ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.25 by root, Sat May 24 15:19:43 2008 UTC vs.
Revision 1.93 by root, Wed Oct 1 14:49:23 2008 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent (); 6use AnyEvent ();
7use AnyEvent::Util (); 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 8use Scalar::Util ();
9use Carp (); 9use Carp ();
10use Fcntl (); 10use Fcntl ();
11use Errno qw/EAGAIN EINTR/; 11use Errno qw(EAGAIN EINTR);
12 12
13=head1 NAME 13=head1 NAME
14 14
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17This module is experimental.
18
19=cut 17=cut
20 18
21our $VERSION = '0.04'; 19our $VERSION = 4.3;
22 20
23=head1 SYNOPSIS 21=head1 SYNOPSIS
24 22
25 use AnyEvent; 23 use AnyEvent;
26 use AnyEvent::Handle; 24 use AnyEvent::Handle;
27 25
28 my $cv = AnyEvent->condvar; 26 my $cv = AnyEvent->condvar;
29 27
30 my $ae_fh = AnyEvent::Handle->new (fh => \*STDIN); 28 my $handle =
31
32 #TODO
33
34 # or use the constructor to pass the callback:
35
36 my $ae_fh2 =
37 AnyEvent::Handle->new ( 29 AnyEvent::Handle->new (
38 fh => \*STDIN, 30 fh => \*STDIN,
39 on_eof => sub { 31 on_eof => sub {
40 $cv->broadcast; 32 $cv->broadcast;
41 }, 33 },
42 #TODO
43 ); 34 );
44 35
45 $cv->wait; 36 # send some request line
37 $handle->push_write ("getinfo\015\012");
38
39 # read the response line
40 $handle->push_read (line => sub {
41 my ($handle, $line) = @_;
42 warn "read line <$line>\n";
43 $cv->send;
44 });
45
46 $cv->recv;
46 47
47=head1 DESCRIPTION 48=head1 DESCRIPTION
48 49
49This module is a helper module to make it easier to do event-based I/O on 50This module is a helper module to make it easier to do event-based I/O on
50filehandles. For utility functions for doing non-blocking connects and accepts 51filehandles. For utility functions for doing non-blocking connects and accepts
51on sockets see L<AnyEvent::Util>. 52on sockets see L<AnyEvent::Util>.
52 53
54The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples.
56
53In the following, when the documentation refers to of "bytes" then this 57In the following, when the documentation refers to of "bytes" then this
54means characters. As sysread and syswrite are used for all I/O, their 58means characters. As sysread and syswrite are used for all I/O, their
55treatment of characters applies to this module as well. 59treatment of characters applies to this module as well.
56 60
57All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
58argument. 62argument.
59 63
64=head2 SIGPIPE is not handled by this module
65
66SIGPIPE is not handled by this module, so one of the practical
67requirements of using it is to ignore SIGPIPE (C<$SIG{PIPE} =
68'IGNORE'>). At least, this is highly recommend in a networked program: If
69you use AnyEvent::Handle in a filter program (like sort), exiting on
70SIGPIPE is probably the right thing to do.
71
60=head1 METHODS 72=head1 METHODS
61 73
62=over 4 74=over 4
63 75
64=item B<new (%args)> 76=item B<new (%args)>
69 81
70=item fh => $filehandle [MANDATORY] 82=item fh => $filehandle [MANDATORY]
71 83
72The filehandle this L<AnyEvent::Handle> object will operate on. 84The filehandle this L<AnyEvent::Handle> object will operate on.
73 85
74NOTE: The filehandle will be set to non-blocking (using 86NOTE: The filehandle will be set to non-blocking mode (using
75AnyEvent::Util::fh_nonblocking). 87C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
88that mode.
76 89
77=item on_eof => $cb->($self) 90=item on_eof => $cb->($handle)
78 91
79Set the callback to be called on EOF. 92Set the callback to be called when an end-of-file condition is detected,
93i.e. in the case of a socket, when the other side has closed the
94connection cleanly.
80 95
96For sockets, this just means that the other side has stopped sending data,
97you can still try to write data, and, in fact, one can return from the eof
98callback and continue writing data, as only the read part has been shut
99down.
100
81While not mandatory, it is highly recommended to set an eof callback, 101While not mandatory, it is I<highly> recommended to set an eof callback,
82otherwise you might end up with a closed socket while you are still 102otherwise you might end up with a closed socket while you are still
83waiting for data. 103waiting for data.
84 104
105If an EOF condition has been detected but no C<on_eof> callback has been
106set, then a fatal error will be raised with C<$!> set to <0>.
107
85=item on_error => $cb->($self) 108=item on_error => $cb->($handle, $fatal)
86 109
87This is the fatal error callback, that is called when, well, a fatal error 110This is the error callback, which is called when, well, some error
88occurs, such as not being able to resolve the hostname, failure to connect 111occured, such as not being able to resolve the hostname, failure to
89or a read error. 112connect or a read error.
90 113
91The object will not be in a usable state when this callback has been 114Some errors are fatal (which is indicated by C<$fatal> being true). On
92called. 115fatal errors the handle object will be shut down and will not be usable
116(but you are free to look at the current C<< ->rbuf >>). Examples of fatal
117errors are an EOF condition with active (but unsatisifable) read watchers
118(C<EPIPE>) or I/O errors.
119
120Non-fatal errors can be retried by simply returning, but it is recommended
121to simply ignore this parameter and instead abondon the handle object
122when this callback is invoked. Examples of non-fatal errors are timeouts
123C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
93 124
94On callback entrance, the value of C<$!> contains the operating system 125On callback entrance, the value of C<$!> contains the operating system
95error (or C<ENOSPC> or C<EPIPE>). 126error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
96 127
97While not mandatory, it is I<highly> recommended to set this callback, as 128While not mandatory, it is I<highly> recommended to set this callback, as
98you will not be notified of errors otherwise. The default simply calls 129you will not be notified of errors otherwise. The default simply calls
99die. 130C<croak>.
100 131
101=item on_read => $cb->($self) 132=item on_read => $cb->($handle)
102 133
103This sets the default read callback, which is called when data arrives 134This sets the default read callback, which is called when data arrives
104and no read request is in the queue. 135and no read request is in the queue (unlike read queue callbacks, this
136callback will only be called when at least one octet of data is in the
137read buffer).
105 138
106To access (and remove data from) the read buffer, use the C<< ->rbuf >> 139To access (and remove data from) the read buffer, use the C<< ->rbuf >>
107method or access the C<$self->{rbuf}> member directly. 140method or access the C<$handle->{rbuf}> member directly.
108 141
109When an EOF condition is detected then AnyEvent::Handle will first try to 142When an EOF condition is detected then AnyEvent::Handle will first try to
110feed all the remaining data to the queued callbacks and C<on_read> before 143feed all the remaining data to the queued callbacks and C<on_read> before
111calling the C<on_eof> callback. If no progress can be made, then a fatal 144calling the C<on_eof> callback. If no progress can be made, then a fatal
112error will be raised (with C<$!> set to C<EPIPE>). 145error will be raised (with C<$!> set to C<EPIPE>).
113 146
114=item on_drain => $cb->() 147=item on_drain => $cb->($handle)
115 148
116This sets the callback that is called when the write buffer becomes empty 149This sets the callback that is called when the write buffer becomes empty
117(or when the callback is set and the buffer is empty already). 150(or when the callback is set and the buffer is empty already).
118 151
119To append to the write buffer, use the C<< ->push_write >> method. 152To append to the write buffer, use the C<< ->push_write >> method.
120 153
154This callback is useful when you don't want to put all of your write data
155into the queue at once, for example, when you want to write the contents
156of some file to the socket you might not want to read the whole file into
157memory and push it into the queue, but instead only read more data from
158the file when the write queue becomes empty.
159
160=item timeout => $fractional_seconds
161
162If non-zero, then this enables an "inactivity" timeout: whenever this many
163seconds pass without a successful read or write on the underlying file
164handle, the C<on_timeout> callback will be invoked (and if that one is
165missing, a non-fatal C<ETIMEDOUT> error will be raised).
166
167Note that timeout processing is also active when you currently do not have
168any outstanding read or write requests: If you plan to keep the connection
169idle then you should disable the timout temporarily or ignore the timeout
170in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
171restart the timeout.
172
173Zero (the default) disables this timeout.
174
175=item on_timeout => $cb->($handle)
176
177Called whenever the inactivity timeout passes. If you return from this
178callback, then the timeout will be reset as if some activity had happened,
179so this condition is not fatal in any way.
180
121=item rbuf_max => <bytes> 181=item rbuf_max => <bytes>
122 182
123If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 183If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
124when the read buffer ever (strictly) exceeds this size. This is useful to 184when the read buffer ever (strictly) exceeds this size. This is useful to
125avoid denial-of-service attacks. 185avoid some forms of denial-of-service attacks.
126 186
127For example, a server accepting connections from untrusted sources should 187For example, a server accepting connections from untrusted sources should
128be configured to accept only so-and-so much data that it cannot act on 188be configured to accept only so-and-so much data that it cannot act on
129(for example, when expecting a line, an attacker could send an unlimited 189(for example, when expecting a line, an attacker could send an unlimited
130amount of data without a callback ever being called as long as the line 190amount of data without a callback ever being called as long as the line
131isn't finished). 191isn't finished).
132 192
193=item autocork => <boolean>
194
195When disabled (the default), then C<push_write> will try to immediately
196write the data to the handle, if possible. This avoids having to register
197a write watcher and wait for the next event loop iteration, but can
198be inefficient if you write multiple small chunks (on the wire, this
199disadvantage is usually avoided by your kernel's nagle algorithm, see
200C<no_delay>, but this option can save costly syscalls).
201
202When enabled, then writes will always be queued till the next event loop
203iteration. This is efficient when you do many small writes per iteration,
204but less efficient when you do a single write only per iteration (or when
205the write buffer often is full). It also increases write latency.
206
207=item no_delay => <boolean>
208
209When doing small writes on sockets, your operating system kernel might
210wait a bit for more data before actually sending it out. This is called
211the Nagle algorithm, and usually it is beneficial.
212
213In some situations you want as low a delay as possible, which can be
214accomplishd by setting this option to a true value.
215
216The default is your opertaing system's default behaviour (most likely
217enabled), this option explicitly enables or disables it, if possible.
218
133=item read_size => <bytes> 219=item read_size => <bytes>
134 220
135The default read block size (the amount of bytes this module will try to read 221The default read block size (the amount of bytes this module will
136on each [loop iteration). Default: C<4096>. 222try to read during each loop iteration, which affects memory
223requirements). Default: C<8192>.
137 224
138=item low_water_mark => <bytes> 225=item low_water_mark => <bytes>
139 226
140Sets the amount of bytes (default: C<0>) that make up an "empty" write 227Sets the amount of bytes (default: C<0>) that make up an "empty" write
141buffer: If the write reaches this size or gets even samller it is 228buffer: If the write reaches this size or gets even samller it is
142considered empty. 229considered empty.
143 230
231Sometimes it can be beneficial (for performance reasons) to add data to
232the write buffer before it is fully drained, but this is a rare case, as
233the operating system kernel usually buffers data as well, so the default
234is good in almost all cases.
235
236=item linger => <seconds>
237
238If non-zero (default: C<3600>), then the destructor of the
239AnyEvent::Handle object will check whether there is still outstanding
240write data and will install a watcher that will write this data to the
241socket. No errors will be reported (this mostly matches how the operating
242system treats outstanding data at socket close time).
243
244This will not work for partial TLS data that could not be encoded
245yet. This data will be lost. Calling the C<stoptls> method in time might
246help.
247
144=item tls => "accept" | "connect" | Net::SSLeay::SSL object 248=item tls => "accept" | "connect" | Net::SSLeay::SSL object
145 249
146When this parameter is given, it enables TLS (SSL) mode, that means it 250When this parameter is given, it enables TLS (SSL) mode, that means
147will start making tls handshake and will transparently encrypt/decrypt 251AnyEvent will start a TLS handshake as soon as the conenction has been
148data. 252established and will transparently encrypt/decrypt data afterwards.
149 253
150For the TLS server side, use C<accept>, and for the TLS client side of a 254TLS mode requires Net::SSLeay to be installed (it will be loaded
151connection, use C<connect> mode. 255automatically when you try to create a TLS handle): this module doesn't
256have a dependency on that module, so if your module requires it, you have
257to add the dependency yourself.
258
259Unlike TCP, TLS has a server and client side: for the TLS server side, use
260C<accept>, and for the TLS client side of a connection, use C<connect>
261mode.
152 262
153You can also provide your own TLS connection object, but you have 263You can also provide your own TLS connection object, but you have
154to make sure that you call either C<Net::SSLeay::set_connect_state> 264to make sure that you call either C<Net::SSLeay::set_connect_state>
155or C<Net::SSLeay::set_accept_state> on it before you pass it to 265or C<Net::SSLeay::set_accept_state> on it before you pass it to
156AnyEvent::Handle. 266AnyEvent::Handle.
157 267
268See the C<< ->starttls >> method for when need to start TLS negotiation later.
269
158=item tls_ctx => $ssl_ctx 270=item tls_ctx => $ssl_ctx
159 271
160Use the given Net::SSLeay::CTX object to create the new TLS connection 272Use the given C<Net::SSLeay::CTX> object to create the new TLS connection
161(unless a connection object was specified directly). If this parameter is 273(unless a connection object was specified directly). If this parameter is
162missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 274missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
275
276=item json => JSON or JSON::XS object
277
278This is the json coder object used by the C<json> read and write types.
279
280If you don't supply it, then AnyEvent::Handle will create and use a
281suitable one (on demand), which will write and expect UTF-8 encoded JSON
282texts.
283
284Note that you are responsible to depend on the JSON module if you want to
285use this functionality, as AnyEvent does not have a dependency itself.
163 286
164=back 287=back
165 288
166=cut 289=cut
167 290
177 if ($self->{tls}) { 300 if ($self->{tls}) {
178 require Net::SSLeay; 301 require Net::SSLeay;
179 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 302 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
180 } 303 }
181 304
182 $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; 305 $self->{_activity} = AnyEvent->now;
183 $self->on_error (delete $self->{on_error}) if $self->{on_error}; 306 $self->_timeout;
307
184 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 308 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
185 $self->on_read (delete $self->{on_read} ) if $self->{on_read}; 309 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
186 310
187 $self->start_read; 311 $self->start_read
312 if $self->{on_read};
188 313
189 $self 314 $self
190} 315}
191 316
192sub _shutdown { 317sub _shutdown {
193 my ($self) = @_; 318 my ($self) = @_;
194 319
320 delete $self->{_tw};
195 delete $self->{rw}; 321 delete $self->{_rw};
196 delete $self->{ww}; 322 delete $self->{_ww};
197 delete $self->{fh}; 323 delete $self->{fh};
198}
199 324
325 &_freetls;
326
327 delete $self->{on_read};
328 delete $self->{_queue};
329}
330
200sub error { 331sub _error {
201 my ($self) = @_; 332 my ($self, $errno, $fatal) = @_;
202 333
203 {
204 local $!;
205 $self->_shutdown; 334 $self->_shutdown
206 } 335 if $fatal;
336
337 $! = $errno;
207 338
208 if ($self->{on_error}) { 339 if ($self->{on_error}) {
209 $self->{on_error}($self); 340 $self->{on_error}($self, $fatal);
210 } else { 341 } else {
211 die "AnyEvent::Handle uncaught fatal error: $!"; 342 Carp::croak "AnyEvent::Handle uncaught error: $!";
212 } 343 }
213} 344}
214 345
215=item $fh = $handle->fh 346=item $fh = $handle->fh
216 347
217This method returns the file handle of the L<AnyEvent::Handle> object. 348This method returns the file handle used to create the L<AnyEvent::Handle> object.
218 349
219=cut 350=cut
220 351
221sub fh { $_[0]->{fh} } 352sub fh { $_[0]{fh} }
222 353
223=item $handle->on_error ($cb) 354=item $handle->on_error ($cb)
224 355
225Replace the current C<on_error> callback (see the C<on_error> constructor argument). 356Replace the current C<on_error> callback (see the C<on_error> constructor argument).
226 357
238 369
239sub on_eof { 370sub on_eof {
240 $_[0]{on_eof} = $_[1]; 371 $_[0]{on_eof} = $_[1];
241} 372}
242 373
374=item $handle->on_timeout ($cb)
375
376Replace the current C<on_timeout> callback, or disables the callback (but
377not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
378argument and method.
379
380=cut
381
382sub on_timeout {
383 $_[0]{on_timeout} = $_[1];
384}
385
386=item $handle->autocork ($boolean)
387
388Enables or disables the current autocork behaviour (see C<autocork>
389constructor argument).
390
391=cut
392
393=item $handle->no_delay ($boolean)
394
395Enables or disables the C<no_delay> setting (see constructor argument of
396the same name for details).
397
398=cut
399
400sub no_delay {
401 $_[0]{no_delay} = $_[1];
402
403 eval {
404 local $SIG{__DIE__};
405 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
406 };
407}
408
409#############################################################################
410
411=item $handle->timeout ($seconds)
412
413Configures (or disables) the inactivity timeout.
414
415=cut
416
417sub timeout {
418 my ($self, $timeout) = @_;
419
420 $self->{timeout} = $timeout;
421 $self->_timeout;
422}
423
424# reset the timeout watcher, as neccessary
425# also check for time-outs
426sub _timeout {
427 my ($self) = @_;
428
429 if ($self->{timeout}) {
430 my $NOW = AnyEvent->now;
431
432 # when would the timeout trigger?
433 my $after = $self->{_activity} + $self->{timeout} - $NOW;
434
435 # now or in the past already?
436 if ($after <= 0) {
437 $self->{_activity} = $NOW;
438
439 if ($self->{on_timeout}) {
440 $self->{on_timeout}($self);
441 } else {
442 $self->_error (&Errno::ETIMEDOUT);
443 }
444
445 # callback could have changed timeout value, optimise
446 return unless $self->{timeout};
447
448 # calculate new after
449 $after = $self->{timeout};
450 }
451
452 Scalar::Util::weaken $self;
453 return unless $self; # ->error could have destroyed $self
454
455 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
456 delete $self->{_tw};
457 $self->_timeout;
458 });
459 } else {
460 delete $self->{_tw};
461 }
462}
463
243############################################################################# 464#############################################################################
244 465
245=back 466=back
246 467
247=head2 WRITE QUEUE 468=head2 WRITE QUEUE
268 my ($self, $cb) = @_; 489 my ($self, $cb) = @_;
269 490
270 $self->{on_drain} = $cb; 491 $self->{on_drain} = $cb;
271 492
272 $cb->($self) 493 $cb->($self)
273 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 494 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
274} 495}
275 496
276=item $handle->push_write ($data) 497=item $handle->push_write ($data)
277 498
278Queues the given scalar to be written. You can push as much data as you 499Queues the given scalar to be written. You can push as much data as you
282=cut 503=cut
283 504
284sub _drain_wbuf { 505sub _drain_wbuf {
285 my ($self) = @_; 506 my ($self) = @_;
286 507
287 unless ($self->{ww}) { 508 if (!$self->{_ww} && length $self->{wbuf}) {
509
288 Scalar::Util::weaken $self; 510 Scalar::Util::weaken $self;
511
289 my $cb = sub { 512 my $cb = sub {
290 my $len = syswrite $self->{fh}, $self->{wbuf}; 513 my $len = syswrite $self->{fh}, $self->{wbuf};
291 514
292 if ($len > 0) { 515 if ($len >= 0) {
293 substr $self->{wbuf}, 0, $len, ""; 516 substr $self->{wbuf}, 0, $len, "";
294 517
518 $self->{_activity} = AnyEvent->now;
519
295 $self->{on_drain}($self) 520 $self->{on_drain}($self)
296 if $self->{low_water_mark} >= length $self->{wbuf} 521 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
297 && $self->{on_drain}; 522 && $self->{on_drain};
298 523
299 delete $self->{ww} unless length $self->{wbuf}; 524 delete $self->{_ww} unless length $self->{wbuf};
300 } elsif ($! != EAGAIN && $! != EINTR) { 525 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
301 $self->error; 526 $self->_error ($!, 1);
302 } 527 }
303 }; 528 };
304 529
530 # try to write data immediately
531 $cb->() unless $self->{autocork};
532
533 # if still data left in wbuf, we need to poll
305 $self->{ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb); 534 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
306 535 if length $self->{wbuf};
307 $cb->($self);
308 }; 536 };
537}
538
539our %WH;
540
541sub register_write_type($$) {
542 $WH{$_[0]} = $_[1];
309} 543}
310 544
311sub push_write { 545sub push_write {
312 my $self = shift; 546 my $self = shift;
313 547
548 if (@_ > 1) {
549 my $type = shift;
550
551 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
552 ->($self, @_);
553 }
554
314 if ($self->{filter_w}) { 555 if ($self->{tls}) {
315 $self->{filter_w}->($self, \$_[0]); 556 $self->{_tls_wbuf} .= $_[0];
557 &_dotls ($self);
316 } else { 558 } else {
317 $self->{wbuf} .= $_[0]; 559 $self->{wbuf} .= $_[0];
318 $self->_drain_wbuf; 560 $self->_drain_wbuf;
319 } 561 }
320} 562}
321 563
564=item $handle->push_write (type => @args)
565
566Instead of formatting your data yourself, you can also let this module do
567the job by specifying a type and type-specific arguments.
568
569Predefined types are (if you have ideas for additional types, feel free to
570drop by and tell us):
571
572=over 4
573
574=item netstring => $string
575
576Formats the given value as netstring
577(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
578
579=cut
580
581register_write_type netstring => sub {
582 my ($self, $string) = @_;
583
584 sprintf "%d:%s,", (length $string), $string
585};
586
587=item packstring => $format, $data
588
589An octet string prefixed with an encoded length. The encoding C<$format>
590uses the same format as a Perl C<pack> format, but must specify a single
591integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
592optional C<!>, C<< < >> or C<< > >> modifier).
593
594=cut
595
596register_write_type packstring => sub {
597 my ($self, $format, $string) = @_;
598
599 pack "$format/a*", $string
600};
601
602=item json => $array_or_hashref
603
604Encodes the given hash or array reference into a JSON object. Unless you
605provide your own JSON object, this means it will be encoded to JSON text
606in UTF-8.
607
608JSON objects (and arrays) are self-delimiting, so you can write JSON at
609one end of a handle and read them at the other end without using any
610additional framing.
611
612The generated JSON text is guaranteed not to contain any newlines: While
613this module doesn't need delimiters after or between JSON texts to be
614able to read them, many other languages depend on that.
615
616A simple RPC protocol that interoperates easily with others is to send
617JSON arrays (or objects, although arrays are usually the better choice as
618they mimic how function argument passing works) and a newline after each
619JSON text:
620
621 $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
622 $handle->push_write ("\012");
623
624An AnyEvent::Handle receiver would simply use the C<json> read type and
625rely on the fact that the newline will be skipped as leading whitespace:
626
627 $handle->push_read (json => sub { my $array = $_[1]; ... });
628
629Other languages could read single lines terminated by a newline and pass
630this line into their JSON decoder of choice.
631
632=cut
633
634register_write_type json => sub {
635 my ($self, $ref) = @_;
636
637 require JSON;
638
639 $self->{json} ? $self->{json}->encode ($ref)
640 : JSON::encode_json ($ref)
641};
642
643=item storable => $reference
644
645Freezes the given reference using L<Storable> and writes it to the
646handle. Uses the C<nfreeze> format.
647
648=cut
649
650register_write_type storable => sub {
651 my ($self, $ref) = @_;
652
653 require Storable;
654
655 pack "w/a*", Storable::nfreeze ($ref)
656};
657
658=back
659
660=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
661
662This function (not method) lets you add your own types to C<push_write>.
663Whenever the given C<type> is used, C<push_write> will invoke the code
664reference with the handle object and the remaining arguments.
665
666The code reference is supposed to return a single octet string that will
667be appended to the write buffer.
668
669Note that this is a function, and all types registered this way will be
670global, so try to use unique names.
671
672=cut
673
322############################################################################# 674#############################################################################
323 675
324=back 676=back
325 677
326=head2 READ QUEUE 678=head2 READ QUEUE
332ways, the "simple" way, using only C<on_read> and the "complex" way, using 684ways, the "simple" way, using only C<on_read> and the "complex" way, using
333a queue. 685a queue.
334 686
335In the simple case, you just install an C<on_read> callback and whenever 687In the simple case, you just install an C<on_read> callback and whenever
336new data arrives, it will be called. You can then remove some data (if 688new data arrives, it will be called. You can then remove some data (if
337enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 689enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
338or not. 690leave the data there if you want to accumulate more (e.g. when only a
691partial message has been received so far).
339 692
340In the more complex case, you want to queue multiple callbacks. In this 693In the more complex case, you want to queue multiple callbacks. In this
341case, AnyEvent::Handle will call the first queued callback each time new 694case, AnyEvent::Handle will call the first queued callback each time new
342data arrives and removes it when it has done its job (see C<push_read>, 695data arrives (also the first time it is queued) and removes it when it has
343below). 696done its job (see C<push_read>, below).
344 697
345This way you can, for example, push three line-reads, followed by reading 698This way you can, for example, push three line-reads, followed by reading
346a chunk of data, and AnyEvent::Handle will execute them in order. 699a chunk of data, and AnyEvent::Handle will execute them in order.
347 700
348Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 701Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
349the specified number of bytes which give an XML datagram. 702the specified number of bytes which give an XML datagram.
350 703
351 # in the default state, expect some header bytes 704 # in the default state, expect some header bytes
352 $handle->on_read (sub { 705 $handle->on_read (sub {
353 # some data is here, now queue the length-header-read (4 octets) 706 # some data is here, now queue the length-header-read (4 octets)
354 shift->unshift_read_chunk (4, sub { 707 shift->unshift_read (chunk => 4, sub {
355 # header arrived, decode 708 # header arrived, decode
356 my $len = unpack "N", $_[1]; 709 my $len = unpack "N", $_[1];
357 710
358 # now read the payload 711 # now read the payload
359 shift->unshift_read_chunk ($len, sub { 712 shift->unshift_read (chunk => $len, sub {
360 my $xml = $_[1]; 713 my $xml = $_[1];
361 # handle xml 714 # handle xml
362 }); 715 });
363 }); 716 });
364 }); 717 });
365 718
366Example 2: Implement a client for a protocol that replies either with 719Example 2: Implement a client for a protocol that replies either with "OK"
367"OK" and another line or "ERROR" for one request, and 64 bytes for the 720and another line or "ERROR" for the first request that is sent, and 64
368second request. Due tot he availability of a full queue, we can just 721bytes for the second request. Due to the availability of a queue, we can
369pipeline sending both requests and manipulate the queue as necessary in 722just pipeline sending both requests and manipulate the queue as necessary
370the callbacks: 723in the callbacks.
371 724
372 # request one 725When the first callback is called and sees an "OK" response, it will
726C<unshift> another line-read. This line-read will be queued I<before> the
72764-byte chunk callback.
728
729 # request one, returns either "OK + extra line" or "ERROR"
373 $handle->push_write ("request 1\015\012"); 730 $handle->push_write ("request 1\015\012");
374 731
375 # we expect "ERROR" or "OK" as response, so push a line read 732 # we expect "ERROR" or "OK" as response, so push a line read
376 $handle->push_read_line (sub { 733 $handle->push_read (line => sub {
377 # if we got an "OK", we have to _prepend_ another line, 734 # if we got an "OK", we have to _prepend_ another line,
378 # so it will be read before the second request reads its 64 bytes 735 # so it will be read before the second request reads its 64 bytes
379 # which are already in the queue when this callback is called 736 # which are already in the queue when this callback is called
380 # we don't do this in case we got an error 737 # we don't do this in case we got an error
381 if ($_[1] eq "OK") { 738 if ($_[1] eq "OK") {
382 $_[0]->unshift_read_line (sub { 739 $_[0]->unshift_read (line => sub {
383 my $response = $_[1]; 740 my $response = $_[1];
384 ... 741 ...
385 }); 742 });
386 } 743 }
387 }); 744 });
388 745
389 # request two 746 # request two, simply returns 64 octets
390 $handle->push_write ("request 2\015\012"); 747 $handle->push_write ("request 2\015\012");
391 748
392 # simply read 64 bytes, always 749 # simply read 64 bytes, always
393 $handle->push_read_chunk (64, sub { 750 $handle->push_read (chunk => 64, sub {
394 my $response = $_[1]; 751 my $response = $_[1];
395 ... 752 ...
396 }); 753 });
397 754
398=over 4 755=over 4
399 756
400=cut 757=cut
401 758
402sub _drain_rbuf { 759sub _drain_rbuf {
403 my ($self) = @_; 760 my ($self) = @_;
761
762 local $self->{_in_drain} = 1;
404 763
405 if ( 764 if (
406 defined $self->{rbuf_max} 765 defined $self->{rbuf_max}
407 && $self->{rbuf_max} < length $self->{rbuf} 766 && $self->{rbuf_max} < length $self->{rbuf}
408 ) { 767 ) {
409 $! = &Errno::ENOSPC; return $self->error; 768 $self->_error (&Errno::ENOSPC, 1), return;
410 } 769 }
411 770
412 return if $self->{in_drain}; 771 while () {
413 local $self->{in_drain} = 1;
414
415 while (my $len = length $self->{rbuf}) { 772 my $len = length $self->{rbuf};
416 no strict 'refs'; 773
417 if (my $cb = shift @{ $self->{queue} }) { 774 if (my $cb = shift @{ $self->{_queue} }) {
418 if (!$cb->($self)) { 775 unless ($cb->($self)) {
419 if ($self->{eof}) { 776 if ($self->{_eof}) {
420 # no progress can be made (not enough data and no data forthcoming) 777 # no progress can be made (not enough data and no data forthcoming)
421 $! = &Errno::EPIPE; return $self->error; 778 $self->_error (&Errno::EPIPE, 1), return;
422 } 779 }
423 780
424 unshift @{ $self->{queue} }, $cb; 781 unshift @{ $self->{_queue} }, $cb;
425 return; 782 last;
426 } 783 }
427 } elsif ($self->{on_read}) { 784 } elsif ($self->{on_read}) {
785 last unless $len;
786
428 $self->{on_read}($self); 787 $self->{on_read}($self);
429 788
430 if ( 789 if (
431 $self->{eof} # if no further data will arrive
432 && $len == length $self->{rbuf} # and no data has been consumed 790 $len == length $self->{rbuf} # if no data has been consumed
433 && !@{ $self->{queue} } # and the queue is still empty 791 && !@{ $self->{_queue} } # and the queue is still empty
434 && $self->{on_read} # and we still want to read data 792 && $self->{on_read} # but we still have on_read
435 ) { 793 ) {
794 # no further data will arrive
436 # then no progress can be made 795 # so no progress can be made
437 $! = &Errno::EPIPE; return $self->error; 796 $self->_error (&Errno::EPIPE, 1), return
797 if $self->{_eof};
798
799 last; # more data might arrive
438 } 800 }
439 } else { 801 } else {
440 # read side becomes idle 802 # read side becomes idle
441 delete $self->{rw}; 803 delete $self->{_rw} unless $self->{tls};
442 return; 804 last;
443 } 805 }
444 } 806 }
445 807
446 if ($self->{eof}) { 808 if ($self->{_eof}) {
447 $self->_shutdown; 809 if ($self->{on_eof}) {
448 $self->{on_eof}($self) 810 $self->{on_eof}($self)
449 if $self->{on_eof}; 811 } else {
812 $self->_error (0, 1);
813 }
814 }
815
816 # may need to restart read watcher
817 unless ($self->{_rw}) {
818 $self->start_read
819 if $self->{on_read} || @{ $self->{_queue} };
450 } 820 }
451} 821}
452 822
453=item $handle->on_read ($cb) 823=item $handle->on_read ($cb)
454 824
460 830
461sub on_read { 831sub on_read {
462 my ($self, $cb) = @_; 832 my ($self, $cb) = @_;
463 833
464 $self->{on_read} = $cb; 834 $self->{on_read} = $cb;
835 $self->_drain_rbuf if $cb && !$self->{_in_drain};
465} 836}
466 837
467=item $handle->rbuf 838=item $handle->rbuf
468 839
469Returns the read buffer (as a modifiable lvalue). 840Returns the read buffer (as a modifiable lvalue).
500interested in (which can be none at all) and return a true value. After returning 871interested in (which can be none at all) and return a true value. After returning
501true, it will be removed from the queue. 872true, it will be removed from the queue.
502 873
503=cut 874=cut
504 875
876our %RH;
877
878sub register_read_type($$) {
879 $RH{$_[0]} = $_[1];
880}
881
505sub push_read { 882sub push_read {
506 my ($self, $cb) = @_; 883 my $self = shift;
884 my $cb = pop;
507 885
886 if (@_) {
887 my $type = shift;
888
889 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
890 ->($self, $cb, @_);
891 }
892
508 push @{ $self->{queue} }, $cb; 893 push @{ $self->{_queue} }, $cb;
509 $self->_drain_rbuf; 894 $self->_drain_rbuf unless $self->{_in_drain};
510} 895}
511 896
512sub unshift_read { 897sub unshift_read {
513 my ($self, $cb) = @_; 898 my $self = shift;
899 my $cb = pop;
514 900
901 if (@_) {
902 my $type = shift;
903
904 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
905 ->($self, $cb, @_);
906 }
907
908
515 push @{ $self->{queue} }, $cb; 909 unshift @{ $self->{_queue} }, $cb;
516 $self->_drain_rbuf; 910 $self->_drain_rbuf unless $self->{_in_drain};
517} 911}
518 912
519=item $handle->push_read_chunk ($len, $cb->($self, $data)) 913=item $handle->push_read (type => @args, $cb)
520 914
521=item $handle->unshift_read_chunk ($len, $cb->($self, $data)) 915=item $handle->unshift_read (type => @args, $cb)
522 916
523Append the given callback to the end of the queue (C<push_read_chunk>) or 917Instead of providing a callback that parses the data itself you can chose
524prepend it (C<unshift_read_chunk>). 918between a number of predefined parsing formats, for chunks of data, lines
919etc.
525 920
526The callback will be called only once C<$len> bytes have been read, and 921Predefined types are (if you have ideas for additional types, feel free to
527these C<$len> bytes will be passed to the callback. 922drop by and tell us):
528 923
529=cut 924=over 4
530 925
531sub _read_chunk($$) { 926=item chunk => $octets, $cb->($handle, $data)
927
928Invoke the callback only once C<$octets> bytes have been read. Pass the
929data read to the callback. The callback will never be called with less
930data.
931
932Example: read 2 bytes.
933
934 $handle->push_read (chunk => 2, sub {
935 warn "yay ", unpack "H*", $_[1];
936 });
937
938=cut
939
940register_read_type chunk => sub {
532 my ($self, $len, $cb) = @_; 941 my ($self, $cb, $len) = @_;
533 942
534 sub { 943 sub {
535 $len <= length $_[0]{rbuf} or return; 944 $len <= length $_[0]{rbuf} or return;
536 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 945 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
537 1 946 1
538 } 947 }
539} 948};
540 949
541sub push_read_chunk { 950=item line => [$eol, ]$cb->($handle, $line, $eol)
542 $_[0]->push_read (&_read_chunk);
543}
544
545
546sub unshift_read_chunk {
547 $_[0]->unshift_read (&_read_chunk);
548}
549
550=item $handle->push_read_line ([$eol, ]$cb->($self, $line, $eol))
551
552=item $handle->unshift_read_line ([$eol, ]$cb->($self, $line, $eol))
553
554Append the given callback to the end of the queue (C<push_read_line>) or
555prepend it (C<unshift_read_line>).
556 951
557The callback will be called only once a full line (including the end of 952The callback will be called only once a full line (including the end of
558line marker, C<$eol>) has been read. This line (excluding the end of line 953line marker, C<$eol>) has been read. This line (excluding the end of line
559marker) will be passed to the callback as second argument (C<$line>), and 954marker) will be passed to the callback as second argument (C<$line>), and
560the end of line marker as the third argument (C<$eol>). 955the end of line marker as the third argument (C<$eol>).
571Partial lines at the end of the stream will never be returned, as they are 966Partial lines at the end of the stream will never be returned, as they are
572not marked by the end of line marker. 967not marked by the end of line marker.
573 968
574=cut 969=cut
575 970
576sub _read_line($$) { 971register_read_type line => sub {
577 my $self = shift; 972 my ($self, $cb, $eol) = @_;
578 my $cb = pop;
579 my $eol = @_ ? shift : qr|(\015?\012)|;
580 my $pos;
581 973
974 if (@_ < 3) {
975 # this is more than twice as fast as the generic code below
976 sub {
977 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
978
979 $cb->($_[0], $1, $2);
980 1
981 }
982 } else {
582 $eol = quotemeta $eol unless ref $eol; 983 $eol = quotemeta $eol unless ref $eol;
583 $eol = qr|^(.*?)($eol)|s; 984 $eol = qr|^(.*?)($eol)|s;
985
986 sub {
987 $_[0]{rbuf} =~ s/$eol// or return;
988
989 $cb->($_[0], $1, $2);
990 1
991 }
992 }
993};
994
995=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
996
997Makes a regex match against the regex object C<$accept> and returns
998everything up to and including the match.
999
1000Example: read a single line terminated by '\n'.
1001
1002 $handle->push_read (regex => qr<\n>, sub { ... });
1003
1004If C<$reject> is given and not undef, then it determines when the data is
1005to be rejected: it is matched against the data when the C<$accept> regex
1006does not match and generates an C<EBADMSG> error when it matches. This is
1007useful to quickly reject wrong data (to avoid waiting for a timeout or a
1008receive buffer overflow).
1009
1010Example: expect a single decimal number followed by whitespace, reject
1011anything else (not the use of an anchor).
1012
1013 $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1014
1015If C<$skip> is given and not C<undef>, then it will be matched against
1016the receive buffer when neither C<$accept> nor C<$reject> match,
1017and everything preceding and including the match will be accepted
1018unconditionally. This is useful to skip large amounts of data that you
1019know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1020have to start matching from the beginning. This is purely an optimisation
1021and is usually worth only when you expect more than a few kilobytes.
1022
1023Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1024expect the header to be very large (it isn't in practise, but...), we use
1025a skip regex to skip initial portions. The skip regex is tricky in that
1026it only accepts something not ending in either \015 or \012, as these are
1027required for the accept regex.
1028
1029 $handle->push_read (regex =>
1030 qr<\015\012\015\012>,
1031 undef, # no reject
1032 qr<^.*[^\015\012]>,
1033 sub { ... });
1034
1035=cut
1036
1037register_read_type regex => sub {
1038 my ($self, $cb, $accept, $reject, $skip) = @_;
1039
1040 my $data;
1041 my $rbuf = \$self->{rbuf};
584 1042
585 sub { 1043 sub {
586 $_[0]{rbuf} =~ s/$eol// or return; 1044 # accept
1045 if ($$rbuf =~ $accept) {
1046 $data .= substr $$rbuf, 0, $+[0], "";
1047 $cb->($self, $data);
1048 return 1;
1049 }
1050
1051 # reject
1052 if ($reject && $$rbuf =~ $reject) {
1053 $self->_error (&Errno::EBADMSG);
1054 }
587 1055
588 $cb->($_[0], $1, $2); 1056 # skip
1057 if ($skip && $$rbuf =~ $skip) {
1058 $data .= substr $$rbuf, 0, $+[0], "";
1059 }
1060
1061 ()
1062 }
1063};
1064
1065=item netstring => $cb->($handle, $string)
1066
1067A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1068
1069Throws an error with C<$!> set to EBADMSG on format violations.
1070
1071=cut
1072
1073register_read_type netstring => sub {
1074 my ($self, $cb) = @_;
1075
1076 sub {
1077 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1078 if ($_[0]{rbuf} =~ /[^0-9]/) {
1079 $self->_error (&Errno::EBADMSG);
1080 }
1081 return;
1082 }
1083
1084 my $len = $1;
1085
1086 $self->unshift_read (chunk => $len, sub {
1087 my $string = $_[1];
1088 $_[0]->unshift_read (chunk => 1, sub {
1089 if ($_[1] eq ",") {
1090 $cb->($_[0], $string);
1091 } else {
1092 $self->_error (&Errno::EBADMSG);
1093 }
1094 });
1095 });
1096
589 1 1097 1
590 } 1098 }
591} 1099};
592 1100
593sub push_read_line { 1101=item packstring => $format, $cb->($handle, $string)
594 $_[0]->push_read (&_read_line);
595}
596 1102
597sub unshift_read_line { 1103An octet string prefixed with an encoded length. The encoding C<$format>
598 $_[0]->unshift_read (&_read_line); 1104uses the same format as a Perl C<pack> format, but must specify a single
599} 1105integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1106optional C<!>, C<< < >> or C<< > >> modifier).
1107
1108DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>.
1109
1110Example: read a block of data prefixed by its length in BER-encoded
1111format (very efficient).
1112
1113 $handle->push_read (packstring => "w", sub {
1114 my ($handle, $data) = @_;
1115 });
1116
1117=cut
1118
1119register_read_type packstring => sub {
1120 my ($self, $cb, $format) = @_;
1121
1122 sub {
1123 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1124 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1125 or return;
1126
1127 $format = length pack $format, $len;
1128
1129 # bypass unshift if we already have the remaining chunk
1130 if ($format + $len <= length $_[0]{rbuf}) {
1131 my $data = substr $_[0]{rbuf}, $format, $len;
1132 substr $_[0]{rbuf}, 0, $format + $len, "";
1133 $cb->($_[0], $data);
1134 } else {
1135 # remove prefix
1136 substr $_[0]{rbuf}, 0, $format, "";
1137
1138 # read remaining chunk
1139 $_[0]->unshift_read (chunk => $len, $cb);
1140 }
1141
1142 1
1143 }
1144};
1145
1146=item json => $cb->($handle, $hash_or_arrayref)
1147
1148Reads a JSON object or array, decodes it and passes it to the callback.
1149
1150If a C<json> object was passed to the constructor, then that will be used
1151for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1152
1153This read type uses the incremental parser available with JSON version
11542.09 (and JSON::XS version 2.2) and above. You have to provide a
1155dependency on your own: this module will load the JSON module, but
1156AnyEvent does not depend on it itself.
1157
1158Since JSON texts are fully self-delimiting, the C<json> read and write
1159types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1160the C<json> write type description, above, for an actual example.
1161
1162=cut
1163
1164register_read_type json => sub {
1165 my ($self, $cb) = @_;
1166
1167 require JSON;
1168
1169 my $data;
1170 my $rbuf = \$self->{rbuf};
1171
1172 my $json = $self->{json} ||= JSON->new->utf8;
1173
1174 sub {
1175 my $ref = $json->incr_parse ($self->{rbuf});
1176
1177 if ($ref) {
1178 $self->{rbuf} = $json->incr_text;
1179 $json->incr_text = "";
1180 $cb->($self, $ref);
1181
1182 1
1183 } else {
1184 $self->{rbuf} = "";
1185 ()
1186 }
1187 }
1188};
1189
1190=item storable => $cb->($handle, $ref)
1191
1192Deserialises a L<Storable> frozen representation as written by the
1193C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1194data).
1195
1196Raises C<EBADMSG> error if the data could not be decoded.
1197
1198=cut
1199
1200register_read_type storable => sub {
1201 my ($self, $cb) = @_;
1202
1203 require Storable;
1204
1205 sub {
1206 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1207 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1208 or return;
1209
1210 my $format = length pack "w", $len;
1211
1212 # bypass unshift if we already have the remaining chunk
1213 if ($format + $len <= length $_[0]{rbuf}) {
1214 my $data = substr $_[0]{rbuf}, $format, $len;
1215 substr $_[0]{rbuf}, 0, $format + $len, "";
1216 $cb->($_[0], Storable::thaw ($data));
1217 } else {
1218 # remove prefix
1219 substr $_[0]{rbuf}, 0, $format, "";
1220
1221 # read remaining chunk
1222 $_[0]->unshift_read (chunk => $len, sub {
1223 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1224 $cb->($_[0], $ref);
1225 } else {
1226 $self->_error (&Errno::EBADMSG);
1227 }
1228 });
1229 }
1230
1231 1
1232 }
1233};
1234
1235=back
1236
1237=item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1238
1239This function (not method) lets you add your own types to C<push_read>.
1240
1241Whenever the given C<type> is used, C<push_read> will invoke the code
1242reference with the handle object, the callback and the remaining
1243arguments.
1244
1245The code reference is supposed to return a callback (usually a closure)
1246that works as a plain read callback (see C<< ->push_read ($cb) >>).
1247
1248It should invoke the passed callback when it is done reading (remember to
1249pass C<$handle> as first argument as all other callbacks do that).
1250
1251Note that this is a function, and all types registered this way will be
1252global, so try to use unique names.
1253
1254For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1255search for C<register_read_type>)).
600 1256
601=item $handle->stop_read 1257=item $handle->stop_read
602 1258
603=item $handle->start_read 1259=item $handle->start_read
604 1260
605In rare cases you actually do not want to read anything from the 1261In rare cases you actually do not want to read anything from the
606socket. In this case you can call C<stop_read>. Neither C<on_read> no 1262socket. In this case you can call C<stop_read>. Neither C<on_read> nor
607any queued callbacks will be executed then. To start reading again, call 1263any queued callbacks will be executed then. To start reading again, call
608C<start_read>. 1264C<start_read>.
609 1265
1266Note that AnyEvent::Handle will automatically C<start_read> for you when
1267you change the C<on_read> callback or push/unshift a read callback, and it
1268will automatically C<stop_read> for you when neither C<on_read> is set nor
1269there are any read requests in the queue.
1270
1271These methods will have no effect when in TLS mode (as TLS doesn't support
1272half-duplex connections).
1273
610=cut 1274=cut
611 1275
612sub stop_read { 1276sub stop_read {
613 my ($self) = @_; 1277 my ($self) = @_;
614 1278
615 delete $self->{rw}; 1279 delete $self->{_rw} unless $self->{tls};
616} 1280}
617 1281
618sub start_read { 1282sub start_read {
619 my ($self) = @_; 1283 my ($self) = @_;
620 1284
621 unless ($self->{rw} || $self->{eof}) { 1285 unless ($self->{_rw} || $self->{_eof}) {
622 Scalar::Util::weaken $self; 1286 Scalar::Util::weaken $self;
623 1287
624 $self->{rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1288 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
625 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1289 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
626 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1290 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
627 1291
628 if ($len > 0) { 1292 if ($len > 0) {
629 $self->{filter_r} 1293 $self->{_activity} = AnyEvent->now;
630 ? $self->{filter_r}->($self, $rbuf) 1294
631 : $self->_drain_rbuf; 1295 if ($self->{tls}) {
1296 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1297 &_dotls ($self);
1298 } else {
1299 $self->_drain_rbuf unless $self->{_in_drain};
1300 }
632 1301
633 } elsif (defined $len) { 1302 } elsif (defined $len) {
634 delete $self->{rw}; 1303 delete $self->{_rw};
635 $self->{eof} = 1; 1304 $self->{_eof} = 1;
636 $self->_drain_rbuf; 1305 $self->_drain_rbuf unless $self->{_in_drain};
637 1306
638 } elsif ($! != EAGAIN && $! != EINTR) { 1307 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
639 return $self->error; 1308 return $self->_error ($!, 1);
640 } 1309 }
641 }); 1310 });
642 } 1311 }
643} 1312}
644 1313
645sub _dotls { 1314sub _dotls {
646 my ($self) = @_; 1315 my ($self) = @_;
647 1316
1317 my $buf;
1318
648 if (length $self->{tls_wbuf}) { 1319 if (length $self->{_tls_wbuf}) {
649 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{tls_wbuf})) > 0) { 1320 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
650 substr $self->{tls_wbuf}, 0, $len, ""; 1321 substr $self->{_tls_wbuf}, 0, $len, "";
651 } 1322 }
652 } 1323 }
653 1324
1325 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1326 unless (length $buf) {
1327 # let's treat SSL-eof as we treat normal EOF
1328 delete $self->{_rw};
1329 $self->{_eof} = 1;
1330 &_freetls;
1331 }
1332
1333 $self->{rbuf} .= $buf;
1334 $self->_drain_rbuf unless $self->{_in_drain};
1335 $self->{tls} or return; # tls session might have gone away in callback
1336 }
1337
1338 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1339
1340 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1341 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1342 return $self->_error ($!, 1);
1343 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1344 return $self->_error (&Errno::EIO, 1);
1345 }
1346
1347 # all others are fine for our purposes
1348 }
1349
654 if (defined (my $buf = Net::SSLeay::BIO_read ($self->{tls_wbio}))) { 1350 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
655 $self->{wbuf} .= $buf; 1351 $self->{wbuf} .= $buf;
656 $self->_drain_wbuf; 1352 $self->_drain_wbuf;
657 }
658
659 while (defined (my $buf = Net::SSLeay::read ($self->{tls}))) {
660 $self->{rbuf} .= $buf;
661 $self->_drain_rbuf;
662 }
663
664 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
665
666 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
667 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
668 $self->error;
669 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
670 $! = &Errno::EIO;
671 $self->error;
672 }
673
674 # all others are fine for our purposes
675 } 1353 }
676} 1354}
677 1355
678=item $handle->starttls ($tls[, $tls_ctx]) 1356=item $handle->starttls ($tls[, $tls_ctx])
679 1357
685C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1363C<"connect">, C<"accept"> or an existing Net::SSLeay object).
686 1364
687The second argument is the optional C<Net::SSLeay::CTX> object that is 1365The second argument is the optional C<Net::SSLeay::CTX> object that is
688used when AnyEvent::Handle has to create its own TLS connection object. 1366used when AnyEvent::Handle has to create its own TLS connection object.
689 1367
690=cut 1368The TLS connection object will end up in C<< $handle->{tls} >> after this
1369call and can be used or changed to your liking. Note that the handshake
1370might have already started when this function returns.
691 1371
692# TODO: maybe document... 1372If it an error to start a TLS handshake more than once per
1373AnyEvent::Handle object (this is due to bugs in OpenSSL).
1374
1375=cut
1376
693sub starttls { 1377sub starttls {
694 my ($self, $ssl, $ctx) = @_; 1378 my ($self, $ssl, $ctx) = @_;
695 1379
696 $self->stoptls; 1380 Carp::croak "it is an error to call starttls more than once on an Anyevent::Handle object"
697 1381 if $self->{tls};
1382
698 if ($ssl eq "accept") { 1383 if ($ssl eq "accept") {
699 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1384 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
700 Net::SSLeay::set_accept_state ($ssl); 1385 Net::SSLeay::set_accept_state ($ssl);
701 } elsif ($ssl eq "connect") { 1386 } elsif ($ssl eq "connect") {
702 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1387 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
707 1392
708 # basically, this is deep magic (because SSL_read should have the same issues) 1393 # basically, this is deep magic (because SSL_read should have the same issues)
709 # but the openssl maintainers basically said: "trust us, it just works". 1394 # but the openssl maintainers basically said: "trust us, it just works".
710 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1395 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
711 # and mismaintained ssleay-module doesn't even offer them). 1396 # and mismaintained ssleay-module doesn't even offer them).
1397 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1398 #
1399 # in short: this is a mess.
1400 #
1401 # note that we do not try to keep the length constant between writes as we are required to do.
1402 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1403 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1404 # have identity issues in that area.
712 Net::SSLeay::CTX_set_mode ($self->{tls}, 1405 Net::SSLeay::CTX_set_mode ($self->{tls},
713 (eval { Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1406 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
714 | (eval { Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1407 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
715 1408
716 $self->{tls_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1409 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
717 $self->{tls_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1410 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
718 1411
719 Net::SSLeay::set_bio ($ssl, $self->{tls_rbio}, $self->{tls_wbio}); 1412 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
720 1413
721 $self->{filter_w} = sub { 1414 &_dotls; # need to trigger the initial handshake
722 $_[0]{tls_wbuf} .= ${$_[1]}; 1415 $self->start_read; # make sure we actually do read
723 &_dotls;
724 };
725 $self->{filter_r} = sub {
726 Net::SSLeay::BIO_write ($_[0]{tls_rbio}, ${$_[1]});
727 &_dotls;
728 };
729} 1416}
730 1417
731=item $handle->stoptls 1418=item $handle->stoptls
732 1419
733Destroys the SSL connection, if any. Partial read or write data will be 1420Shuts down the SSL connection - this makes a proper EOF handshake by
734lost. 1421sending a close notify to the other side, but since OpenSSL doesn't
1422support non-blocking shut downs, it is not possible to re-use the stream
1423afterwards.
735 1424
736=cut 1425=cut
737 1426
738sub stoptls { 1427sub stoptls {
739 my ($self) = @_; 1428 my ($self) = @_;
740 1429
1430 if ($self->{tls}) {
1431 Net::SSLeay::shutdown $self->{tls};
1432
1433 &_dotls;
1434
1435 # we don't give a shit. no, we do, but we can't. no...
1436 # we, we... have to use openssl :/
1437 &_freetls;
1438 }
1439}
1440
1441sub _freetls {
1442 my ($self) = @_;
1443
1444 return unless $self->{tls};
1445
741 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1446 Net::SSLeay::free (delete $self->{tls});
742 delete $self->{tls_rbio}; 1447
743 delete $self->{tls_wbio}; 1448 delete @$self{qw(_rbio _wbio _tls_wbuf)};
744 delete $self->{tls_wbuf};
745 delete $self->{filter_r};
746 delete $self->{filter_w};
747} 1449}
748 1450
749sub DESTROY { 1451sub DESTROY {
750 my $self = shift; 1452 my $self = shift;
751 1453
752 $self->stoptls; 1454 &_freetls;
1455
1456 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1457
1458 if ($linger && length $self->{wbuf}) {
1459 my $fh = delete $self->{fh};
1460 my $wbuf = delete $self->{wbuf};
1461
1462 my @linger;
1463
1464 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1465 my $len = syswrite $fh, $wbuf, length $wbuf;
1466
1467 if ($len > 0) {
1468 substr $wbuf, 0, $len, "";
1469 } else {
1470 @linger = (); # end
1471 }
1472 });
1473 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1474 @linger = ();
1475 });
1476 }
753} 1477}
754 1478
755=item AnyEvent::Handle::TLS_CTX 1479=item AnyEvent::Handle::TLS_CTX
756 1480
757This function creates and returns the Net::SSLeay::CTX object used by 1481This function creates and returns the Net::SSLeay::CTX object used by
787 } 1511 }
788} 1512}
789 1513
790=back 1514=back
791 1515
1516=head1 SUBCLASSING AnyEvent::Handle
1517
1518In many cases, you might want to subclass AnyEvent::Handle.
1519
1520To make this easier, a given version of AnyEvent::Handle uses these
1521conventions:
1522
1523=over 4
1524
1525=item * all constructor arguments become object members.
1526
1527At least initially, when you pass a C<tls>-argument to the constructor it
1528will end up in C<< $handle->{tls} >>. Those members might be changed or
1529mutated later on (for example C<tls> will hold the TLS connection object).
1530
1531=item * other object member names are prefixed with an C<_>.
1532
1533All object members not explicitly documented (internal use) are prefixed
1534with an underscore character, so the remaining non-C<_>-namespace is free
1535for use for subclasses.
1536
1537=item * all members not documented here and not prefixed with an underscore
1538are free to use in subclasses.
1539
1540Of course, new versions of AnyEvent::Handle may introduce more "public"
1541member variables, but thats just life, at least it is documented.
1542
1543=back
1544
792=head1 AUTHOR 1545=head1 AUTHOR
793 1546
794Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>. 1547Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
795 1548
796=cut 1549=cut

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines