ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.17 by root, Sat May 24 04:17:45 2008 UTC vs.
Revision 1.87 by root, Thu Aug 21 20:52:39 2008 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent (); 6use AnyEvent ();
7use AnyEvent::Util (); 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 8use Scalar::Util ();
9use Carp (); 9use Carp ();
10use Fcntl (); 10use Fcntl ();
11use Errno qw/EAGAIN EINTR/; 11use Errno qw(EAGAIN EINTR);
12 12
13=head1 NAME 13=head1 NAME
14 14
15AnyEvent::Handle - non-blocking I/O on filehandles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17This module is experimental.
18
19=cut 17=cut
20 18
21our $VERSION = '0.04'; 19our $VERSION = 4.232;
22 20
23=head1 SYNOPSIS 21=head1 SYNOPSIS
24 22
25 use AnyEvent; 23 use AnyEvent;
26 use AnyEvent::Handle; 24 use AnyEvent::Handle;
27 25
28 my $cv = AnyEvent->condvar; 26 my $cv = AnyEvent->condvar;
29 27
30 my $ae_fh = AnyEvent::Handle->new (fh => \*STDIN); 28 my $handle =
31
32 #TODO
33
34 # or use the constructor to pass the callback:
35
36 my $ae_fh2 =
37 AnyEvent::Handle->new ( 29 AnyEvent::Handle->new (
38 fh => \*STDIN, 30 fh => \*STDIN,
39 on_eof => sub { 31 on_eof => sub {
40 $cv->broadcast; 32 $cv->broadcast;
41 }, 33 },
42 #TODO
43 ); 34 );
44 35
45 $cv->wait; 36 # send some request line
37 $handle->push_write ("getinfo\015\012");
38
39 # read the response line
40 $handle->push_read (line => sub {
41 my ($handle, $line) = @_;
42 warn "read line <$line>\n";
43 $cv->send;
44 });
45
46 $cv->recv;
46 47
47=head1 DESCRIPTION 48=head1 DESCRIPTION
48 49
49This module is a helper module to make it easier to do event-based I/O on 50This module is a helper module to make it easier to do event-based I/O on
50filehandles. For utility functions for doing non-blocking connects and accepts 51filehandles. For utility functions for doing non-blocking connects and accepts
51on sockets see L<AnyEvent::Util>. 52on sockets see L<AnyEvent::Util>.
52 53
54The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples.
56
53In the following, when the documentation refers to of "bytes" then this 57In the following, when the documentation refers to of "bytes" then this
54means characters. As sysread and syswrite are used for all I/O, their 58means characters. As sysread and syswrite are used for all I/O, their
55treatment of characters applies to this module as well. 59treatment of characters applies to this module as well.
56 60
57All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
69 73
70=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [MANDATORY]
71 75
72The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
73 77
74NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
75AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
76 81
77=item on_eof => $cb->($self) 82=item on_eof => $cb->($handle)
78 83
79Set the callback to be called on EOF. 84Set the callback to be called when an end-of-file condition is detected,
85i.e. in the case of a socket, when the other side has closed the
86connection cleanly.
80 87
88For sockets, this just means that the other side has stopped sending data,
89you can still try to write data, and, in fact, one can return from the eof
90callback and continue writing data, as only the read part has been shut
91down.
92
81While not mandatory, it is highly recommended to set an eof callback, 93While not mandatory, it is I<highly> recommended to set an eof callback,
82otherwise you might end up with a closed socket while you are still 94otherwise you might end up with a closed socket while you are still
83waiting for data. 95waiting for data.
84 96
97If an EOF condition has been detected but no C<on_eof> callback has been
98set, then a fatal error will be raised with C<$!> set to <0>.
99
85=item on_error => $cb->($self) 100=item on_error => $cb->($handle, $fatal)
86 101
87This is the fatal error callback, that is called when, well, a fatal error 102This is the error callback, which is called when, well, some error
88ocurs, such as not being able to resolve the hostname, failure to connect 103occured, such as not being able to resolve the hostname, failure to
89or a read error. 104connect or a read error.
90 105
91The object will not be in a usable state when this callback has been 106Some errors are fatal (which is indicated by C<$fatal> being true). On
92called. 107fatal errors the handle object will be shut down and will not be usable
108(but you are free to look at the current C< ->rbuf >). Examples of fatal
109errors are an EOF condition with active (but unsatisifable) read watchers
110(C<EPIPE>) or I/O errors.
111
112Non-fatal errors can be retried by simply returning, but it is recommended
113to simply ignore this parameter and instead abondon the handle object
114when this callback is invoked. Examples of non-fatal errors are timeouts
115C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
93 116
94On callback entrance, the value of C<$!> contains the operating system 117On callback entrance, the value of C<$!> contains the operating system
95error (or C<ENOSPC> or C<EPIPE>). 118error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
96 119
97While not mandatory, it is I<highly> recommended to set this callback, as 120While not mandatory, it is I<highly> recommended to set this callback, as
98you will not be notified of errors otherwise. The default simply calls 121you will not be notified of errors otherwise. The default simply calls
99die. 122C<croak>.
100 123
101=item on_read => $cb->($self) 124=item on_read => $cb->($handle)
102 125
103This sets the default read callback, which is called when data arrives 126This sets the default read callback, which is called when data arrives
104and no read request is in the queue. 127and no read request is in the queue (unlike read queue callbacks, this
128callback will only be called when at least one octet of data is in the
129read buffer).
105 130
106To access (and remove data from) the read buffer, use the C<< ->rbuf >> 131To access (and remove data from) the read buffer, use the C<< ->rbuf >>
107method or acces sthe C<$self->{rbuf}> member directly. 132method or access the C<$handle->{rbuf}> member directly.
108 133
109When an EOF condition is detected then AnyEvent::Handle will first try to 134When an EOF condition is detected then AnyEvent::Handle will first try to
110feed all the remaining data to the queued callbacks and C<on_read> before 135feed all the remaining data to the queued callbacks and C<on_read> before
111calling the C<on_eof> callback. If no progress can be made, then a fatal 136calling the C<on_eof> callback. If no progress can be made, then a fatal
112error will be raised (with C<$!> set to C<EPIPE>). 137error will be raised (with C<$!> set to C<EPIPE>).
113 138
114=item on_drain => $cb->() 139=item on_drain => $cb->($handle)
115 140
116This sets the callback that is called when the write buffer becomes empty 141This sets the callback that is called when the write buffer becomes empty
117(or when the callback is set and the buffer is empty already). 142(or when the callback is set and the buffer is empty already).
118 143
119To append to the write buffer, use the C<< ->push_write >> method. 144To append to the write buffer, use the C<< ->push_write >> method.
145
146This callback is useful when you don't want to put all of your write data
147into the queue at once, for example, when you want to write the contents
148of some file to the socket you might not want to read the whole file into
149memory and push it into the queue, but instead only read more data from
150the file when the write queue becomes empty.
151
152=item timeout => $fractional_seconds
153
154If non-zero, then this enables an "inactivity" timeout: whenever this many
155seconds pass without a successful read or write on the underlying file
156handle, the C<on_timeout> callback will be invoked (and if that one is
157missing, an C<ETIMEDOUT> error will be raised).
158
159Note that timeout processing is also active when you currently do not have
160any outstanding read or write requests: If you plan to keep the connection
161idle then you should disable the timout temporarily or ignore the timeout
162in the C<on_timeout> callback.
163
164Zero (the default) disables this timeout.
165
166=item on_timeout => $cb->($handle)
167
168Called whenever the inactivity timeout passes. If you return from this
169callback, then the timeout will be reset as if some activity had happened,
170so this condition is not fatal in any way.
120 171
121=item rbuf_max => <bytes> 172=item rbuf_max => <bytes>
122 173
123If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 174If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
124when the read buffer ever (strictly) exceeds this size. This is useful to 175when the read buffer ever (strictly) exceeds this size. This is useful to
128be configured to accept only so-and-so much data that it cannot act on 179be configured to accept only so-and-so much data that it cannot act on
129(for example, when expecting a line, an attacker could send an unlimited 180(for example, when expecting a line, an attacker could send an unlimited
130amount of data without a callback ever being called as long as the line 181amount of data without a callback ever being called as long as the line
131isn't finished). 182isn't finished).
132 183
184=item autocork => <boolean>
185
186When disabled (the default), then C<push_write> will try to immediately
187write the data to the handle if possible. This avoids having to register
188a write watcher and wait for the next event loop iteration, but can be
189inefficient if you write multiple small chunks (this disadvantage is
190usually avoided by your kernel's nagle algorithm, see C<low_delay>).
191
192When enabled, then writes will always be queued till the next event loop
193iteration. This is efficient when you do many small writes per iteration,
194but less efficient when you do a single write only.
195
196=item no_delay => <boolean>
197
198When doing small writes on sockets, your operating system kernel might
199wait a bit for more data before actually sending it out. This is called
200the Nagle algorithm, and usually it is beneficial.
201
202In some situations you want as low a delay as possible, which cna be
203accomplishd by setting this option to true.
204
205The default is your opertaing system's default behaviour, this option
206explicitly enables or disables it, if possible.
207
133=item read_size => <bytes> 208=item read_size => <bytes>
134 209
135The default read block size (the amount of bytes this module will try to read 210The default read block size (the amount of bytes this module will try to read
136on each [loop iteration). Default: C<4096>. 211during each (loop iteration). Default: C<8192>.
137 212
138=item low_water_mark => <bytes> 213=item low_water_mark => <bytes>
139 214
140Sets the amount of bytes (default: C<0>) that make up an "empty" write 215Sets the amount of bytes (default: C<0>) that make up an "empty" write
141buffer: If the write reaches this size or gets even samller it is 216buffer: If the write reaches this size or gets even samller it is
142considered empty. 217considered empty.
143 218
219=item linger => <seconds>
220
221If non-zero (default: C<3600>), then the destructor of the
222AnyEvent::Handle object will check wether there is still outstanding write
223data and will install a watcher that will write out this data. No errors
224will be reported (this mostly matches how the operating system treats
225outstanding data at socket close time).
226
227This will not work for partial TLS data that could not yet been
228encoded. This data will be lost.
229
230=item tls => "accept" | "connect" | Net::SSLeay::SSL object
231
232When this parameter is given, it enables TLS (SSL) mode, that means
233AnyEvent will start a TLS handshake and will transparently encrypt/decrypt
234data.
235
236TLS mode requires Net::SSLeay to be installed (it will be loaded
237automatically when you try to create a TLS handle).
238
239Unlike TCP, TLS has a server and client side: for the TLS server side, use
240C<accept>, and for the TLS client side of a connection, use C<connect>
241mode.
242
243You can also provide your own TLS connection object, but you have
244to make sure that you call either C<Net::SSLeay::set_connect_state>
245or C<Net::SSLeay::set_accept_state> on it before you pass it to
246AnyEvent::Handle.
247
248See the C<starttls> method for when need to start TLS negotiation later.
249
250=item tls_ctx => $ssl_ctx
251
252Use the given Net::SSLeay::CTX object to create the new TLS connection
253(unless a connection object was specified directly). If this parameter is
254missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
255
256=item json => JSON or JSON::XS object
257
258This is the json coder object used by the C<json> read and write types.
259
260If you don't supply it, then AnyEvent::Handle will create and use a
261suitable one (on demand), which will write and expect UTF-8 encoded JSON
262texts.
263
264Note that you are responsible to depend on the JSON module if you want to
265use this functionality, as AnyEvent does not have a dependency itself.
266
267=item filter_r => $cb
268
269=item filter_w => $cb
270
271These exist, but are undocumented at this time. (They are used internally
272by the TLS code).
273
144=back 274=back
145 275
146=cut 276=cut
147 277
148sub new { 278sub new {
152 282
153 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 283 $self->{fh} or Carp::croak "mandatory argument fh is missing";
154 284
155 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 285 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
156 286
157 $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; 287 if ($self->{tls}) {
158 $self->on_error (delete $self->{on_error}) if $self->{on_error}; 288 require Net::SSLeay;
289 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
290 }
291
292 $self->{_activity} = AnyEvent->now;
293 $self->_timeout;
294
159 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 295 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
160 $self->on_read (delete $self->{on_read} ) if $self->{on_read}; 296 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
161 297
162 $self->start_read; 298 $self->start_read
299 if $self->{on_read};
163 300
164 $self 301 $self
165} 302}
166 303
167sub _shutdown { 304sub _shutdown {
168 my ($self) = @_; 305 my ($self) = @_;
169 306
307 delete $self->{_tw};
170 delete $self->{rw}; 308 delete $self->{_rw};
171 delete $self->{ww}; 309 delete $self->{_ww};
172 delete $self->{fh}; 310 delete $self->{fh};
173}
174 311
312 $self->stoptls;
313
314 delete $self->{on_read};
315 delete $self->{_queue};
316}
317
175sub error { 318sub _error {
176 my ($self) = @_; 319 my ($self, $errno, $fatal) = @_;
177 320
178 {
179 local $!;
180 $self->_shutdown; 321 $self->_shutdown
181 } 322 if $fatal;
323
324 $! = $errno;
182 325
183 if ($self->{on_error}) { 326 if ($self->{on_error}) {
184 $self->{on_error}($self); 327 $self->{on_error}($self, $fatal);
185 } else { 328 } else {
186 die "AnyEvent::Handle uncaught fatal error: $!"; 329 Carp::croak "AnyEvent::Handle uncaught error: $!";
187 } 330 }
188} 331}
189 332
190=item $fh = $handle->fh 333=item $fh = $handle->fh
191 334
192This method returns the filehandle of the L<AnyEvent::Handle> object. 335This method returns the file handle of the L<AnyEvent::Handle> object.
193 336
194=cut 337=cut
195 338
196sub fh { $_[0]->{fh} } 339sub fh { $_[0]{fh} }
197 340
198=item $handle->on_error ($cb) 341=item $handle->on_error ($cb)
199 342
200Replace the current C<on_error> callback (see the C<on_error> constructor argument). 343Replace the current C<on_error> callback (see the C<on_error> constructor argument).
201 344
213 356
214sub on_eof { 357sub on_eof {
215 $_[0]{on_eof} = $_[1]; 358 $_[0]{on_eof} = $_[1];
216} 359}
217 360
361=item $handle->on_timeout ($cb)
362
363Replace the current C<on_timeout> callback, or disables the callback
364(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
365argument.
366
367=cut
368
369sub on_timeout {
370 $_[0]{on_timeout} = $_[1];
371}
372
373=item $handle->autocork ($boolean)
374
375Enables or disables the current autocork behaviour (see C<autocork>
376constructor argument).
377
378=cut
379
380=item $handle->no_delay ($boolean)
381
382Enables or disables the C<no_delay> setting (see constructor argument of
383the same name for details).
384
385=cut
386
387sub no_delay {
388 $_[0]{no_delay} = $_[1];
389
390 eval {
391 local $SIG{__DIE__};
392 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
393 };
394}
395
396#############################################################################
397
398=item $handle->timeout ($seconds)
399
400Configures (or disables) the inactivity timeout.
401
402=cut
403
404sub timeout {
405 my ($self, $timeout) = @_;
406
407 $self->{timeout} = $timeout;
408 $self->_timeout;
409}
410
411# reset the timeout watcher, as neccessary
412# also check for time-outs
413sub _timeout {
414 my ($self) = @_;
415
416 if ($self->{timeout}) {
417 my $NOW = AnyEvent->now;
418
419 # when would the timeout trigger?
420 my $after = $self->{_activity} + $self->{timeout} - $NOW;
421
422 # now or in the past already?
423 if ($after <= 0) {
424 $self->{_activity} = $NOW;
425
426 if ($self->{on_timeout}) {
427 $self->{on_timeout}($self);
428 } else {
429 $self->_error (&Errno::ETIMEDOUT);
430 }
431
432 # callback could have changed timeout value, optimise
433 return unless $self->{timeout};
434
435 # calculate new after
436 $after = $self->{timeout};
437 }
438
439 Scalar::Util::weaken $self;
440 return unless $self; # ->error could have destroyed $self
441
442 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
443 delete $self->{_tw};
444 $self->_timeout;
445 });
446 } else {
447 delete $self->{_tw};
448 }
449}
450
218############################################################################# 451#############################################################################
219 452
220=back 453=back
221 454
222=head2 WRITE QUEUE 455=head2 WRITE QUEUE
225for reading. 458for reading.
226 459
227The write queue is very simple: you can add data to its end, and 460The write queue is very simple: you can add data to its end, and
228AnyEvent::Handle will automatically try to get rid of it for you. 461AnyEvent::Handle will automatically try to get rid of it for you.
229 462
230When data could be writtena nd the write buffer is shorter then the low 463When data could be written and the write buffer is shorter then the low
231water mark, the C<on_drain> callback will be invoked. 464water mark, the C<on_drain> callback will be invoked.
232 465
233=over 4 466=over 4
234 467
235=item $handle->on_drain ($cb) 468=item $handle->on_drain ($cb)
257=cut 490=cut
258 491
259sub _drain_wbuf { 492sub _drain_wbuf {
260 my ($self) = @_; 493 my ($self) = @_;
261 494
262 unless ($self->{ww}) { 495 if (!$self->{_ww} && length $self->{wbuf}) {
496
263 Scalar::Util::weaken $self; 497 Scalar::Util::weaken $self;
498
264 my $cb = sub { 499 my $cb = sub {
265 my $len = syswrite $self->{fh}, $self->{wbuf}; 500 my $len = syswrite $self->{fh}, $self->{wbuf};
266 501
267 if ($len > 0) { 502 if ($len >= 0) {
268 substr $self->{wbuf}, 0, $len, ""; 503 substr $self->{wbuf}, 0, $len, "";
504
505 $self->{_activity} = AnyEvent->now;
269 506
270 $self->{on_drain}($self) 507 $self->{on_drain}($self)
271 if $self->{low_water_mark} >= length $self->{wbuf} 508 if $self->{low_water_mark} >= length $self->{wbuf}
272 && $self->{on_drain}; 509 && $self->{on_drain};
273 510
274 delete $self->{ww} unless length $self->{wbuf}; 511 delete $self->{_ww} unless length $self->{wbuf};
275 } elsif ($! != EAGAIN && $! != EINTR) { 512 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
276 $self->error; 513 $self->_error ($!, 1);
277 } 514 }
278 }; 515 };
279 516
517 # try to write data immediately
518 $cb->() unless $self->{autocork};
519
520 # if still data left in wbuf, we need to poll
280 $self->{ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb); 521 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
281 522 if length $self->{wbuf};
282 $cb->($self);
283 }; 523 };
524}
525
526our %WH;
527
528sub register_write_type($$) {
529 $WH{$_[0]} = $_[1];
284} 530}
285 531
286sub push_write { 532sub push_write {
287 my $self = shift; 533 my $self = shift;
288 534
535 if (@_ > 1) {
536 my $type = shift;
537
538 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
539 ->($self, @_);
540 }
541
289 if ($self->{filter_w}) { 542 if ($self->{filter_w}) {
290 $self->{filter_w}->(\$_[0]); 543 $self->{filter_w}($self, \$_[0]);
291 } else { 544 } else {
292 $self->{wbuf} .= $_[0]; 545 $self->{wbuf} .= $_[0];
293 $self->_drain_wbuf; 546 $self->_drain_wbuf;
294 } 547 }
295} 548}
296 549
550=item $handle->push_write (type => @args)
551
552Instead of formatting your data yourself, you can also let this module do
553the job by specifying a type and type-specific arguments.
554
555Predefined types are (if you have ideas for additional types, feel free to
556drop by and tell us):
557
558=over 4
559
560=item netstring => $string
561
562Formats the given value as netstring
563(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
564
565=cut
566
567register_write_type netstring => sub {
568 my ($self, $string) = @_;
569
570 sprintf "%d:%s,", (length $string), $string
571};
572
573=item packstring => $format, $data
574
575An octet string prefixed with an encoded length. The encoding C<$format>
576uses the same format as a Perl C<pack> format, but must specify a single
577integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
578optional C<!>, C<< < >> or C<< > >> modifier).
579
580=cut
581
582register_write_type packstring => sub {
583 my ($self, $format, $string) = @_;
584
585 pack "$format/a*", $string
586};
587
588=item json => $array_or_hashref
589
590Encodes the given hash or array reference into a JSON object. Unless you
591provide your own JSON object, this means it will be encoded to JSON text
592in UTF-8.
593
594JSON objects (and arrays) are self-delimiting, so you can write JSON at
595one end of a handle and read them at the other end without using any
596additional framing.
597
598The generated JSON text is guaranteed not to contain any newlines: While
599this module doesn't need delimiters after or between JSON texts to be
600able to read them, many other languages depend on that.
601
602A simple RPC protocol that interoperates easily with others is to send
603JSON arrays (or objects, although arrays are usually the better choice as
604they mimic how function argument passing works) and a newline after each
605JSON text:
606
607 $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
608 $handle->push_write ("\012");
609
610An AnyEvent::Handle receiver would simply use the C<json> read type and
611rely on the fact that the newline will be skipped as leading whitespace:
612
613 $handle->push_read (json => sub { my $array = $_[1]; ... });
614
615Other languages could read single lines terminated by a newline and pass
616this line into their JSON decoder of choice.
617
618=cut
619
620register_write_type json => sub {
621 my ($self, $ref) = @_;
622
623 require JSON;
624
625 $self->{json} ? $self->{json}->encode ($ref)
626 : JSON::encode_json ($ref)
627};
628
629=item storable => $reference
630
631Freezes the given reference using L<Storable> and writes it to the
632handle. Uses the C<nfreeze> format.
633
634=cut
635
636register_write_type storable => sub {
637 my ($self, $ref) = @_;
638
639 require Storable;
640
641 pack "w/a*", Storable::nfreeze ($ref)
642};
643
644=back
645
646=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
647
648This function (not method) lets you add your own types to C<push_write>.
649Whenever the given C<type> is used, C<push_write> will invoke the code
650reference with the handle object and the remaining arguments.
651
652The code reference is supposed to return a single octet string that will
653be appended to the write buffer.
654
655Note that this is a function, and all types registered this way will be
656global, so try to use unique names.
657
658=cut
659
297############################################################################# 660#############################################################################
298 661
299=back 662=back
300 663
301=head2 READ QUEUE 664=head2 READ QUEUE
307ways, the "simple" way, using only C<on_read> and the "complex" way, using 670ways, the "simple" way, using only C<on_read> and the "complex" way, using
308a queue. 671a queue.
309 672
310In the simple case, you just install an C<on_read> callback and whenever 673In the simple case, you just install an C<on_read> callback and whenever
311new data arrives, it will be called. You can then remove some data (if 674new data arrives, it will be called. You can then remove some data (if
312enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 675enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
313or not. 676leave the data there if you want to accumulate more (e.g. when only a
677partial message has been received so far).
314 678
315In the more complex case, you want to queue multiple callbacks. In this 679In the more complex case, you want to queue multiple callbacks. In this
316case, AnyEvent::Handle will call the first queued callback each time new 680case, AnyEvent::Handle will call the first queued callback each time new
317data arrives and removes it when it has done its job (see C<push_read>, 681data arrives (also the first time it is queued) and removes it when it has
318below). 682done its job (see C<push_read>, below).
319 683
320This way you can, for example, push three line-reads, followed by reading 684This way you can, for example, push three line-reads, followed by reading
321a chunk of data, and AnyEvent::Handle will execute them in order. 685a chunk of data, and AnyEvent::Handle will execute them in order.
322 686
323Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 687Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
324the specified number of bytes which give an XML datagram. 688the specified number of bytes which give an XML datagram.
325 689
326 # in the default state, expect some header bytes 690 # in the default state, expect some header bytes
327 $handle->on_read (sub { 691 $handle->on_read (sub {
328 # some data is here, now queue the length-header-read (4 octets) 692 # some data is here, now queue the length-header-read (4 octets)
329 shift->unshift_read_chunk (4, sub { 693 shift->unshift_read (chunk => 4, sub {
330 # header arrived, decode 694 # header arrived, decode
331 my $len = unpack "N", $_[1]; 695 my $len = unpack "N", $_[1];
332 696
333 # now read the payload 697 # now read the payload
334 shift->unshift_read_chunk ($len, sub { 698 shift->unshift_read (chunk => $len, sub {
335 my $xml = $_[1]; 699 my $xml = $_[1];
336 # handle xml 700 # handle xml
337 }); 701 });
338 }); 702 });
339 }); 703 });
340 704
341Example 2: Implement a client for a protocol that replies either with 705Example 2: Implement a client for a protocol that replies either with "OK"
342"OK" and another line or "ERROR" for one request, and 64 bytes for the 706and another line or "ERROR" for the first request that is sent, and 64
343second request. Due tot he availability of a full queue, we can just 707bytes for the second request. Due to the availability of a queue, we can
344pipeline sending both requests and manipulate the queue as necessary in 708just pipeline sending both requests and manipulate the queue as necessary
345the callbacks: 709in the callbacks.
346 710
347 # request one 711When the first callback is called and sees an "OK" response, it will
712C<unshift> another line-read. This line-read will be queued I<before> the
71364-byte chunk callback.
714
715 # request one, returns either "OK + extra line" or "ERROR"
348 $handle->push_write ("request 1\015\012"); 716 $handle->push_write ("request 1\015\012");
349 717
350 # we expect "ERROR" or "OK" as response, so push a line read 718 # we expect "ERROR" or "OK" as response, so push a line read
351 $handle->push_read_line (sub { 719 $handle->push_read (line => sub {
352 # if we got an "OK", we have to _prepend_ another line, 720 # if we got an "OK", we have to _prepend_ another line,
353 # so it will be read before the second request reads its 64 bytes 721 # so it will be read before the second request reads its 64 bytes
354 # which are already in the queue when this callback is called 722 # which are already in the queue when this callback is called
355 # we don't do this in case we got an error 723 # we don't do this in case we got an error
356 if ($_[1] eq "OK") { 724 if ($_[1] eq "OK") {
357 $_[0]->unshift_read_line (sub { 725 $_[0]->unshift_read (line => sub {
358 my $response = $_[1]; 726 my $response = $_[1];
359 ... 727 ...
360 }); 728 });
361 } 729 }
362 }); 730 });
363 731
364 # request two 732 # request two, simply returns 64 octets
365 $handle->push_write ("request 2\015\012"); 733 $handle->push_write ("request 2\015\012");
366 734
367 # simply read 64 bytes, always 735 # simply read 64 bytes, always
368 $handle->push_read_chunk (64, sub { 736 $handle->push_read (chunk => 64, sub {
369 my $response = $_[1]; 737 my $response = $_[1];
370 ... 738 ...
371 }); 739 });
372 740
373=over 4 741=over 4
374 742
375=cut 743=cut
376 744
377sub _drain_rbuf { 745sub _drain_rbuf {
378 my ($self) = @_; 746 my ($self) = @_;
747
748 local $self->{_in_drain} = 1;
379 749
380 if ( 750 if (
381 defined $self->{rbuf_max} 751 defined $self->{rbuf_max}
382 && $self->{rbuf_max} < length $self->{rbuf} 752 && $self->{rbuf_max} < length $self->{rbuf}
383 ) { 753 ) {
384 $! = &Errno::ENOSPC; return $self->error; 754 $self->_error (&Errno::ENOSPC, 1), return;
385 } 755 }
386 756
387 return if $self->{in_drain}; 757 while () {
388 local $self->{in_drain} = 1;
389
390 while (my $len = length $self->{rbuf}) { 758 my $len = length $self->{rbuf};
391 no strict 'refs'; 759
392 if (my $cb = shift @{ $self->{queue} }) { 760 if (my $cb = shift @{ $self->{_queue} }) {
393 if (!$cb->($self)) { 761 unless ($cb->($self)) {
394 if ($self->{eof}) { 762 if ($self->{_eof}) {
395 # no progress can be made (not enough data and no data forthcoming) 763 # no progress can be made (not enough data and no data forthcoming)
396 $! = &Errno::EPIPE; return $self->error; 764 $self->_error (&Errno::EPIPE, 1), return;
397 } 765 }
398 766
399 unshift @{ $self->{queue} }, $cb; 767 unshift @{ $self->{_queue} }, $cb;
400 return; 768 last;
401 } 769 }
402 } elsif ($self->{on_read}) { 770 } elsif ($self->{on_read}) {
771 last unless $len;
772
403 $self->{on_read}($self); 773 $self->{on_read}($self);
404 774
405 if ( 775 if (
406 $self->{eof} # if no further data will arrive
407 && $len == length $self->{rbuf} # and no data has been consumed 776 $len == length $self->{rbuf} # if no data has been consumed
408 && !@{ $self->{queue} } # and the queue is still empty 777 && !@{ $self->{_queue} } # and the queue is still empty
409 && $self->{on_read} # and we still want to read data 778 && $self->{on_read} # but we still have on_read
410 ) { 779 ) {
780 # no further data will arrive
411 # then no progress can be made 781 # so no progress can be made
412 $! = &Errno::EPIPE; return $self->error; 782 $self->_error (&Errno::EPIPE, 1), return
783 if $self->{_eof};
784
785 last; # more data might arrive
413 } 786 }
414 } else { 787 } else {
415 # read side becomes idle 788 # read side becomes idle
416 delete $self->{rw}; 789 delete $self->{_rw};
417 return; 790 last;
418 } 791 }
419 } 792 }
420 793
421 if ($self->{eof}) { 794 if ($self->{_eof}) {
422 $self->_shutdown; 795 if ($self->{on_eof}) {
423 $self->{on_eof}($self) 796 $self->{on_eof}($self)
424 if $self->{on_eof}; 797 } else {
798 $self->_error (0, 1);
799 }
800 }
801
802 # may need to restart read watcher
803 unless ($self->{_rw}) {
804 $self->start_read
805 if $self->{on_read} || @{ $self->{_queue} };
425 } 806 }
426} 807}
427 808
428=item $handle->on_read ($cb) 809=item $handle->on_read ($cb)
429 810
435 816
436sub on_read { 817sub on_read {
437 my ($self, $cb) = @_; 818 my ($self, $cb) = @_;
438 819
439 $self->{on_read} = $cb; 820 $self->{on_read} = $cb;
821 $self->_drain_rbuf if $cb && !$self->{_in_drain};
440} 822}
441 823
442=item $handle->rbuf 824=item $handle->rbuf
443 825
444Returns the read buffer (as a modifiable lvalue). 826Returns the read buffer (as a modifiable lvalue).
463Append the given callback to the end of the queue (C<push_read>) or 845Append the given callback to the end of the queue (C<push_read>) or
464prepend it (C<unshift_read>). 846prepend it (C<unshift_read>).
465 847
466The callback is called each time some additional read data arrives. 848The callback is called each time some additional read data arrives.
467 849
468It must check wether enough data is in the read buffer already. 850It must check whether enough data is in the read buffer already.
469 851
470If not enough data is available, it must return the empty list or a false 852If not enough data is available, it must return the empty list or a false
471value, in which case it will be called repeatedly until enough data is 853value, in which case it will be called repeatedly until enough data is
472available (or an error condition is detected). 854available (or an error condition is detected).
473 855
475interested in (which can be none at all) and return a true value. After returning 857interested in (which can be none at all) and return a true value. After returning
476true, it will be removed from the queue. 858true, it will be removed from the queue.
477 859
478=cut 860=cut
479 861
862our %RH;
863
864sub register_read_type($$) {
865 $RH{$_[0]} = $_[1];
866}
867
480sub push_read { 868sub push_read {
481 my ($self, $cb) = @_; 869 my $self = shift;
870 my $cb = pop;
482 871
872 if (@_) {
873 my $type = shift;
874
875 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
876 ->($self, $cb, @_);
877 }
878
483 push @{ $self->{queue} }, $cb; 879 push @{ $self->{_queue} }, $cb;
484 $self->_drain_rbuf; 880 $self->_drain_rbuf unless $self->{_in_drain};
485} 881}
486 882
487sub unshift_read { 883sub unshift_read {
488 my ($self, $cb) = @_; 884 my $self = shift;
885 my $cb = pop;
489 886
887 if (@_) {
888 my $type = shift;
889
890 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
891 ->($self, $cb, @_);
892 }
893
894
490 push @{ $self->{queue} }, $cb; 895 unshift @{ $self->{_queue} }, $cb;
491 $self->_drain_rbuf; 896 $self->_drain_rbuf unless $self->{_in_drain};
492} 897}
493 898
494=item $handle->push_read_chunk ($len, $cb->($self, $data)) 899=item $handle->push_read (type => @args, $cb)
495 900
496=item $handle->unshift_read_chunk ($len, $cb->($self, $data)) 901=item $handle->unshift_read (type => @args, $cb)
497 902
498Append the given callback to the end of the queue (C<push_read_chunk>) or 903Instead of providing a callback that parses the data itself you can chose
499prepend it (C<unshift_read_chunk>). 904between a number of predefined parsing formats, for chunks of data, lines
905etc.
500 906
501The callback will be called only once C<$len> bytes have been read, and 907Predefined types are (if you have ideas for additional types, feel free to
502these C<$len> bytes will be passed to the callback. 908drop by and tell us):
503 909
504=cut 910=over 4
505 911
506sub _read_chunk($$) { 912=item chunk => $octets, $cb->($handle, $data)
913
914Invoke the callback only once C<$octets> bytes have been read. Pass the
915data read to the callback. The callback will never be called with less
916data.
917
918Example: read 2 bytes.
919
920 $handle->push_read (chunk => 2, sub {
921 warn "yay ", unpack "H*", $_[1];
922 });
923
924=cut
925
926register_read_type chunk => sub {
507 my ($self, $len, $cb) = @_; 927 my ($self, $cb, $len) = @_;
508 928
509 sub { 929 sub {
510 $len <= length $_[0]{rbuf} or return; 930 $len <= length $_[0]{rbuf} or return;
511 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 931 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
512 1 932 1
513 } 933 }
514} 934};
515 935
516sub push_read_chunk { 936=item line => [$eol, ]$cb->($handle, $line, $eol)
517 $_[0]->push_read (&_read_chunk);
518}
519
520
521sub unshift_read_chunk {
522 $_[0]->unshift_read (&_read_chunk);
523}
524
525=item $handle->push_read_line ([$eol, ]$cb->($self, $line, $eol))
526
527=item $handle->unshift_read_line ([$eol, ]$cb->($self, $line, $eol))
528
529Append the given callback to the end of the queue (C<push_read_line>) or
530prepend it (C<unshift_read_line>).
531 937
532The callback will be called only once a full line (including the end of 938The callback will be called only once a full line (including the end of
533line marker, C<$eol>) has been read. This line (excluding the end of line 939line marker, C<$eol>) has been read. This line (excluding the end of line
534marker) will be passed to the callback as second argument (C<$line>), and 940marker) will be passed to the callback as second argument (C<$line>), and
535the end of line marker as the third argument (C<$eol>). 941the end of line marker as the third argument (C<$eol>).
546Partial lines at the end of the stream will never be returned, as they are 952Partial lines at the end of the stream will never be returned, as they are
547not marked by the end of line marker. 953not marked by the end of line marker.
548 954
549=cut 955=cut
550 956
551sub _read_line($$) { 957register_read_type line => sub {
552 my $self = shift; 958 my ($self, $cb, $eol) = @_;
553 my $cb = pop;
554 my $eol = @_ ? shift : qr|(\015?\012)|;
555 my $pos;
556 959
960 if (@_ < 3) {
961 # this is more than twice as fast as the generic code below
962 sub {
963 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
964
965 $cb->($_[0], $1, $2);
966 1
967 }
968 } else {
557 $eol = quotemeta $eol unless ref $eol; 969 $eol = quotemeta $eol unless ref $eol;
558 $eol = qr|^(.*?)($eol)|s; 970 $eol = qr|^(.*?)($eol)|s;
971
972 sub {
973 $_[0]{rbuf} =~ s/$eol// or return;
974
975 $cb->($_[0], $1, $2);
976 1
977 }
978 }
979};
980
981=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
982
983Makes a regex match against the regex object C<$accept> and returns
984everything up to and including the match.
985
986Example: read a single line terminated by '\n'.
987
988 $handle->push_read (regex => qr<\n>, sub { ... });
989
990If C<$reject> is given and not undef, then it determines when the data is
991to be rejected: it is matched against the data when the C<$accept> regex
992does not match and generates an C<EBADMSG> error when it matches. This is
993useful to quickly reject wrong data (to avoid waiting for a timeout or a
994receive buffer overflow).
995
996Example: expect a single decimal number followed by whitespace, reject
997anything else (not the use of an anchor).
998
999 $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1000
1001If C<$skip> is given and not C<undef>, then it will be matched against
1002the receive buffer when neither C<$accept> nor C<$reject> match,
1003and everything preceding and including the match will be accepted
1004unconditionally. This is useful to skip large amounts of data that you
1005know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1006have to start matching from the beginning. This is purely an optimisation
1007and is usually worth only when you expect more than a few kilobytes.
1008
1009Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1010expect the header to be very large (it isn't in practise, but...), we use
1011a skip regex to skip initial portions. The skip regex is tricky in that
1012it only accepts something not ending in either \015 or \012, as these are
1013required for the accept regex.
1014
1015 $handle->push_read (regex =>
1016 qr<\015\012\015\012>,
1017 undef, # no reject
1018 qr<^.*[^\015\012]>,
1019 sub { ... });
1020
1021=cut
1022
1023register_read_type regex => sub {
1024 my ($self, $cb, $accept, $reject, $skip) = @_;
1025
1026 my $data;
1027 my $rbuf = \$self->{rbuf};
559 1028
560 sub { 1029 sub {
561 $_[0]{rbuf} =~ s/$eol// or return; 1030 # accept
1031 if ($$rbuf =~ $accept) {
1032 $data .= substr $$rbuf, 0, $+[0], "";
1033 $cb->($self, $data);
1034 return 1;
1035 }
1036
1037 # reject
1038 if ($reject && $$rbuf =~ $reject) {
1039 $self->_error (&Errno::EBADMSG);
1040 }
562 1041
563 $cb->($_[0], $1, $2); 1042 # skip
1043 if ($skip && $$rbuf =~ $skip) {
1044 $data .= substr $$rbuf, 0, $+[0], "";
1045 }
1046
1047 ()
1048 }
1049};
1050
1051=item netstring => $cb->($handle, $string)
1052
1053A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1054
1055Throws an error with C<$!> set to EBADMSG on format violations.
1056
1057=cut
1058
1059register_read_type netstring => sub {
1060 my ($self, $cb) = @_;
1061
1062 sub {
1063 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1064 if ($_[0]{rbuf} =~ /[^0-9]/) {
1065 $self->_error (&Errno::EBADMSG);
1066 }
1067 return;
1068 }
1069
1070 my $len = $1;
1071
1072 $self->unshift_read (chunk => $len, sub {
1073 my $string = $_[1];
1074 $_[0]->unshift_read (chunk => 1, sub {
1075 if ($_[1] eq ",") {
1076 $cb->($_[0], $string);
1077 } else {
1078 $self->_error (&Errno::EBADMSG);
1079 }
1080 });
1081 });
1082
564 1 1083 1
565 } 1084 }
566} 1085};
567 1086
568sub push_read_line { 1087=item packstring => $format, $cb->($handle, $string)
569 $_[0]->push_read (&_read_line);
570}
571 1088
572sub unshift_read_line { 1089An octet string prefixed with an encoded length. The encoding C<$format>
573 $_[0]->unshift_read (&_read_line); 1090uses the same format as a Perl C<pack> format, but must specify a single
574} 1091integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1092optional C<!>, C<< < >> or C<< > >> modifier).
1093
1094DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>.
1095
1096Example: read a block of data prefixed by its length in BER-encoded
1097format (very efficient).
1098
1099 $handle->push_read (packstring => "w", sub {
1100 my ($handle, $data) = @_;
1101 });
1102
1103=cut
1104
1105register_read_type packstring => sub {
1106 my ($self, $cb, $format) = @_;
1107
1108 sub {
1109 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1110 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1111 or return;
1112
1113 $format = length pack $format, $len;
1114
1115 # bypass unshift if we already have the remaining chunk
1116 if ($format + $len <= length $_[0]{rbuf}) {
1117 my $data = substr $_[0]{rbuf}, $format, $len;
1118 substr $_[0]{rbuf}, 0, $format + $len, "";
1119 $cb->($_[0], $data);
1120 } else {
1121 # remove prefix
1122 substr $_[0]{rbuf}, 0, $format, "";
1123
1124 # read remaining chunk
1125 $_[0]->unshift_read (chunk => $len, $cb);
1126 }
1127
1128 1
1129 }
1130};
1131
1132=item json => $cb->($handle, $hash_or_arrayref)
1133
1134Reads a JSON object or array, decodes it and passes it to the callback.
1135
1136If a C<json> object was passed to the constructor, then that will be used
1137for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1138
1139This read type uses the incremental parser available with JSON version
11402.09 (and JSON::XS version 2.2) and above. You have to provide a
1141dependency on your own: this module will load the JSON module, but
1142AnyEvent does not depend on it itself.
1143
1144Since JSON texts are fully self-delimiting, the C<json> read and write
1145types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1146the C<json> write type description, above, for an actual example.
1147
1148=cut
1149
1150register_read_type json => sub {
1151 my ($self, $cb) = @_;
1152
1153 require JSON;
1154
1155 my $data;
1156 my $rbuf = \$self->{rbuf};
1157
1158 my $json = $self->{json} ||= JSON->new->utf8;
1159
1160 sub {
1161 my $ref = $json->incr_parse ($self->{rbuf});
1162
1163 if ($ref) {
1164 $self->{rbuf} = $json->incr_text;
1165 $json->incr_text = "";
1166 $cb->($self, $ref);
1167
1168 1
1169 } else {
1170 $self->{rbuf} = "";
1171 ()
1172 }
1173 }
1174};
1175
1176=item storable => $cb->($handle, $ref)
1177
1178Deserialises a L<Storable> frozen representation as written by the
1179C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1180data).
1181
1182Raises C<EBADMSG> error if the data could not be decoded.
1183
1184=cut
1185
1186register_read_type storable => sub {
1187 my ($self, $cb) = @_;
1188
1189 require Storable;
1190
1191 sub {
1192 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1193 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1194 or return;
1195
1196 my $format = length pack "w", $len;
1197
1198 # bypass unshift if we already have the remaining chunk
1199 if ($format + $len <= length $_[0]{rbuf}) {
1200 my $data = substr $_[0]{rbuf}, $format, $len;
1201 substr $_[0]{rbuf}, 0, $format + $len, "";
1202 $cb->($_[0], Storable::thaw ($data));
1203 } else {
1204 # remove prefix
1205 substr $_[0]{rbuf}, 0, $format, "";
1206
1207 # read remaining chunk
1208 $_[0]->unshift_read (chunk => $len, sub {
1209 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1210 $cb->($_[0], $ref);
1211 } else {
1212 $self->_error (&Errno::EBADMSG);
1213 }
1214 });
1215 }
1216
1217 1
1218 }
1219};
1220
1221=back
1222
1223=item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1224
1225This function (not method) lets you add your own types to C<push_read>.
1226
1227Whenever the given C<type> is used, C<push_read> will invoke the code
1228reference with the handle object, the callback and the remaining
1229arguments.
1230
1231The code reference is supposed to return a callback (usually a closure)
1232that works as a plain read callback (see C<< ->push_read ($cb) >>).
1233
1234It should invoke the passed callback when it is done reading (remember to
1235pass C<$handle> as first argument as all other callbacks do that).
1236
1237Note that this is a function, and all types registered this way will be
1238global, so try to use unique names.
1239
1240For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1241search for C<register_read_type>)).
575 1242
576=item $handle->stop_read 1243=item $handle->stop_read
577 1244
578=item $handle->start_read 1245=item $handle->start_read
579 1246
580In rare cases you actually do not want to read anything form the 1247In rare cases you actually do not want to read anything from the
581socket. In this case you can call C<stop_read>. Neither C<on_read> no 1248socket. In this case you can call C<stop_read>. Neither C<on_read> nor
582any queued callbacks will be executed then. To start readign again, call 1249any queued callbacks will be executed then. To start reading again, call
583C<start_read>. 1250C<start_read>.
1251
1252Note that AnyEvent::Handle will automatically C<start_read> for you when
1253you change the C<on_read> callback or push/unshift a read callback, and it
1254will automatically C<stop_read> for you when neither C<on_read> is set nor
1255there are any read requests in the queue.
584 1256
585=cut 1257=cut
586 1258
587sub stop_read { 1259sub stop_read {
588 my ($self) = @_; 1260 my ($self) = @_;
589 1261
590 delete $self->{rw}; 1262 delete $self->{_rw};
591} 1263}
592 1264
593sub start_read { 1265sub start_read {
594 my ($self) = @_; 1266 my ($self) = @_;
595 1267
596 unless ($self->{rw} || $self->{eof}) { 1268 unless ($self->{_rw} || $self->{_eof}) {
597 Scalar::Util::weaken $self; 1269 Scalar::Util::weaken $self;
598 1270
599 $self->{rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1271 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
600 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1272 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
601 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1273 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
602 1274
603 if ($len > 0) { 1275 if ($len > 0) {
1276 $self->{_activity} = AnyEvent->now;
1277
604 $self->{filter_r} 1278 $self->{filter_r}
605 ? $self->{filter_r}->($rbuf) 1279 ? $self->{filter_r}($self, $rbuf)
606 : $self->_drain_rbuf; 1280 : $self->{_in_drain} || $self->_drain_rbuf;
607 1281
608 } elsif (defined $len) { 1282 } elsif (defined $len) {
609 delete $self->{rw}; 1283 delete $self->{_rw};
610 $self->{eof} = 1; 1284 $self->{_eof} = 1;
611 $self->_drain_rbuf; 1285 $self->_drain_rbuf unless $self->{_in_drain};
612 1286
613 } elsif ($! != EAGAIN && $! != EINTR) { 1287 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
614 return $self->error; 1288 return $self->_error ($!, 1);
615 } 1289 }
616 }); 1290 });
617 } 1291 }
618} 1292}
619 1293
1294sub _dotls {
1295 my ($self) = @_;
1296
1297 my $buf;
1298
1299 if (length $self->{_tls_wbuf}) {
1300 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1301 substr $self->{_tls_wbuf}, 0, $len, "";
1302 }
1303 }
1304
1305 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1306 $self->{wbuf} .= $buf;
1307 $self->_drain_wbuf;
1308 }
1309
1310 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1311 if (length $buf) {
1312 $self->{rbuf} .= $buf;
1313 $self->_drain_rbuf unless $self->{_in_drain};
1314 } else {
1315 # let's treat SSL-eof as we treat normal EOF
1316 $self->{_eof} = 1;
1317 $self->_shutdown;
1318 return;
1319 }
1320 }
1321
1322 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1323
1324 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1325 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1326 return $self->_error ($!, 1);
1327 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1328 return $self->_error (&Errno::EIO, 1);
1329 }
1330
1331 # all others are fine for our purposes
1332 }
1333}
1334
1335=item $handle->starttls ($tls[, $tls_ctx])
1336
1337Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1338object is created, you can also do that at a later time by calling
1339C<starttls>.
1340
1341The first argument is the same as the C<tls> constructor argument (either
1342C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1343
1344The second argument is the optional C<Net::SSLeay::CTX> object that is
1345used when AnyEvent::Handle has to create its own TLS connection object.
1346
1347The TLS connection object will end up in C<< $handle->{tls} >> after this
1348call and can be used or changed to your liking. Note that the handshake
1349might have already started when this function returns.
1350
1351=cut
1352
1353sub starttls {
1354 my ($self, $ssl, $ctx) = @_;
1355
1356 $self->stoptls;
1357
1358 if ($ssl eq "accept") {
1359 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1360 Net::SSLeay::set_accept_state ($ssl);
1361 } elsif ($ssl eq "connect") {
1362 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1363 Net::SSLeay::set_connect_state ($ssl);
1364 }
1365
1366 $self->{tls} = $ssl;
1367
1368 # basically, this is deep magic (because SSL_read should have the same issues)
1369 # but the openssl maintainers basically said: "trust us, it just works".
1370 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1371 # and mismaintained ssleay-module doesn't even offer them).
1372 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1373 #
1374 # in short: this is a mess.
1375 #
1376 # note that we do not try to kepe the length constant between writes as we are required to do.
1377 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1378 # and we drive openssl fully in blocking mode here.
1379 Net::SSLeay::CTX_set_mode ($self->{tls},
1380 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1381 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1382
1383 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1384 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1385
1386 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1387
1388 $self->{filter_w} = sub {
1389 $_[0]{_tls_wbuf} .= ${$_[1]};
1390 &_dotls;
1391 };
1392 $self->{filter_r} = sub {
1393 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1394 &_dotls;
1395 };
1396}
1397
1398=item $handle->stoptls
1399
1400Destroys the SSL connection, if any. Partial read or write data will be
1401lost.
1402
1403=cut
1404
1405sub stoptls {
1406 my ($self) = @_;
1407
1408 Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
1409
1410 delete $self->{_rbio};
1411 delete $self->{_wbio};
1412 delete $self->{_tls_wbuf};
1413 delete $self->{filter_r};
1414 delete $self->{filter_w};
1415}
1416
1417sub DESTROY {
1418 my $self = shift;
1419
1420 $self->stoptls;
1421
1422 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1423
1424 if ($linger && length $self->{wbuf}) {
1425 my $fh = delete $self->{fh};
1426 my $wbuf = delete $self->{wbuf};
1427
1428 my @linger;
1429
1430 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1431 my $len = syswrite $fh, $wbuf, length $wbuf;
1432
1433 if ($len > 0) {
1434 substr $wbuf, 0, $len, "";
1435 } else {
1436 @linger = (); # end
1437 }
1438 });
1439 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1440 @linger = ();
1441 });
1442 }
1443}
1444
1445=item AnyEvent::Handle::TLS_CTX
1446
1447This function creates and returns the Net::SSLeay::CTX object used by
1448default for TLS mode.
1449
1450The context is created like this:
1451
1452 Net::SSLeay::load_error_strings;
1453 Net::SSLeay::SSLeay_add_ssl_algorithms;
1454 Net::SSLeay::randomize;
1455
1456 my $CTX = Net::SSLeay::CTX_new;
1457
1458 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1459
1460=cut
1461
1462our $TLS_CTX;
1463
1464sub TLS_CTX() {
1465 $TLS_CTX || do {
1466 require Net::SSLeay;
1467
1468 Net::SSLeay::load_error_strings ();
1469 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1470 Net::SSLeay::randomize ();
1471
1472 $TLS_CTX = Net::SSLeay::CTX_new ();
1473
1474 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1475
1476 $TLS_CTX
1477 }
1478}
1479
620=back 1480=back
621 1481
1482=head1 SUBCLASSING AnyEvent::Handle
1483
1484In many cases, you might want to subclass AnyEvent::Handle.
1485
1486To make this easier, a given version of AnyEvent::Handle uses these
1487conventions:
1488
1489=over 4
1490
1491=item * all constructor arguments become object members.
1492
1493At least initially, when you pass a C<tls>-argument to the constructor it
1494will end up in C<< $handle->{tls} >>. Those members might be changed or
1495mutated later on (for example C<tls> will hold the TLS connection object).
1496
1497=item * other object member names are prefixed with an C<_>.
1498
1499All object members not explicitly documented (internal use) are prefixed
1500with an underscore character, so the remaining non-C<_>-namespace is free
1501for use for subclasses.
1502
1503=item * all members not documented here and not prefixed with an underscore
1504are free to use in subclasses.
1505
1506Of course, new versions of AnyEvent::Handle may introduce more "public"
1507member variables, but thats just life, at least it is documented.
1508
1509=back
1510
622=head1 AUTHOR 1511=head1 AUTHOR
623 1512
624Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>. 1513Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
625 1514
626=cut 1515=cut

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines