ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.14 by root, Sat May 17 19:05:51 2008 UTC vs.
Revision 1.82 by root, Thu Aug 21 18:45:16 2008 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent (); 6use AnyEvent ();
7use AnyEvent::Util (); 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 8use Scalar::Util ();
9use Carp (); 9use Carp ();
10use Fcntl (); 10use Fcntl ();
11use Errno qw/EAGAIN EINTR/; 11use Errno qw(EAGAIN EINTR);
12 12
13=head1 NAME 13=head1 NAME
14 14
15AnyEvent::Handle - non-blocking I/O on filehandles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17=cut 17=cut
18 18
19our $VERSION = '0.02'; 19our $VERSION = 4.232;
20 20
21=head1 SYNOPSIS 21=head1 SYNOPSIS
22 22
23 use AnyEvent; 23 use AnyEvent;
24 use AnyEvent::Handle; 24 use AnyEvent::Handle;
25 25
26 my $cv = AnyEvent->condvar; 26 my $cv = AnyEvent->condvar;
27 27
28 my $ae_fh = AnyEvent::Handle->new (fh => \*STDIN); 28 my $handle =
29
30 #TODO
31
32 # or use the constructor to pass the callback:
33
34 my $ae_fh2 =
35 AnyEvent::Handle->new ( 29 AnyEvent::Handle->new (
36 fh => \*STDIN, 30 fh => \*STDIN,
37 on_eof => sub { 31 on_eof => sub {
38 $cv->broadcast; 32 $cv->broadcast;
39 }, 33 },
40 #TODO
41 ); 34 );
42 35
43 $cv->wait; 36 # send some request line
37 $handle->push_write ("getinfo\015\012");
38
39 # read the response line
40 $handle->push_read (line => sub {
41 my ($handle, $line) = @_;
42 warn "read line <$line>\n";
43 $cv->send;
44 });
45
46 $cv->recv;
44 47
45=head1 DESCRIPTION 48=head1 DESCRIPTION
46 49
47This module is a helper module to make it easier to do event-based I/O on 50This module is a helper module to make it easier to do event-based I/O on
48filehandles. For utility functions for doing non-blocking connects and accepts 51filehandles. For utility functions for doing non-blocking connects and accepts
70The filehandle this L<AnyEvent::Handle> object will operate on. 73The filehandle this L<AnyEvent::Handle> object will operate on.
71 74
72NOTE: The filehandle will be set to non-blocking (using 75NOTE: The filehandle will be set to non-blocking (using
73AnyEvent::Util::fh_nonblocking). 76AnyEvent::Util::fh_nonblocking).
74 77
75=item on_eof => $cb->($self) [MANDATORY]
76
77Set the callback to be called on EOF.
78
79=item on_error => $cb->($self) 78=item on_eof => $cb->($handle)
80 79
80Set the callback to be called when an end-of-file condition is detected,
81i.e. in the case of a socket, when the other side has closed the
82connection cleanly.
83
84For sockets, this just means that the other side has stopped sending data,
85you can still try to write data, and, in fact, one can return from the eof
86callback and continue writing data, as only the read part has been shut
87down.
88
89While not mandatory, it is I<highly> recommended to set an eof callback,
90otherwise you might end up with a closed socket while you are still
91waiting for data.
92
93If an EOF condition has been detected but no C<on_eof> callback has been
94set, then a fatal error will be raised with C<$!> set to <0>.
95
96=item on_error => $cb->($handle, $fatal)
97
81This is the fatal error callback, that is called when, well, a fatal error 98This is the error callback, which is called when, well, some error
82ocurs, such as not being able to resolve the hostname, failure to connect 99occured, such as not being able to resolve the hostname, failure to
83or a read error. 100connect or a read error.
84 101
85The object will not be in a usable state when this callback has been 102Some errors are fatal (which is indicated by C<$fatal> being true). On
86called. 103fatal errors the handle object will be shut down and will not be usable
104(but you are free to look at the current C< ->rbuf >). Examples of fatal
105errors are an EOF condition with active (but unsatisifable) read watchers
106(C<EPIPE>) or I/O errors.
107
108Non-fatal errors can be retried by simply returning, but it is recommended
109to simply ignore this parameter and instead abondon the handle object
110when this callback is invoked. Examples of non-fatal errors are timeouts
111C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
87 112
88On callback entrance, the value of C<$!> contains the operating system 113On callback entrance, the value of C<$!> contains the operating system
89error (or C<ENOSPC> or C<EPIPE>). 114error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
90 115
91While not mandatory, it is I<highly> recommended to set this callback, as 116While not mandatory, it is I<highly> recommended to set this callback, as
92you will not be notified of errors otherwise. The default simply calls 117you will not be notified of errors otherwise. The default simply calls
93die. 118C<croak>.
94 119
95=item on_read => $cb->($self) 120=item on_read => $cb->($handle)
96 121
97This sets the default read callback, which is called when data arrives 122This sets the default read callback, which is called when data arrives
98and no read request is in the queue. 123and no read request is in the queue (unlike read queue callbacks, this
124callback will only be called when at least one octet of data is in the
125read buffer).
99 126
100To access (and remove data from) the read buffer, use the C<< ->rbuf >> 127To access (and remove data from) the read buffer, use the C<< ->rbuf >>
101method or acces sthe C<$self->{rbuf}> member directly. 128method or access the C<$handle->{rbuf}> member directly.
102 129
103When an EOF condition is detected then AnyEvent::Handle will first try to 130When an EOF condition is detected then AnyEvent::Handle will first try to
104feed all the remaining data to the queued callbacks and C<on_read> before 131feed all the remaining data to the queued callbacks and C<on_read> before
105calling the C<on_eof> callback. If no progress can be made, then a fatal 132calling the C<on_eof> callback. If no progress can be made, then a fatal
106error will be raised (with C<$!> set to C<EPIPE>). 133error will be raised (with C<$!> set to C<EPIPE>).
107 134
108=item on_drain => $cb->() 135=item on_drain => $cb->($handle)
109 136
110This sets the callback that is called when the write buffer becomes empty 137This sets the callback that is called when the write buffer becomes empty
111(or when the callback is set and the buffer is empty already). 138(or when the callback is set and the buffer is empty already).
112 139
113To append to the write buffer, use the C<< ->push_write >> method. 140To append to the write buffer, use the C<< ->push_write >> method.
141
142This callback is useful when you don't want to put all of your write data
143into the queue at once, for example, when you want to write the contents
144of some file to the socket you might not want to read the whole file into
145memory and push it into the queue, but instead only read more data from
146the file when the write queue becomes empty.
147
148=item timeout => $fractional_seconds
149
150If non-zero, then this enables an "inactivity" timeout: whenever this many
151seconds pass without a successful read or write on the underlying file
152handle, the C<on_timeout> callback will be invoked (and if that one is
153missing, an C<ETIMEDOUT> error will be raised).
154
155Note that timeout processing is also active when you currently do not have
156any outstanding read or write requests: If you plan to keep the connection
157idle then you should disable the timout temporarily or ignore the timeout
158in the C<on_timeout> callback.
159
160Zero (the default) disables this timeout.
161
162=item on_timeout => $cb->($handle)
163
164Called whenever the inactivity timeout passes. If you return from this
165callback, then the timeout will be reset as if some activity had happened,
166so this condition is not fatal in any way.
114 167
115=item rbuf_max => <bytes> 168=item rbuf_max => <bytes>
116 169
117If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 170If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
118when the read buffer ever (strictly) exceeds this size. This is useful to 171when the read buffer ever (strictly) exceeds this size. This is useful to
122be configured to accept only so-and-so much data that it cannot act on 175be configured to accept only so-and-so much data that it cannot act on
123(for example, when expecting a line, an attacker could send an unlimited 176(for example, when expecting a line, an attacker could send an unlimited
124amount of data without a callback ever being called as long as the line 177amount of data without a callback ever being called as long as the line
125isn't finished). 178isn't finished).
126 179
180=item autocork => <boolean>
181
182When disabled (the default), then C<push_write> will try to immediately
183write the data to the handle if possible. This avoids having to register
184a write watcher and wait for the next event loop iteration, but can be
185inefficient if you write multiple small chunks (this disadvantage is
186usually avoided by your kernel's nagle algorithm, see C<low_delay>).
187
188When enabled, then writes will always be queued till the next event loop
189iteration. This is efficient when you do many small writes per iteration,
190but less efficient when you do a single write only.
191
192=item no_delay => <boolean>
193
194When doing small writes on sockets, your operating system kernel might
195wait a bit for more data before actually sending it out. This is called
196the Nagle algorithm, and usually it is beneficial.
197
198In some situations you want as low a delay as possible, which cna be
199accomplishd by setting this option to true.
200
201The default is your opertaing system's default behaviour, this option
202explicitly enables or disables it, if possible.
203
127=item read_size => <bytes> 204=item read_size => <bytes>
128 205
129The default read block size (the amount of bytes this module will try to read 206The default read block size (the amount of bytes this module will try to read
130on each [loop iteration). Default: C<4096>. 207during each (loop iteration). Default: C<8192>.
131 208
132=item low_water_mark => <bytes> 209=item low_water_mark => <bytes>
133 210
134Sets the amount of bytes (default: C<0>) that make up an "empty" write 211Sets the amount of bytes (default: C<0>) that make up an "empty" write
135buffer: If the write reaches this size or gets even samller it is 212buffer: If the write reaches this size or gets even samller it is
136considered empty. 213considered empty.
137 214
215=item linger => <seconds>
216
217If non-zero (default: C<3600>), then the destructor of the
218AnyEvent::Handle object will check wether there is still outstanding write
219data and will install a watcher that will write out this data. No errors
220will be reported (this mostly matches how the operating system treats
221outstanding data at socket close time).
222
223This will not work for partial TLS data that could not yet been
224encoded. This data will be lost.
225
226=item tls => "accept" | "connect" | Net::SSLeay::SSL object
227
228When this parameter is given, it enables TLS (SSL) mode, that means it
229will start making tls handshake and will transparently encrypt/decrypt
230data.
231
232TLS mode requires Net::SSLeay to be installed (it will be loaded
233automatically when you try to create a TLS handle).
234
235For the TLS server side, use C<accept>, and for the TLS client side of a
236connection, use C<connect> mode.
237
238You can also provide your own TLS connection object, but you have
239to make sure that you call either C<Net::SSLeay::set_connect_state>
240or C<Net::SSLeay::set_accept_state> on it before you pass it to
241AnyEvent::Handle.
242
243See the C<starttls> method if you need to start TLS negotiation later.
244
245=item tls_ctx => $ssl_ctx
246
247Use the given Net::SSLeay::CTX object to create the new TLS connection
248(unless a connection object was specified directly). If this parameter is
249missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
250
251=item json => JSON or JSON::XS object
252
253This is the json coder object used by the C<json> read and write types.
254
255If you don't supply it, then AnyEvent::Handle will create and use a
256suitable one, which will write and expect UTF-8 encoded JSON texts.
257
258Note that you are responsible to depend on the JSON module if you want to
259use this functionality, as AnyEvent does not have a dependency itself.
260
261=item filter_r => $cb
262
263=item filter_w => $cb
264
265These exist, but are undocumented at this time.
266
138=back 267=back
139 268
140=cut 269=cut
141 270
142sub new { 271sub new {
146 275
147 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 276 $self->{fh} or Carp::croak "mandatory argument fh is missing";
148 277
149 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 278 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
150 279
151 $self->on_eof ((delete $self->{on_eof} ) or Carp::croak "mandatory argument on_eof is missing"); 280 if ($self->{tls}) {
281 require Net::SSLeay;
282 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
283 }
152 284
153 $self->on_error (delete $self->{on_error}) if $self->{on_error}; 285 $self->{_activity} = AnyEvent->now;
286 $self->_timeout;
287
154 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 288 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
155 $self->on_read (delete $self->{on_read} ) if $self->{on_read}; 289 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
156 290
157 $self->start_read; 291 $self->start_read
292 if $self->{on_read};
158 293
159 $self 294 $self
160} 295}
161 296
162sub _shutdown { 297sub _shutdown {
163 my ($self) = @_; 298 my ($self) = @_;
164 299
300 delete $self->{_tw};
165 delete $self->{rw}; 301 delete $self->{_rw};
166 delete $self->{ww}; 302 delete $self->{_ww};
167 delete $self->{fh}; 303 delete $self->{fh};
168}
169 304
305 $self->stoptls;
306
307 delete $self->{on_read};
308 delete $self->{_queue};
309}
310
170sub error { 311sub _error {
171 my ($self) = @_; 312 my ($self, $errno, $fatal) = @_;
172 313
173 {
174 local $!;
175 $self->_shutdown; 314 $self->_shutdown
176 } 315 if $fatal;
316
317 $! = $errno;
177 318
178 if ($self->{on_error}) { 319 if ($self->{on_error}) {
179 $self->{on_error}($self); 320 $self->{on_error}($self, $fatal);
180 } else { 321 } else {
181 die "AnyEvent::Handle uncaught fatal error: $!"; 322 Carp::croak "AnyEvent::Handle uncaught error: $!";
182 } 323 }
183} 324}
184 325
185=item $fh = $handle->fh 326=item $fh = $handle->fh
186 327
187This method returns the filehandle of the L<AnyEvent::Handle> object. 328This method returns the file handle of the L<AnyEvent::Handle> object.
188 329
189=cut 330=cut
190 331
191sub fh { $_[0]->{fh} } 332sub fh { $_[0]{fh} }
192 333
193=item $handle->on_error ($cb) 334=item $handle->on_error ($cb)
194 335
195Replace the current C<on_error> callback (see the C<on_error> constructor argument). 336Replace the current C<on_error> callback (see the C<on_error> constructor argument).
196 337
208 349
209sub on_eof { 350sub on_eof {
210 $_[0]{on_eof} = $_[1]; 351 $_[0]{on_eof} = $_[1];
211} 352}
212 353
354=item $handle->on_timeout ($cb)
355
356Replace the current C<on_timeout> callback, or disables the callback
357(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
358argument.
359
360=cut
361
362sub on_timeout {
363 $_[0]{on_timeout} = $_[1];
364}
365
366=item $handle->autocork ($boolean)
367
368Enables or disables the current autocork behaviour (see C<autocork>
369constructor argument).
370
371=cut
372
373=item $handle->no_delay ($boolean)
374
375Enables or disables the C<no_delay> setting (see constructor argument of
376the same name for details).
377
378=cut
379
380sub no_delay {
381 $_[0]{no_delay} = $_[1];
382
383 eval {
384 local $SIG{__DIE__};
385 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
386 };
387}
388
389#############################################################################
390
391=item $handle->timeout ($seconds)
392
393Configures (or disables) the inactivity timeout.
394
395=cut
396
397sub timeout {
398 my ($self, $timeout) = @_;
399
400 $self->{timeout} = $timeout;
401 $self->_timeout;
402}
403
404# reset the timeout watcher, as neccessary
405# also check for time-outs
406sub _timeout {
407 my ($self) = @_;
408
409 if ($self->{timeout}) {
410 my $NOW = AnyEvent->now;
411
412 # when would the timeout trigger?
413 my $after = $self->{_activity} + $self->{timeout} - $NOW;
414
415 # now or in the past already?
416 if ($after <= 0) {
417 $self->{_activity} = $NOW;
418
419 if ($self->{on_timeout}) {
420 $self->{on_timeout}($self);
421 } else {
422 $self->_error (&Errno::ETIMEDOUT);
423 }
424
425 # callback could have changed timeout value, optimise
426 return unless $self->{timeout};
427
428 # calculate new after
429 $after = $self->{timeout};
430 }
431
432 Scalar::Util::weaken $self;
433 return unless $self; # ->error could have destroyed $self
434
435 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
436 delete $self->{_tw};
437 $self->_timeout;
438 });
439 } else {
440 delete $self->{_tw};
441 }
442}
443
213############################################################################# 444#############################################################################
214 445
215=back 446=back
216 447
217=head2 WRITE QUEUE 448=head2 WRITE QUEUE
220for reading. 451for reading.
221 452
222The write queue is very simple: you can add data to its end, and 453The write queue is very simple: you can add data to its end, and
223AnyEvent::Handle will automatically try to get rid of it for you. 454AnyEvent::Handle will automatically try to get rid of it for you.
224 455
225When data could be writtena nd the write buffer is shorter then the low 456When data could be written and the write buffer is shorter then the low
226water mark, the C<on_drain> callback will be invoked. 457water mark, the C<on_drain> callback will be invoked.
227 458
228=over 4 459=over 4
229 460
230=item $handle->on_drain ($cb) 461=item $handle->on_drain ($cb)
249want (only limited by the available memory), as C<AnyEvent::Handle> 480want (only limited by the available memory), as C<AnyEvent::Handle>
250buffers it independently of the kernel. 481buffers it independently of the kernel.
251 482
252=cut 483=cut
253 484
254sub push_write { 485sub _drain_wbuf {
255 my ($self, $data) = @_; 486 my ($self) = @_;
256 487
257 $self->{wbuf} .= $data; 488 if (!$self->{_ww} && length $self->{wbuf}) {
258 489
259 unless ($self->{ww}) {
260 Scalar::Util::weaken $self; 490 Scalar::Util::weaken $self;
491
261 my $cb = sub { 492 my $cb = sub {
262 my $len = syswrite $self->{fh}, $self->{wbuf}; 493 my $len = syswrite $self->{fh}, $self->{wbuf};
263 494
264 if ($len > 0) { 495 if ($len >= 0) {
265 substr $self->{wbuf}, 0, $len, ""; 496 substr $self->{wbuf}, 0, $len, "";
266 497
498 $self->{_activity} = AnyEvent->now;
267 499
268 $self->{on_drain}($self) 500 $self->{on_drain}($self)
269 if $self->{low_water_mark} >= length $self->{wbuf} 501 if $self->{low_water_mark} >= length $self->{wbuf}
270 && $self->{on_drain}; 502 && $self->{on_drain};
271 503
272 delete $self->{ww} unless length $self->{wbuf}; 504 delete $self->{_ww} unless length $self->{wbuf};
273 } elsif ($! != EAGAIN && $! != EINTR) { 505 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
274 $self->error; 506 $self->_error ($!, 1);
275 } 507 }
276 }; 508 };
277 509
510 # try to write data immediately
511 $cb->() unless $self->{autocork};
512
513 # if still data left in wbuf, we need to poll
278 $self->{ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb); 514 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
279 515 if length $self->{wbuf};
280 $cb->($self);
281 }; 516 };
282} 517}
518
519our %WH;
520
521sub register_write_type($$) {
522 $WH{$_[0]} = $_[1];
523}
524
525sub push_write {
526 my $self = shift;
527
528 if (@_ > 1) {
529 my $type = shift;
530
531 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
532 ->($self, @_);
533 }
534
535 if ($self->{filter_w}) {
536 $self->{filter_w}($self, \$_[0]);
537 } else {
538 $self->{wbuf} .= $_[0];
539 $self->_drain_wbuf;
540 }
541}
542
543=item $handle->push_write (type => @args)
544
545Instead of formatting your data yourself, you can also let this module do
546the job by specifying a type and type-specific arguments.
547
548Predefined types are (if you have ideas for additional types, feel free to
549drop by and tell us):
550
551=over 4
552
553=item netstring => $string
554
555Formats the given value as netstring
556(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
557
558=cut
559
560register_write_type netstring => sub {
561 my ($self, $string) = @_;
562
563 sprintf "%d:%s,", (length $string), $string
564};
565
566=item packstring => $format, $data
567
568An octet string prefixed with an encoded length. The encoding C<$format>
569uses the same format as a Perl C<pack> format, but must specify a single
570integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
571optional C<!>, C<< < >> or C<< > >> modifier).
572
573=cut
574
575register_write_type packstring => sub {
576 my ($self, $format, $string) = @_;
577
578 pack "$format/a*", $string
579};
580
581=item json => $array_or_hashref
582
583Encodes the given hash or array reference into a JSON object. Unless you
584provide your own JSON object, this means it will be encoded to JSON text
585in UTF-8.
586
587JSON objects (and arrays) are self-delimiting, so you can write JSON at
588one end of a handle and read them at the other end without using any
589additional framing.
590
591The generated JSON text is guaranteed not to contain any newlines: While
592this module doesn't need delimiters after or between JSON texts to be
593able to read them, many other languages depend on that.
594
595A simple RPC protocol that interoperates easily with others is to send
596JSON arrays (or objects, although arrays are usually the better choice as
597they mimic how function argument passing works) and a newline after each
598JSON text:
599
600 $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
601 $handle->push_write ("\012");
602
603An AnyEvent::Handle receiver would simply use the C<json> read type and
604rely on the fact that the newline will be skipped as leading whitespace:
605
606 $handle->push_read (json => sub { my $array = $_[1]; ... });
607
608Other languages could read single lines terminated by a newline and pass
609this line into their JSON decoder of choice.
610
611=cut
612
613register_write_type json => sub {
614 my ($self, $ref) = @_;
615
616 require JSON;
617
618 $self->{json} ? $self->{json}->encode ($ref)
619 : JSON::encode_json ($ref)
620};
621
622=item storable => $reference
623
624Freezes the given reference using L<Storable> and writes it to the
625handle. Uses the C<nfreeze> format.
626
627=cut
628
629register_write_type storable => sub {
630 my ($self, $ref) = @_;
631
632 require Storable;
633
634 pack "w/a*", Storable::nfreeze ($ref)
635};
636
637=back
638
639=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
640
641This function (not method) lets you add your own types to C<push_write>.
642Whenever the given C<type> is used, C<push_write> will invoke the code
643reference with the handle object and the remaining arguments.
644
645The code reference is supposed to return a single octet string that will
646be appended to the write buffer.
647
648Note that this is a function, and all types registered this way will be
649global, so try to use unique names.
650
651=cut
283 652
284############################################################################# 653#############################################################################
285 654
286=back 655=back
287 656
294ways, the "simple" way, using only C<on_read> and the "complex" way, using 663ways, the "simple" way, using only C<on_read> and the "complex" way, using
295a queue. 664a queue.
296 665
297In the simple case, you just install an C<on_read> callback and whenever 666In the simple case, you just install an C<on_read> callback and whenever
298new data arrives, it will be called. You can then remove some data (if 667new data arrives, it will be called. You can then remove some data (if
299enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 668enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
300or not. 669leave the data there if you want to accumulate more (e.g. when only a
670partial message has been received so far).
301 671
302In the more complex case, you want to queue multiple callbacks. In this 672In the more complex case, you want to queue multiple callbacks. In this
303case, AnyEvent::Handle will call the first queued callback each time new 673case, AnyEvent::Handle will call the first queued callback each time new
304data arrives and removes it when it has done its job (see C<push_read>, 674data arrives (also the first time it is queued) and removes it when it has
305below). 675done its job (see C<push_read>, below).
306 676
307This way you can, for example, push three line-reads, followed by reading 677This way you can, for example, push three line-reads, followed by reading
308a chunk of data, and AnyEvent::Handle will execute them in order. 678a chunk of data, and AnyEvent::Handle will execute them in order.
309 679
310Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 680Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
311the specified number of bytes which give an XML datagram. 681the specified number of bytes which give an XML datagram.
312 682
313 # in the default state, expect some header bytes 683 # in the default state, expect some header bytes
314 $handle->on_read (sub { 684 $handle->on_read (sub {
315 # some data is here, now queue the length-header-read (4 octets) 685 # some data is here, now queue the length-header-read (4 octets)
316 shift->unshift_read_chunk (4, sub { 686 shift->unshift_read (chunk => 4, sub {
317 # header arrived, decode 687 # header arrived, decode
318 my $len = unpack "N", $_[1]; 688 my $len = unpack "N", $_[1];
319 689
320 # now read the payload 690 # now read the payload
321 shift->unshift_read_chunk ($len, sub { 691 shift->unshift_read (chunk => $len, sub {
322 my $xml = $_[1]; 692 my $xml = $_[1];
323 # handle xml 693 # handle xml
324 }); 694 });
325 }); 695 });
326 }); 696 });
327 697
328Example 2: Implement a client for a protocol that replies either with 698Example 2: Implement a client for a protocol that replies either with "OK"
329"OK" and another line or "ERROR" for one request, and 64 bytes for the 699and another line or "ERROR" for the first request that is sent, and 64
330second request. Due tot he availability of a full queue, we can just 700bytes for the second request. Due to the availability of a queue, we can
331pipeline sending both requests and manipulate the queue as necessary in 701just pipeline sending both requests and manipulate the queue as necessary
332the callbacks: 702in the callbacks.
333 703
334 # request one 704When the first callback is called and sees an "OK" response, it will
705C<unshift> another line-read. This line-read will be queued I<before> the
70664-byte chunk callback.
707
708 # request one, returns either "OK + extra line" or "ERROR"
335 $handle->push_write ("request 1\015\012"); 709 $handle->push_write ("request 1\015\012");
336 710
337 # we expect "ERROR" or "OK" as response, so push a line read 711 # we expect "ERROR" or "OK" as response, so push a line read
338 $handle->push_read_line (sub { 712 $handle->push_read (line => sub {
339 # if we got an "OK", we have to _prepend_ another line, 713 # if we got an "OK", we have to _prepend_ another line,
340 # so it will be read before the second request reads its 64 bytes 714 # so it will be read before the second request reads its 64 bytes
341 # which are already in the queue when this callback is called 715 # which are already in the queue when this callback is called
342 # we don't do this in case we got an error 716 # we don't do this in case we got an error
343 if ($_[1] eq "OK") { 717 if ($_[1] eq "OK") {
344 $_[0]->unshift_read_line (sub { 718 $_[0]->unshift_read (line => sub {
345 my $response = $_[1]; 719 my $response = $_[1];
346 ... 720 ...
347 }); 721 });
348 } 722 }
349 }); 723 });
350 724
351 # request two 725 # request two, simply returns 64 octets
352 $handle->push_write ("request 2\015\012"); 726 $handle->push_write ("request 2\015\012");
353 727
354 # simply read 64 bytes, always 728 # simply read 64 bytes, always
355 $handle->push_read_chunk (64, sub { 729 $handle->push_read (chunk => 64, sub {
356 my $response = $_[1]; 730 my $response = $_[1];
357 ... 731 ...
358 }); 732 });
359 733
360=over 4 734=over 4
362=cut 736=cut
363 737
364sub _drain_rbuf { 738sub _drain_rbuf {
365 my ($self) = @_; 739 my ($self) = @_;
366 740
367 return if $self->{in_drain};
368 local $self->{in_drain} = 1; 741 local $self->{_in_drain} = 1;
369 742
743 if (
744 defined $self->{rbuf_max}
745 && $self->{rbuf_max} < length $self->{rbuf}
746 ) {
747 $self->_error (&Errno::ENOSPC, 1), return;
748 }
749
750 while () {
370 while (my $len = length $self->{rbuf}) { 751 my $len = length $self->{rbuf};
371 no strict 'refs'; 752
372 if (my $cb = shift @{ $self->{queue} }) { 753 if (my $cb = shift @{ $self->{_queue} }) {
373 if (!$cb->($self)) { 754 unless ($cb->($self)) {
374 if ($self->{eof}) { 755 if ($self->{_eof}) {
375 # no progress can be made (not enough data and no data forthcoming) 756 # no progress can be made (not enough data and no data forthcoming)
376 $! = &Errno::EPIPE; return $self->error; 757 $self->_error (&Errno::EPIPE, 1), return;
377 } 758 }
378 759
379 unshift @{ $self->{queue} }, $cb; 760 unshift @{ $self->{_queue} }, $cb;
380 return; 761 last;
381 } 762 }
382 } elsif ($self->{on_read}) { 763 } elsif ($self->{on_read}) {
764 last unless $len;
765
383 $self->{on_read}($self); 766 $self->{on_read}($self);
384 767
385 if ( 768 if (
386 $self->{eof} # if no further data will arrive
387 && $len == length $self->{rbuf} # and no data has been consumed 769 $len == length $self->{rbuf} # if no data has been consumed
388 && !@{ $self->{queue} } # and the queue is still empty 770 && !@{ $self->{_queue} } # and the queue is still empty
389 && $self->{on_read} # and we still want to read data 771 && $self->{on_read} # but we still have on_read
390 ) { 772 ) {
773 # no further data will arrive
391 # then no progress can be made 774 # so no progress can be made
392 $! = &Errno::EPIPE; return $self->error; 775 $self->_error (&Errno::EPIPE, 1), return
776 if $self->{_eof};
777
778 last; # more data might arrive
393 } 779 }
394 } else { 780 } else {
395 # read side becomes idle 781 # read side becomes idle
396 delete $self->{rw}; 782 delete $self->{_rw};
397 return; 783 last;
398 } 784 }
399 } 785 }
400 786
401 if ($self->{eof}) { 787 if ($self->{_eof}) {
402 $self->_shutdown; 788 if ($self->{on_eof}) {
403 $self->{on_eof}($self); 789 $self->{on_eof}($self)
790 } else {
791 $self->_error (0, 1);
792 }
793 }
794
795 # may need to restart read watcher
796 unless ($self->{_rw}) {
797 $self->start_read
798 if $self->{on_read} || @{ $self->{_queue} };
404 } 799 }
405} 800}
406 801
407=item $handle->on_read ($cb) 802=item $handle->on_read ($cb)
408 803
414 809
415sub on_read { 810sub on_read {
416 my ($self, $cb) = @_; 811 my ($self, $cb) = @_;
417 812
418 $self->{on_read} = $cb; 813 $self->{on_read} = $cb;
814 $self->_drain_rbuf if $cb && !$self->{_in_drain};
419} 815}
420 816
421=item $handle->rbuf 817=item $handle->rbuf
422 818
423Returns the read buffer (as a modifiable lvalue). 819Returns the read buffer (as a modifiable lvalue).
442Append the given callback to the end of the queue (C<push_read>) or 838Append the given callback to the end of the queue (C<push_read>) or
443prepend it (C<unshift_read>). 839prepend it (C<unshift_read>).
444 840
445The callback is called each time some additional read data arrives. 841The callback is called each time some additional read data arrives.
446 842
447It must check wether enough data is in the read buffer already. 843It must check whether enough data is in the read buffer already.
448 844
449If not enough data is available, it must return the empty list or a false 845If not enough data is available, it must return the empty list or a false
450value, in which case it will be called repeatedly until enough data is 846value, in which case it will be called repeatedly until enough data is
451available (or an error condition is detected). 847available (or an error condition is detected).
452 848
454interested in (which can be none at all) and return a true value. After returning 850interested in (which can be none at all) and return a true value. After returning
455true, it will be removed from the queue. 851true, it will be removed from the queue.
456 852
457=cut 853=cut
458 854
855our %RH;
856
857sub register_read_type($$) {
858 $RH{$_[0]} = $_[1];
859}
860
459sub push_read { 861sub push_read {
460 my ($self, $cb) = @_; 862 my $self = shift;
863 my $cb = pop;
461 864
865 if (@_) {
866 my $type = shift;
867
868 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
869 ->($self, $cb, @_);
870 }
871
462 push @{ $self->{queue} }, $cb; 872 push @{ $self->{_queue} }, $cb;
463 $self->_drain_rbuf; 873 $self->_drain_rbuf unless $self->{_in_drain};
464} 874}
465 875
466sub unshift_read { 876sub unshift_read {
467 my ($self, $cb) = @_; 877 my $self = shift;
878 my $cb = pop;
468 879
880 if (@_) {
881 my $type = shift;
882
883 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
884 ->($self, $cb, @_);
885 }
886
887
469 push @{ $self->{queue} }, $cb; 888 unshift @{ $self->{_queue} }, $cb;
470 $self->_drain_rbuf; 889 $self->_drain_rbuf unless $self->{_in_drain};
471} 890}
472 891
473=item $handle->push_read_chunk ($len, $cb->($self, $data)) 892=item $handle->push_read (type => @args, $cb)
474 893
475=item $handle->unshift_read_chunk ($len, $cb->($self, $data)) 894=item $handle->unshift_read (type => @args, $cb)
476 895
477Append the given callback to the end of the queue (C<push_read_chunk>) or 896Instead of providing a callback that parses the data itself you can chose
478prepend it (C<unshift_read_chunk>). 897between a number of predefined parsing formats, for chunks of data, lines
898etc.
479 899
480The callback will be called only once C<$len> bytes have been read, and 900Predefined types are (if you have ideas for additional types, feel free to
481these C<$len> bytes will be passed to the callback. 901drop by and tell us):
482 902
483=cut 903=over 4
484 904
485sub _read_chunk($$) { 905=item chunk => $octets, $cb->($handle, $data)
906
907Invoke the callback only once C<$octets> bytes have been read. Pass the
908data read to the callback. The callback will never be called with less
909data.
910
911Example: read 2 bytes.
912
913 $handle->push_read (chunk => 2, sub {
914 warn "yay ", unpack "H*", $_[1];
915 });
916
917=cut
918
919register_read_type chunk => sub {
486 my ($self, $len, $cb) = @_; 920 my ($self, $cb, $len) = @_;
487 921
488 sub { 922 sub {
489 $len <= length $_[0]{rbuf} or return; 923 $len <= length $_[0]{rbuf} or return;
490 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 924 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
491 1 925 1
492 } 926 }
493} 927};
494 928
495sub push_read_chunk { 929=item line => [$eol, ]$cb->($handle, $line, $eol)
496 $_[0]->push_read (&_read_chunk);
497}
498
499
500sub unshift_read_chunk {
501 $_[0]->unshift_read (&_read_chunk);
502}
503
504=item $handle->push_read_line ([$eol, ]$cb->($self, $line, $eol))
505
506=item $handle->unshift_read_line ([$eol, ]$cb->($self, $line, $eol))
507
508Append the given callback to the end of the queue (C<push_read_line>) or
509prepend it (C<unshift_read_line>).
510 930
511The callback will be called only once a full line (including the end of 931The callback will be called only once a full line (including the end of
512line marker, C<$eol>) has been read. This line (excluding the end of line 932line marker, C<$eol>) has been read. This line (excluding the end of line
513marker) will be passed to the callback as second argument (C<$line>), and 933marker) will be passed to the callback as second argument (C<$line>), and
514the end of line marker as the third argument (C<$eol>). 934the end of line marker as the third argument (C<$eol>).
525Partial lines at the end of the stream will never be returned, as they are 945Partial lines at the end of the stream will never be returned, as they are
526not marked by the end of line marker. 946not marked by the end of line marker.
527 947
528=cut 948=cut
529 949
530sub _read_line($$) { 950register_read_type line => sub {
531 my $self = shift; 951 my ($self, $cb, $eol) = @_;
532 my $cb = pop;
533 my $eol = @_ ? shift : qr|(\015?\012)|;
534 my $pos;
535 952
953 if (@_ < 3) {
954 # this is more than twice as fast as the generic code below
955 sub {
956 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
957
958 $cb->($_[0], $1, $2);
959 1
960 }
961 } else {
536 $eol = quotemeta $eol unless ref $eol; 962 $eol = quotemeta $eol unless ref $eol;
537 $eol = qr|^(.*?)($eol)|s; 963 $eol = qr|^(.*?)($eol)|s;
964
965 sub {
966 $_[0]{rbuf} =~ s/$eol// or return;
967
968 $cb->($_[0], $1, $2);
969 1
970 }
971 }
972};
973
974=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
975
976Makes a regex match against the regex object C<$accept> and returns
977everything up to and including the match.
978
979Example: read a single line terminated by '\n'.
980
981 $handle->push_read (regex => qr<\n>, sub { ... });
982
983If C<$reject> is given and not undef, then it determines when the data is
984to be rejected: it is matched against the data when the C<$accept> regex
985does not match and generates an C<EBADMSG> error when it matches. This is
986useful to quickly reject wrong data (to avoid waiting for a timeout or a
987receive buffer overflow).
988
989Example: expect a single decimal number followed by whitespace, reject
990anything else (not the use of an anchor).
991
992 $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
993
994If C<$skip> is given and not C<undef>, then it will be matched against
995the receive buffer when neither C<$accept> nor C<$reject> match,
996and everything preceding and including the match will be accepted
997unconditionally. This is useful to skip large amounts of data that you
998know cannot be matched, so that the C<$accept> or C<$reject> regex do not
999have to start matching from the beginning. This is purely an optimisation
1000and is usually worth only when you expect more than a few kilobytes.
1001
1002Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1003expect the header to be very large (it isn't in practise, but...), we use
1004a skip regex to skip initial portions. The skip regex is tricky in that
1005it only accepts something not ending in either \015 or \012, as these are
1006required for the accept regex.
1007
1008 $handle->push_read (regex =>
1009 qr<\015\012\015\012>,
1010 undef, # no reject
1011 qr<^.*[^\015\012]>,
1012 sub { ... });
1013
1014=cut
1015
1016register_read_type regex => sub {
1017 my ($self, $cb, $accept, $reject, $skip) = @_;
1018
1019 my $data;
1020 my $rbuf = \$self->{rbuf};
538 1021
539 sub { 1022 sub {
540 $_[0]{rbuf} =~ s/$eol// or return; 1023 # accept
1024 if ($$rbuf =~ $accept) {
1025 $data .= substr $$rbuf, 0, $+[0], "";
1026 $cb->($self, $data);
1027 return 1;
1028 }
1029
1030 # reject
1031 if ($reject && $$rbuf =~ $reject) {
1032 $self->_error (&Errno::EBADMSG);
1033 }
541 1034
542 $cb->($_[0], $1, $2); 1035 # skip
1036 if ($skip && $$rbuf =~ $skip) {
1037 $data .= substr $$rbuf, 0, $+[0], "";
1038 }
1039
1040 ()
1041 }
1042};
1043
1044=item netstring => $cb->($handle, $string)
1045
1046A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1047
1048Throws an error with C<$!> set to EBADMSG on format violations.
1049
1050=cut
1051
1052register_read_type netstring => sub {
1053 my ($self, $cb) = @_;
1054
1055 sub {
1056 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1057 if ($_[0]{rbuf} =~ /[^0-9]/) {
1058 $self->_error (&Errno::EBADMSG);
1059 }
1060 return;
1061 }
1062
1063 my $len = $1;
1064
1065 $self->unshift_read (chunk => $len, sub {
1066 my $string = $_[1];
1067 $_[0]->unshift_read (chunk => 1, sub {
1068 if ($_[1] eq ",") {
1069 $cb->($_[0], $string);
1070 } else {
1071 $self->_error (&Errno::EBADMSG);
1072 }
1073 });
1074 });
1075
543 1 1076 1
544 } 1077 }
545} 1078};
546 1079
547sub push_read_line { 1080=item packstring => $format, $cb->($handle, $string)
548 $_[0]->push_read (&_read_line);
549}
550 1081
551sub unshift_read_line { 1082An octet string prefixed with an encoded length. The encoding C<$format>
552 $_[0]->unshift_read (&_read_line); 1083uses the same format as a Perl C<pack> format, but must specify a single
553} 1084integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1085optional C<!>, C<< < >> or C<< > >> modifier).
1086
1087DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>.
1088
1089Example: read a block of data prefixed by its length in BER-encoded
1090format (very efficient).
1091
1092 $handle->push_read (packstring => "w", sub {
1093 my ($handle, $data) = @_;
1094 });
1095
1096=cut
1097
1098register_read_type packstring => sub {
1099 my ($self, $cb, $format) = @_;
1100
1101 sub {
1102 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1103 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1104 or return;
1105
1106 $format = length pack $format, $len;
1107
1108 # bypass unshift if we already have the remaining chunk
1109 if ($format + $len <= length $_[0]{rbuf}) {
1110 my $data = substr $_[0]{rbuf}, $format, $len;
1111 substr $_[0]{rbuf}, 0, $format + $len, "";
1112 $cb->($_[0], $data);
1113 } else {
1114 # remove prefix
1115 substr $_[0]{rbuf}, 0, $format, "";
1116
1117 # read remaining chunk
1118 $_[0]->unshift_read (chunk => $len, $cb);
1119 }
1120
1121 1
1122 }
1123};
1124
1125=item json => $cb->($handle, $hash_or_arrayref)
1126
1127Reads a JSON object or array, decodes it and passes it to the callback.
1128
1129If a C<json> object was passed to the constructor, then that will be used
1130for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1131
1132This read type uses the incremental parser available with JSON version
11332.09 (and JSON::XS version 2.2) and above. You have to provide a
1134dependency on your own: this module will load the JSON module, but
1135AnyEvent does not depend on it itself.
1136
1137Since JSON texts are fully self-delimiting, the C<json> read and write
1138types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1139the C<json> write type description, above, for an actual example.
1140
1141=cut
1142
1143register_read_type json => sub {
1144 my ($self, $cb) = @_;
1145
1146 require JSON;
1147
1148 my $data;
1149 my $rbuf = \$self->{rbuf};
1150
1151 my $json = $self->{json} ||= JSON->new->utf8;
1152
1153 sub {
1154 my $ref = $json->incr_parse ($self->{rbuf});
1155
1156 if ($ref) {
1157 $self->{rbuf} = $json->incr_text;
1158 $json->incr_text = "";
1159 $cb->($self, $ref);
1160
1161 1
1162 } else {
1163 $self->{rbuf} = "";
1164 ()
1165 }
1166 }
1167};
1168
1169=item storable => $cb->($handle, $ref)
1170
1171Deserialises a L<Storable> frozen representation as written by the
1172C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1173data).
1174
1175Raises C<EBADMSG> error if the data could not be decoded.
1176
1177=cut
1178
1179register_read_type storable => sub {
1180 my ($self, $cb) = @_;
1181
1182 require Storable;
1183
1184 sub {
1185 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1186 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1187 or return;
1188
1189 my $format = length pack "w", $len;
1190
1191 # bypass unshift if we already have the remaining chunk
1192 if ($format + $len <= length $_[0]{rbuf}) {
1193 my $data = substr $_[0]{rbuf}, $format, $len;
1194 substr $_[0]{rbuf}, 0, $format + $len, "";
1195 $cb->($_[0], Storable::thaw ($data));
1196 } else {
1197 # remove prefix
1198 substr $_[0]{rbuf}, 0, $format, "";
1199
1200 # read remaining chunk
1201 $_[0]->unshift_read (chunk => $len, sub {
1202 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1203 $cb->($_[0], $ref);
1204 } else {
1205 $self->_error (&Errno::EBADMSG);
1206 }
1207 });
1208 }
1209
1210 1
1211 }
1212};
1213
1214=back
1215
1216=item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1217
1218This function (not method) lets you add your own types to C<push_read>.
1219
1220Whenever the given C<type> is used, C<push_read> will invoke the code
1221reference with the handle object, the callback and the remaining
1222arguments.
1223
1224The code reference is supposed to return a callback (usually a closure)
1225that works as a plain read callback (see C<< ->push_read ($cb) >>).
1226
1227It should invoke the passed callback when it is done reading (remember to
1228pass C<$handle> as first argument as all other callbacks do that).
1229
1230Note that this is a function, and all types registered this way will be
1231global, so try to use unique names.
1232
1233For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1234search for C<register_read_type>)).
554 1235
555=item $handle->stop_read 1236=item $handle->stop_read
556 1237
557=item $handle->start_read 1238=item $handle->start_read
558 1239
559In rare cases you actually do not want to read anything form the 1240In rare cases you actually do not want to read anything from the
560socket. In this case you can call C<stop_read>. Neither C<on_read> no 1241socket. In this case you can call C<stop_read>. Neither C<on_read> nor
561any queued callbacks will be executed then. To start readign again, call 1242any queued callbacks will be executed then. To start reading again, call
562C<start_read>. 1243C<start_read>.
1244
1245Note that AnyEvent::Handle will automatically C<start_read> for you when
1246you change the C<on_read> callback or push/unshift a read callback, and it
1247will automatically C<stop_read> for you when neither C<on_read> is set nor
1248there are any read requests in the queue.
563 1249
564=cut 1250=cut
565 1251
566sub stop_read { 1252sub stop_read {
567 my ($self) = @_; 1253 my ($self) = @_;
568 1254
569 delete $self->{rw}; 1255 delete $self->{_rw};
570} 1256}
571 1257
572sub start_read { 1258sub start_read {
573 my ($self) = @_; 1259 my ($self) = @_;
574 1260
575 unless ($self->{rw} || $self->{eof}) { 1261 unless ($self->{_rw} || $self->{_eof}) {
576 Scalar::Util::weaken $self; 1262 Scalar::Util::weaken $self;
577 1263
578 $self->{rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1264 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1265 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
579 my $len = sysread $self->{fh}, $self->{rbuf}, $self->{read_size} || 8192, length $self->{rbuf}; 1266 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
580 1267
581 if ($len > 0) { 1268 if ($len > 0) {
582 if (defined $self->{rbuf_max}) { 1269 $self->{_activity} = AnyEvent->now;
583 if ($self->{rbuf_max} < length $self->{rbuf}) { 1270
584 $! = &Errno::ENOSPC; return $self->error; 1271 $self->{filter_r}
585 } 1272 ? $self->{filter_r}($self, $rbuf)
586 } 1273 : $self->{_in_drain} || $self->_drain_rbuf;
587 1274
588 } elsif (defined $len) { 1275 } elsif (defined $len) {
589 $self->{eof} = 1;
590 delete $self->{rw}; 1276 delete $self->{_rw};
1277 $self->{_eof} = 1;
1278 $self->_drain_rbuf unless $self->{_in_drain};
591 1279
592 } elsif ($! != EAGAIN && $! != EINTR) { 1280 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
593 return $self->error; 1281 return $self->_error ($!, 1);
594 } 1282 }
595
596 $self->_drain_rbuf;
597 }); 1283 });
598 } 1284 }
599} 1285}
600 1286
1287sub _dotls {
1288 my ($self) = @_;
1289
1290 my $buf;
1291
1292 if (length $self->{_tls_wbuf}) {
1293 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1294 substr $self->{_tls_wbuf}, 0, $len, "";
1295 }
1296 }
1297
1298 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1299 $self->{wbuf} .= $buf;
1300 $self->_drain_wbuf;
1301 }
1302
1303 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1304 if (length $buf) {
1305 $self->{rbuf} .= $buf;
1306 $self->_drain_rbuf unless $self->{_in_drain};
1307 } else {
1308 # let's treat SSL-eof as we treat normal EOF
1309 $self->{_eof} = 1;
1310 $self->_shutdown;
1311 return;
1312 }
1313 }
1314
1315 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1316
1317 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1318 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1319 return $self->_error ($!, 1);
1320 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1321 return $self->_error (&Errno::EIO, 1);
1322 }
1323
1324 # all others are fine for our purposes
1325 }
1326}
1327
1328=item $handle->starttls ($tls[, $tls_ctx])
1329
1330Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1331object is created, you can also do that at a later time by calling
1332C<starttls>.
1333
1334The first argument is the same as the C<tls> constructor argument (either
1335C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1336
1337The second argument is the optional C<Net::SSLeay::CTX> object that is
1338used when AnyEvent::Handle has to create its own TLS connection object.
1339
1340The TLS connection object will end up in C<< $handle->{tls} >> after this
1341call and can be used or changed to your liking. Note that the handshake
1342might have already started when this function returns.
1343
1344=cut
1345
1346sub starttls {
1347 my ($self, $ssl, $ctx) = @_;
1348
1349 $self->stoptls;
1350
1351 if ($ssl eq "accept") {
1352 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1353 Net::SSLeay::set_accept_state ($ssl);
1354 } elsif ($ssl eq "connect") {
1355 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1356 Net::SSLeay::set_connect_state ($ssl);
1357 }
1358
1359 $self->{tls} = $ssl;
1360
1361 # basically, this is deep magic (because SSL_read should have the same issues)
1362 # but the openssl maintainers basically said: "trust us, it just works".
1363 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1364 # and mismaintained ssleay-module doesn't even offer them).
1365 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1366 Net::SSLeay::CTX_set_mode ($self->{tls},
1367 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1368 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1369
1370 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1371 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1372
1373 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1374
1375 $self->{filter_w} = sub {
1376 $_[0]{_tls_wbuf} .= ${$_[1]};
1377 &_dotls;
1378 };
1379 $self->{filter_r} = sub {
1380 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1381 &_dotls;
1382 };
1383}
1384
1385=item $handle->stoptls
1386
1387Destroys the SSL connection, if any. Partial read or write data will be
1388lost.
1389
1390=cut
1391
1392sub stoptls {
1393 my ($self) = @_;
1394
1395 Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
1396
1397 delete $self->{_rbio};
1398 delete $self->{_wbio};
1399 delete $self->{_tls_wbuf};
1400 delete $self->{filter_r};
1401 delete $self->{filter_w};
1402}
1403
1404sub DESTROY {
1405 my $self = shift;
1406
1407 $self->stoptls;
1408
1409 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1410
1411 if ($linger && length $self->{wbuf}) {
1412 my $fh = delete $self->{fh};
1413 my $wbuf = delete $self->{wbuf};
1414
1415 my @linger;
1416
1417 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1418 my $len = syswrite $fh, $wbuf, length $wbuf;
1419
1420 if ($len > 0) {
1421 substr $wbuf, 0, $len, "";
1422 } else {
1423 @linger = (); # end
1424 }
1425 });
1426 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1427 @linger = ();
1428 });
1429 }
1430}
1431
1432=item AnyEvent::Handle::TLS_CTX
1433
1434This function creates and returns the Net::SSLeay::CTX object used by
1435default for TLS mode.
1436
1437The context is created like this:
1438
1439 Net::SSLeay::load_error_strings;
1440 Net::SSLeay::SSLeay_add_ssl_algorithms;
1441 Net::SSLeay::randomize;
1442
1443 my $CTX = Net::SSLeay::CTX_new;
1444
1445 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1446
1447=cut
1448
1449our $TLS_CTX;
1450
1451sub TLS_CTX() {
1452 $TLS_CTX || do {
1453 require Net::SSLeay;
1454
1455 Net::SSLeay::load_error_strings ();
1456 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1457 Net::SSLeay::randomize ();
1458
1459 $TLS_CTX = Net::SSLeay::CTX_new ();
1460
1461 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1462
1463 $TLS_CTX
1464 }
1465}
1466
601=back 1467=back
602 1468
1469=head1 SUBCLASSING AnyEvent::Handle
1470
1471In many cases, you might want to subclass AnyEvent::Handle.
1472
1473To make this easier, a given version of AnyEvent::Handle uses these
1474conventions:
1475
1476=over 4
1477
1478=item * all constructor arguments become object members.
1479
1480At least initially, when you pass a C<tls>-argument to the constructor it
1481will end up in C<< $handle->{tls} >>. Those members might be changed or
1482mutated later on (for example C<tls> will hold the TLS connection object).
1483
1484=item * other object member names are prefixed with an C<_>.
1485
1486All object members not explicitly documented (internal use) are prefixed
1487with an underscore character, so the remaining non-C<_>-namespace is free
1488for use for subclasses.
1489
1490=item * all members not documented here and not prefixed with an underscore
1491are free to use in subclasses.
1492
1493Of course, new versions of AnyEvent::Handle may introduce more "public"
1494member variables, but thats just life, at least it is documented.
1495
1496=back
1497
603=head1 AUTHOR 1498=head1 AUTHOR
604 1499
605Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>. 1500Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
606 1501
607=cut 1502=cut

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines