ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.27
Committed: Sat May 24 15:26:04 2008 UTC (16 years ago) by root
Branch: MAIN
CVS Tags: rel-4_0
Changes since 1.26: +1 -0 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 package AnyEvent::Handle;
2
3 no warnings;
4 use strict;
5
6 use AnyEvent ();
7 use AnyEvent::Util ();
8 use Scalar::Util ();
9 use Carp ();
10 use Fcntl ();
11 use Errno qw/EAGAIN EINTR/;
12
13 =head1 NAME
14
15 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17 This module is experimental.
18
19 =cut
20
21 our $VERSION = '0.04';
22
23 =head1 SYNOPSIS
24
25 use AnyEvent;
26 use AnyEvent::Handle;
27
28 my $cv = AnyEvent->condvar;
29
30 my $ae_fh = AnyEvent::Handle->new (fh => \*STDIN);
31
32 #TODO
33
34 # or use the constructor to pass the callback:
35
36 my $ae_fh2 =
37 AnyEvent::Handle->new (
38 fh => \*STDIN,
39 on_eof => sub {
40 $cv->broadcast;
41 },
42 #TODO
43 );
44
45 $cv->wait;
46
47 =head1 DESCRIPTION
48
49 This module is a helper module to make it easier to do event-based I/O on
50 filehandles. For utility functions for doing non-blocking connects and accepts
51 on sockets see L<AnyEvent::Util>.
52
53 In the following, when the documentation refers to of "bytes" then this
54 means characters. As sysread and syswrite are used for all I/O, their
55 treatment of characters applies to this module as well.
56
57 All callbacks will be invoked with the handle object as their first
58 argument.
59
60 =head1 METHODS
61
62 =over 4
63
64 =item B<new (%args)>
65
66 The constructor supports these arguments (all as key => value pairs).
67
68 =over 4
69
70 =item fh => $filehandle [MANDATORY]
71
72 The filehandle this L<AnyEvent::Handle> object will operate on.
73
74 NOTE: The filehandle will be set to non-blocking (using
75 AnyEvent::Util::fh_nonblocking).
76
77 =item on_eof => $cb->($self)
78
79 Set the callback to be called on EOF.
80
81 While not mandatory, it is highly recommended to set an eof callback,
82 otherwise you might end up with a closed socket while you are still
83 waiting for data.
84
85 =item on_error => $cb->($self)
86
87 This is the fatal error callback, that is called when, well, a fatal error
88 occurs, such as not being able to resolve the hostname, failure to connect
89 or a read error.
90
91 The object will not be in a usable state when this callback has been
92 called.
93
94 On callback entrance, the value of C<$!> contains the operating system
95 error (or C<ENOSPC> or C<EPIPE>).
96
97 While not mandatory, it is I<highly> recommended to set this callback, as
98 you will not be notified of errors otherwise. The default simply calls
99 die.
100
101 =item on_read => $cb->($self)
102
103 This sets the default read callback, which is called when data arrives
104 and no read request is in the queue.
105
106 To access (and remove data from) the read buffer, use the C<< ->rbuf >>
107 method or access the C<$self->{rbuf}> member directly.
108
109 When an EOF condition is detected then AnyEvent::Handle will first try to
110 feed all the remaining data to the queued callbacks and C<on_read> before
111 calling the C<on_eof> callback. If no progress can be made, then a fatal
112 error will be raised (with C<$!> set to C<EPIPE>).
113
114 =item on_drain => $cb->()
115
116 This sets the callback that is called when the write buffer becomes empty
117 (or when the callback is set and the buffer is empty already).
118
119 To append to the write buffer, use the C<< ->push_write >> method.
120
121 =item rbuf_max => <bytes>
122
123 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
124 when the read buffer ever (strictly) exceeds this size. This is useful to
125 avoid denial-of-service attacks.
126
127 For example, a server accepting connections from untrusted sources should
128 be configured to accept only so-and-so much data that it cannot act on
129 (for example, when expecting a line, an attacker could send an unlimited
130 amount of data without a callback ever being called as long as the line
131 isn't finished).
132
133 =item read_size => <bytes>
134
135 The default read block size (the amount of bytes this module will try to read
136 on each [loop iteration). Default: C<4096>.
137
138 =item low_water_mark => <bytes>
139
140 Sets the amount of bytes (default: C<0>) that make up an "empty" write
141 buffer: If the write reaches this size or gets even samller it is
142 considered empty.
143
144 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
145
146 When this parameter is given, it enables TLS (SSL) mode, that means it
147 will start making tls handshake and will transparently encrypt/decrypt
148 data.
149
150 TLS mode requires Net::SSLeay to be installed (it will be loaded
151 automatically when you try to create a TLS handle).
152
153 For the TLS server side, use C<accept>, and for the TLS client side of a
154 connection, use C<connect> mode.
155
156 You can also provide your own TLS connection object, but you have
157 to make sure that you call either C<Net::SSLeay::set_connect_state>
158 or C<Net::SSLeay::set_accept_state> on it before you pass it to
159 AnyEvent::Handle.
160
161 See the C<starttls> method if you need to start TLs negotiation later.
162
163 =item tls_ctx => $ssl_ctx
164
165 Use the given Net::SSLeay::CTX object to create the new TLS connection
166 (unless a connection object was specified directly). If this parameter is
167 missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
168
169 =back
170
171 =cut
172
173 sub new {
174 my $class = shift;
175
176 my $self = bless { @_ }, $class;
177
178 $self->{fh} or Carp::croak "mandatory argument fh is missing";
179
180 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
181
182 if ($self->{tls}) {
183 require Net::SSLeay;
184 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
185 }
186
187 $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof};
188 $self->on_error (delete $self->{on_error}) if $self->{on_error};
189 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
190 $self->on_read (delete $self->{on_read} ) if $self->{on_read};
191
192 $self->start_read;
193
194 $self
195 }
196
197 sub _shutdown {
198 my ($self) = @_;
199
200 delete $self->{rw};
201 delete $self->{ww};
202 delete $self->{fh};
203 }
204
205 sub error {
206 my ($self) = @_;
207
208 {
209 local $!;
210 $self->_shutdown;
211 }
212
213 if ($self->{on_error}) {
214 $self->{on_error}($self);
215 } else {
216 die "AnyEvent::Handle uncaught fatal error: $!";
217 }
218 }
219
220 =item $fh = $handle->fh
221
222 This method returns the file handle of the L<AnyEvent::Handle> object.
223
224 =cut
225
226 sub fh { $_[0]->{fh} }
227
228 =item $handle->on_error ($cb)
229
230 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
231
232 =cut
233
234 sub on_error {
235 $_[0]{on_error} = $_[1];
236 }
237
238 =item $handle->on_eof ($cb)
239
240 Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
241
242 =cut
243
244 sub on_eof {
245 $_[0]{on_eof} = $_[1];
246 }
247
248 #############################################################################
249
250 =back
251
252 =head2 WRITE QUEUE
253
254 AnyEvent::Handle manages two queues per handle, one for writing and one
255 for reading.
256
257 The write queue is very simple: you can add data to its end, and
258 AnyEvent::Handle will automatically try to get rid of it for you.
259
260 When data could be written and the write buffer is shorter then the low
261 water mark, the C<on_drain> callback will be invoked.
262
263 =over 4
264
265 =item $handle->on_drain ($cb)
266
267 Sets the C<on_drain> callback or clears it (see the description of
268 C<on_drain> in the constructor).
269
270 =cut
271
272 sub on_drain {
273 my ($self, $cb) = @_;
274
275 $self->{on_drain} = $cb;
276
277 $cb->($self)
278 if $cb && $self->{low_water_mark} >= length $self->{wbuf};
279 }
280
281 =item $handle->push_write ($data)
282
283 Queues the given scalar to be written. You can push as much data as you
284 want (only limited by the available memory), as C<AnyEvent::Handle>
285 buffers it independently of the kernel.
286
287 =cut
288
289 sub _drain_wbuf {
290 my ($self) = @_;
291
292 unless ($self->{ww}) {
293 Scalar::Util::weaken $self;
294 my $cb = sub {
295 my $len = syswrite $self->{fh}, $self->{wbuf};
296
297 if ($len > 0) {
298 substr $self->{wbuf}, 0, $len, "";
299
300 $self->{on_drain}($self)
301 if $self->{low_water_mark} >= length $self->{wbuf}
302 && $self->{on_drain};
303
304 delete $self->{ww} unless length $self->{wbuf};
305 } elsif ($! != EAGAIN && $! != EINTR) {
306 $self->error;
307 }
308 };
309
310 $self->{ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb);
311
312 $cb->($self);
313 };
314 }
315
316 sub push_write {
317 my $self = shift;
318
319 if ($self->{filter_w}) {
320 $self->{filter_w}->($self, \$_[0]);
321 } else {
322 $self->{wbuf} .= $_[0];
323 $self->_drain_wbuf;
324 }
325 }
326
327 #############################################################################
328
329 =back
330
331 =head2 READ QUEUE
332
333 AnyEvent::Handle manages two queues per handle, one for writing and one
334 for reading.
335
336 The read queue is more complex than the write queue. It can be used in two
337 ways, the "simple" way, using only C<on_read> and the "complex" way, using
338 a queue.
339
340 In the simple case, you just install an C<on_read> callback and whenever
341 new data arrives, it will be called. You can then remove some data (if
342 enough is there) from the read buffer (C<< $handle->rbuf >>) if you want
343 or not.
344
345 In the more complex case, you want to queue multiple callbacks. In this
346 case, AnyEvent::Handle will call the first queued callback each time new
347 data arrives and removes it when it has done its job (see C<push_read>,
348 below).
349
350 This way you can, for example, push three line-reads, followed by reading
351 a chunk of data, and AnyEvent::Handle will execute them in order.
352
353 Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
354 the specified number of bytes which give an XML datagram.
355
356 # in the default state, expect some header bytes
357 $handle->on_read (sub {
358 # some data is here, now queue the length-header-read (4 octets)
359 shift->unshift_read_chunk (4, sub {
360 # header arrived, decode
361 my $len = unpack "N", $_[1];
362
363 # now read the payload
364 shift->unshift_read_chunk ($len, sub {
365 my $xml = $_[1];
366 # handle xml
367 });
368 });
369 });
370
371 Example 2: Implement a client for a protocol that replies either with
372 "OK" and another line or "ERROR" for one request, and 64 bytes for the
373 second request. Due tot he availability of a full queue, we can just
374 pipeline sending both requests and manipulate the queue as necessary in
375 the callbacks:
376
377 # request one
378 $handle->push_write ("request 1\015\012");
379
380 # we expect "ERROR" or "OK" as response, so push a line read
381 $handle->push_read_line (sub {
382 # if we got an "OK", we have to _prepend_ another line,
383 # so it will be read before the second request reads its 64 bytes
384 # which are already in the queue when this callback is called
385 # we don't do this in case we got an error
386 if ($_[1] eq "OK") {
387 $_[0]->unshift_read_line (sub {
388 my $response = $_[1];
389 ...
390 });
391 }
392 });
393
394 # request two
395 $handle->push_write ("request 2\015\012");
396
397 # simply read 64 bytes, always
398 $handle->push_read_chunk (64, sub {
399 my $response = $_[1];
400 ...
401 });
402
403 =over 4
404
405 =cut
406
407 sub _drain_rbuf {
408 my ($self) = @_;
409
410 if (
411 defined $self->{rbuf_max}
412 && $self->{rbuf_max} < length $self->{rbuf}
413 ) {
414 $! = &Errno::ENOSPC; return $self->error;
415 }
416
417 return if $self->{in_drain};
418 local $self->{in_drain} = 1;
419
420 while (my $len = length $self->{rbuf}) {
421 no strict 'refs';
422 if (my $cb = shift @{ $self->{queue} }) {
423 if (!$cb->($self)) {
424 if ($self->{eof}) {
425 # no progress can be made (not enough data and no data forthcoming)
426 $! = &Errno::EPIPE; return $self->error;
427 }
428
429 unshift @{ $self->{queue} }, $cb;
430 return;
431 }
432 } elsif ($self->{on_read}) {
433 $self->{on_read}($self);
434
435 if (
436 $self->{eof} # if no further data will arrive
437 && $len == length $self->{rbuf} # and no data has been consumed
438 && !@{ $self->{queue} } # and the queue is still empty
439 && $self->{on_read} # and we still want to read data
440 ) {
441 # then no progress can be made
442 $! = &Errno::EPIPE; return $self->error;
443 }
444 } else {
445 # read side becomes idle
446 delete $self->{rw};
447 return;
448 }
449 }
450
451 if ($self->{eof}) {
452 $self->_shutdown;
453 $self->{on_eof}($self)
454 if $self->{on_eof};
455 }
456 }
457
458 =item $handle->on_read ($cb)
459
460 This replaces the currently set C<on_read> callback, or clears it (when
461 the new callback is C<undef>). See the description of C<on_read> in the
462 constructor.
463
464 =cut
465
466 sub on_read {
467 my ($self, $cb) = @_;
468
469 $self->{on_read} = $cb;
470 }
471
472 =item $handle->rbuf
473
474 Returns the read buffer (as a modifiable lvalue).
475
476 You can access the read buffer directly as the C<< ->{rbuf} >> member, if
477 you want.
478
479 NOTE: The read buffer should only be used or modified if the C<on_read>,
480 C<push_read> or C<unshift_read> methods are used. The other read methods
481 automatically manage the read buffer.
482
483 =cut
484
485 sub rbuf : lvalue {
486 $_[0]{rbuf}
487 }
488
489 =item $handle->push_read ($cb)
490
491 =item $handle->unshift_read ($cb)
492
493 Append the given callback to the end of the queue (C<push_read>) or
494 prepend it (C<unshift_read>).
495
496 The callback is called each time some additional read data arrives.
497
498 It must check whether enough data is in the read buffer already.
499
500 If not enough data is available, it must return the empty list or a false
501 value, in which case it will be called repeatedly until enough data is
502 available (or an error condition is detected).
503
504 If enough data was available, then the callback must remove all data it is
505 interested in (which can be none at all) and return a true value. After returning
506 true, it will be removed from the queue.
507
508 =cut
509
510 sub push_read {
511 my ($self, $cb) = @_;
512
513 push @{ $self->{queue} }, $cb;
514 $self->_drain_rbuf;
515 }
516
517 sub unshift_read {
518 my ($self, $cb) = @_;
519
520 push @{ $self->{queue} }, $cb;
521 $self->_drain_rbuf;
522 }
523
524 =item $handle->push_read_chunk ($len, $cb->($self, $data))
525
526 =item $handle->unshift_read_chunk ($len, $cb->($self, $data))
527
528 Append the given callback to the end of the queue (C<push_read_chunk>) or
529 prepend it (C<unshift_read_chunk>).
530
531 The callback will be called only once C<$len> bytes have been read, and
532 these C<$len> bytes will be passed to the callback.
533
534 =cut
535
536 sub _read_chunk($$) {
537 my ($self, $len, $cb) = @_;
538
539 sub {
540 $len <= length $_[0]{rbuf} or return;
541 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
542 1
543 }
544 }
545
546 sub push_read_chunk {
547 $_[0]->push_read (&_read_chunk);
548 }
549
550
551 sub unshift_read_chunk {
552 $_[0]->unshift_read (&_read_chunk);
553 }
554
555 =item $handle->push_read_line ([$eol, ]$cb->($self, $line, $eol))
556
557 =item $handle->unshift_read_line ([$eol, ]$cb->($self, $line, $eol))
558
559 Append the given callback to the end of the queue (C<push_read_line>) or
560 prepend it (C<unshift_read_line>).
561
562 The callback will be called only once a full line (including the end of
563 line marker, C<$eol>) has been read. This line (excluding the end of line
564 marker) will be passed to the callback as second argument (C<$line>), and
565 the end of line marker as the third argument (C<$eol>).
566
567 The end of line marker, C<$eol>, can be either a string, in which case it
568 will be interpreted as a fixed record end marker, or it can be a regex
569 object (e.g. created by C<qr>), in which case it is interpreted as a
570 regular expression.
571
572 The end of line marker argument C<$eol> is optional, if it is missing (NOT
573 undef), then C<qr|\015?\012|> is used (which is good for most internet
574 protocols).
575
576 Partial lines at the end of the stream will never be returned, as they are
577 not marked by the end of line marker.
578
579 =cut
580
581 sub _read_line($$) {
582 my $self = shift;
583 my $cb = pop;
584 my $eol = @_ ? shift : qr|(\015?\012)|;
585 my $pos;
586
587 $eol = quotemeta $eol unless ref $eol;
588 $eol = qr|^(.*?)($eol)|s;
589
590 sub {
591 $_[0]{rbuf} =~ s/$eol// or return;
592
593 $cb->($_[0], $1, $2);
594 1
595 }
596 }
597
598 sub push_read_line {
599 $_[0]->push_read (&_read_line);
600 }
601
602 sub unshift_read_line {
603 $_[0]->unshift_read (&_read_line);
604 }
605
606 =item $handle->stop_read
607
608 =item $handle->start_read
609
610 In rare cases you actually do not want to read anything from the
611 socket. In this case you can call C<stop_read>. Neither C<on_read> no
612 any queued callbacks will be executed then. To start reading again, call
613 C<start_read>.
614
615 =cut
616
617 sub stop_read {
618 my ($self) = @_;
619
620 delete $self->{rw};
621 }
622
623 sub start_read {
624 my ($self) = @_;
625
626 unless ($self->{rw} || $self->{eof}) {
627 Scalar::Util::weaken $self;
628
629 $self->{rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
630 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
631 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
632
633 if ($len > 0) {
634 $self->{filter_r}
635 ? $self->{filter_r}->($self, $rbuf)
636 : $self->_drain_rbuf;
637
638 } elsif (defined $len) {
639 delete $self->{rw};
640 $self->{eof} = 1;
641 $self->_drain_rbuf;
642
643 } elsif ($! != EAGAIN && $! != EINTR) {
644 return $self->error;
645 }
646 });
647 }
648 }
649
650 sub _dotls {
651 my ($self) = @_;
652
653 if (length $self->{tls_wbuf}) {
654 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{tls_wbuf})) > 0) {
655 substr $self->{tls_wbuf}, 0, $len, "";
656 }
657 }
658
659 if (defined (my $buf = Net::SSLeay::BIO_read ($self->{tls_wbio}))) {
660 $self->{wbuf} .= $buf;
661 $self->_drain_wbuf;
662 }
663
664 while (defined (my $buf = Net::SSLeay::read ($self->{tls}))) {
665 $self->{rbuf} .= $buf;
666 $self->_drain_rbuf;
667 }
668
669 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
670
671 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
672 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
673 $self->error;
674 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
675 $! = &Errno::EIO;
676 $self->error;
677 }
678
679 # all others are fine for our purposes
680 }
681 }
682
683 =item $handle->starttls ($tls[, $tls_ctx])
684
685 Instead of starting TLS negotiation immediately when the AnyEvent::Handle
686 object is created, you can also do that at a later time by calling
687 C<starttls>.
688
689 The first argument is the same as the C<tls> constructor argument (either
690 C<"connect">, C<"accept"> or an existing Net::SSLeay object).
691
692 The second argument is the optional C<Net::SSLeay::CTX> object that is
693 used when AnyEvent::Handle has to create its own TLS connection object.
694
695 =cut
696
697 # TODO: maybe document...
698 sub starttls {
699 my ($self, $ssl, $ctx) = @_;
700
701 $self->stoptls;
702
703 if ($ssl eq "accept") {
704 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
705 Net::SSLeay::set_accept_state ($ssl);
706 } elsif ($ssl eq "connect") {
707 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
708 Net::SSLeay::set_connect_state ($ssl);
709 }
710
711 $self->{tls} = $ssl;
712
713 # basically, this is deep magic (because SSL_read should have the same issues)
714 # but the openssl maintainers basically said: "trust us, it just works".
715 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
716 # and mismaintained ssleay-module doesn't even offer them).
717 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
718 Net::SSLeay::CTX_set_mode ($self->{tls},
719 (eval { Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
720 | (eval { Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
721
722 $self->{tls_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
723 $self->{tls_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
724
725 Net::SSLeay::set_bio ($ssl, $self->{tls_rbio}, $self->{tls_wbio});
726
727 $self->{filter_w} = sub {
728 $_[0]{tls_wbuf} .= ${$_[1]};
729 &_dotls;
730 };
731 $self->{filter_r} = sub {
732 Net::SSLeay::BIO_write ($_[0]{tls_rbio}, ${$_[1]});
733 &_dotls;
734 };
735 }
736
737 =item $handle->stoptls
738
739 Destroys the SSL connection, if any. Partial read or write data will be
740 lost.
741
742 =cut
743
744 sub stoptls {
745 my ($self) = @_;
746
747 Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
748 delete $self->{tls_rbio};
749 delete $self->{tls_wbio};
750 delete $self->{tls_wbuf};
751 delete $self->{filter_r};
752 delete $self->{filter_w};
753 }
754
755 sub DESTROY {
756 my $self = shift;
757
758 $self->stoptls;
759 }
760
761 =item AnyEvent::Handle::TLS_CTX
762
763 This function creates and returns the Net::SSLeay::CTX object used by
764 default for TLS mode.
765
766 The context is created like this:
767
768 Net::SSLeay::load_error_strings;
769 Net::SSLeay::SSLeay_add_ssl_algorithms;
770 Net::SSLeay::randomize;
771
772 my $CTX = Net::SSLeay::CTX_new;
773
774 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
775
776 =cut
777
778 our $TLS_CTX;
779
780 sub TLS_CTX() {
781 $TLS_CTX || do {
782 require Net::SSLeay;
783
784 Net::SSLeay::load_error_strings ();
785 Net::SSLeay::SSLeay_add_ssl_algorithms ();
786 Net::SSLeay::randomize ();
787
788 $TLS_CTX = Net::SSLeay::CTX_new ();
789
790 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
791
792 $TLS_CTX
793 }
794 }
795
796 =back
797
798 =head1 AUTHOR
799
800 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
801
802 =cut
803
804 1; # End of AnyEvent::Handle