47 45
48=head1 DESCRIPTION 46=head1 DESCRIPTION
49 47
50This module is a helper module to make it easier to do event-based I/O on 48This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 49filehandles.
52on sockets see L<AnyEvent::Util>.
53 50
54The L<AnyEvent::Intro> tutorial contains some well-documented 51The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples. 52AnyEvent::Handle examples.
56 53
57In the following, when the documentation refers to of "bytes" then this 54In the following, when the documentation refers to of "bytes" then this
58means characters. As sysread and syswrite are used for all I/O, their 55means characters. As sysread and syswrite are used for all I/O, their
59treatment of characters applies to this module as well. 56treatment of characters applies to this module as well.
60 57
58At the very minimum, you should specify C<fh> or C<connect>, and the
59C<on_error> callback.
60
61All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
62argument. 62argument.
63 63
64=head2 SIGPIPE is not handled by this module
65
66SIGPIPE is not handled by this module, so one of the practical
67requirements of using it is to ignore SIGPIPE (C<$SIG{PIPE} =
68'IGNORE'>). At least, this is highly recommend in a networked program: If
69you use AnyEvent::Handle in a filter program (like sort), exiting on
70SIGPIPE is probably the right thing to do.
71
72=head1 METHODS 64=head1 METHODS
73 65
74=over 4 66=over 4
75 67
76=item B<new (%args)> 68=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
77 69
78The constructor supports these arguments (all as key => value pairs). 70The constructor supports these arguments (all as C<< key => value >> pairs).
79 71
80=over 4 72=over 4
81 73
82=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
83 75
84The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
85
86NOTE: The filehandle will be set to non-blocking mode (using 77NOTE: The filehandle will be set to non-blocking mode (using
87C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in 78C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
88that mode. 79that mode.
89 80
81=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
82
83Try to connect to the specified host and service (port), using
84C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
85default C<peername>.
86
87You have to specify either this parameter, or C<fh>, above.
88
89It is possible to push requests on the read and write queues, and modify
90properties of the stream, even while AnyEvent::Handle is connecting.
91
92When this parameter is specified, then the C<on_prepare>,
93C<on_connect_error> and C<on_connect> callbacks will be called under the
94appropriate circumstances:
95
96=over 4
97
90=item on_eof => $cb->($handle) 98=item on_prepare => $cb->($handle)
91 99
92Set the callback to be called when an end-of-file condition is detected, 100This (rarely used) callback is called before a new connection is
93i.e. in the case of a socket, when the other side has closed the 101attempted, but after the file handle has been created. It could be used to
94connection cleanly. 102prepare the file handle with parameters required for the actual connect
103(as opposed to settings that can be changed when the connection is already
104established).
95 105
96For sockets, this just means that the other side has stopped sending data, 106The return value of this callback should be the connect timeout value in
97you can still try to write data, and, in fact, one can return from the eof 107seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
98callback and continue writing data, as only the read part has been shut 108timeout is to be used).
99down.
100 109
101While not mandatory, it is I<highly> recommended to set an eof callback, 110=item on_connect => $cb->($handle, $host, $port, $retry->())
102otherwise you might end up with a closed socket while you are still
103waiting for data.
104 111
105If an EOF condition has been detected but no C<on_eof> callback has been 112This callback is called when a connection has been successfully established.
106set, then a fatal error will be raised with C<$!> set to <0>.
107 113
114The actual numeric host and port (the socket peername) are passed as
115parameters, together with a retry callback.
116
117When, for some reason, the handle is not acceptable, then calling
118C<$retry> will continue with the next conenction target (in case of
119multi-homed hosts or SRV records there can be multiple connection
120endpoints). When it is called then the read and write queues, eof status,
121tls status and similar properties of the handle are being reset.
122
123In most cases, ignoring the C<$retry> parameter is the way to go.
124
125=item on_connect_error => $cb->($handle, $message)
126
127This callback is called when the conenction could not be
128established. C<$!> will contain the relevant error code, and C<$message> a
129message describing it (usually the same as C<"$!">).
130
131If this callback isn't specified, then C<on_error> will be called with a
132fatal error instead.
133
134=back
135
108=item on_error => $cb->($handle, $fatal) 136=item on_error => $cb->($handle, $fatal, $message)
109 137
110This is the error callback, which is called when, well, some error 138This is the error callback, which is called when, well, some error
111occured, such as not being able to resolve the hostname, failure to 139occured, such as not being able to resolve the hostname, failure to
112connect or a read error. 140connect or a read error.
113 141
114Some errors are fatal (which is indicated by C<$fatal> being true). On 142Some errors are fatal (which is indicated by C<$fatal> being true). On
115fatal errors the handle object will be shut down and will not be usable 143fatal errors the handle object will be destroyed (by a call to C<< ->
116(but you are free to look at the current C<< ->rbuf >>). Examples of fatal 144destroy >>) after invoking the error callback (which means you are free to
117errors are an EOF condition with active (but unsatisifable) read watchers 145examine the handle object). Examples of fatal errors are an EOF condition
118(C<EPIPE>) or I/O errors. 146with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
147cases where the other side can close the connection at their will it is
148often easiest to not report C<EPIPE> errors in this callback.
149
150AnyEvent::Handle tries to find an appropriate error code for you to check
151against, but in some cases (TLS errors), this does not work well. It is
152recommended to always output the C<$message> argument in human-readable
153error messages (it's usually the same as C<"$!">).
119 154
120Non-fatal errors can be retried by simply returning, but it is recommended 155Non-fatal errors can be retried by simply returning, but it is recommended
121to simply ignore this parameter and instead abondon the handle object 156to simply ignore this parameter and instead abondon the handle object
122when this callback is invoked. Examples of non-fatal errors are timeouts 157when this callback is invoked. Examples of non-fatal errors are timeouts
123C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>). 158C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
124 159
125On callback entrance, the value of C<$!> contains the operating system 160On callback entrance, the value of C<$!> contains the operating system
126error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 161error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
162C<EPROTO>).
127 163
128While not mandatory, it is I<highly> recommended to set this callback, as 164While not mandatory, it is I<highly> recommended to set this callback, as
129you will not be notified of errors otherwise. The default simply calls 165you will not be notified of errors otherwise. The default simply calls
130C<croak>. 166C<croak>.
131 167
135and no read request is in the queue (unlike read queue callbacks, this 171and no read request is in the queue (unlike read queue callbacks, this
136callback will only be called when at least one octet of data is in the 172callback will only be called when at least one octet of data is in the
137read buffer). 173read buffer).
138 174
139To access (and remove data from) the read buffer, use the C<< ->rbuf >> 175To access (and remove data from) the read buffer, use the C<< ->rbuf >>
140method or access the C<$handle->{rbuf}> member directly. 176method or access the C<< $handle->{rbuf} >> member directly. Note that you
177must not enlarge or modify the read buffer, you can only remove data at
178the beginning from it.
141 179
142When an EOF condition is detected then AnyEvent::Handle will first try to 180When an EOF condition is detected then AnyEvent::Handle will first try to
143feed all the remaining data to the queued callbacks and C<on_read> before 181feed all the remaining data to the queued callbacks and C<on_read> before
144calling the C<on_eof> callback. If no progress can be made, then a fatal 182calling the C<on_eof> callback. If no progress can be made, then a fatal
145error will be raised (with C<$!> set to C<EPIPE>). 183error will be raised (with C<$!> set to C<EPIPE>).
184
185Note that, unlike requests in the read queue, an C<on_read> callback
186doesn't mean you I<require> some data: if there is an EOF and there
187are outstanding read requests then an error will be flagged. With an
188C<on_read> callback, the C<on_eof> callback will be invoked.
189
190=item on_eof => $cb->($handle)
191
192Set the callback to be called when an end-of-file condition is detected,
193i.e. in the case of a socket, when the other side has closed the
194connection cleanly, and there are no outstanding read requests in the
195queue (if there are read requests, then an EOF counts as an unexpected
196connection close and will be flagged as an error).
197
198For sockets, this just means that the other side has stopped sending data,
199you can still try to write data, and, in fact, one can return from the EOF
200callback and continue writing data, as only the read part has been shut
201down.
202
203If an EOF condition has been detected but no C<on_eof> callback has been
204set, then a fatal error will be raised with C<$!> set to <0>.
146 205
147=item on_drain => $cb->($handle) 206=item on_drain => $cb->($handle)
148 207
149This sets the callback that is called when the write buffer becomes empty 208This sets the callback that is called when the write buffer becomes empty
150(or when the callback is set and the buffer is empty already). 209(or when the callback is set and the buffer is empty already).
243 302
244This will not work for partial TLS data that could not be encoded 303This will not work for partial TLS data that could not be encoded
245yet. This data will be lost. Calling the C<stoptls> method in time might 304yet. This data will be lost. Calling the C<stoptls> method in time might
246help. 305help.
247 306
307=item peername => $string
308
309A string used to identify the remote site - usually the DNS hostname
310(I<not> IDN!) used to create the connection, rarely the IP address.
311
312Apart from being useful in error messages, this string is also used in TLS
313peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
314verification will be skipped when C<peername> is not specified or
315C<undef>.
316
248=item tls => "accept" | "connect" | Net::SSLeay::SSL object 317=item tls => "accept" | "connect" | Net::SSLeay::SSL object
249 318
250When this parameter is given, it enables TLS (SSL) mode, that means 319When this parameter is given, it enables TLS (SSL) mode, that means
251AnyEvent will start a TLS handshake as soon as the conenction has been 320AnyEvent will start a TLS handshake as soon as the conenction has been
252established and will transparently encrypt/decrypt data afterwards. 321established and will transparently encrypt/decrypt data afterwards.
322
323All TLS protocol errors will be signalled as C<EPROTO>, with an
324appropriate error message.
253 325
254TLS mode requires Net::SSLeay to be installed (it will be loaded 326TLS mode requires Net::SSLeay to be installed (it will be loaded
255automatically when you try to create a TLS handle): this module doesn't 327automatically when you try to create a TLS handle): this module doesn't
256have a dependency on that module, so if your module requires it, you have 328have a dependency on that module, so if your module requires it, you have
257to add the dependency yourself. 329to add the dependency yourself.
261mode. 333mode.
262 334
263You can also provide your own TLS connection object, but you have 335You can also provide your own TLS connection object, but you have
264to make sure that you call either C<Net::SSLeay::set_connect_state> 336to make sure that you call either C<Net::SSLeay::set_connect_state>
265or C<Net::SSLeay::set_accept_state> on it before you pass it to 337or C<Net::SSLeay::set_accept_state> on it before you pass it to
266AnyEvent::Handle. 338AnyEvent::Handle. Also, this module will take ownership of this connection
339object.
340
341At some future point, AnyEvent::Handle might switch to another TLS
342implementation, then the option to use your own session object will go
343away.
344
345B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
346passing in the wrong integer will lead to certain crash. This most often
347happens when one uses a stylish C<< tls => 1 >> and is surprised about the
348segmentation fault.
267 349
268See the C<< ->starttls >> method for when need to start TLS negotiation later. 350See the C<< ->starttls >> method for when need to start TLS negotiation later.
269 351
270=item tls_ctx => $ssl_ctx 352=item tls_ctx => $anyevent_tls
271 353
272Use the given C<Net::SSLeay::CTX> object to create the new TLS connection 354Use the given C<AnyEvent::TLS> object to create the new TLS connection
273(unless a connection object was specified directly). If this parameter is 355(unless a connection object was specified directly). If this parameter is
274missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 356missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
357
358Instead of an object, you can also specify a hash reference with C<< key
359=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
360new TLS context object.
361
362=item on_starttls => $cb->($handle, $success[, $error_message])
363
364This callback will be invoked when the TLS/SSL handshake has finished. If
365C<$success> is true, then the TLS handshake succeeded, otherwise it failed
366(C<on_stoptls> will not be called in this case).
367
368The session in C<< $handle->{tls} >> can still be examined in this
369callback, even when the handshake was not successful.
370
371TLS handshake failures will not cause C<on_error> to be invoked when this
372callback is in effect, instead, the error message will be passed to C<on_starttls>.
373
374Without this callback, handshake failures lead to C<on_error> being
375called, as normal.
376
377Note that you cannot call C<starttls> right again in this callback. If you
378need to do that, start an zero-second timer instead whose callback can
379then call C<< ->starttls >> again.
380
381=item on_stoptls => $cb->($handle)
382
383When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
384set, then it will be invoked after freeing the TLS session. If it is not,
385then a TLS shutdown condition will be treated like a normal EOF condition
386on the handle.
387
388The session in C<< $handle->{tls} >> can still be examined in this
389callback.
390
391This callback will only be called on TLS shutdowns, not when the
392underlying handle signals EOF.
275 393
276=item json => JSON or JSON::XS object 394=item json => JSON or JSON::XS object
277 395
278This is the json coder object used by the C<json> read and write types. 396This is the json coder object used by the C<json> read and write types.
279 397
288 406
289=cut 407=cut
290 408
291sub new { 409sub new {
292 my $class = shift; 410 my $class = shift;
293
294 my $self = bless { @_ }, $class; 411 my $self = bless { @_ }, $class;
295 412
296 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 413 if ($self->{fh}) {
414 $self->_start;
415 return unless $self->{fh}; # could be gone by now
416
417 } elsif ($self->{connect}) {
418 require AnyEvent::Socket;
419
420 $self->{peername} = $self->{connect}[0]
421 unless exists $self->{peername};
422
423 $self->{_skip_drain_rbuf} = 1;
424
425 {
426 Scalar::Util::weaken (my $self = $self);
427
428 $self->{_connect} =
429 AnyEvent::Socket::tcp_connect (
430 $self->{connect}[0],
431 $self->{connect}[1],
432 sub {
433 my ($fh, $host, $port, $retry) = @_;
434
435 if ($fh) {
436 $self->{fh} = $fh;
437
438 delete $self->{_skip_drain_rbuf};
439 $self->_start;
440
441 $self->{on_connect}
442 and $self->{on_connect}($self, $host, $port, sub {
443 delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
444 $self->{_skip_drain_rbuf} = 1;
445 &$retry;
446 });
447
448 } else {
449 if ($self->{on_connect_error}) {
450 $self->{on_connect_error}($self, "$!");
451 $self->destroy;
452 } else {
453 $self->_error ($!, 1);
454 }
455 }
456 },
457 sub {
458 local $self->{fh} = $_[0];
459
460 $self->{on_prepare}
461 ? $self->{on_prepare}->($self)
462 : ()
463 }
464 );
465 }
466
467 } else {
468 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
469 }
470
471 $self
472}
473
474sub _start {
475 my ($self) = @_;
297 476
298 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 477 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
478
479 $self->{_activity} = AnyEvent->now;
480 $self->_timeout;
481
482 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
299 483
300 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}) 484 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
301 if $self->{tls}; 485 if $self->{tls};
302 486
303 $self->{_activity} = AnyEvent->now;
304 $self->_timeout;
305
306 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain}; 487 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
307 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
308 488
309 $self->start_read 489 $self->start_read
310 if $self->{on_read}; 490 if $self->{on_read} || @{ $self->{_queue} };
311 491
312 $self 492 $self->_drain_wbuf;
313} 493}
314 494
315sub _shutdown { 495#sub _shutdown {
316 my ($self) = @_; 496# my ($self) = @_;
317 497#
318 delete $self->{_tw}; 498# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
319 delete $self->{_rw}; 499# $self->{_eof} = 1; # tell starttls et. al to stop trying
320 delete $self->{_ww}; 500#
321 delete $self->{fh};
322
323 &_freetls; 501# &_freetls;
324 502#}
325 delete $self->{on_read};
326 delete $self->{_queue};
327}
328 503
329sub _error { 504sub _error {
330 my ($self, $errno, $fatal) = @_; 505 my ($self, $errno, $fatal, $message) = @_;
331
332 $self->_shutdown
333 if $fatal;
334 506
335 $! = $errno; 507 $! = $errno;
508 $message ||= "$!";
336 509
337 if ($self->{on_error}) { 510 if ($self->{on_error}) {
338 $self->{on_error}($self, $fatal); 511 $self->{on_error}($self, $fatal, $message);
339 } else { 512 $self->destroy if $fatal;
513 } elsif ($self->{fh}) {
514 $self->destroy;
340 Carp::croak "AnyEvent::Handle uncaught error: $!"; 515 Carp::croak "AnyEvent::Handle uncaught error: $message";
341 } 516 }
342} 517}
343 518
344=item $fh = $handle->fh 519=item $fh = $handle->fh
345 520
382} 557}
383 558
384=item $handle->autocork ($boolean) 559=item $handle->autocork ($boolean)
385 560
386Enables or disables the current autocork behaviour (see C<autocork> 561Enables or disables the current autocork behaviour (see C<autocork>
387constructor argument). 562constructor argument). Changes will only take effect on the next write.
388 563
389=cut 564=cut
565
566sub autocork {
567 $_[0]{autocork} = $_[1];
568}
390 569
391=item $handle->no_delay ($boolean) 570=item $handle->no_delay ($boolean)
392 571
393Enables or disables the C<no_delay> setting (see constructor argument of 572Enables or disables the C<no_delay> setting (see constructor argument of
394the same name for details). 573the same name for details).
398sub no_delay { 577sub no_delay {
399 $_[0]{no_delay} = $_[1]; 578 $_[0]{no_delay} = $_[1];
400 579
401 eval { 580 eval {
402 local $SIG{__DIE__}; 581 local $SIG{__DIE__};
403 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 582 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
583 if $_[0]{fh};
404 }; 584 };
585}
586
587=item $handle->on_starttls ($cb)
588
589Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
590
591=cut
592
593sub on_starttls {
594 $_[0]{on_starttls} = $_[1];
595}
596
597=item $handle->on_stoptls ($cb)
598
599Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
600
601=cut
602
603sub on_starttls {
604 $_[0]{on_stoptls} = $_[1];
405} 605}
406 606
407############################################################################# 607#############################################################################
408 608
409=item $handle->timeout ($seconds) 609=item $handle->timeout ($seconds)
422# reset the timeout watcher, as neccessary 622# reset the timeout watcher, as neccessary
423# also check for time-outs 623# also check for time-outs
424sub _timeout { 624sub _timeout {
425 my ($self) = @_; 625 my ($self) = @_;
426 626
427 if ($self->{timeout}) { 627 if ($self->{timeout} && $self->{fh}) {
428 my $NOW = AnyEvent->now; 628 my $NOW = AnyEvent->now;
429 629
430 # when would the timeout trigger? 630 # when would the timeout trigger?
431 my $after = $self->{_activity} + $self->{timeout} - $NOW; 631 my $after = $self->{_activity} + $self->{timeout} - $NOW;
432 632
435 $self->{_activity} = $NOW; 635 $self->{_activity} = $NOW;
436 636
437 if ($self->{on_timeout}) { 637 if ($self->{on_timeout}) {
438 $self->{on_timeout}($self); 638 $self->{on_timeout}($self);
439 } else { 639 } else {
440 $self->_error (&Errno::ETIMEDOUT); 640 $self->_error (Errno::ETIMEDOUT);
441 } 641 }
442 642
443 # callback could have changed timeout value, optimise 643 # callback could have changed timeout value, optimise
444 return unless $self->{timeout}; 644 return unless $self->{timeout};
445 645
508 Scalar::Util::weaken $self; 708 Scalar::Util::weaken $self;
509 709
510 my $cb = sub { 710 my $cb = sub {
511 my $len = syswrite $self->{fh}, $self->{wbuf}; 711 my $len = syswrite $self->{fh}, $self->{wbuf};
512 712
513 if ($len >= 0) { 713 if (defined $len) {
514 substr $self->{wbuf}, 0, $len, ""; 714 substr $self->{wbuf}, 0, $len, "";
515 715
516 $self->{_activity} = AnyEvent->now; 716 $self->{_activity} = AnyEvent->now;
517 717
518 $self->{on_drain}($self) 718 $self->{on_drain}($self)
550 ->($self, @_); 750 ->($self, @_);
551 } 751 }
552 752
553 if ($self->{tls}) { 753 if ($self->{tls}) {
554 $self->{_tls_wbuf} .= $_[0]; 754 $self->{_tls_wbuf} .= $_[0];
555 &_dotls ($self); 755 &_dotls ($self) if $self->{fh};
556 } else { 756 } else {
557 $self->{wbuf} .= $_[0]; 757 $self->{wbuf} .= $_[0];
558 $self->_drain_wbuf; 758 $self->_drain_wbuf if $self->{fh};
559 } 759 }
560} 760}
561 761
562=item $handle->push_write (type => @args) 762=item $handle->push_write (type => @args)
563 763
577=cut 777=cut
578 778
579register_write_type netstring => sub { 779register_write_type netstring => sub {
580 my ($self, $string) = @_; 780 my ($self, $string) = @_;
581 781
582 sprintf "%d:%s,", (length $string), $string 782 (length $string) . ":$string,"
583}; 783};
584 784
585=item packstring => $format, $data 785=item packstring => $format, $data
586 786
587An octet string prefixed with an encoded length. The encoding C<$format> 787An octet string prefixed with an encoded length. The encoding C<$format>
652 852
653 pack "w/a*", Storable::nfreeze ($ref) 853 pack "w/a*", Storable::nfreeze ($ref)
654}; 854};
655 855
656=back 856=back
857
858=item $handle->push_shutdown
859
860Sometimes you know you want to close the socket after writing your data
861before it was actually written. One way to do that is to replace your
862C<on_drain> handler by a callback that shuts down the socket (and set
863C<low_water_mark> to C<0>). This method is a shorthand for just that, and
864replaces the C<on_drain> callback with:
865
866 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
867
868This simply shuts down the write side and signals an EOF condition to the
869the peer.
870
871You can rely on the normal read queue and C<on_eof> handling
872afterwards. This is the cleanest way to close a connection.
873
874=cut
875
876sub push_shutdown {
877 my ($self) = @_;
878
879 delete $self->{low_water_mark};
880 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
881}
657 882
658=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 883=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
659 884
660This function (not method) lets you add your own types to C<push_write>. 885This function (not method) lets you add your own types to C<push_write>.
661Whenever the given C<type> is used, C<push_write> will invoke the code 886Whenever the given C<type> is used, C<push_write> will invoke the code
755=cut 980=cut
756 981
757sub _drain_rbuf { 982sub _drain_rbuf {
758 my ($self) = @_; 983 my ($self) = @_;
759 984
985 # avoid recursion
986 return if exists $self->{_skip_drain_rbuf};
760 local $self->{_in_drain} = 1; 987 local $self->{_skip_drain_rbuf} = 1;
761 988
762 if ( 989 if (
763 defined $self->{rbuf_max} 990 defined $self->{rbuf_max}
764 && $self->{rbuf_max} < length $self->{rbuf} 991 && $self->{rbuf_max} < length $self->{rbuf}
765 ) { 992 ) {
766 $self->_error (&Errno::ENOSPC, 1), return; 993 $self->_error (Errno::ENOSPC, 1), return;
767 } 994 }
768 995
769 while () { 996 while () {
997 # we need to use a separate tls read buffer, as we must not receive data while
998 # we are draining the buffer, and this can only happen with TLS.
999 $self->{rbuf} .= delete $self->{_tls_rbuf}
1000 if exists $self->{_tls_rbuf};
1001
770 my $len = length $self->{rbuf}; 1002 my $len = length $self->{rbuf};
771 1003
772 if (my $cb = shift @{ $self->{_queue} }) { 1004 if (my $cb = shift @{ $self->{_queue} }) {
773 unless ($cb->($self)) { 1005 unless ($cb->($self)) {
774 if ($self->{_eof}) { 1006 # no progress can be made
775 # no progress can be made (not enough data and no data forthcoming) 1007 # (not enough data and no data forthcoming)
776 $self->_error (&Errno::EPIPE, 1), return; 1008 $self->_error (Errno::EPIPE, 1), return
777 } 1009 if $self->{_eof};
778 1010
779 unshift @{ $self->{_queue} }, $cb; 1011 unshift @{ $self->{_queue} }, $cb;
780 last; 1012 last;
781 } 1013 }
782 } elsif ($self->{on_read}) { 1014 } elsif ($self->{on_read}) {
789 && !@{ $self->{_queue} } # and the queue is still empty 1021 && !@{ $self->{_queue} } # and the queue is still empty
790 && $self->{on_read} # but we still have on_read 1022 && $self->{on_read} # but we still have on_read
791 ) { 1023 ) {
792 # no further data will arrive 1024 # no further data will arrive
793 # so no progress can be made 1025 # so no progress can be made
794 $self->_error (&Errno::EPIPE, 1), return 1026 $self->_error (Errno::EPIPE, 1), return
795 if $self->{_eof}; 1027 if $self->{_eof};
796 1028
797 last; # more data might arrive 1029 last; # more data might arrive
798 } 1030 }
799 } else { 1031 } else {
802 last; 1034 last;
803 } 1035 }
804 } 1036 }
805 1037
806 if ($self->{_eof}) { 1038 if ($self->{_eof}) {
807 if ($self->{on_eof}) { 1039 $self->{on_eof}
808 $self->{on_eof}($self) 1040 ? $self->{on_eof}($self)
809 } else { 1041 : $self->_error (0, 1, "Unexpected end-of-file");
810 $self->_error (0, 1); 1042
811 } 1043 return;
812 } 1044 }
813 1045
814 # may need to restart read watcher 1046 # may need to restart read watcher
815 unless ($self->{_rw}) { 1047 unless ($self->{_rw}) {
816 $self->start_read 1048 $self->start_read
828 1060
829sub on_read { 1061sub on_read {
830 my ($self, $cb) = @_; 1062 my ($self, $cb) = @_;
831 1063
832 $self->{on_read} = $cb; 1064 $self->{on_read} = $cb;
833 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1065 $self->_drain_rbuf if $cb;
834} 1066}
835 1067
836=item $handle->rbuf 1068=item $handle->rbuf
837 1069
838Returns the read buffer (as a modifiable lvalue). 1070Returns the read buffer (as a modifiable lvalue).
839 1071
840You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1072You can access the read buffer directly as the C<< ->{rbuf} >>
841you want. 1073member, if you want. However, the only operation allowed on the
1074read buffer (apart from looking at it) is removing data from its
1075beginning. Otherwise modifying or appending to it is not allowed and will
1076lead to hard-to-track-down bugs.
842 1077
843NOTE: The read buffer should only be used or modified if the C<on_read>, 1078NOTE: The read buffer should only be used or modified if the C<on_read>,
844C<push_read> or C<unshift_read> methods are used. The other read methods 1079C<push_read> or C<unshift_read> methods are used. The other read methods
845automatically manage the read buffer. 1080automatically manage the read buffer.
846 1081
887 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1122 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
888 ->($self, $cb, @_); 1123 ->($self, $cb, @_);
889 } 1124 }
890 1125
891 push @{ $self->{_queue} }, $cb; 1126 push @{ $self->{_queue} }, $cb;
892 $self->_drain_rbuf unless $self->{_in_drain}; 1127 $self->_drain_rbuf;
893} 1128}
894 1129
895sub unshift_read { 1130sub unshift_read {
896 my $self = shift; 1131 my $self = shift;
897 my $cb = pop; 1132 my $cb = pop;
903 ->($self, $cb, @_); 1138 ->($self, $cb, @_);
904 } 1139 }
905 1140
906 1141
907 unshift @{ $self->{_queue} }, $cb; 1142 unshift @{ $self->{_queue} }, $cb;
908 $self->_drain_rbuf unless $self->{_in_drain}; 1143 $self->_drain_rbuf;
909} 1144}
910 1145
911=item $handle->push_read (type => @args, $cb) 1146=item $handle->push_read (type => @args, $cb)
912 1147
913=item $handle->unshift_read (type => @args, $cb) 1148=item $handle->unshift_read (type => @args, $cb)
1046 return 1; 1281 return 1;
1047 } 1282 }
1048 1283
1049 # reject 1284 # reject
1050 if ($reject && $$rbuf =~ $reject) { 1285 if ($reject && $$rbuf =~ $reject) {
1051 $self->_error (&Errno::EBADMSG); 1286 $self->_error (Errno::EBADMSG);
1052 } 1287 }
1053 1288
1054 # skip 1289 # skip
1055 if ($skip && $$rbuf =~ $skip) { 1290 if ($skip && $$rbuf =~ $skip) {
1056 $data .= substr $$rbuf, 0, $+[0], ""; 1291 $data .= substr $$rbuf, 0, $+[0], "";
1072 my ($self, $cb) = @_; 1307 my ($self, $cb) = @_;
1073 1308
1074 sub { 1309 sub {
1075 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1310 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1076 if ($_[0]{rbuf} =~ /[^0-9]/) { 1311 if ($_[0]{rbuf} =~ /[^0-9]/) {
1077 $self->_error (&Errno::EBADMSG); 1312 $self->_error (Errno::EBADMSG);
1078 } 1313 }
1079 return; 1314 return;
1080 } 1315 }
1081 1316
1082 my $len = $1; 1317 my $len = $1;
1085 my $string = $_[1]; 1320 my $string = $_[1];
1086 $_[0]->unshift_read (chunk => 1, sub { 1321 $_[0]->unshift_read (chunk => 1, sub {
1087 if ($_[1] eq ",") { 1322 if ($_[1] eq ",") {
1088 $cb->($_[0], $string); 1323 $cb->($_[0], $string);
1089 } else { 1324 } else {
1090 $self->_error (&Errno::EBADMSG); 1325 $self->_error (Errno::EBADMSG);
1091 } 1326 }
1092 }); 1327 });
1093 }); 1328 });
1094 1329
1095 1 1330 1
1101An octet string prefixed with an encoded length. The encoding C<$format> 1336An octet string prefixed with an encoded length. The encoding C<$format>
1102uses the same format as a Perl C<pack> format, but must specify a single 1337uses the same format as a Perl C<pack> format, but must specify a single
1103integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1338integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1104optional C<!>, C<< < >> or C<< > >> modifier). 1339optional C<!>, C<< < >> or C<< > >> modifier).
1105 1340
1106DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1341For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1342EPP uses a prefix of C<N> (4 octtes).
1107 1343
1108Example: read a block of data prefixed by its length in BER-encoded 1344Example: read a block of data prefixed by its length in BER-encoded
1109format (very efficient). 1345format (very efficient).
1110 1346
1111 $handle->push_read (packstring => "w", sub { 1347 $handle->push_read (packstring => "w", sub {
1141 } 1377 }
1142}; 1378};
1143 1379
1144=item json => $cb->($handle, $hash_or_arrayref) 1380=item json => $cb->($handle, $hash_or_arrayref)
1145 1381
1146Reads a JSON object or array, decodes it and passes it to the callback. 1382Reads a JSON object or array, decodes it and passes it to the
1383callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1147 1384
1148If a C<json> object was passed to the constructor, then that will be used 1385If a C<json> object was passed to the constructor, then that will be used
1149for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1386for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1150 1387
1151This read type uses the incremental parser available with JSON version 1388This read type uses the incremental parser available with JSON version
1160=cut 1397=cut
1161 1398
1162register_read_type json => sub { 1399register_read_type json => sub {
1163 my ($self, $cb) = @_; 1400 my ($self, $cb) = @_;
1164 1401
1165 require JSON; 1402 my $json = $self->{json} ||=
1403 eval { require JSON::XS; JSON::XS->new->utf8 }
1404 || do { require JSON; JSON->new->utf8 };
1166 1405
1167 my $data; 1406 my $data;
1168 my $rbuf = \$self->{rbuf}; 1407 my $rbuf = \$self->{rbuf};
1169 1408
1170 my $json = $self->{json} ||= JSON->new->utf8;
1171
1172 sub { 1409 sub {
1173 my $ref = $json->incr_parse ($self->{rbuf}); 1410 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1174 1411
1175 if ($ref) { 1412 if ($ref) {
1176 $self->{rbuf} = $json->incr_text; 1413 $self->{rbuf} = $json->incr_text;
1177 $json->incr_text = ""; 1414 $json->incr_text = "";
1178 $cb->($self, $ref); 1415 $cb->($self, $ref);
1179 1416
1180 1 1417 1
1418 } elsif ($@) {
1419 # error case
1420 $json->incr_skip;
1421
1422 $self->{rbuf} = $json->incr_text;
1423 $json->incr_text = "";
1424
1425 $self->_error (Errno::EBADMSG);
1426
1427 ()
1181 } else { 1428 } else {
1182 $self->{rbuf} = ""; 1429 $self->{rbuf} = "";
1430
1183 () 1431 ()
1184 } 1432 }
1185 } 1433 }
1186}; 1434};
1187 1435
1219 # read remaining chunk 1467 # read remaining chunk
1220 $_[0]->unshift_read (chunk => $len, sub { 1468 $_[0]->unshift_read (chunk => $len, sub {
1221 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1469 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1222 $cb->($_[0], $ref); 1470 $cb->($_[0], $ref);
1223 } else { 1471 } else {
1224 $self->_error (&Errno::EBADMSG); 1472 $self->_error (Errno::EBADMSG);
1225 } 1473 }
1226 }); 1474 });
1227 } 1475 }
1228 1476
1229 1 1477 1
1290 if ($len > 0) { 1538 if ($len > 0) {
1291 $self->{_activity} = AnyEvent->now; 1539 $self->{_activity} = AnyEvent->now;
1292 1540
1293 if ($self->{tls}) { 1541 if ($self->{tls}) {
1294 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf); 1542 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1543
1295 &_dotls ($self); 1544 &_dotls ($self);
1296 } else { 1545 } else {
1297 $self->_drain_rbuf unless $self->{_in_drain}; 1546 $self->_drain_rbuf;
1298 } 1547 }
1299 1548
1300 } elsif (defined $len) { 1549 } elsif (defined $len) {
1301 delete $self->{_rw}; 1550 delete $self->{_rw};
1302 $self->{_eof} = 1; 1551 $self->{_eof} = 1;
1303 $self->_drain_rbuf unless $self->{_in_drain}; 1552 $self->_drain_rbuf;
1304 1553
1305 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1554 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1306 return $self->_error ($!, 1); 1555 return $self->_error ($!, 1);
1307 } 1556 }
1308 }); 1557 });
1309 } 1558 }
1310} 1559}
1311 1560
1561our $ERROR_SYSCALL;
1562our $ERROR_WANT_READ;
1563
1564sub _tls_error {
1565 my ($self, $err) = @_;
1566
1567 return $self->_error ($!, 1)
1568 if $err == Net::SSLeay::ERROR_SYSCALL ();
1569
1570 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1571
1572 # reduce error string to look less scary
1573 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1574
1575 if ($self->{_on_starttls}) {
1576 (delete $self->{_on_starttls})->($self, undef, $err);
1577 &_freetls;
1578 } else {
1579 &_freetls;
1580 $self->_error (Errno::EPROTO, 1, $err);
1581 }
1582}
1583
1584# poll the write BIO and send the data if applicable
1585# also decode read data if possible
1586# this is basiclaly our TLS state machine
1587# more efficient implementations are possible with openssl,
1588# but not with the buggy and incomplete Net::SSLeay.
1312sub _dotls { 1589sub _dotls {
1313 my ($self) = @_; 1590 my ($self) = @_;
1314 1591
1315 my $buf; 1592 my $tmp;
1316 1593
1317 if (length $self->{_tls_wbuf}) { 1594 if (length $self->{_tls_wbuf}) {
1318 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1595 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1319 substr $self->{_tls_wbuf}, 0, $len, ""; 1596 substr $self->{_tls_wbuf}, 0, $tmp, "";
1320 } 1597 }
1321 }
1322 1598
1599 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1600 return $self->_tls_error ($tmp)
1601 if $tmp != $ERROR_WANT_READ
1602 && ($tmp != $ERROR_SYSCALL || $!);
1603 }
1604
1323 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1605 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1324 unless (length $buf) { 1606 unless (length $tmp) {
1325 # let's treat SSL-eof as we treat normal EOF 1607 $self->{_on_starttls}
1326 delete $self->{_rw}; 1608 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1327 $self->{_eof} = 1;
1328 &_freetls; 1609 &_freetls;
1610
1611 if ($self->{on_stoptls}) {
1612 $self->{on_stoptls}($self);
1613 return;
1614 } else {
1615 # let's treat SSL-eof as we treat normal EOF
1616 delete $self->{_rw};
1617 $self->{_eof} = 1;
1618 }
1329 } 1619 }
1330 1620
1331 $self->{rbuf} .= $buf; 1621 $self->{_tls_rbuf} .= $tmp;
1332 $self->_drain_rbuf unless $self->{_in_drain}; 1622 $self->_drain_rbuf;
1333 $self->{tls} or return; # tls session might have gone away in callback 1623 $self->{tls} or return; # tls session might have gone away in callback
1334 } 1624 }
1335 1625
1336 my $err = Net::SSLeay::get_error ($self->{tls}, -1); 1626 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1337
1338 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1339 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1340 return $self->_error ($!, 1); 1627 return $self->_tls_error ($tmp)
1341 } elsif ($err == Net::SSLeay::ERROR_SSL ()) { 1628 if $tmp != $ERROR_WANT_READ
1342 return $self->_error (&Errno::EIO, 1); 1629 && ($tmp != $ERROR_SYSCALL || $!);
1343 }
1344 1630
1345 # all others are fine for our purposes
1346 }
1347
1348 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1631 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1349 $self->{wbuf} .= $buf; 1632 $self->{wbuf} .= $tmp;
1350 $self->_drain_wbuf; 1633 $self->_drain_wbuf;
1351 } 1634 }
1635
1636 $self->{_on_starttls}
1637 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1638 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1352} 1639}
1353 1640
1354=item $handle->starttls ($tls[, $tls_ctx]) 1641=item $handle->starttls ($tls[, $tls_ctx])
1355 1642
1356Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1643Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1357object is created, you can also do that at a later time by calling 1644object is created, you can also do that at a later time by calling
1358C<starttls>. 1645C<starttls>.
1359 1646
1647Starting TLS is currently an asynchronous operation - when you push some
1648write data and then call C<< ->starttls >> then TLS negotiation will start
1649immediately, after which the queued write data is then sent.
1650
1360The first argument is the same as the C<tls> constructor argument (either 1651The first argument is the same as the C<tls> constructor argument (either
1361C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1652C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1362 1653
1363The second argument is the optional C<Net::SSLeay::CTX> object that is 1654The second argument is the optional C<AnyEvent::TLS> object that is used
1364used when AnyEvent::Handle has to create its own TLS connection object. 1655when AnyEvent::Handle has to create its own TLS connection object, or
1656a hash reference with C<< key => value >> pairs that will be used to
1657construct a new context.
1365 1658
1366The TLS connection object will end up in C<< $handle->{tls} >> after this 1659The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1367call and can be used or changed to your liking. Note that the handshake 1660context in C<< $handle->{tls_ctx} >> after this call and can be used or
1368might have already started when this function returns. 1661changed to your liking. Note that the handshake might have already started
1662when this function returns.
1369 1663
1370If it an error to start a TLS handshake more than once per 1664Due to bugs in OpenSSL, it might or might not be possible to do multiple
1371AnyEvent::Handle object (this is due to bugs in OpenSSL). 1665handshakes on the same stream. Best do not attempt to use the stream after
1666stopping TLS.
1372 1667
1373=cut 1668=cut
1669
1670our %TLS_CACHE; #TODO not yet documented, should we?
1374 1671
1375sub starttls { 1672sub starttls {
1376 my ($self, $ssl, $ctx) = @_; 1673 my ($self, $tls, $ctx) = @_;
1674
1675 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1676 if $self->{tls};
1677
1678 $self->{tls} = $tls;
1679 $self->{tls_ctx} = $ctx if @_ > 2;
1680
1681 return unless $self->{fh};
1377 1682
1378 require Net::SSLeay; 1683 require Net::SSLeay;
1379 1684
1380 Carp::croak "it is an error to call starttls more than once on an Anyevent::Handle object" 1685 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1686 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1687
1381 if $self->{tls}; 1688 $tls = $self->{tls};
1689 $ctx = $self->{tls_ctx};
1690
1691 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1692
1693 if ("HASH" eq ref $ctx) {
1694 require AnyEvent::TLS;
1695
1696 if ($ctx->{cache}) {
1697 my $key = $ctx+0;
1698 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1699 } else {
1700 $ctx = new AnyEvent::TLS %$ctx;
1701 }
1702 }
1382 1703
1383 if ($ssl eq "accept") { 1704 $self->{tls_ctx} = $ctx || TLS_CTX ();
1384 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1705 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1385 Net::SSLeay::set_accept_state ($ssl);
1386 } elsif ($ssl eq "connect") {
1387 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1388 Net::SSLeay::set_connect_state ($ssl);
1389 }
1390
1391 $self->{tls} = $ssl;
1392 1706
1393 # basically, this is deep magic (because SSL_read should have the same issues) 1707 # basically, this is deep magic (because SSL_read should have the same issues)
1394 # but the openssl maintainers basically said: "trust us, it just works". 1708 # but the openssl maintainers basically said: "trust us, it just works".
1395 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1709 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1396 # and mismaintained ssleay-module doesn't even offer them). 1710 # and mismaintained ssleay-module doesn't even offer them).
1400 # 1714 #
1401 # note that we do not try to keep the length constant between writes as we are required to do. 1715 # note that we do not try to keep the length constant between writes as we are required to do.
1402 # we assume that most (but not all) of this insanity only applies to non-blocking cases, 1716 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1403 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to 1717 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1404 # have identity issues in that area. 1718 # have identity issues in that area.
1405 Net::SSLeay::CTX_set_mode ($self->{tls}, 1719# Net::SSLeay::CTX_set_mode ($ssl,
1406 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1720# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1407 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1721# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1722 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1408 1723
1409 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1724 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1410 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1725 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1411 1726
1412 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1727 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1728
1729 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1730 if $self->{on_starttls};
1413 1731
1414 &_dotls; # need to trigger the initial handshake 1732 &_dotls; # need to trigger the initial handshake
1415 $self->start_read; # make sure we actually do read 1733 $self->start_read; # make sure we actually do read
1416} 1734}
1417 1735
1418=item $handle->stoptls 1736=item $handle->stoptls
1419 1737
1420Shuts down the SSL connection - this makes a proper EOF handshake by 1738Shuts down the SSL connection - this makes a proper EOF handshake by
1421sending a close notify to the other side, but since OpenSSL doesn't 1739sending a close notify to the other side, but since OpenSSL doesn't
1422support non-blocking shut downs, it is not possible to re-use the stream 1740support non-blocking shut downs, it is not guarenteed that you can re-use
1423afterwards. 1741the stream afterwards.
1424 1742
1425=cut 1743=cut
1426 1744
1427sub stoptls { 1745sub stoptls {
1428 my ($self) = @_; 1746 my ($self) = @_;
1430 if ($self->{tls}) { 1748 if ($self->{tls}) {
1431 Net::SSLeay::shutdown ($self->{tls}); 1749 Net::SSLeay::shutdown ($self->{tls});
1432 1750
1433 &_dotls; 1751 &_dotls;
1434 1752
1435 # we don't give a shit. no, we do, but we can't. no... 1753# # we don't give a shit. no, we do, but we can't. no...#d#
1436 # we, we... have to use openssl :/ 1754# # we, we... have to use openssl :/#d#
1437 &_freetls; 1755# &_freetls;#d#
1438 } 1756 }
1439} 1757}
1440 1758
1441sub _freetls { 1759sub _freetls {
1442 my ($self) = @_; 1760 my ($self) = @_;
1443 1761
1444 return unless $self->{tls}; 1762 return unless $self->{tls};
1445 1763
1446 Net::SSLeay::free (delete $self->{tls}); 1764 $self->{tls_ctx}->_put_session (delete $self->{tls})
1765 if ref $self->{tls};
1447 1766
1448 delete @$self{qw(_rbio _wbio _tls_wbuf)}; 1767 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1449} 1768}
1450 1769
1451sub DESTROY { 1770sub DESTROY {
1452 my $self = shift; 1771 my ($self) = @_;
1453 1772
1454 &_freetls; 1773 &_freetls;
1455 1774
1456 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1775 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1457 1776
1458 if ($linger && length $self->{wbuf}) { 1777 if ($linger && length $self->{wbuf} && $self->{fh}) {
1459 my $fh = delete $self->{fh}; 1778 my $fh = delete $self->{fh};
1460 my $wbuf = delete $self->{wbuf}; 1779 my $wbuf = delete $self->{wbuf};
1461 1780
1462 my @linger; 1781 my @linger;
1463 1782
1474 @linger = (); 1793 @linger = ();
1475 }); 1794 });
1476 } 1795 }
1477} 1796}
1478 1797
1798=item $handle->destroy
1799
1800Shuts down the handle object as much as possible - this call ensures that
1801no further callbacks will be invoked and as many resources as possible
1802will be freed. Any method you will call on the handle object after
1803destroying it in this way will be silently ignored (and it will return the
1804empty list).
1805
1806Normally, you can just "forget" any references to an AnyEvent::Handle
1807object and it will simply shut down. This works in fatal error and EOF
1808callbacks, as well as code outside. It does I<NOT> work in a read or write
1809callback, so when you want to destroy the AnyEvent::Handle object from
1810within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1811that case.
1812
1813Destroying the handle object in this way has the advantage that callbacks
1814will be removed as well, so if those are the only reference holders (as
1815is common), then one doesn't need to do anything special to break any
1816reference cycles.
1817
1818The handle might still linger in the background and write out remaining
1819data, as specified by the C<linger> option, however.
1820
1821=cut
1822
1823sub destroy {
1824 my ($self) = @_;
1825
1826 $self->DESTROY;
1827 %$self = ();
1828 bless $self, "AnyEvent::Handle::destroyed";
1829}
1830
1831sub AnyEvent::Handle::destroyed::AUTOLOAD {
1832 #nop
1833}
1834
1479=item AnyEvent::Handle::TLS_CTX 1835=item AnyEvent::Handle::TLS_CTX
1480 1836
1481This function creates and returns the Net::SSLeay::CTX object used by 1837This function creates and returns the AnyEvent::TLS object used by default
1482default for TLS mode. 1838for TLS mode.
1483 1839
1484The context is created like this: 1840The context is created by calling L<AnyEvent::TLS> without any arguments.
1485
1486 Net::SSLeay::load_error_strings;
1487 Net::SSLeay::SSLeay_add_ssl_algorithms;
1488 Net::SSLeay::randomize;
1489
1490 my $CTX = Net::SSLeay::CTX_new;
1491
1492 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1493 1841
1494=cut 1842=cut
1495 1843
1496our $TLS_CTX; 1844our $TLS_CTX;
1497 1845
1498sub TLS_CTX() { 1846sub TLS_CTX() {
1499 $TLS_CTX || do { 1847 $TLS_CTX ||= do {
1500 require Net::SSLeay; 1848 require AnyEvent::TLS;
1501 1849
1502 Net::SSLeay::load_error_strings (); 1850 new AnyEvent::TLS
1503 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1504 Net::SSLeay::randomize ();
1505
1506 $TLS_CTX = Net::SSLeay::CTX_new ();
1507
1508 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1509
1510 $TLS_CTX
1511 } 1851 }
1512} 1852}
1513 1853
1514=back 1854=back
1515 1855
1516 1856
1517=head1 NONFREQUENTLY ASKED QUESTIONS 1857=head1 NONFREQUENTLY ASKED QUESTIONS
1518 1858
1519=over 4 1859=over 4
1520 1860
1861=item I C<undef> the AnyEvent::Handle reference inside my callback and
1862still get further invocations!
1863
1864That's because AnyEvent::Handle keeps a reference to itself when handling
1865read or write callbacks.
1866
1867It is only safe to "forget" the reference inside EOF or error callbacks,
1868from within all other callbacks, you need to explicitly call the C<<
1869->destroy >> method.
1870
1871=item I get different callback invocations in TLS mode/Why can't I pause
1872reading?
1873
1874Unlike, say, TCP, TLS connections do not consist of two independent
1875communication channels, one for each direction. Or put differently. The
1876read and write directions are not independent of each other: you cannot
1877write data unless you are also prepared to read, and vice versa.
1878
1879This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1880callback invocations when you are not expecting any read data - the reason
1881is that AnyEvent::Handle always reads in TLS mode.
1882
1883During the connection, you have to make sure that you always have a
1884non-empty read-queue, or an C<on_read> watcher. At the end of the
1885connection (or when you no longer want to use it) you can call the
1886C<destroy> method.
1887
1521=item How do I read data until the other side closes the connection? 1888=item How do I read data until the other side closes the connection?
1522 1889
1523If you just want to read your data into a perl scalar, the easiest way to achieve this is 1890If you just want to read your data into a perl scalar, the easiest way
1524by setting an C<on_read> callback that does nothing, clearing the C<on_eof> callback 1891to achieve this is by setting an C<on_read> callback that does nothing,
1525and in the C<on_error> callback, the data will be in C<$_[0]{rbuf}>: 1892clearing the C<on_eof> callback and in the C<on_error> callback, the data
1893will be in C<$_[0]{rbuf}>:
1526 1894
1527 $handle->on_read (sub { }); 1895 $handle->on_read (sub { });
1528 $handle->on_eof (undef); 1896 $handle->on_eof (undef);
1529 $handle->on_error (sub { 1897 $handle->on_error (sub {
1530 my $data = delete $_[0]{rbuf}; 1898 my $data = delete $_[0]{rbuf};
1531 undef $handle;
1532 }); 1899 });
1533 1900
1534The reason to use C<on_error> is that TCP connections, due to latencies 1901The reason to use C<on_error> is that TCP connections, due to latencies
1535and packets loss, might get closed quite violently with an error, when in 1902and packets loss, might get closed quite violently with an error, when in
1536fact, all data has been received. 1903fact, all data has been received.
1537 1904
1538It is usually better to use acknowledgements when transfering data, 1905It is usually better to use acknowledgements when transferring data,
1539to make sure the other side hasn't just died and you got the data 1906to make sure the other side hasn't just died and you got the data
1540intact. This is also one reason why so many internet protocols have an 1907intact. This is also one reason why so many internet protocols have an
1541explicit QUIT command. 1908explicit QUIT command.
1542 1909
1543
1544=item I don't want to destroy the handle too early - how do I wait until all data has been sent? 1910=item I don't want to destroy the handle too early - how do I wait until
1911all data has been written?
1545 1912
1546After writing your last bits of data, set the C<on_drain> callback 1913After writing your last bits of data, set the C<on_drain> callback
1547and destroy the handle in there - with the default setting of 1914and destroy the handle in there - with the default setting of
1548C<low_water_mark> this will be called precisely when all data has been 1915C<low_water_mark> this will be called precisely when all data has been
1549written to the socket: 1916written to the socket:
1552 $handle->on_drain (sub { 1919 $handle->on_drain (sub {
1553 warn "all data submitted to the kernel\n"; 1920 warn "all data submitted to the kernel\n";
1554 undef $handle; 1921 undef $handle;
1555 }); 1922 });
1556 1923
1924If you just want to queue some data and then signal EOF to the other side,
1925consider using C<< ->push_shutdown >> instead.
1926
1927=item I want to contact a TLS/SSL server, I don't care about security.
1928
1929If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1930simply connect to it and then create the AnyEvent::Handle with the C<tls>
1931parameter:
1932
1933 tcp_connect $host, $port, sub {
1934 my ($fh) = @_;
1935
1936 my $handle = new AnyEvent::Handle
1937 fh => $fh,
1938 tls => "connect",
1939 on_error => sub { ... };
1940
1941 $handle->push_write (...);
1942 };
1943
1944=item I want to contact a TLS/SSL server, I do care about security.
1945
1946Then you should additionally enable certificate verification, including
1947peername verification, if the protocol you use supports it (see
1948L<AnyEvent::TLS>, C<verify_peername>).
1949
1950E.g. for HTTPS:
1951
1952 tcp_connect $host, $port, sub {
1953 my ($fh) = @_;
1954
1955 my $handle = new AnyEvent::Handle
1956 fh => $fh,
1957 peername => $host,
1958 tls => "connect",
1959 tls_ctx => { verify => 1, verify_peername => "https" },
1960 ...
1961
1962Note that you must specify the hostname you connected to (or whatever
1963"peername" the protocol needs) as the C<peername> argument, otherwise no
1964peername verification will be done.
1965
1966The above will use the system-dependent default set of trusted CA
1967certificates. If you want to check against a specific CA, add the
1968C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1969
1970 tls_ctx => {
1971 verify => 1,
1972 verify_peername => "https",
1973 ca_file => "my-ca-cert.pem",
1974 },
1975
1976=item I want to create a TLS/SSL server, how do I do that?
1977
1978Well, you first need to get a server certificate and key. You have
1979three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1980self-signed certificate (cheap. check the search engine of your choice,
1981there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1982nice program for that purpose).
1983
1984Then create a file with your private key (in PEM format, see
1985L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1986file should then look like this:
1987
1988 -----BEGIN RSA PRIVATE KEY-----
1989 ...header data
1990 ... lots of base64'y-stuff
1991 -----END RSA PRIVATE KEY-----
1992
1993 -----BEGIN CERTIFICATE-----
1994 ... lots of base64'y-stuff
1995 -----END CERTIFICATE-----
1996
1997The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
1998specify this file as C<cert_file>:
1999
2000 tcp_server undef, $port, sub {
2001 my ($fh) = @_;
2002
2003 my $handle = new AnyEvent::Handle
2004 fh => $fh,
2005 tls => "accept",
2006 tls_ctx => { cert_file => "my-server-keycert.pem" },
2007 ...
2008
2009When you have intermediate CA certificates that your clients might not
2010know about, just append them to the C<cert_file>.
2011
1557=back 2012=back
1558 2013
1559 2014
1560=head1 SUBCLASSING AnyEvent::Handle 2015=head1 SUBCLASSING AnyEvent::Handle
1561 2016

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines