ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.43 by root, Wed May 28 23:57:38 2008 UTC vs.
Revision 1.95 by root, Thu Oct 2 06:42:39 2008 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent (); 6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK); 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 8use Scalar::Util ();
9use Carp (); 9use Carp ();
10use Fcntl (); 10use Fcntl ();
11use Errno qw(EAGAIN EINTR); 11use Errno qw(EAGAIN EINTR);
12use Time::HiRes qw(time);
13 12
14=head1 NAME 13=head1 NAME
15 14
16AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
17 16
18=cut 17=cut
19 18
20our $VERSION = '0.04'; 19our $VERSION = 4.3;
21 20
22=head1 SYNOPSIS 21=head1 SYNOPSIS
23 22
24 use AnyEvent; 23 use AnyEvent;
25 use AnyEvent::Handle; 24 use AnyEvent::Handle;
50 49
51This module is a helper module to make it easier to do event-based I/O on 50This module is a helper module to make it easier to do event-based I/O on
52filehandles. For utility functions for doing non-blocking connects and accepts 51filehandles. For utility functions for doing non-blocking connects and accepts
53on sockets see L<AnyEvent::Util>. 52on sockets see L<AnyEvent::Util>.
54 53
54The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples.
56
55In the following, when the documentation refers to of "bytes" then this 57In the following, when the documentation refers to of "bytes" then this
56means characters. As sysread and syswrite are used for all I/O, their 58means characters. As sysread and syswrite are used for all I/O, their
57treatment of characters applies to this module as well. 59treatment of characters applies to this module as well.
58 60
59All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
60argument. 62argument.
61 63
64=head2 SIGPIPE is not handled by this module
65
66SIGPIPE is not handled by this module, so one of the practical
67requirements of using it is to ignore SIGPIPE (C<$SIG{PIPE} =
68'IGNORE'>). At least, this is highly recommend in a networked program: If
69you use AnyEvent::Handle in a filter program (like sort), exiting on
70SIGPIPE is probably the right thing to do.
71
62=head1 METHODS 72=head1 METHODS
63 73
64=over 4 74=over 4
65 75
66=item B<new (%args)> 76=item B<new (%args)>
71 81
72=item fh => $filehandle [MANDATORY] 82=item fh => $filehandle [MANDATORY]
73 83
74The filehandle this L<AnyEvent::Handle> object will operate on. 84The filehandle this L<AnyEvent::Handle> object will operate on.
75 85
76NOTE: The filehandle will be set to non-blocking (using 86NOTE: The filehandle will be set to non-blocking mode (using
77AnyEvent::Util::fh_nonblocking). 87C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
88that mode.
78 89
79=item on_eof => $cb->($handle) 90=item on_eof => $cb->($handle)
80 91
81Set the callback to be called on EOF. 92Set the callback to be called when an end-of-file condition is detected,
93i.e. in the case of a socket, when the other side has closed the
94connection cleanly.
82 95
96For sockets, this just means that the other side has stopped sending data,
97you can still try to write data, and, in fact, one can return from the eof
98callback and continue writing data, as only the read part has been shut
99down.
100
83While not mandatory, it is highly recommended to set an eof callback, 101While not mandatory, it is I<highly> recommended to set an eof callback,
84otherwise you might end up with a closed socket while you are still 102otherwise you might end up with a closed socket while you are still
85waiting for data. 103waiting for data.
86 104
105If an EOF condition has been detected but no C<on_eof> callback has been
106set, then a fatal error will be raised with C<$!> set to <0>.
107
87=item on_error => $cb->($handle) 108=item on_error => $cb->($handle, $fatal)
88 109
89This is the fatal error callback, that is called when, well, a fatal error 110This is the error callback, which is called when, well, some error
90occurs, such as not being able to resolve the hostname, failure to connect 111occured, such as not being able to resolve the hostname, failure to
91or a read error. 112connect or a read error.
92 113
93The object will not be in a usable state when this callback has been 114Some errors are fatal (which is indicated by C<$fatal> being true). On
94called. 115fatal errors the handle object will be shut down and will not be usable
116(but you are free to look at the current C<< ->rbuf >>). Examples of fatal
117errors are an EOF condition with active (but unsatisifable) read watchers
118(C<EPIPE>) or I/O errors.
119
120Non-fatal errors can be retried by simply returning, but it is recommended
121to simply ignore this parameter and instead abondon the handle object
122when this callback is invoked. Examples of non-fatal errors are timeouts
123C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
95 124
96On callback entrance, the value of C<$!> contains the operating system 125On callback entrance, the value of C<$!> contains the operating system
97error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 126error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
98 127
99The callback should throw an exception. If it returns, then
100AnyEvent::Handle will C<croak> for you.
101
102While not mandatory, it is I<highly> recommended to set this callback, as 128While not mandatory, it is I<highly> recommended to set this callback, as
103you will not be notified of errors otherwise. The default simply calls 129you will not be notified of errors otherwise. The default simply calls
104die. 130C<croak>.
105 131
106=item on_read => $cb->($handle) 132=item on_read => $cb->($handle)
107 133
108This sets the default read callback, which is called when data arrives 134This sets the default read callback, which is called when data arrives
109and no read request is in the queue. 135and no read request is in the queue (unlike read queue callbacks, this
136callback will only be called when at least one octet of data is in the
137read buffer).
110 138
111To access (and remove data from) the read buffer, use the C<< ->rbuf >> 139To access (and remove data from) the read buffer, use the C<< ->rbuf >>
112method or access the C<$handle->{rbuf}> member directly. 140method or access the C<$handle->{rbuf}> member directly.
113 141
114When an EOF condition is detected then AnyEvent::Handle will first try to 142When an EOF condition is detected then AnyEvent::Handle will first try to
121This sets the callback that is called when the write buffer becomes empty 149This sets the callback that is called when the write buffer becomes empty
122(or when the callback is set and the buffer is empty already). 150(or when the callback is set and the buffer is empty already).
123 151
124To append to the write buffer, use the C<< ->push_write >> method. 152To append to the write buffer, use the C<< ->push_write >> method.
125 153
154This callback is useful when you don't want to put all of your write data
155into the queue at once, for example, when you want to write the contents
156of some file to the socket you might not want to read the whole file into
157memory and push it into the queue, but instead only read more data from
158the file when the write queue becomes empty.
159
126=item timeout => $fractional_seconds 160=item timeout => $fractional_seconds
127 161
128If non-zero, then this enables an "inactivity" timeout: whenever this many 162If non-zero, then this enables an "inactivity" timeout: whenever this many
129seconds pass without a successful read or write on the underlying file 163seconds pass without a successful read or write on the underlying file
130handle, the C<on_timeout> callback will be invoked (and if that one is 164handle, the C<on_timeout> callback will be invoked (and if that one is
131missing, an C<ETIMEDOUT> errror will be raised). 165missing, a non-fatal C<ETIMEDOUT> error will be raised).
132 166
133Note that timeout processing is also active when you currently do not have 167Note that timeout processing is also active when you currently do not have
134any outstanding read or write requests: If you plan to keep the connection 168any outstanding read or write requests: If you plan to keep the connection
135idle then you should disable the timout temporarily or ignore the timeout 169idle then you should disable the timout temporarily or ignore the timeout
136in the C<on_timeout> callback. 170in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
171restart the timeout.
137 172
138Zero (the default) disables this timeout. 173Zero (the default) disables this timeout.
139 174
140=item on_timeout => $cb->($handle) 175=item on_timeout => $cb->($handle)
141 176
145 180
146=item rbuf_max => <bytes> 181=item rbuf_max => <bytes>
147 182
148If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 183If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
149when the read buffer ever (strictly) exceeds this size. This is useful to 184when the read buffer ever (strictly) exceeds this size. This is useful to
150avoid denial-of-service attacks. 185avoid some forms of denial-of-service attacks.
151 186
152For example, a server accepting connections from untrusted sources should 187For example, a server accepting connections from untrusted sources should
153be configured to accept only so-and-so much data that it cannot act on 188be configured to accept only so-and-so much data that it cannot act on
154(for example, when expecting a line, an attacker could send an unlimited 189(for example, when expecting a line, an attacker could send an unlimited
155amount of data without a callback ever being called as long as the line 190amount of data without a callback ever being called as long as the line
156isn't finished). 191isn't finished).
157 192
193=item autocork => <boolean>
194
195When disabled (the default), then C<push_write> will try to immediately
196write the data to the handle, if possible. This avoids having to register
197a write watcher and wait for the next event loop iteration, but can
198be inefficient if you write multiple small chunks (on the wire, this
199disadvantage is usually avoided by your kernel's nagle algorithm, see
200C<no_delay>, but this option can save costly syscalls).
201
202When enabled, then writes will always be queued till the next event loop
203iteration. This is efficient when you do many small writes per iteration,
204but less efficient when you do a single write only per iteration (or when
205the write buffer often is full). It also increases write latency.
206
207=item no_delay => <boolean>
208
209When doing small writes on sockets, your operating system kernel might
210wait a bit for more data before actually sending it out. This is called
211the Nagle algorithm, and usually it is beneficial.
212
213In some situations you want as low a delay as possible, which can be
214accomplishd by setting this option to a true value.
215
216The default is your opertaing system's default behaviour (most likely
217enabled), this option explicitly enables or disables it, if possible.
218
158=item read_size => <bytes> 219=item read_size => <bytes>
159 220
160The default read block size (the amount of bytes this module will try to read 221The default read block size (the amount of bytes this module will
161on each [loop iteration). Default: C<4096>. 222try to read during each loop iteration, which affects memory
223requirements). Default: C<8192>.
162 224
163=item low_water_mark => <bytes> 225=item low_water_mark => <bytes>
164 226
165Sets the amount of bytes (default: C<0>) that make up an "empty" write 227Sets the amount of bytes (default: C<0>) that make up an "empty" write
166buffer: If the write reaches this size or gets even samller it is 228buffer: If the write reaches this size or gets even samller it is
167considered empty. 229considered empty.
168 230
231Sometimes it can be beneficial (for performance reasons) to add data to
232the write buffer before it is fully drained, but this is a rare case, as
233the operating system kernel usually buffers data as well, so the default
234is good in almost all cases.
235
236=item linger => <seconds>
237
238If non-zero (default: C<3600>), then the destructor of the
239AnyEvent::Handle object will check whether there is still outstanding
240write data and will install a watcher that will write this data to the
241socket. No errors will be reported (this mostly matches how the operating
242system treats outstanding data at socket close time).
243
244This will not work for partial TLS data that could not be encoded
245yet. This data will be lost. Calling the C<stoptls> method in time might
246help.
247
169=item tls => "accept" | "connect" | Net::SSLeay::SSL object 248=item tls => "accept" | "connect" | Net::SSLeay::SSL object
170 249
171When this parameter is given, it enables TLS (SSL) mode, that means it 250When this parameter is given, it enables TLS (SSL) mode, that means
172will start making tls handshake and will transparently encrypt/decrypt 251AnyEvent will start a TLS handshake as soon as the conenction has been
173data. 252established and will transparently encrypt/decrypt data afterwards.
174 253
175TLS mode requires Net::SSLeay to be installed (it will be loaded 254TLS mode requires Net::SSLeay to be installed (it will be loaded
176automatically when you try to create a TLS handle). 255automatically when you try to create a TLS handle): this module doesn't
256have a dependency on that module, so if your module requires it, you have
257to add the dependency yourself.
177 258
178For the TLS server side, use C<accept>, and for the TLS client side of a 259Unlike TCP, TLS has a server and client side: for the TLS server side, use
179connection, use C<connect> mode. 260C<accept>, and for the TLS client side of a connection, use C<connect>
261mode.
180 262
181You can also provide your own TLS connection object, but you have 263You can also provide your own TLS connection object, but you have
182to make sure that you call either C<Net::SSLeay::set_connect_state> 264to make sure that you call either C<Net::SSLeay::set_connect_state>
183or C<Net::SSLeay::set_accept_state> on it before you pass it to 265or C<Net::SSLeay::set_accept_state> on it before you pass it to
184AnyEvent::Handle. 266AnyEvent::Handle.
185 267
186See the C<starttls> method if you need to start TLs negotiation later. 268See the C<< ->starttls >> method for when need to start TLS negotiation later.
187 269
188=item tls_ctx => $ssl_ctx 270=item tls_ctx => $ssl_ctx
189 271
190Use the given Net::SSLeay::CTX object to create the new TLS connection 272Use the given C<Net::SSLeay::CTX> object to create the new TLS connection
191(unless a connection object was specified directly). If this parameter is 273(unless a connection object was specified directly). If this parameter is
192missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 274missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
193 275
194=item json => JSON or JSON::XS object 276=item json => JSON or JSON::XS object
195 277
196This is the json coder object used by the C<json> read and write types. 278This is the json coder object used by the C<json> read and write types.
197 279
198If you don't supply it, then AnyEvent::Handle will create and use a 280If you don't supply it, then AnyEvent::Handle will create and use a
199suitable one, which will write and expect UTF-8 encoded JSON texts. 281suitable one (on demand), which will write and expect UTF-8 encoded JSON
282texts.
200 283
201Note that you are responsible to depend on the JSON module if you want to 284Note that you are responsible to depend on the JSON module if you want to
202use this functionality, as AnyEvent does not have a dependency itself. 285use this functionality, as AnyEvent does not have a dependency itself.
203 286
204=item filter_r => $cb
205
206=item filter_w => $cb
207
208These exist, but are undocumented at this time.
209
210=back 287=back
211 288
212=cut 289=cut
213 290
214sub new { 291sub new {
218 295
219 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 296 $self->{fh} or Carp::croak "mandatory argument fh is missing";
220 297
221 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 298 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
222 299
223 if ($self->{tls}) {
224 require Net::SSLeay;
225 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 300 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
226 } 301 if $self->{tls};
227 302
228# $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; # nop
229# $self->on_error (delete $self->{on_error}) if $self->{on_error}; # nop
230# $self->on_read (delete $self->{on_read} ) if $self->{on_read}; # nop
231 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
232
233 $self->{_activity} = time; 303 $self->{_activity} = AnyEvent->now;
234 $self->_timeout; 304 $self->_timeout;
235 305
306 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
307 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
308
236 $self->start_read; 309 $self->start_read
310 if $self->{on_read};
237 311
238 $self 312 $self
239} 313}
240 314
241sub _shutdown { 315sub _shutdown {
242 my ($self) = @_; 316 my ($self) = @_;
243 317
318 delete $self->{_tw};
244 delete $self->{_rw}; 319 delete $self->{_rw};
245 delete $self->{_ww}; 320 delete $self->{_ww};
246 delete $self->{fh}; 321 delete $self->{fh};
247}
248 322
323 &_freetls;
324
325 delete $self->{on_read};
326 delete $self->{_queue};
327}
328
249sub error { 329sub _error {
250 my ($self) = @_; 330 my ($self, $errno, $fatal) = @_;
251 331
252 {
253 local $!;
254 $self->_shutdown; 332 $self->_shutdown
255 } 333 if $fatal;
256 334
257 $self->{on_error}($self) 335 $! = $errno;
336
258 if $self->{on_error}; 337 if ($self->{on_error}) {
259 338 $self->{on_error}($self, $fatal);
339 } else {
260 Carp::croak "AnyEvent::Handle uncaught fatal error: $!"; 340 Carp::croak "AnyEvent::Handle uncaught error: $!";
341 }
261} 342}
262 343
263=item $fh = $handle->fh 344=item $fh = $handle->fh
264 345
265This method returns the file handle of the L<AnyEvent::Handle> object. 346This method returns the file handle used to create the L<AnyEvent::Handle> object.
266 347
267=cut 348=cut
268 349
269sub fh { $_[0]{fh} } 350sub fh { $_[0]{fh} }
270 351
288 $_[0]{on_eof} = $_[1]; 369 $_[0]{on_eof} = $_[1];
289} 370}
290 371
291=item $handle->on_timeout ($cb) 372=item $handle->on_timeout ($cb)
292 373
293Replace the current C<on_timeout> callback, or disables the callback 374Replace the current C<on_timeout> callback, or disables the callback (but
294(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor 375not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
295argument. 376argument and method.
296 377
297=cut 378=cut
298 379
299sub on_timeout { 380sub on_timeout {
300 $_[0]{on_timeout} = $_[1]; 381 $_[0]{on_timeout} = $_[1];
382}
383
384=item $handle->autocork ($boolean)
385
386Enables or disables the current autocork behaviour (see C<autocork>
387constructor argument).
388
389=cut
390
391=item $handle->no_delay ($boolean)
392
393Enables or disables the C<no_delay> setting (see constructor argument of
394the same name for details).
395
396=cut
397
398sub no_delay {
399 $_[0]{no_delay} = $_[1];
400
401 eval {
402 local $SIG{__DIE__};
403 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
404 };
301} 405}
302 406
303############################################################################# 407#############################################################################
304 408
305=item $handle->timeout ($seconds) 409=item $handle->timeout ($seconds)
319# also check for time-outs 423# also check for time-outs
320sub _timeout { 424sub _timeout {
321 my ($self) = @_; 425 my ($self) = @_;
322 426
323 if ($self->{timeout}) { 427 if ($self->{timeout}) {
324 my $NOW = time; 428 my $NOW = AnyEvent->now;
325 429
326 # when would the timeout trigger? 430 # when would the timeout trigger?
327 my $after = $self->{_activity} + $self->{timeout} - $NOW; 431 my $after = $self->{_activity} + $self->{timeout} - $NOW;
328
329 warn "next to in $after\n";#d#
330 432
331 # now or in the past already? 433 # now or in the past already?
332 if ($after <= 0) { 434 if ($after <= 0) {
333 $self->{_activity} = $NOW; 435 $self->{_activity} = $NOW;
334 436
335 if ($self->{on_timeout}) { 437 if ($self->{on_timeout}) {
336 $self->{on_timeout}->($self); 438 $self->{on_timeout}($self);
337 } else { 439 } else {
338 $! = Errno::ETIMEDOUT; 440 $self->_error (&Errno::ETIMEDOUT);
339 $self->error;
340 } 441 }
341 442
342 # callbakx could have changed timeout value, optimise 443 # callback could have changed timeout value, optimise
343 return unless $self->{timeout}; 444 return unless $self->{timeout};
344 445
345 # calculate new after 446 # calculate new after
346 $after = $self->{timeout}; 447 $after = $self->{timeout};
347 } 448 }
348 449
349 Scalar::Util::weaken $self; 450 Scalar::Util::weaken $self;
451 return unless $self; # ->error could have destroyed $self
350 452
351 warn "after $after\n";#d#
352 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub { 453 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
353 delete $self->{_tw}; 454 delete $self->{_tw};
354 $self->_timeout; 455 $self->_timeout;
355 }); 456 });
356 } else { 457 } else {
386 my ($self, $cb) = @_; 487 my ($self, $cb) = @_;
387 488
388 $self->{on_drain} = $cb; 489 $self->{on_drain} = $cb;
389 490
390 $cb->($self) 491 $cb->($self)
391 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 492 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
392} 493}
393 494
394=item $handle->push_write ($data) 495=item $handle->push_write ($data)
395 496
396Queues the given scalar to be written. You can push as much data as you 497Queues the given scalar to be written. You can push as much data as you
410 my $len = syswrite $self->{fh}, $self->{wbuf}; 511 my $len = syswrite $self->{fh}, $self->{wbuf};
411 512
412 if ($len >= 0) { 513 if ($len >= 0) {
413 substr $self->{wbuf}, 0, $len, ""; 514 substr $self->{wbuf}, 0, $len, "";
414 515
415 $self->{_activity} = time; 516 $self->{_activity} = AnyEvent->now;
416 517
417 $self->{on_drain}($self) 518 $self->{on_drain}($self)
418 if $self->{low_water_mark} >= length $self->{wbuf} 519 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
419 && $self->{on_drain}; 520 && $self->{on_drain};
420 521
421 delete $self->{_ww} unless length $self->{wbuf}; 522 delete $self->{_ww} unless length $self->{wbuf};
422 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 523 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
423 $self->error; 524 $self->_error ($!, 1);
424 } 525 }
425 }; 526 };
426 527
427 # try to write data immediately 528 # try to write data immediately
428 $cb->(); 529 $cb->() unless $self->{autocork};
429 530
430 # if still data left in wbuf, we need to poll 531 # if still data left in wbuf, we need to poll
431 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 532 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
432 if length $self->{wbuf}; 533 if length $self->{wbuf};
433 }; 534 };
447 548
448 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 549 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
449 ->($self, @_); 550 ->($self, @_);
450 } 551 }
451 552
452 if ($self->{filter_w}) { 553 if ($self->{tls}) {
453 $self->{filter_w}->($self, \$_[0]); 554 $self->{_tls_wbuf} .= $_[0];
555 &_dotls ($self);
454 } else { 556 } else {
455 $self->{wbuf} .= $_[0]; 557 $self->{wbuf} .= $_[0];
456 $self->_drain_wbuf; 558 $self->_drain_wbuf;
457 } 559 }
458} 560}
459 561
460=item $handle->push_write (type => @args) 562=item $handle->push_write (type => @args)
461 563
462=item $handle->unshift_write (type => @args)
463
464Instead of formatting your data yourself, you can also let this module do 564Instead of formatting your data yourself, you can also let this module do
465the job by specifying a type and type-specific arguments. 565the job by specifying a type and type-specific arguments.
466 566
467Predefined types are (if you have ideas for additional types, feel free to 567Predefined types are (if you have ideas for additional types, feel free to
468drop by and tell us): 568drop by and tell us):
472=item netstring => $string 572=item netstring => $string
473 573
474Formats the given value as netstring 574Formats the given value as netstring
475(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them). 575(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
476 576
477=back
478
479=cut 577=cut
480 578
481register_write_type netstring => sub { 579register_write_type netstring => sub {
482 my ($self, $string) = @_; 580 my ($self, $string) = @_;
483 581
484 sprintf "%d:%s,", (length $string), $string 582 sprintf "%d:%s,", (length $string), $string
583};
584
585=item packstring => $format, $data
586
587An octet string prefixed with an encoded length. The encoding C<$format>
588uses the same format as a Perl C<pack> format, but must specify a single
589integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
590optional C<!>, C<< < >> or C<< > >> modifier).
591
592=cut
593
594register_write_type packstring => sub {
595 my ($self, $format, $string) = @_;
596
597 pack "$format/a*", $string
485}; 598};
486 599
487=item json => $array_or_hashref 600=item json => $array_or_hashref
488 601
489Encodes the given hash or array reference into a JSON object. Unless you 602Encodes the given hash or array reference into a JSON object. Unless you
523 636
524 $self->{json} ? $self->{json}->encode ($ref) 637 $self->{json} ? $self->{json}->encode ($ref)
525 : JSON::encode_json ($ref) 638 : JSON::encode_json ($ref)
526}; 639};
527 640
641=item storable => $reference
642
643Freezes the given reference using L<Storable> and writes it to the
644handle. Uses the C<nfreeze> format.
645
646=cut
647
648register_write_type storable => sub {
649 my ($self, $ref) = @_;
650
651 require Storable;
652
653 pack "w/a*", Storable::nfreeze ($ref)
654};
655
656=back
657
528=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 658=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
529 659
530This function (not method) lets you add your own types to C<push_write>. 660This function (not method) lets you add your own types to C<push_write>.
531Whenever the given C<type> is used, C<push_write> will invoke the code 661Whenever the given C<type> is used, C<push_write> will invoke the code
532reference with the handle object and the remaining arguments. 662reference with the handle object and the remaining arguments.
552ways, the "simple" way, using only C<on_read> and the "complex" way, using 682ways, the "simple" way, using only C<on_read> and the "complex" way, using
553a queue. 683a queue.
554 684
555In the simple case, you just install an C<on_read> callback and whenever 685In the simple case, you just install an C<on_read> callback and whenever
556new data arrives, it will be called. You can then remove some data (if 686new data arrives, it will be called. You can then remove some data (if
557enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 687enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
558or not. 688leave the data there if you want to accumulate more (e.g. when only a
689partial message has been received so far).
559 690
560In the more complex case, you want to queue multiple callbacks. In this 691In the more complex case, you want to queue multiple callbacks. In this
561case, AnyEvent::Handle will call the first queued callback each time new 692case, AnyEvent::Handle will call the first queued callback each time new
562data arrives and removes it when it has done its job (see C<push_read>, 693data arrives (also the first time it is queued) and removes it when it has
563below). 694done its job (see C<push_read>, below).
564 695
565This way you can, for example, push three line-reads, followed by reading 696This way you can, for example, push three line-reads, followed by reading
566a chunk of data, and AnyEvent::Handle will execute them in order. 697a chunk of data, and AnyEvent::Handle will execute them in order.
567 698
568Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 699Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
569the specified number of bytes which give an XML datagram. 700the specified number of bytes which give an XML datagram.
570 701
571 # in the default state, expect some header bytes 702 # in the default state, expect some header bytes
572 $handle->on_read (sub { 703 $handle->on_read (sub {
573 # some data is here, now queue the length-header-read (4 octets) 704 # some data is here, now queue the length-header-read (4 octets)
574 shift->unshift_read_chunk (4, sub { 705 shift->unshift_read (chunk => 4, sub {
575 # header arrived, decode 706 # header arrived, decode
576 my $len = unpack "N", $_[1]; 707 my $len = unpack "N", $_[1];
577 708
578 # now read the payload 709 # now read the payload
579 shift->unshift_read_chunk ($len, sub { 710 shift->unshift_read (chunk => $len, sub {
580 my $xml = $_[1]; 711 my $xml = $_[1];
581 # handle xml 712 # handle xml
582 }); 713 });
583 }); 714 });
584 }); 715 });
585 716
586Example 2: Implement a client for a protocol that replies either with 717Example 2: Implement a client for a protocol that replies either with "OK"
587"OK" and another line or "ERROR" for one request, and 64 bytes for the 718and another line or "ERROR" for the first request that is sent, and 64
588second request. Due tot he availability of a full queue, we can just 719bytes for the second request. Due to the availability of a queue, we can
589pipeline sending both requests and manipulate the queue as necessary in 720just pipeline sending both requests and manipulate the queue as necessary
590the callbacks: 721in the callbacks.
591 722
592 # request one 723When the first callback is called and sees an "OK" response, it will
724C<unshift> another line-read. This line-read will be queued I<before> the
72564-byte chunk callback.
726
727 # request one, returns either "OK + extra line" or "ERROR"
593 $handle->push_write ("request 1\015\012"); 728 $handle->push_write ("request 1\015\012");
594 729
595 # we expect "ERROR" or "OK" as response, so push a line read 730 # we expect "ERROR" or "OK" as response, so push a line read
596 $handle->push_read_line (sub { 731 $handle->push_read (line => sub {
597 # if we got an "OK", we have to _prepend_ another line, 732 # if we got an "OK", we have to _prepend_ another line,
598 # so it will be read before the second request reads its 64 bytes 733 # so it will be read before the second request reads its 64 bytes
599 # which are already in the queue when this callback is called 734 # which are already in the queue when this callback is called
600 # we don't do this in case we got an error 735 # we don't do this in case we got an error
601 if ($_[1] eq "OK") { 736 if ($_[1] eq "OK") {
602 $_[0]->unshift_read_line (sub { 737 $_[0]->unshift_read (line => sub {
603 my $response = $_[1]; 738 my $response = $_[1];
604 ... 739 ...
605 }); 740 });
606 } 741 }
607 }); 742 });
608 743
609 # request two 744 # request two, simply returns 64 octets
610 $handle->push_write ("request 2\015\012"); 745 $handle->push_write ("request 2\015\012");
611 746
612 # simply read 64 bytes, always 747 # simply read 64 bytes, always
613 $handle->push_read_chunk (64, sub { 748 $handle->push_read (chunk => 64, sub {
614 my $response = $_[1]; 749 my $response = $_[1];
615 ... 750 ...
616 }); 751 });
617 752
618=over 4 753=over 4
619 754
620=cut 755=cut
621 756
622sub _drain_rbuf { 757sub _drain_rbuf {
623 my ($self) = @_; 758 my ($self) = @_;
759
760 local $self->{_in_drain} = 1;
624 761
625 if ( 762 if (
626 defined $self->{rbuf_max} 763 defined $self->{rbuf_max}
627 && $self->{rbuf_max} < length $self->{rbuf} 764 && $self->{rbuf_max} < length $self->{rbuf}
628 ) { 765 ) {
629 $! = &Errno::ENOSPC; 766 $self->_error (&Errno::ENOSPC, 1), return;
630 $self->error;
631 } 767 }
632 768
633 return if $self->{in_drain}; 769 while () {
634 local $self->{in_drain} = 1;
635
636 while (my $len = length $self->{rbuf}) { 770 my $len = length $self->{rbuf};
637 no strict 'refs'; 771
638 if (my $cb = shift @{ $self->{_queue} }) { 772 if (my $cb = shift @{ $self->{_queue} }) {
639 unless ($cb->($self)) { 773 unless ($cb->($self)) {
640 if ($self->{_eof}) { 774 if ($self->{_eof}) {
641 # no progress can be made (not enough data and no data forthcoming) 775 # no progress can be made (not enough data and no data forthcoming)
642 $! = &Errno::EPIPE; 776 $self->_error (&Errno::EPIPE, 1), return;
643 $self->error;
644 } 777 }
645 778
646 unshift @{ $self->{_queue} }, $cb; 779 unshift @{ $self->{_queue} }, $cb;
647 return; 780 last;
648 } 781 }
649 } elsif ($self->{on_read}) { 782 } elsif ($self->{on_read}) {
783 last unless $len;
784
650 $self->{on_read}($self); 785 $self->{on_read}($self);
651 786
652 if ( 787 if (
653 $self->{_eof} # if no further data will arrive
654 && $len == length $self->{rbuf} # and no data has been consumed 788 $len == length $self->{rbuf} # if no data has been consumed
655 && !@{ $self->{_queue} } # and the queue is still empty 789 && !@{ $self->{_queue} } # and the queue is still empty
656 && $self->{on_read} # and we still want to read data 790 && $self->{on_read} # but we still have on_read
657 ) { 791 ) {
792 # no further data will arrive
658 # then no progress can be made 793 # so no progress can be made
659 $! = &Errno::EPIPE; 794 $self->_error (&Errno::EPIPE, 1), return
660 $self->error; 795 if $self->{_eof};
796
797 last; # more data might arrive
661 } 798 }
662 } else { 799 } else {
663 # read side becomes idle 800 # read side becomes idle
664 delete $self->{_rw}; 801 delete $self->{_rw} unless $self->{tls};
665 return; 802 last;
666 } 803 }
667 } 804 }
668 805
669 if ($self->{_eof}) { 806 if ($self->{_eof}) {
670 $self->_shutdown; 807 if ($self->{on_eof}) {
671 $self->{on_eof}($self) 808 $self->{on_eof}($self)
672 if $self->{on_eof}; 809 } else {
810 $self->_error (0, 1);
811 }
812 }
813
814 # may need to restart read watcher
815 unless ($self->{_rw}) {
816 $self->start_read
817 if $self->{on_read} || @{ $self->{_queue} };
673 } 818 }
674} 819}
675 820
676=item $handle->on_read ($cb) 821=item $handle->on_read ($cb)
677 822
683 828
684sub on_read { 829sub on_read {
685 my ($self, $cb) = @_; 830 my ($self, $cb) = @_;
686 831
687 $self->{on_read} = $cb; 832 $self->{on_read} = $cb;
833 $self->_drain_rbuf if $cb && !$self->{_in_drain};
688} 834}
689 835
690=item $handle->rbuf 836=item $handle->rbuf
691 837
692Returns the read buffer (as a modifiable lvalue). 838Returns the read buffer (as a modifiable lvalue).
741 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 887 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
742 ->($self, $cb, @_); 888 ->($self, $cb, @_);
743 } 889 }
744 890
745 push @{ $self->{_queue} }, $cb; 891 push @{ $self->{_queue} }, $cb;
746 $self->_drain_rbuf; 892 $self->_drain_rbuf unless $self->{_in_drain};
747} 893}
748 894
749sub unshift_read { 895sub unshift_read {
750 my $self = shift; 896 my $self = shift;
751 my $cb = pop; 897 my $cb = pop;
757 ->($self, $cb, @_); 903 ->($self, $cb, @_);
758 } 904 }
759 905
760 906
761 unshift @{ $self->{_queue} }, $cb; 907 unshift @{ $self->{_queue} }, $cb;
762 $self->_drain_rbuf; 908 $self->_drain_rbuf unless $self->{_in_drain};
763} 909}
764 910
765=item $handle->push_read (type => @args, $cb) 911=item $handle->push_read (type => @args, $cb)
766 912
767=item $handle->unshift_read (type => @args, $cb) 913=item $handle->unshift_read (type => @args, $cb)
797 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 943 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
798 1 944 1
799 } 945 }
800}; 946};
801 947
802# compatibility with older API
803sub push_read_chunk {
804 $_[0]->push_read (chunk => $_[1], $_[2]);
805}
806
807sub unshift_read_chunk {
808 $_[0]->unshift_read (chunk => $_[1], $_[2]);
809}
810
811=item line => [$eol, ]$cb->($handle, $line, $eol) 948=item line => [$eol, ]$cb->($handle, $line, $eol)
812 949
813The callback will be called only once a full line (including the end of 950The callback will be called only once a full line (including the end of
814line marker, C<$eol>) has been read. This line (excluding the end of line 951line marker, C<$eol>) has been read. This line (excluding the end of line
815marker) will be passed to the callback as second argument (C<$line>), and 952marker) will be passed to the callback as second argument (C<$line>), and
830=cut 967=cut
831 968
832register_read_type line => sub { 969register_read_type line => sub {
833 my ($self, $cb, $eol) = @_; 970 my ($self, $cb, $eol) = @_;
834 971
835 $eol = qr|(\015?\012)| if @_ < 3; 972 if (@_ < 3) {
836 $eol = quotemeta $eol unless ref $eol; 973 # this is more than twice as fast as the generic code below
837 $eol = qr|^(.*?)($eol)|s;
838
839 sub { 974 sub {
840 $_[0]{rbuf} =~ s/$eol// or return; 975 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
841 976
842 $cb->($_[0], $1, $2); 977 $cb->($_[0], $1, $2);
843 1
844 }
845};
846
847# compatibility with older API
848sub push_read_line {
849 my $self = shift;
850 $self->push_read (line => @_);
851}
852
853sub unshift_read_line {
854 my $self = shift;
855 $self->unshift_read (line => @_);
856}
857
858=item netstring => $cb->($handle, $string)
859
860A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
861
862Throws an error with C<$!> set to EBADMSG on format violations.
863
864=cut
865
866register_read_type netstring => sub {
867 my ($self, $cb) = @_;
868
869 sub {
870 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
871 if ($_[0]{rbuf} =~ /[^0-9]/) {
872 $! = &Errno::EBADMSG;
873 $self->error;
874 } 978 1
875 return;
876 } 979 }
980 } else {
981 $eol = quotemeta $eol unless ref $eol;
982 $eol = qr|^(.*?)($eol)|s;
877 983
878 my $len = $1; 984 sub {
985 $_[0]{rbuf} =~ s/$eol// or return;
879 986
880 $self->unshift_read (chunk => $len, sub { 987 $cb->($_[0], $1, $2);
881 my $string = $_[1];
882 $_[0]->unshift_read (chunk => 1, sub {
883 if ($_[1] eq ",") {
884 $cb->($_[0], $string);
885 } else {
886 $! = &Errno::EBADMSG;
887 $self->error;
888 }
889 }); 988 1
890 }); 989 }
891
892 1
893 } 990 }
894}; 991};
895 992
896=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 993=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
897 994
949 return 1; 1046 return 1;
950 } 1047 }
951 1048
952 # reject 1049 # reject
953 if ($reject && $$rbuf =~ $reject) { 1050 if ($reject && $$rbuf =~ $reject) {
954 $! = &Errno::EBADMSG; 1051 $self->_error (&Errno::EBADMSG);
955 $self->error;
956 } 1052 }
957 1053
958 # skip 1054 # skip
959 if ($skip && $$rbuf =~ $skip) { 1055 if ($skip && $$rbuf =~ $skip) {
960 $data .= substr $$rbuf, 0, $+[0], ""; 1056 $data .= substr $$rbuf, 0, $+[0], "";
962 1058
963 () 1059 ()
964 } 1060 }
965}; 1061};
966 1062
1063=item netstring => $cb->($handle, $string)
1064
1065A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1066
1067Throws an error with C<$!> set to EBADMSG on format violations.
1068
1069=cut
1070
1071register_read_type netstring => sub {
1072 my ($self, $cb) = @_;
1073
1074 sub {
1075 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1076 if ($_[0]{rbuf} =~ /[^0-9]/) {
1077 $self->_error (&Errno::EBADMSG);
1078 }
1079 return;
1080 }
1081
1082 my $len = $1;
1083
1084 $self->unshift_read (chunk => $len, sub {
1085 my $string = $_[1];
1086 $_[0]->unshift_read (chunk => 1, sub {
1087 if ($_[1] eq ",") {
1088 $cb->($_[0], $string);
1089 } else {
1090 $self->_error (&Errno::EBADMSG);
1091 }
1092 });
1093 });
1094
1095 1
1096 }
1097};
1098
1099=item packstring => $format, $cb->($handle, $string)
1100
1101An octet string prefixed with an encoded length. The encoding C<$format>
1102uses the same format as a Perl C<pack> format, but must specify a single
1103integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1104optional C<!>, C<< < >> or C<< > >> modifier).
1105
1106DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>.
1107
1108Example: read a block of data prefixed by its length in BER-encoded
1109format (very efficient).
1110
1111 $handle->push_read (packstring => "w", sub {
1112 my ($handle, $data) = @_;
1113 });
1114
1115=cut
1116
1117register_read_type packstring => sub {
1118 my ($self, $cb, $format) = @_;
1119
1120 sub {
1121 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1122 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1123 or return;
1124
1125 $format = length pack $format, $len;
1126
1127 # bypass unshift if we already have the remaining chunk
1128 if ($format + $len <= length $_[0]{rbuf}) {
1129 my $data = substr $_[0]{rbuf}, $format, $len;
1130 substr $_[0]{rbuf}, 0, $format + $len, "";
1131 $cb->($_[0], $data);
1132 } else {
1133 # remove prefix
1134 substr $_[0]{rbuf}, 0, $format, "";
1135
1136 # read remaining chunk
1137 $_[0]->unshift_read (chunk => $len, $cb);
1138 }
1139
1140 1
1141 }
1142};
1143
967=item json => $cb->($handle, $hash_or_arrayref) 1144=item json => $cb->($handle, $hash_or_arrayref)
968 1145
969Reads a JSON object or array, decodes it and passes it to the callback. 1146Reads a JSON object or array, decodes it and passes it to the callback.
970 1147
971If a C<json> object was passed to the constructor, then that will be used 1148If a C<json> object was passed to the constructor, then that will be used
981the C<json> write type description, above, for an actual example. 1158the C<json> write type description, above, for an actual example.
982 1159
983=cut 1160=cut
984 1161
985register_read_type json => sub { 1162register_read_type json => sub {
986 my ($self, $cb, $accept, $reject, $skip) = @_; 1163 my ($self, $cb) = @_;
987 1164
988 require JSON; 1165 require JSON;
989 1166
990 my $data; 1167 my $data;
991 my $rbuf = \$self->{rbuf}; 1168 my $rbuf = \$self->{rbuf};
1006 () 1183 ()
1007 } 1184 }
1008 } 1185 }
1009}; 1186};
1010 1187
1188=item storable => $cb->($handle, $ref)
1189
1190Deserialises a L<Storable> frozen representation as written by the
1191C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1192data).
1193
1194Raises C<EBADMSG> error if the data could not be decoded.
1195
1196=cut
1197
1198register_read_type storable => sub {
1199 my ($self, $cb) = @_;
1200
1201 require Storable;
1202
1203 sub {
1204 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1205 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1206 or return;
1207
1208 my $format = length pack "w", $len;
1209
1210 # bypass unshift if we already have the remaining chunk
1211 if ($format + $len <= length $_[0]{rbuf}) {
1212 my $data = substr $_[0]{rbuf}, $format, $len;
1213 substr $_[0]{rbuf}, 0, $format + $len, "";
1214 $cb->($_[0], Storable::thaw ($data));
1215 } else {
1216 # remove prefix
1217 substr $_[0]{rbuf}, 0, $format, "";
1218
1219 # read remaining chunk
1220 $_[0]->unshift_read (chunk => $len, sub {
1221 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1222 $cb->($_[0], $ref);
1223 } else {
1224 $self->_error (&Errno::EBADMSG);
1225 }
1226 });
1227 }
1228
1229 1
1230 }
1231};
1232
1011=back 1233=back
1012 1234
1013=item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args) 1235=item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1014 1236
1015This function (not method) lets you add your own types to C<push_read>. 1237This function (not method) lets you add your own types to C<push_read>.
1033=item $handle->stop_read 1255=item $handle->stop_read
1034 1256
1035=item $handle->start_read 1257=item $handle->start_read
1036 1258
1037In rare cases you actually do not want to read anything from the 1259In rare cases you actually do not want to read anything from the
1038socket. In this case you can call C<stop_read>. Neither C<on_read> no 1260socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1039any queued callbacks will be executed then. To start reading again, call 1261any queued callbacks will be executed then. To start reading again, call
1040C<start_read>. 1262C<start_read>.
1041 1263
1264Note that AnyEvent::Handle will automatically C<start_read> for you when
1265you change the C<on_read> callback or push/unshift a read callback, and it
1266will automatically C<stop_read> for you when neither C<on_read> is set nor
1267there are any read requests in the queue.
1268
1269These methods will have no effect when in TLS mode (as TLS doesn't support
1270half-duplex connections).
1271
1042=cut 1272=cut
1043 1273
1044sub stop_read { 1274sub stop_read {
1045 my ($self) = @_; 1275 my ($self) = @_;
1046 1276
1047 delete $self->{_rw}; 1277 delete $self->{_rw} unless $self->{tls};
1048} 1278}
1049 1279
1050sub start_read { 1280sub start_read {
1051 my ($self) = @_; 1281 my ($self) = @_;
1052 1282
1053 unless ($self->{_rw} || $self->{_eof}) { 1283 unless ($self->{_rw} || $self->{_eof}) {
1054 Scalar::Util::weaken $self; 1284 Scalar::Util::weaken $self;
1055 1285
1056 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1286 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1057 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1287 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1058 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1288 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1059 1289
1060 if ($len > 0) { 1290 if ($len > 0) {
1061 $self->{_activity} = time; 1291 $self->{_activity} = AnyEvent->now;
1062 1292
1063 $self->{filter_r} 1293 if ($self->{tls}) {
1064 ? $self->{filter_r}->($self, $rbuf) 1294 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1065 : $self->_drain_rbuf; 1295 &_dotls ($self);
1296 } else {
1297 $self->_drain_rbuf unless $self->{_in_drain};
1298 }
1066 1299
1067 } elsif (defined $len) { 1300 } elsif (defined $len) {
1068 delete $self->{_rw}; 1301 delete $self->{_rw};
1069 delete $self->{_ww};
1070 delete $self->{_tw};
1071 $self->{_eof} = 1; 1302 $self->{_eof} = 1;
1072 $self->_drain_rbuf; 1303 $self->_drain_rbuf unless $self->{_in_drain};
1073 1304
1074 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1305 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1075 return $self->error; 1306 return $self->_error ($!, 1);
1076 } 1307 }
1077 }); 1308 });
1078 } 1309 }
1079} 1310}
1080 1311
1081sub _dotls { 1312sub _dotls {
1082 my ($self) = @_; 1313 my ($self) = @_;
1314
1315 my $buf;
1083 1316
1084 if (length $self->{_tls_wbuf}) { 1317 if (length $self->{_tls_wbuf}) {
1085 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1318 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1086 substr $self->{_tls_wbuf}, 0, $len, ""; 1319 substr $self->{_tls_wbuf}, 0, $len, "";
1087 } 1320 }
1088 } 1321 }
1089 1322
1323 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1324 unless (length $buf) {
1325 # let's treat SSL-eof as we treat normal EOF
1326 delete $self->{_rw};
1327 $self->{_eof} = 1;
1328 &_freetls;
1329 }
1330
1331 $self->{rbuf} .= $buf;
1332 $self->_drain_rbuf unless $self->{_in_drain};
1333 $self->{tls} or return; # tls session might have gone away in callback
1334 }
1335
1336 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1337
1338 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1339 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1340 return $self->_error ($!, 1);
1341 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1342 return $self->_error (&Errno::EIO, 1);
1343 }
1344
1345 # all others are fine for our purposes
1346 }
1347
1090 if (defined (my $buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1348 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1091 $self->{wbuf} .= $buf; 1349 $self->{wbuf} .= $buf;
1092 $self->_drain_wbuf; 1350 $self->_drain_wbuf;
1093 }
1094
1095 while (defined (my $buf = Net::SSLeay::read ($self->{tls}))) {
1096 $self->{rbuf} .= $buf;
1097 $self->_drain_rbuf;
1098 }
1099
1100 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1101
1102 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1103 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1104 $self->error;
1105 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1106 $! = &Errno::EIO;
1107 $self->error;
1108 }
1109
1110 # all others are fine for our purposes
1111 } 1351 }
1112} 1352}
1113 1353
1114=item $handle->starttls ($tls[, $tls_ctx]) 1354=item $handle->starttls ($tls[, $tls_ctx])
1115 1355
1125 1365
1126The TLS connection object will end up in C<< $handle->{tls} >> after this 1366The TLS connection object will end up in C<< $handle->{tls} >> after this
1127call and can be used or changed to your liking. Note that the handshake 1367call and can be used or changed to your liking. Note that the handshake
1128might have already started when this function returns. 1368might have already started when this function returns.
1129 1369
1130=cut 1370If it an error to start a TLS handshake more than once per
1371AnyEvent::Handle object (this is due to bugs in OpenSSL).
1131 1372
1132# TODO: maybe document... 1373=cut
1374
1133sub starttls { 1375sub starttls {
1134 my ($self, $ssl, $ctx) = @_; 1376 my ($self, $ssl, $ctx) = @_;
1135 1377
1136 $self->stoptls; 1378 require Net::SSLeay;
1137 1379
1380 Carp::croak "it is an error to call starttls more than once on an Anyevent::Handle object"
1381 if $self->{tls};
1382
1138 if ($ssl eq "accept") { 1383 if ($ssl eq "accept") {
1139 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1384 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1140 Net::SSLeay::set_accept_state ($ssl); 1385 Net::SSLeay::set_accept_state ($ssl);
1141 } elsif ($ssl eq "connect") { 1386 } elsif ($ssl eq "connect") {
1142 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1387 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1148 # basically, this is deep magic (because SSL_read should have the same issues) 1393 # basically, this is deep magic (because SSL_read should have the same issues)
1149 # but the openssl maintainers basically said: "trust us, it just works". 1394 # but the openssl maintainers basically said: "trust us, it just works".
1150 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1395 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1151 # and mismaintained ssleay-module doesn't even offer them). 1396 # and mismaintained ssleay-module doesn't even offer them).
1152 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1397 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1398 #
1399 # in short: this is a mess.
1400 #
1401 # note that we do not try to keep the length constant between writes as we are required to do.
1402 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1403 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1404 # have identity issues in that area.
1153 Net::SSLeay::CTX_set_mode ($self->{tls}, 1405 Net::SSLeay::CTX_set_mode ($self->{tls},
1154 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1406 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1155 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1407 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1156 1408
1157 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1409 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1158 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1410 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1159 1411
1160 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1412 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1161 1413
1162 $self->{filter_w} = sub { 1414 &_dotls; # need to trigger the initial handshake
1163 $_[0]{_tls_wbuf} .= ${$_[1]}; 1415 $self->start_read; # make sure we actually do read
1164 &_dotls;
1165 };
1166 $self->{filter_r} = sub {
1167 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1168 &_dotls;
1169 };
1170} 1416}
1171 1417
1172=item $handle->stoptls 1418=item $handle->stoptls
1173 1419
1174Destroys the SSL connection, if any. Partial read or write data will be 1420Shuts down the SSL connection - this makes a proper EOF handshake by
1175lost. 1421sending a close notify to the other side, but since OpenSSL doesn't
1422support non-blocking shut downs, it is not possible to re-use the stream
1423afterwards.
1176 1424
1177=cut 1425=cut
1178 1426
1179sub stoptls { 1427sub stoptls {
1180 my ($self) = @_; 1428 my ($self) = @_;
1181 1429
1430 if ($self->{tls}) {
1431 Net::SSLeay::shutdown ($self->{tls});
1432
1433 &_dotls;
1434
1435 # we don't give a shit. no, we do, but we can't. no...
1436 # we, we... have to use openssl :/
1437 &_freetls;
1438 }
1439}
1440
1441sub _freetls {
1442 my ($self) = @_;
1443
1444 return unless $self->{tls};
1445
1182 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1446 Net::SSLeay::free (delete $self->{tls});
1183 1447
1184 delete $self->{_rbio}; 1448 delete @$self{qw(_rbio _wbio _tls_wbuf)};
1185 delete $self->{_wbio};
1186 delete $self->{_tls_wbuf};
1187 delete $self->{filter_r};
1188 delete $self->{filter_w};
1189} 1449}
1190 1450
1191sub DESTROY { 1451sub DESTROY {
1192 my $self = shift; 1452 my $self = shift;
1193 1453
1194 $self->stoptls; 1454 &_freetls;
1455
1456 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1457
1458 if ($linger && length $self->{wbuf}) {
1459 my $fh = delete $self->{fh};
1460 my $wbuf = delete $self->{wbuf};
1461
1462 my @linger;
1463
1464 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1465 my $len = syswrite $fh, $wbuf, length $wbuf;
1466
1467 if ($len > 0) {
1468 substr $wbuf, 0, $len, "";
1469 } else {
1470 @linger = (); # end
1471 }
1472 });
1473 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1474 @linger = ();
1475 });
1476 }
1195} 1477}
1196 1478
1197=item AnyEvent::Handle::TLS_CTX 1479=item AnyEvent::Handle::TLS_CTX
1198 1480
1199This function creates and returns the Net::SSLeay::CTX object used by 1481This function creates and returns the Net::SSLeay::CTX object used by
1229 } 1511 }
1230} 1512}
1231 1513
1232=back 1514=back
1233 1515
1516
1517=head1 NONFREQUENTLY ASKED QUESTIONS
1518
1519=over 4
1520
1521=item How do I read data until the other side closes the connection?
1522
1523If you just want to read your data into a perl scalar, the easiest way to achieve this is
1524by setting an C<on_read> callback that does nothing, clearing the C<on_eof> callback
1525and in the C<on_error> callback, the data will be in C<$_[0]{rbuf}>:
1526
1527 $handle->on_read (sub { });
1528 $handle->on_eof (undef);
1529 $handle->on_error (sub {
1530 my $data = delete $_[0]{rbuf};
1531 undef $handle;
1532 });
1533
1534The reason to use C<on_error> is that TCP connections, due to latencies
1535and packets loss, might get closed quite violently with an error, when in
1536fact, all data has been received.
1537
1538It is usually better to use acknowledgements when transfering data,
1539to make sure the other side hasn't just died and you got the data
1540intact. This is also one reason why so many internet protocols have an
1541explicit QUIT command.
1542
1543
1544=item I don't want to destroy the handle too early - how do I wait until all data has been sent?
1545
1546After writing your last bits of data, set the C<on_drain> callback
1547and destroy the handle in there - with the default setting of
1548C<low_water_mark> this will be called precisely when all data has been
1549written to the socket:
1550
1551 $handle->push_write (...);
1552 $handle->on_drain (sub {
1553 warn "all data submitted to the kernel\n";
1554 undef $handle;
1555 });
1556
1557=back
1558
1559
1234=head1 SUBCLASSING AnyEvent::Handle 1560=head1 SUBCLASSING AnyEvent::Handle
1235 1561
1236In many cases, you might want to subclass AnyEvent::Handle. 1562In many cases, you might want to subclass AnyEvent::Handle.
1237 1563
1238To make this easier, a given version of AnyEvent::Handle uses these 1564To make this easier, a given version of AnyEvent::Handle uses these
1241=over 4 1567=over 4
1242 1568
1243=item * all constructor arguments become object members. 1569=item * all constructor arguments become object members.
1244 1570
1245At least initially, when you pass a C<tls>-argument to the constructor it 1571At least initially, when you pass a C<tls>-argument to the constructor it
1246will end up in C<< $handle->{tls} >>. Those members might be changes or 1572will end up in C<< $handle->{tls} >>. Those members might be changed or
1247mutated later on (for example C<tls> will hold the TLS connection object). 1573mutated later on (for example C<tls> will hold the TLS connection object).
1248 1574
1249=item * other object member names are prefixed with an C<_>. 1575=item * other object member names are prefixed with an C<_>.
1250 1576
1251All object members not explicitly documented (internal use) are prefixed 1577All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines