ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.37 by root, Mon May 26 20:02:22 2008 UTC vs.
Revision 1.92 by root, Wed Oct 1 08:52:06 2008 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent (); 6use AnyEvent ();
7use AnyEvent::Util qw(WSAWOULDBLOCK); 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 8use Scalar::Util ();
9use Carp (); 9use Carp ();
10use Fcntl (); 10use Fcntl ();
11use Errno qw/EAGAIN EINTR/; 11use Errno qw(EAGAIN EINTR);
12 12
13=head1 NAME 13=head1 NAME
14 14
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17=cut 17=cut
18 18
19our $VERSION = '0.04'; 19our $VERSION = 4.3;
20 20
21=head1 SYNOPSIS 21=head1 SYNOPSIS
22 22
23 use AnyEvent; 23 use AnyEvent;
24 use AnyEvent::Handle; 24 use AnyEvent::Handle;
49 49
50This module is a helper module to make it easier to do event-based I/O on 50This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 51filehandles. For utility functions for doing non-blocking connects and accepts
52on sockets see L<AnyEvent::Util>. 52on sockets see L<AnyEvent::Util>.
53 53
54The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples.
56
54In the following, when the documentation refers to of "bytes" then this 57In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 58means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 59treatment of characters applies to this module as well.
57 60
58All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
59argument. 62argument.
60 63
64=head2 SIGPIPE is not handled by this module
65
66SIGPIPE is not handled by this module, so one of the practical
67requirements of using it is to ignore SIGPIPE (C<$SIG{PIPE} =
68'IGNORE'>). At least, this is highly recommend in a networked program: If
69you use AnyEvent::Handle in a filter program (like sort), exiting on
70SIGPIPE is probably the right thing to do.
71
61=head1 METHODS 72=head1 METHODS
62 73
63=over 4 74=over 4
64 75
65=item B<new (%args)> 76=item B<new (%args)>
70 81
71=item fh => $filehandle [MANDATORY] 82=item fh => $filehandle [MANDATORY]
72 83
73The filehandle this L<AnyEvent::Handle> object will operate on. 84The filehandle this L<AnyEvent::Handle> object will operate on.
74 85
75NOTE: The filehandle will be set to non-blocking (using 86NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 87C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
88that mode.
77 89
78=item on_eof => $cb->($self) 90=item on_eof => $cb->($handle)
79 91
80Set the callback to be called on EOF. 92Set the callback to be called when an end-of-file condition is detected,
93i.e. in the case of a socket, when the other side has closed the
94connection cleanly.
81 95
96For sockets, this just means that the other side has stopped sending data,
97you can still try to write data, and, in fact, one can return from the eof
98callback and continue writing data, as only the read part has been shut
99down.
100
82While not mandatory, it is highly recommended to set an eof callback, 101While not mandatory, it is I<highly> recommended to set an eof callback,
83otherwise you might end up with a closed socket while you are still 102otherwise you might end up with a closed socket while you are still
84waiting for data. 103waiting for data.
85 104
105If an EOF condition has been detected but no C<on_eof> callback has been
106set, then a fatal error will be raised with C<$!> set to <0>.
107
86=item on_error => $cb->($self) 108=item on_error => $cb->($handle, $fatal)
87 109
88This is the fatal error callback, that is called when, well, a fatal error 110This is the error callback, which is called when, well, some error
89occurs, such as not being able to resolve the hostname, failure to connect 111occured, such as not being able to resolve the hostname, failure to
90or a read error. 112connect or a read error.
91 113
92The object will not be in a usable state when this callback has been 114Some errors are fatal (which is indicated by C<$fatal> being true). On
93called. 115fatal errors the handle object will be shut down and will not be usable
116(but you are free to look at the current C<< ->rbuf >>). Examples of fatal
117errors are an EOF condition with active (but unsatisifable) read watchers
118(C<EPIPE>) or I/O errors.
119
120Non-fatal errors can be retried by simply returning, but it is recommended
121to simply ignore this parameter and instead abondon the handle object
122when this callback is invoked. Examples of non-fatal errors are timeouts
123C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
94 124
95On callback entrance, the value of C<$!> contains the operating system 125On callback entrance, the value of C<$!> contains the operating system
96error (or C<ENOSPC>, C<EPIPE> or C<EBADMSG>). 126error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
97
98The callbakc should throw an exception. If it returns, then
99AnyEvent::Handle will C<croak> for you.
100 127
101While not mandatory, it is I<highly> recommended to set this callback, as 128While not mandatory, it is I<highly> recommended to set this callback, as
102you will not be notified of errors otherwise. The default simply calls 129you will not be notified of errors otherwise. The default simply calls
103die. 130C<croak>.
104 131
105=item on_read => $cb->($self) 132=item on_read => $cb->($handle)
106 133
107This sets the default read callback, which is called when data arrives 134This sets the default read callback, which is called when data arrives
108and no read request is in the queue. 135and no read request is in the queue (unlike read queue callbacks, this
136callback will only be called when at least one octet of data is in the
137read buffer).
109 138
110To access (and remove data from) the read buffer, use the C<< ->rbuf >> 139To access (and remove data from) the read buffer, use the C<< ->rbuf >>
111method or access the C<$self->{rbuf}> member directly. 140method or access the C<$handle->{rbuf}> member directly.
112 141
113When an EOF condition is detected then AnyEvent::Handle will first try to 142When an EOF condition is detected then AnyEvent::Handle will first try to
114feed all the remaining data to the queued callbacks and C<on_read> before 143feed all the remaining data to the queued callbacks and C<on_read> before
115calling the C<on_eof> callback. If no progress can be made, then a fatal 144calling the C<on_eof> callback. If no progress can be made, then a fatal
116error will be raised (with C<$!> set to C<EPIPE>). 145error will be raised (with C<$!> set to C<EPIPE>).
117 146
118=item on_drain => $cb->() 147=item on_drain => $cb->($handle)
119 148
120This sets the callback that is called when the write buffer becomes empty 149This sets the callback that is called when the write buffer becomes empty
121(or when the callback is set and the buffer is empty already). 150(or when the callback is set and the buffer is empty already).
122 151
123To append to the write buffer, use the C<< ->push_write >> method. 152To append to the write buffer, use the C<< ->push_write >> method.
124 153
154This callback is useful when you don't want to put all of your write data
155into the queue at once, for example, when you want to write the contents
156of some file to the socket you might not want to read the whole file into
157memory and push it into the queue, but instead only read more data from
158the file when the write queue becomes empty.
159
160=item timeout => $fractional_seconds
161
162If non-zero, then this enables an "inactivity" timeout: whenever this many
163seconds pass without a successful read or write on the underlying file
164handle, the C<on_timeout> callback will be invoked (and if that one is
165missing, a non-fatal C<ETIMEDOUT> error will be raised).
166
167Note that timeout processing is also active when you currently do not have
168any outstanding read or write requests: If you plan to keep the connection
169idle then you should disable the timout temporarily or ignore the timeout
170in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
171restart the timeout.
172
173Zero (the default) disables this timeout.
174
175=item on_timeout => $cb->($handle)
176
177Called whenever the inactivity timeout passes. If you return from this
178callback, then the timeout will be reset as if some activity had happened,
179so this condition is not fatal in any way.
180
125=item rbuf_max => <bytes> 181=item rbuf_max => <bytes>
126 182
127If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 183If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
128when the read buffer ever (strictly) exceeds this size. This is useful to 184when the read buffer ever (strictly) exceeds this size. This is useful to
129avoid denial-of-service attacks. 185avoid some forms of denial-of-service attacks.
130 186
131For example, a server accepting connections from untrusted sources should 187For example, a server accepting connections from untrusted sources should
132be configured to accept only so-and-so much data that it cannot act on 188be configured to accept only so-and-so much data that it cannot act on
133(for example, when expecting a line, an attacker could send an unlimited 189(for example, when expecting a line, an attacker could send an unlimited
134amount of data without a callback ever being called as long as the line 190amount of data without a callback ever being called as long as the line
135isn't finished). 191isn't finished).
136 192
193=item autocork => <boolean>
194
195When disabled (the default), then C<push_write> will try to immediately
196write the data to the handle, if possible. This avoids having to register
197a write watcher and wait for the next event loop iteration, but can
198be inefficient if you write multiple small chunks (on the wire, this
199disadvantage is usually avoided by your kernel's nagle algorithm, see
200C<no_delay>, but this option can save costly syscalls).
201
202When enabled, then writes will always be queued till the next event loop
203iteration. This is efficient when you do many small writes per iteration,
204but less efficient when you do a single write only per iteration (or when
205the write buffer often is full). It also increases write latency.
206
207=item no_delay => <boolean>
208
209When doing small writes on sockets, your operating system kernel might
210wait a bit for more data before actually sending it out. This is called
211the Nagle algorithm, and usually it is beneficial.
212
213In some situations you want as low a delay as possible, which can be
214accomplishd by setting this option to a true value.
215
216The default is your opertaing system's default behaviour (most likely
217enabled), this option explicitly enables or disables it, if possible.
218
137=item read_size => <bytes> 219=item read_size => <bytes>
138 220
139The default read block size (the amount of bytes this module will try to read 221The default read block size (the amount of bytes this module will
140on each [loop iteration). Default: C<4096>. 222try to read during each loop iteration, which affects memory
223requirements). Default: C<8192>.
141 224
142=item low_water_mark => <bytes> 225=item low_water_mark => <bytes>
143 226
144Sets the amount of bytes (default: C<0>) that make up an "empty" write 227Sets the amount of bytes (default: C<0>) that make up an "empty" write
145buffer: If the write reaches this size or gets even samller it is 228buffer: If the write reaches this size or gets even samller it is
146considered empty. 229considered empty.
147 230
231Sometimes it can be beneficial (for performance reasons) to add data to
232the write buffer before it is fully drained, but this is a rare case, as
233the operating system kernel usually buffers data as well, so the default
234is good in almost all cases.
235
236=item linger => <seconds>
237
238If non-zero (default: C<3600>), then the destructor of the
239AnyEvent::Handle object will check whether there is still outstanding
240write data and will install a watcher that will write this data to the
241socket. No errors will be reported (this mostly matches how the operating
242system treats outstanding data at socket close time).
243
244This will not work for partial TLS data that could not be encoded
245yet. This data will be lost.
246
148=item tls => "accept" | "connect" | Net::SSLeay::SSL object 247=item tls => "accept" | "connect" | Net::SSLeay::SSL object
149 248
150When this parameter is given, it enables TLS (SSL) mode, that means it 249When this parameter is given, it enables TLS (SSL) mode, that means
151will start making tls handshake and will transparently encrypt/decrypt 250AnyEvent will start a TLS handshake as soon as the conenction has been
152data. 251established and will transparently encrypt/decrypt data afterwards.
153 252
154TLS mode requires Net::SSLeay to be installed (it will be loaded 253TLS mode requires Net::SSLeay to be installed (it will be loaded
155automatically when you try to create a TLS handle). 254automatically when you try to create a TLS handle): this module doesn't
255have a dependency on that module, so if your module requires it, you have
256to add the dependency yourself.
156 257
157For the TLS server side, use C<accept>, and for the TLS client side of a 258Unlike TCP, TLS has a server and client side: for the TLS server side, use
158connection, use C<connect> mode. 259C<accept>, and for the TLS client side of a connection, use C<connect>
260mode.
159 261
160You can also provide your own TLS connection object, but you have 262You can also provide your own TLS connection object, but you have
161to make sure that you call either C<Net::SSLeay::set_connect_state> 263to make sure that you call either C<Net::SSLeay::set_connect_state>
162or C<Net::SSLeay::set_accept_state> on it before you pass it to 264or C<Net::SSLeay::set_accept_state> on it before you pass it to
163AnyEvent::Handle. 265AnyEvent::Handle.
164 266
165See the C<starttls> method if you need to start TLs negotiation later. 267See the C<< ->starttls >> method for when need to start TLS negotiation later.
166 268
167=item tls_ctx => $ssl_ctx 269=item tls_ctx => $ssl_ctx
168 270
169Use the given Net::SSLeay::CTX object to create the new TLS connection 271Use the given C<Net::SSLeay::CTX> object to create the new TLS connection
170(unless a connection object was specified directly). If this parameter is 272(unless a connection object was specified directly). If this parameter is
171missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 273missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
274
275=item json => JSON or JSON::XS object
276
277This is the json coder object used by the C<json> read and write types.
278
279If you don't supply it, then AnyEvent::Handle will create and use a
280suitable one (on demand), which will write and expect UTF-8 encoded JSON
281texts.
282
283Note that you are responsible to depend on the JSON module if you want to
284use this functionality, as AnyEvent does not have a dependency itself.
285
286=item filter_r => $cb
287
288=item filter_w => $cb
289
290These exist, but are undocumented at this time. (They are used internally
291by the TLS code).
172 292
173=back 293=back
174 294
175=cut 295=cut
176 296
186 if ($self->{tls}) { 306 if ($self->{tls}) {
187 require Net::SSLeay; 307 require Net::SSLeay;
188 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 308 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
189 } 309 }
190 310
191 $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; 311 $self->{_activity} = AnyEvent->now;
192 $self->on_error (delete $self->{on_error}) if $self->{on_error}; 312 $self->_timeout;
313
193 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 314 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
194 $self->on_read (delete $self->{on_read} ) if $self->{on_read}; 315 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
195 316
196 $self->start_read; 317 $self->start_read
318 if $self->{on_read};
197 319
198 $self 320 $self
199} 321}
200 322
201sub _shutdown { 323sub _shutdown {
202 my ($self) = @_; 324 my ($self) = @_;
203 325
326 delete $self->{_tw};
204 delete $self->{rw}; 327 delete $self->{_rw};
205 delete $self->{ww}; 328 delete $self->{_ww};
206 delete $self->{fh}; 329 delete $self->{fh};
207}
208 330
331 &_freetls;
332
333 delete $self->{on_read};
334 delete $self->{_queue};
335}
336
209sub error { 337sub _error {
210 my ($self) = @_; 338 my ($self, $errno, $fatal) = @_;
211 339
212 {
213 local $!;
214 $self->_shutdown; 340 $self->_shutdown
215 } 341 if $fatal;
216 342
217 $self->{on_error}($self) 343 $! = $errno;
344
218 if $self->{on_error}; 345 if ($self->{on_error}) {
219 346 $self->{on_error}($self, $fatal);
347 } else {
220 Carp::croak "AnyEvent::Handle uncaught fatal error: $!"; 348 Carp::croak "AnyEvent::Handle uncaught error: $!";
349 }
221} 350}
222 351
223=item $fh = $handle->fh 352=item $fh = $handle->fh
224 353
225This method returns the file handle of the L<AnyEvent::Handle> object. 354This method returns the file handle used to create the L<AnyEvent::Handle> object.
226 355
227=cut 356=cut
228 357
229sub fh { $_[0]->{fh} } 358sub fh { $_[0]{fh} }
230 359
231=item $handle->on_error ($cb) 360=item $handle->on_error ($cb)
232 361
233Replace the current C<on_error> callback (see the C<on_error> constructor argument). 362Replace the current C<on_error> callback (see the C<on_error> constructor argument).
234 363
244 373
245=cut 374=cut
246 375
247sub on_eof { 376sub on_eof {
248 $_[0]{on_eof} = $_[1]; 377 $_[0]{on_eof} = $_[1];
378}
379
380=item $handle->on_timeout ($cb)
381
382Replace the current C<on_timeout> callback, or disables the callback (but
383not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
384argument and method.
385
386=cut
387
388sub on_timeout {
389 $_[0]{on_timeout} = $_[1];
390}
391
392=item $handle->autocork ($boolean)
393
394Enables or disables the current autocork behaviour (see C<autocork>
395constructor argument).
396
397=cut
398
399=item $handle->no_delay ($boolean)
400
401Enables or disables the C<no_delay> setting (see constructor argument of
402the same name for details).
403
404=cut
405
406sub no_delay {
407 $_[0]{no_delay} = $_[1];
408
409 eval {
410 local $SIG{__DIE__};
411 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
412 };
413}
414
415#############################################################################
416
417=item $handle->timeout ($seconds)
418
419Configures (or disables) the inactivity timeout.
420
421=cut
422
423sub timeout {
424 my ($self, $timeout) = @_;
425
426 $self->{timeout} = $timeout;
427 $self->_timeout;
428}
429
430# reset the timeout watcher, as neccessary
431# also check for time-outs
432sub _timeout {
433 my ($self) = @_;
434
435 if ($self->{timeout}) {
436 my $NOW = AnyEvent->now;
437
438 # when would the timeout trigger?
439 my $after = $self->{_activity} + $self->{timeout} - $NOW;
440
441 # now or in the past already?
442 if ($after <= 0) {
443 $self->{_activity} = $NOW;
444
445 if ($self->{on_timeout}) {
446 $self->{on_timeout}($self);
447 } else {
448 $self->_error (&Errno::ETIMEDOUT);
449 }
450
451 # callback could have changed timeout value, optimise
452 return unless $self->{timeout};
453
454 # calculate new after
455 $after = $self->{timeout};
456 }
457
458 Scalar::Util::weaken $self;
459 return unless $self; # ->error could have destroyed $self
460
461 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
462 delete $self->{_tw};
463 $self->_timeout;
464 });
465 } else {
466 delete $self->{_tw};
467 }
249} 468}
250 469
251############################################################################# 470#############################################################################
252 471
253=back 472=back
290=cut 509=cut
291 510
292sub _drain_wbuf { 511sub _drain_wbuf {
293 my ($self) = @_; 512 my ($self) = @_;
294 513
295 if (!$self->{ww} && length $self->{wbuf}) { 514 if (!$self->{_ww} && length $self->{wbuf}) {
296 515
297 Scalar::Util::weaken $self; 516 Scalar::Util::weaken $self;
298 517
299 my $cb = sub { 518 my $cb = sub {
300 my $len = syswrite $self->{fh}, $self->{wbuf}; 519 my $len = syswrite $self->{fh}, $self->{wbuf};
301 520
302 if ($len >= 0) { 521 if ($len >= 0) {
303 substr $self->{wbuf}, 0, $len, ""; 522 substr $self->{wbuf}, 0, $len, "";
523
524 $self->{_activity} = AnyEvent->now;
304 525
305 $self->{on_drain}($self) 526 $self->{on_drain}($self)
306 if $self->{low_water_mark} >= length $self->{wbuf} 527 if $self->{low_water_mark} >= length $self->{wbuf}
307 && $self->{on_drain}; 528 && $self->{on_drain};
308 529
309 delete $self->{ww} unless length $self->{wbuf}; 530 delete $self->{_ww} unless length $self->{wbuf};
310 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAWOULDBLOCK) { 531 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
311 $self->error; 532 $self->_error ($!, 1);
312 } 533 }
313 }; 534 };
314 535
315 # try to write data immediately 536 # try to write data immediately
316 $cb->(); 537 $cb->() unless $self->{autocork};
317 538
318 # if still data left in wbuf, we need to poll 539 # if still data left in wbuf, we need to poll
319 $self->{ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 540 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
320 if length $self->{wbuf}; 541 if length $self->{wbuf};
321 }; 542 };
322} 543}
323 544
324our %WH; 545our %WH;
336 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 557 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
337 ->($self, @_); 558 ->($self, @_);
338 } 559 }
339 560
340 if ($self->{filter_w}) { 561 if ($self->{filter_w}) {
341 $self->{filter_w}->($self, \$_[0]); 562 $self->{filter_w}($self, \$_[0]);
342 } else { 563 } else {
343 $self->{wbuf} .= $_[0]; 564 $self->{wbuf} .= $_[0];
344 $self->_drain_wbuf; 565 $self->_drain_wbuf;
345 } 566 }
346} 567}
347 568
348=item $handle->push_write (type => @args) 569=item $handle->push_write (type => @args)
349 570
350=item $handle->unshift_write (type => @args)
351
352Instead of formatting your data yourself, you can also let this module do 571Instead of formatting your data yourself, you can also let this module do
353the job by specifying a type and type-specific arguments. 572the job by specifying a type and type-specific arguments.
354 573
355Predefined types are (if you have ideas for additional types, feel free to 574Predefined types are (if you have ideas for additional types, feel free to
356drop by and tell us): 575drop by and tell us):
360=item netstring => $string 579=item netstring => $string
361 580
362Formats the given value as netstring 581Formats the given value as netstring
363(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them). 582(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
364 583
365=back
366
367=cut 584=cut
368 585
369register_write_type netstring => sub { 586register_write_type netstring => sub {
370 my ($self, $string) = @_; 587 my ($self, $string) = @_;
371 588
372 sprintf "%d:%s,", (length $string), $string 589 sprintf "%d:%s,", (length $string), $string
373}; 590};
374 591
592=item packstring => $format, $data
593
594An octet string prefixed with an encoded length. The encoding C<$format>
595uses the same format as a Perl C<pack> format, but must specify a single
596integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
597optional C<!>, C<< < >> or C<< > >> modifier).
598
599=cut
600
601register_write_type packstring => sub {
602 my ($self, $format, $string) = @_;
603
604 pack "$format/a*", $string
605};
606
607=item json => $array_or_hashref
608
609Encodes the given hash or array reference into a JSON object. Unless you
610provide your own JSON object, this means it will be encoded to JSON text
611in UTF-8.
612
613JSON objects (and arrays) are self-delimiting, so you can write JSON at
614one end of a handle and read them at the other end without using any
615additional framing.
616
617The generated JSON text is guaranteed not to contain any newlines: While
618this module doesn't need delimiters after or between JSON texts to be
619able to read them, many other languages depend on that.
620
621A simple RPC protocol that interoperates easily with others is to send
622JSON arrays (or objects, although arrays are usually the better choice as
623they mimic how function argument passing works) and a newline after each
624JSON text:
625
626 $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
627 $handle->push_write ("\012");
628
629An AnyEvent::Handle receiver would simply use the C<json> read type and
630rely on the fact that the newline will be skipped as leading whitespace:
631
632 $handle->push_read (json => sub { my $array = $_[1]; ... });
633
634Other languages could read single lines terminated by a newline and pass
635this line into their JSON decoder of choice.
636
637=cut
638
639register_write_type json => sub {
640 my ($self, $ref) = @_;
641
642 require JSON;
643
644 $self->{json} ? $self->{json}->encode ($ref)
645 : JSON::encode_json ($ref)
646};
647
648=item storable => $reference
649
650Freezes the given reference using L<Storable> and writes it to the
651handle. Uses the C<nfreeze> format.
652
653=cut
654
655register_write_type storable => sub {
656 my ($self, $ref) = @_;
657
658 require Storable;
659
660 pack "w/a*", Storable::nfreeze ($ref)
661};
662
663=back
664
375=item AnyEvent::Handle::register_write_type type => $coderef->($self, @args) 665=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
376 666
377This function (not method) lets you add your own types to C<push_write>. 667This function (not method) lets you add your own types to C<push_write>.
378Whenever the given C<type> is used, C<push_write> will invoke the code 668Whenever the given C<type> is used, C<push_write> will invoke the code
379reference with the handle object and the remaining arguments. 669reference with the handle object and the remaining arguments.
380 670
399ways, the "simple" way, using only C<on_read> and the "complex" way, using 689ways, the "simple" way, using only C<on_read> and the "complex" way, using
400a queue. 690a queue.
401 691
402In the simple case, you just install an C<on_read> callback and whenever 692In the simple case, you just install an C<on_read> callback and whenever
403new data arrives, it will be called. You can then remove some data (if 693new data arrives, it will be called. You can then remove some data (if
404enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 694enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
405or not. 695leave the data there if you want to accumulate more (e.g. when only a
696partial message has been received so far).
406 697
407In the more complex case, you want to queue multiple callbacks. In this 698In the more complex case, you want to queue multiple callbacks. In this
408case, AnyEvent::Handle will call the first queued callback each time new 699case, AnyEvent::Handle will call the first queued callback each time new
409data arrives and removes it when it has done its job (see C<push_read>, 700data arrives (also the first time it is queued) and removes it when it has
410below). 701done its job (see C<push_read>, below).
411 702
412This way you can, for example, push three line-reads, followed by reading 703This way you can, for example, push three line-reads, followed by reading
413a chunk of data, and AnyEvent::Handle will execute them in order. 704a chunk of data, and AnyEvent::Handle will execute them in order.
414 705
415Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 706Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
416the specified number of bytes which give an XML datagram. 707the specified number of bytes which give an XML datagram.
417 708
418 # in the default state, expect some header bytes 709 # in the default state, expect some header bytes
419 $handle->on_read (sub { 710 $handle->on_read (sub {
420 # some data is here, now queue the length-header-read (4 octets) 711 # some data is here, now queue the length-header-read (4 octets)
421 shift->unshift_read_chunk (4, sub { 712 shift->unshift_read (chunk => 4, sub {
422 # header arrived, decode 713 # header arrived, decode
423 my $len = unpack "N", $_[1]; 714 my $len = unpack "N", $_[1];
424 715
425 # now read the payload 716 # now read the payload
426 shift->unshift_read_chunk ($len, sub { 717 shift->unshift_read (chunk => $len, sub {
427 my $xml = $_[1]; 718 my $xml = $_[1];
428 # handle xml 719 # handle xml
429 }); 720 });
430 }); 721 });
431 }); 722 });
432 723
433Example 2: Implement a client for a protocol that replies either with 724Example 2: Implement a client for a protocol that replies either with "OK"
434"OK" and another line or "ERROR" for one request, and 64 bytes for the 725and another line or "ERROR" for the first request that is sent, and 64
435second request. Due tot he availability of a full queue, we can just 726bytes for the second request. Due to the availability of a queue, we can
436pipeline sending both requests and manipulate the queue as necessary in 727just pipeline sending both requests and manipulate the queue as necessary
437the callbacks: 728in the callbacks.
438 729
439 # request one 730When the first callback is called and sees an "OK" response, it will
731C<unshift> another line-read. This line-read will be queued I<before> the
73264-byte chunk callback.
733
734 # request one, returns either "OK + extra line" or "ERROR"
440 $handle->push_write ("request 1\015\012"); 735 $handle->push_write ("request 1\015\012");
441 736
442 # we expect "ERROR" or "OK" as response, so push a line read 737 # we expect "ERROR" or "OK" as response, so push a line read
443 $handle->push_read_line (sub { 738 $handle->push_read (line => sub {
444 # if we got an "OK", we have to _prepend_ another line, 739 # if we got an "OK", we have to _prepend_ another line,
445 # so it will be read before the second request reads its 64 bytes 740 # so it will be read before the second request reads its 64 bytes
446 # which are already in the queue when this callback is called 741 # which are already in the queue when this callback is called
447 # we don't do this in case we got an error 742 # we don't do this in case we got an error
448 if ($_[1] eq "OK") { 743 if ($_[1] eq "OK") {
449 $_[0]->unshift_read_line (sub { 744 $_[0]->unshift_read (line => sub {
450 my $response = $_[1]; 745 my $response = $_[1];
451 ... 746 ...
452 }); 747 });
453 } 748 }
454 }); 749 });
455 750
456 # request two 751 # request two, simply returns 64 octets
457 $handle->push_write ("request 2\015\012"); 752 $handle->push_write ("request 2\015\012");
458 753
459 # simply read 64 bytes, always 754 # simply read 64 bytes, always
460 $handle->push_read_chunk (64, sub { 755 $handle->push_read (chunk => 64, sub {
461 my $response = $_[1]; 756 my $response = $_[1];
462 ... 757 ...
463 }); 758 });
464 759
465=over 4 760=over 4
466 761
467=cut 762=cut
468 763
469sub _drain_rbuf { 764sub _drain_rbuf {
470 my ($self) = @_; 765 my ($self) = @_;
766
767 local $self->{_in_drain} = 1;
471 768
472 if ( 769 if (
473 defined $self->{rbuf_max} 770 defined $self->{rbuf_max}
474 && $self->{rbuf_max} < length $self->{rbuf} 771 && $self->{rbuf_max} < length $self->{rbuf}
475 ) { 772 ) {
476 $! = &Errno::ENOSPC; 773 $self->_error (&Errno::ENOSPC, 1), return;
477 $self->error;
478 } 774 }
479 775
480 return if $self->{in_drain}; 776 while () {
481 local $self->{in_drain} = 1;
482
483 while (my $len = length $self->{rbuf}) { 777 my $len = length $self->{rbuf};
484 no strict 'refs'; 778
485 if (my $cb = shift @{ $self->{queue} }) { 779 if (my $cb = shift @{ $self->{_queue} }) {
486 unless ($cb->($self)) { 780 unless ($cb->($self)) {
487 if ($self->{eof}) { 781 if ($self->{_eof}) {
488 # no progress can be made (not enough data and no data forthcoming) 782 # no progress can be made (not enough data and no data forthcoming)
489 $! = &Errno::EPIPE; 783 $self->_error (&Errno::EPIPE, 1), return;
490 $self->error;
491 } 784 }
492 785
493 unshift @{ $self->{queue} }, $cb; 786 unshift @{ $self->{_queue} }, $cb;
494 return; 787 last;
495 } 788 }
496 } elsif ($self->{on_read}) { 789 } elsif ($self->{on_read}) {
790 last unless $len;
791
497 $self->{on_read}($self); 792 $self->{on_read}($self);
498 793
499 if ( 794 if (
500 $self->{eof} # if no further data will arrive
501 && $len == length $self->{rbuf} # and no data has been consumed 795 $len == length $self->{rbuf} # if no data has been consumed
502 && !@{ $self->{queue} } # and the queue is still empty 796 && !@{ $self->{_queue} } # and the queue is still empty
503 && $self->{on_read} # and we still want to read data 797 && $self->{on_read} # but we still have on_read
504 ) { 798 ) {
799 # no further data will arrive
505 # then no progress can be made 800 # so no progress can be made
506 $! = &Errno::EPIPE; 801 $self->_error (&Errno::EPIPE, 1), return
507 $self->error; 802 if $self->{_eof};
803
804 last; # more data might arrive
508 } 805 }
509 } else { 806 } else {
510 # read side becomes idle 807 # read side becomes idle
511 delete $self->{rw}; 808 delete $self->{_rw};
512 return; 809 last;
513 } 810 }
514 } 811 }
515 812
516 if ($self->{eof}) { 813 if ($self->{_eof}) {
517 $self->_shutdown; 814 if ($self->{on_eof}) {
518 $self->{on_eof}($self) 815 $self->{on_eof}($self)
519 if $self->{on_eof}; 816 } else {
817 $self->_error (0, 1);
818 }
819 }
820
821 # may need to restart read watcher
822 unless ($self->{_rw}) {
823 $self->start_read
824 if $self->{on_read} || @{ $self->{_queue} };
520 } 825 }
521} 826}
522 827
523=item $handle->on_read ($cb) 828=item $handle->on_read ($cb)
524 829
530 835
531sub on_read { 836sub on_read {
532 my ($self, $cb) = @_; 837 my ($self, $cb) = @_;
533 838
534 $self->{on_read} = $cb; 839 $self->{on_read} = $cb;
840 $self->_drain_rbuf if $cb && !$self->{_in_drain};
535} 841}
536 842
537=item $handle->rbuf 843=item $handle->rbuf
538 844
539Returns the read buffer (as a modifiable lvalue). 845Returns the read buffer (as a modifiable lvalue).
587 893
588 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 894 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
589 ->($self, $cb, @_); 895 ->($self, $cb, @_);
590 } 896 }
591 897
592 push @{ $self->{queue} }, $cb; 898 push @{ $self->{_queue} }, $cb;
593 $self->_drain_rbuf; 899 $self->_drain_rbuf unless $self->{_in_drain};
594} 900}
595 901
596sub unshift_read { 902sub unshift_read {
597 my $self = shift; 903 my $self = shift;
598 my $cb = pop; 904 my $cb = pop;
603 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read") 909 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
604 ->($self, $cb, @_); 910 ->($self, $cb, @_);
605 } 911 }
606 912
607 913
608 unshift @{ $self->{queue} }, $cb; 914 unshift @{ $self->{_queue} }, $cb;
609 $self->_drain_rbuf; 915 $self->_drain_rbuf unless $self->{_in_drain};
610} 916}
611 917
612=item $handle->push_read (type => @args, $cb) 918=item $handle->push_read (type => @args, $cb)
613 919
614=item $handle->unshift_read (type => @args, $cb) 920=item $handle->unshift_read (type => @args, $cb)
620Predefined types are (if you have ideas for additional types, feel free to 926Predefined types are (if you have ideas for additional types, feel free to
621drop by and tell us): 927drop by and tell us):
622 928
623=over 4 929=over 4
624 930
625=item chunk => $octets, $cb->($self, $data) 931=item chunk => $octets, $cb->($handle, $data)
626 932
627Invoke the callback only once C<$octets> bytes have been read. Pass the 933Invoke the callback only once C<$octets> bytes have been read. Pass the
628data read to the callback. The callback will never be called with less 934data read to the callback. The callback will never be called with less
629data. 935data.
630 936
644 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 950 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
645 1 951 1
646 } 952 }
647}; 953};
648 954
649# compatibility with older API
650sub push_read_chunk {
651 $_[0]->push_read (chunk => $_[1], $_[2]);
652}
653
654sub unshift_read_chunk {
655 $_[0]->unshift_read (chunk => $_[1], $_[2]);
656}
657
658=item line => [$eol, ]$cb->($self, $line, $eol) 955=item line => [$eol, ]$cb->($handle, $line, $eol)
659 956
660The callback will be called only once a full line (including the end of 957The callback will be called only once a full line (including the end of
661line marker, C<$eol>) has been read. This line (excluding the end of line 958line marker, C<$eol>) has been read. This line (excluding the end of line
662marker) will be passed to the callback as second argument (C<$line>), and 959marker) will be passed to the callback as second argument (C<$line>), and
663the end of line marker as the third argument (C<$eol>). 960the end of line marker as the third argument (C<$eol>).
677=cut 974=cut
678 975
679register_read_type line => sub { 976register_read_type line => sub {
680 my ($self, $cb, $eol) = @_; 977 my ($self, $cb, $eol) = @_;
681 978
682 $eol = qr|(\015?\012)| if @_ < 3; 979 if (@_ < 3) {
980 # this is more than twice as fast as the generic code below
981 sub {
982 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
983
984 $cb->($_[0], $1, $2);
985 1
986 }
987 } else {
683 $eol = quotemeta $eol unless ref $eol; 988 $eol = quotemeta $eol unless ref $eol;
684 $eol = qr|^(.*?)($eol)|s; 989 $eol = qr|^(.*?)($eol)|s;
685 990
686 sub { 991 sub {
687 $_[0]{rbuf} =~ s/$eol// or return; 992 $_[0]{rbuf} =~ s/$eol// or return;
688 993
689 $cb->($_[0], $1, $2); 994 $cb->($_[0], $1, $2);
995 1
690 1 996 }
691 } 997 }
692}; 998};
693 999
694# compatibility with older API
695sub push_read_line {
696 my $self = shift;
697 $self->push_read (line => @_);
698}
699
700sub unshift_read_line {
701 my $self = shift;
702 $self->unshift_read (line => @_);
703}
704
705=item netstring => $cb->($string)
706
707A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
708
709Throws an error with C<$!> set to EBADMSG on format violations.
710
711=cut
712
713register_read_type netstring => sub {
714 my ($self, $cb) = @_;
715
716 sub {
717 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
718 if ($_[0]{rbuf} =~ /[^0-9]/) {
719 $! = &Errno::EBADMSG;
720 $self->error;
721 }
722 return;
723 }
724
725 my $len = $1;
726
727 $self->unshift_read (chunk => $len, sub {
728 my $string = $_[1];
729 $_[0]->unshift_read (chunk => 1, sub {
730 if ($_[1] eq ",") {
731 $cb->($_[0], $string);
732 } else {
733 $! = &Errno::EBADMSG;
734 $self->error;
735 }
736 });
737 });
738
739 1
740 }
741};
742
743=item regex => $accept[, $reject[, $skip], $cb->($data) 1000=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
744 1001
745Makes a regex match against the regex object C<$accept> and returns 1002Makes a regex match against the regex object C<$accept> and returns
746everything up to and including the match. 1003everything up to and including the match.
747 1004
748Example: read a single line terminated by '\n'. 1005Example: read a single line terminated by '\n'.
796 return 1; 1053 return 1;
797 } 1054 }
798 1055
799 # reject 1056 # reject
800 if ($reject && $$rbuf =~ $reject) { 1057 if ($reject && $$rbuf =~ $reject) {
801 $! = &Errno::EBADMSG; 1058 $self->_error (&Errno::EBADMSG);
802 $self->error;
803 } 1059 }
804 1060
805 # skip 1061 # skip
806 if ($skip && $$rbuf =~ $skip) { 1062 if ($skip && $$rbuf =~ $skip) {
807 $data .= substr $$rbuf, 0, $+[0], ""; 1063 $data .= substr $$rbuf, 0, $+[0], "";
809 1065
810 () 1066 ()
811 } 1067 }
812}; 1068};
813 1069
1070=item netstring => $cb->($handle, $string)
1071
1072A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1073
1074Throws an error with C<$!> set to EBADMSG on format violations.
1075
1076=cut
1077
1078register_read_type netstring => sub {
1079 my ($self, $cb) = @_;
1080
1081 sub {
1082 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1083 if ($_[0]{rbuf} =~ /[^0-9]/) {
1084 $self->_error (&Errno::EBADMSG);
1085 }
1086 return;
1087 }
1088
1089 my $len = $1;
1090
1091 $self->unshift_read (chunk => $len, sub {
1092 my $string = $_[1];
1093 $_[0]->unshift_read (chunk => 1, sub {
1094 if ($_[1] eq ",") {
1095 $cb->($_[0], $string);
1096 } else {
1097 $self->_error (&Errno::EBADMSG);
1098 }
1099 });
1100 });
1101
1102 1
1103 }
1104};
1105
1106=item packstring => $format, $cb->($handle, $string)
1107
1108An octet string prefixed with an encoded length. The encoding C<$format>
1109uses the same format as a Perl C<pack> format, but must specify a single
1110integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1111optional C<!>, C<< < >> or C<< > >> modifier).
1112
1113DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>.
1114
1115Example: read a block of data prefixed by its length in BER-encoded
1116format (very efficient).
1117
1118 $handle->push_read (packstring => "w", sub {
1119 my ($handle, $data) = @_;
1120 });
1121
1122=cut
1123
1124register_read_type packstring => sub {
1125 my ($self, $cb, $format) = @_;
1126
1127 sub {
1128 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1129 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1130 or return;
1131
1132 $format = length pack $format, $len;
1133
1134 # bypass unshift if we already have the remaining chunk
1135 if ($format + $len <= length $_[0]{rbuf}) {
1136 my $data = substr $_[0]{rbuf}, $format, $len;
1137 substr $_[0]{rbuf}, 0, $format + $len, "";
1138 $cb->($_[0], $data);
1139 } else {
1140 # remove prefix
1141 substr $_[0]{rbuf}, 0, $format, "";
1142
1143 # read remaining chunk
1144 $_[0]->unshift_read (chunk => $len, $cb);
1145 }
1146
1147 1
1148 }
1149};
1150
1151=item json => $cb->($handle, $hash_or_arrayref)
1152
1153Reads a JSON object or array, decodes it and passes it to the callback.
1154
1155If a C<json> object was passed to the constructor, then that will be used
1156for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1157
1158This read type uses the incremental parser available with JSON version
11592.09 (and JSON::XS version 2.2) and above. You have to provide a
1160dependency on your own: this module will load the JSON module, but
1161AnyEvent does not depend on it itself.
1162
1163Since JSON texts are fully self-delimiting, the C<json> read and write
1164types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1165the C<json> write type description, above, for an actual example.
1166
1167=cut
1168
1169register_read_type json => sub {
1170 my ($self, $cb) = @_;
1171
1172 require JSON;
1173
1174 my $data;
1175 my $rbuf = \$self->{rbuf};
1176
1177 my $json = $self->{json} ||= JSON->new->utf8;
1178
1179 sub {
1180 my $ref = $json->incr_parse ($self->{rbuf});
1181
1182 if ($ref) {
1183 $self->{rbuf} = $json->incr_text;
1184 $json->incr_text = "";
1185 $cb->($self, $ref);
1186
1187 1
1188 } else {
1189 $self->{rbuf} = "";
1190 ()
1191 }
1192 }
1193};
1194
1195=item storable => $cb->($handle, $ref)
1196
1197Deserialises a L<Storable> frozen representation as written by the
1198C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1199data).
1200
1201Raises C<EBADMSG> error if the data could not be decoded.
1202
1203=cut
1204
1205register_read_type storable => sub {
1206 my ($self, $cb) = @_;
1207
1208 require Storable;
1209
1210 sub {
1211 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1212 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1213 or return;
1214
1215 my $format = length pack "w", $len;
1216
1217 # bypass unshift if we already have the remaining chunk
1218 if ($format + $len <= length $_[0]{rbuf}) {
1219 my $data = substr $_[0]{rbuf}, $format, $len;
1220 substr $_[0]{rbuf}, 0, $format + $len, "";
1221 $cb->($_[0], Storable::thaw ($data));
1222 } else {
1223 # remove prefix
1224 substr $_[0]{rbuf}, 0, $format, "";
1225
1226 # read remaining chunk
1227 $_[0]->unshift_read (chunk => $len, sub {
1228 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1229 $cb->($_[0], $ref);
1230 } else {
1231 $self->_error (&Errno::EBADMSG);
1232 }
1233 });
1234 }
1235
1236 1
1237 }
1238};
1239
814=back 1240=back
815 1241
816=item AnyEvent::Handle::register_read_type type => $coderef->($self, $cb, @args) 1242=item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
817 1243
818This function (not method) lets you add your own types to C<push_read>. 1244This function (not method) lets you add your own types to C<push_read>.
819 1245
820Whenever the given C<type> is used, C<push_read> will invoke the code 1246Whenever the given C<type> is used, C<push_read> will invoke the code
821reference with the handle object, the callback and the remaining 1247reference with the handle object, the callback and the remaining
823 1249
824The code reference is supposed to return a callback (usually a closure) 1250The code reference is supposed to return a callback (usually a closure)
825that works as a plain read callback (see C<< ->push_read ($cb) >>). 1251that works as a plain read callback (see C<< ->push_read ($cb) >>).
826 1252
827It should invoke the passed callback when it is done reading (remember to 1253It should invoke the passed callback when it is done reading (remember to
828pass C<$self> as first argument as all other callbacks do that). 1254pass C<$handle> as first argument as all other callbacks do that).
829 1255
830Note that this is a function, and all types registered this way will be 1256Note that this is a function, and all types registered this way will be
831global, so try to use unique names. 1257global, so try to use unique names.
832 1258
833For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>, 1259For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
836=item $handle->stop_read 1262=item $handle->stop_read
837 1263
838=item $handle->start_read 1264=item $handle->start_read
839 1265
840In rare cases you actually do not want to read anything from the 1266In rare cases you actually do not want to read anything from the
841socket. In this case you can call C<stop_read>. Neither C<on_read> no 1267socket. In this case you can call C<stop_read>. Neither C<on_read> nor
842any queued callbacks will be executed then. To start reading again, call 1268any queued callbacks will be executed then. To start reading again, call
843C<start_read>. 1269C<start_read>.
844 1270
1271Note that AnyEvent::Handle will automatically C<start_read> for you when
1272you change the C<on_read> callback or push/unshift a read callback, and it
1273will automatically C<stop_read> for you when neither C<on_read> is set nor
1274there are any read requests in the queue.
1275
845=cut 1276=cut
846 1277
847sub stop_read { 1278sub stop_read {
848 my ($self) = @_; 1279 my ($self) = @_;
849 1280
850 delete $self->{rw}; 1281 delete $self->{_rw};
851} 1282}
852 1283
853sub start_read { 1284sub start_read {
854 my ($self) = @_; 1285 my ($self) = @_;
855 1286
856 unless ($self->{rw} || $self->{eof}) { 1287 unless ($self->{_rw} || $self->{_eof}) {
857 Scalar::Util::weaken $self; 1288 Scalar::Util::weaken $self;
858 1289
859 $self->{rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1290 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
860 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1291 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
861 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1292 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
862 1293
863 if ($len > 0) { 1294 if ($len > 0) {
1295 $self->{_activity} = AnyEvent->now;
1296
864 $self->{filter_r} 1297 $self->{filter_r}
865 ? $self->{filter_r}->($self, $rbuf) 1298 ? $self->{filter_r}($self, $rbuf)
866 : $self->_drain_rbuf; 1299 : $self->{_in_drain} || $self->_drain_rbuf;
867 1300
868 } elsif (defined $len) { 1301 } elsif (defined $len) {
869 delete $self->{rw}; 1302 delete $self->{_rw};
870 $self->{eof} = 1; 1303 $self->{_eof} = 1;
871 $self->_drain_rbuf; 1304 $self->_drain_rbuf unless $self->{_in_drain};
872 1305
873 } elsif ($! != EAGAIN && $! != EINTR && $! != &AnyEvent::Util::WSAWOULDBLOCK) { 1306 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
874 return $self->error; 1307 return $self->_error ($!, 1);
875 } 1308 }
876 }); 1309 });
877 } 1310 }
878} 1311}
879 1312
880sub _dotls { 1313sub _dotls {
881 my ($self) = @_; 1314 my ($self) = @_;
882 1315
1316 my $buf;
1317
883 if (length $self->{tls_wbuf}) { 1318 if (length $self->{_tls_wbuf}) {
884 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{tls_wbuf})) > 0) { 1319 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
885 substr $self->{tls_wbuf}, 0, $len, ""; 1320 substr $self->{_tls_wbuf}, 0, $len, "";
886 } 1321 }
887 } 1322 }
888 1323
1324 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1325 unless (length $buf) {
1326 # let's treat SSL-eof as we treat normal EOF
1327 delete $self->{_rw};
1328 $self->{_eof} = 1;
1329 &_freetls;
1330 }
1331
1332 $self->{rbuf} .= $buf;
1333 $self->_drain_rbuf unless $self->{_in_drain};
1334 $self->{tls} or return; # tls session might have gone away in callback
1335 }
1336
1337 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1338
1339 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1340 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1341 return $self->_error ($!, 1);
1342 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1343 return $self->_error (&Errno::EIO, 1);
1344 }
1345
1346 # all others are fine for our purposes
1347 }
1348
889 if (defined (my $buf = Net::SSLeay::BIO_read ($self->{tls_wbio}))) { 1349 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
890 $self->{wbuf} .= $buf; 1350 $self->{wbuf} .= $buf;
891 $self->_drain_wbuf; 1351 $self->_drain_wbuf;
892 }
893
894 while (defined (my $buf = Net::SSLeay::read ($self->{tls}))) {
895 $self->{rbuf} .= $buf;
896 $self->_drain_rbuf;
897 }
898
899 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
900
901 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
902 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
903 $self->error;
904 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
905 $! = &Errno::EIO;
906 $self->error;
907 }
908
909 # all others are fine for our purposes
910 } 1352 }
911} 1353}
912 1354
913=item $handle->starttls ($tls[, $tls_ctx]) 1355=item $handle->starttls ($tls[, $tls_ctx])
914 1356
920C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1362C<"connect">, C<"accept"> or an existing Net::SSLeay object).
921 1363
922The second argument is the optional C<Net::SSLeay::CTX> object that is 1364The second argument is the optional C<Net::SSLeay::CTX> object that is
923used when AnyEvent::Handle has to create its own TLS connection object. 1365used when AnyEvent::Handle has to create its own TLS connection object.
924 1366
925=cut 1367The TLS connection object will end up in C<< $handle->{tls} >> after this
1368call and can be used or changed to your liking. Note that the handshake
1369might have already started when this function returns.
926 1370
927# TODO: maybe document... 1371If it an error to start a TLS handshake more than once per
1372AnyEvent::Handle object (this is due to bugs in OpenSSL).
1373
1374=cut
1375
928sub starttls { 1376sub starttls {
929 my ($self, $ssl, $ctx) = @_; 1377 my ($self, $ssl, $ctx) = @_;
930 1378
931 $self->stoptls; 1379 Carp::croak "it is an error to call starttls more than once on an Anyevent::Handle object"
932 1380 if $self->{tls};
1381
933 if ($ssl eq "accept") { 1382 if ($ssl eq "accept") {
934 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1383 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
935 Net::SSLeay::set_accept_state ($ssl); 1384 Net::SSLeay::set_accept_state ($ssl);
936 } elsif ($ssl eq "connect") { 1385 } elsif ($ssl eq "connect") {
937 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1386 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
943 # basically, this is deep magic (because SSL_read should have the same issues) 1392 # basically, this is deep magic (because SSL_read should have the same issues)
944 # but the openssl maintainers basically said: "trust us, it just works". 1393 # but the openssl maintainers basically said: "trust us, it just works".
945 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1394 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
946 # and mismaintained ssleay-module doesn't even offer them). 1395 # and mismaintained ssleay-module doesn't even offer them).
947 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1396 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1397 #
1398 # in short: this is a mess.
1399 #
1400 # note that we do not try to kepe the length constant between writes as we are required to do.
1401 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1402 # and we drive openssl fully in blocking mode here.
948 Net::SSLeay::CTX_set_mode ($self->{tls}, 1403 Net::SSLeay::CTX_set_mode ($self->{tls},
949 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1404 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
950 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1405 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
951 1406
952 $self->{tls_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1407 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
953 $self->{tls_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1408 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
954 1409
955 Net::SSLeay::set_bio ($ssl, $self->{tls_rbio}, $self->{tls_wbio}); 1410 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
956 1411
957 $self->{filter_w} = sub { 1412 $self->{filter_w} = sub {
958 $_[0]{tls_wbuf} .= ${$_[1]}; 1413 $_[0]{_tls_wbuf} .= ${$_[1]};
959 &_dotls; 1414 &_dotls;
960 }; 1415 };
961 $self->{filter_r} = sub { 1416 $self->{filter_r} = sub {
962 Net::SSLeay::BIO_write ($_[0]{tls_rbio}, ${$_[1]}); 1417 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
963 &_dotls; 1418 &_dotls;
964 }; 1419 };
1420
1421 &_dotls; # need to trigger the initial negotiation exchange
965} 1422}
966 1423
967=item $handle->stoptls 1424=item $handle->stoptls
968 1425
969Destroys the SSL connection, if any. Partial read or write data will be 1426Shuts down the SSL connection - this makes a proper EOF handshake by
970lost. 1427sending a close notify to the other side, but since OpenSSL doesn't
1428support non-blocking shut downs, it is not possible to re-use the stream
1429afterwards.
971 1430
972=cut 1431=cut
973 1432
974sub stoptls { 1433sub stoptls {
975 my ($self) = @_; 1434 my ($self) = @_;
976 1435
1436 if ($self->{tls}) {
1437 Net::SSLeay::shutdown $self->{tls};
1438
1439 &_dotls;
1440
1441 # we don't give a shit. no, we do, but we can't. no...
1442 # we, we... have to use openssl :/
1443 &_freetls;
1444 }
1445}
1446
1447sub _freetls {
1448 my ($self) = @_;
1449
1450 return unless $self->{tls};
1451
977 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1452 Net::SSLeay::free (delete $self->{tls});
978 delete $self->{tls_rbio}; 1453
979 delete $self->{tls_wbio}; 1454 delete @$self{qw(_rbio filter_w _wbio filter_r)};
980 delete $self->{tls_wbuf};
981 delete $self->{filter_r};
982 delete $self->{filter_w};
983} 1455}
984 1456
985sub DESTROY { 1457sub DESTROY {
986 my $self = shift; 1458 my $self = shift;
987 1459
988 $self->stoptls; 1460 &_freetls;
1461
1462 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1463
1464 if ($linger && length $self->{wbuf}) {
1465 my $fh = delete $self->{fh};
1466 my $wbuf = delete $self->{wbuf};
1467
1468 my @linger;
1469
1470 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1471 my $len = syswrite $fh, $wbuf, length $wbuf;
1472
1473 if ($len > 0) {
1474 substr $wbuf, 0, $len, "";
1475 } else {
1476 @linger = (); # end
1477 }
1478 });
1479 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1480 @linger = ();
1481 });
1482 }
989} 1483}
990 1484
991=item AnyEvent::Handle::TLS_CTX 1485=item AnyEvent::Handle::TLS_CTX
992 1486
993This function creates and returns the Net::SSLeay::CTX object used by 1487This function creates and returns the Net::SSLeay::CTX object used by
1023 } 1517 }
1024} 1518}
1025 1519
1026=back 1520=back
1027 1521
1522=head1 SUBCLASSING AnyEvent::Handle
1523
1524In many cases, you might want to subclass AnyEvent::Handle.
1525
1526To make this easier, a given version of AnyEvent::Handle uses these
1527conventions:
1528
1529=over 4
1530
1531=item * all constructor arguments become object members.
1532
1533At least initially, when you pass a C<tls>-argument to the constructor it
1534will end up in C<< $handle->{tls} >>. Those members might be changed or
1535mutated later on (for example C<tls> will hold the TLS connection object).
1536
1537=item * other object member names are prefixed with an C<_>.
1538
1539All object members not explicitly documented (internal use) are prefixed
1540with an underscore character, so the remaining non-C<_>-namespace is free
1541for use for subclasses.
1542
1543=item * all members not documented here and not prefixed with an underscore
1544are free to use in subclasses.
1545
1546Of course, new versions of AnyEvent::Handle may introduce more "public"
1547member variables, but thats just life, at least it is documented.
1548
1549=back
1550
1028=head1 AUTHOR 1551=head1 AUTHOR
1029 1552
1030Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>. 1553Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1031 1554
1032=cut 1555=cut

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines