ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.52 by root, Mon Jun 2 09:10:38 2008 UTC vs.
Revision 1.137 by root, Sat Jul 4 23:58:52 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent (); 6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK); 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 8use Scalar::Util ();
9use Carp (); 9use Carp ();
14 14
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17=cut 17=cut
18 18
19our $VERSION = 4.1; 19our $VERSION = 4.452;
20 20
21=head1 SYNOPSIS 21=head1 SYNOPSIS
22 22
23 use AnyEvent; 23 use AnyEvent;
24 use AnyEvent::Handle; 24 use AnyEvent::Handle;
27 27
28 my $handle = 28 my $handle =
29 AnyEvent::Handle->new ( 29 AnyEvent::Handle->new (
30 fh => \*STDIN, 30 fh => \*STDIN,
31 on_eof => sub { 31 on_eof => sub {
32 $cv->broadcast; 32 $cv->send;
33 }, 33 },
34 ); 34 );
35 35
36 # send some request line 36 # send some request line
37 $handle->push_write ("getinfo\015\012"); 37 $handle->push_write ("getinfo\015\012");
49 49
50This module is a helper module to make it easier to do event-based I/O on 50This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 51filehandles. For utility functions for doing non-blocking connects and accepts
52on sockets see L<AnyEvent::Util>. 52on sockets see L<AnyEvent::Util>.
53 53
54The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples.
56
54In the following, when the documentation refers to of "bytes" then this 57In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 58means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 59treatment of characters applies to this module as well.
57 60
58All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
60 63
61=head1 METHODS 64=head1 METHODS
62 65
63=over 4 66=over 4
64 67
65=item B<new (%args)> 68=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 69
67The constructor supports these arguments (all as key => value pairs). 70The constructor supports these arguments (all as C<< key => value >> pairs).
68 71
69=over 4 72=over 4
70 73
71=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [MANDATORY]
72 75
73The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
74 77
75NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
77 81
78=item on_eof => $cb->($handle) 82=item on_eof => $cb->($handle)
79 83
80Set the callback to be called when an end-of-file condition is detcted, 84Set the callback to be called when an end-of-file condition is detected,
81i.e. in the case of a socket, when the other side has closed the 85i.e. in the case of a socket, when the other side has closed the
82connection cleanly. 86connection cleanly.
83 87
88For sockets, this just means that the other side has stopped sending data,
89you can still try to write data, and, in fact, one can return from the EOF
90callback and continue writing data, as only the read part has been shut
91down.
92
84While not mandatory, it is highly recommended to set an eof callback, 93While not mandatory, it is I<highly> recommended to set an EOF callback,
85otherwise you might end up with a closed socket while you are still 94otherwise you might end up with a closed socket while you are still
86waiting for data. 95waiting for data.
87 96
97If an EOF condition has been detected but no C<on_eof> callback has been
98set, then a fatal error will be raised with C<$!> set to <0>.
99
88=item on_error => $cb->($handle, $fatal) 100=item on_error => $cb->($handle, $fatal, $message)
89 101
90This is the error callback, which is called when, well, some error 102This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 103occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 104connect or a read error.
93 105
94Some errors are fatal (which is indicated by C<$fatal> being true). On 106Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 107fatal errors the handle object will be shut down and will not be usable
108(but you are free to look at the current C<< ->rbuf >>). Examples of fatal
109errors are an EOF condition with active (but unsatisifable) read watchers
110(C<EPIPE>) or I/O errors.
111
112AnyEvent::Handle tries to find an appropriate error code for you to check
113against, but in some cases (TLS errors), this does not work well. It is
114recommended to always output the C<$message> argument in human-readable
115error messages (it's usually the same as C<"$!">).
116
96usable. Non-fatal errors can be retried by simply returning, but it is 117Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 118to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 119when this callback is invoked. Examples of non-fatal errors are timeouts
120C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 121
100On callback entrance, the value of C<$!> contains the operating system 122On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 123error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
124C<EPROTO>).
102 125
103While not mandatory, it is I<highly> recommended to set this callback, as 126While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 127you will not be notified of errors otherwise. The default simply calls
105C<croak>. 128C<croak>.
106 129
107=item on_read => $cb->($handle) 130=item on_read => $cb->($handle)
108 131
109This sets the default read callback, which is called when data arrives 132This sets the default read callback, which is called when data arrives
110and no read request is in the queue. 133and no read request is in the queue (unlike read queue callbacks, this
134callback will only be called when at least one octet of data is in the
135read buffer).
111 136
112To access (and remove data from) the read buffer, use the C<< ->rbuf >> 137To access (and remove data from) the read buffer, use the C<< ->rbuf >>
113method or access the C<$handle->{rbuf}> member directly. 138method or access the C<$handle->{rbuf}> member directly. Note that you
139must not enlarge or modify the read buffer, you can only remove data at
140the beginning from it.
114 141
115When an EOF condition is detected then AnyEvent::Handle will first try to 142When an EOF condition is detected then AnyEvent::Handle will first try to
116feed all the remaining data to the queued callbacks and C<on_read> before 143feed all the remaining data to the queued callbacks and C<on_read> before
117calling the C<on_eof> callback. If no progress can be made, then a fatal 144calling the C<on_eof> callback. If no progress can be made, then a fatal
118error will be raised (with C<$!> set to C<EPIPE>). 145error will be raised (with C<$!> set to C<EPIPE>).
122This sets the callback that is called when the write buffer becomes empty 149This sets the callback that is called when the write buffer becomes empty
123(or when the callback is set and the buffer is empty already). 150(or when the callback is set and the buffer is empty already).
124 151
125To append to the write buffer, use the C<< ->push_write >> method. 152To append to the write buffer, use the C<< ->push_write >> method.
126 153
154This callback is useful when you don't want to put all of your write data
155into the queue at once, for example, when you want to write the contents
156of some file to the socket you might not want to read the whole file into
157memory and push it into the queue, but instead only read more data from
158the file when the write queue becomes empty.
159
127=item timeout => $fractional_seconds 160=item timeout => $fractional_seconds
128 161
129If non-zero, then this enables an "inactivity" timeout: whenever this many 162If non-zero, then this enables an "inactivity" timeout: whenever this many
130seconds pass without a successful read or write on the underlying file 163seconds pass without a successful read or write on the underlying file
131handle, the C<on_timeout> callback will be invoked (and if that one is 164handle, the C<on_timeout> callback will be invoked (and if that one is
132missing, an C<ETIMEDOUT> error will be raised). 165missing, a non-fatal C<ETIMEDOUT> error will be raised).
133 166
134Note that timeout processing is also active when you currently do not have 167Note that timeout processing is also active when you currently do not have
135any outstanding read or write requests: If you plan to keep the connection 168any outstanding read or write requests: If you plan to keep the connection
136idle then you should disable the timout temporarily or ignore the timeout 169idle then you should disable the timout temporarily or ignore the timeout
137in the C<on_timeout> callback. 170in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
171restart the timeout.
138 172
139Zero (the default) disables this timeout. 173Zero (the default) disables this timeout.
140 174
141=item on_timeout => $cb->($handle) 175=item on_timeout => $cb->($handle)
142 176
146 180
147=item rbuf_max => <bytes> 181=item rbuf_max => <bytes>
148 182
149If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 183If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
150when the read buffer ever (strictly) exceeds this size. This is useful to 184when the read buffer ever (strictly) exceeds this size. This is useful to
151avoid denial-of-service attacks. 185avoid some forms of denial-of-service attacks.
152 186
153For example, a server accepting connections from untrusted sources should 187For example, a server accepting connections from untrusted sources should
154be configured to accept only so-and-so much data that it cannot act on 188be configured to accept only so-and-so much data that it cannot act on
155(for example, when expecting a line, an attacker could send an unlimited 189(for example, when expecting a line, an attacker could send an unlimited
156amount of data without a callback ever being called as long as the line 190amount of data without a callback ever being called as long as the line
157isn't finished). 191isn't finished).
158 192
193=item autocork => <boolean>
194
195When disabled (the default), then C<push_write> will try to immediately
196write the data to the handle, if possible. This avoids having to register
197a write watcher and wait for the next event loop iteration, but can
198be inefficient if you write multiple small chunks (on the wire, this
199disadvantage is usually avoided by your kernel's nagle algorithm, see
200C<no_delay>, but this option can save costly syscalls).
201
202When enabled, then writes will always be queued till the next event loop
203iteration. This is efficient when you do many small writes per iteration,
204but less efficient when you do a single write only per iteration (or when
205the write buffer often is full). It also increases write latency.
206
207=item no_delay => <boolean>
208
209When doing small writes on sockets, your operating system kernel might
210wait a bit for more data before actually sending it out. This is called
211the Nagle algorithm, and usually it is beneficial.
212
213In some situations you want as low a delay as possible, which can be
214accomplishd by setting this option to a true value.
215
216The default is your opertaing system's default behaviour (most likely
217enabled), this option explicitly enables or disables it, if possible.
218
159=item read_size => <bytes> 219=item read_size => <bytes>
160 220
161The default read block size (the amount of bytes this module will try to read 221The default read block size (the amount of bytes this module will
162during each (loop iteration). Default: C<8192>. 222try to read during each loop iteration, which affects memory
223requirements). Default: C<8192>.
163 224
164=item low_water_mark => <bytes> 225=item low_water_mark => <bytes>
165 226
166Sets the amount of bytes (default: C<0>) that make up an "empty" write 227Sets the amount of bytes (default: C<0>) that make up an "empty" write
167buffer: If the write reaches this size or gets even samller it is 228buffer: If the write reaches this size or gets even samller it is
168considered empty. 229considered empty.
169 230
231Sometimes it can be beneficial (for performance reasons) to add data to
232the write buffer before it is fully drained, but this is a rare case, as
233the operating system kernel usually buffers data as well, so the default
234is good in almost all cases.
235
236=item linger => <seconds>
237
238If non-zero (default: C<3600>), then the destructor of the
239AnyEvent::Handle object will check whether there is still outstanding
240write data and will install a watcher that will write this data to the
241socket. No errors will be reported (this mostly matches how the operating
242system treats outstanding data at socket close time).
243
244This will not work for partial TLS data that could not be encoded
245yet. This data will be lost. Calling the C<stoptls> method in time might
246help.
247
248=item peername => $string
249
250A string used to identify the remote site - usually the DNS hostname
251(I<not> IDN!) used to create the connection, rarely the IP address.
252
253Apart from being useful in error messages, this string is also used in TLS
254common name verification (see C<verify_cn> in L<AnyEvent::TLS>).
255
170=item tls => "accept" | "connect" | Net::SSLeay::SSL object 256=item tls => "accept" | "connect" | Net::SSLeay::SSL object
171 257
172When this parameter is given, it enables TLS (SSL) mode, that means it 258When this parameter is given, it enables TLS (SSL) mode, that means
173will start making tls handshake and will transparently encrypt/decrypt 259AnyEvent will start a TLS handshake as soon as the conenction has been
174data. 260established and will transparently encrypt/decrypt data afterwards.
261
262All TLS protocol errors will be signalled as C<EPROTO>, with an
263appropriate error message.
175 264
176TLS mode requires Net::SSLeay to be installed (it will be loaded 265TLS mode requires Net::SSLeay to be installed (it will be loaded
177automatically when you try to create a TLS handle). 266automatically when you try to create a TLS handle): this module doesn't
267have a dependency on that module, so if your module requires it, you have
268to add the dependency yourself.
178 269
179For the TLS server side, use C<accept>, and for the TLS client side of a 270Unlike TCP, TLS has a server and client side: for the TLS server side, use
180connection, use C<connect> mode. 271C<accept>, and for the TLS client side of a connection, use C<connect>
272mode.
181 273
182You can also provide your own TLS connection object, but you have 274You can also provide your own TLS connection object, but you have
183to make sure that you call either C<Net::SSLeay::set_connect_state> 275to make sure that you call either C<Net::SSLeay::set_connect_state>
184or C<Net::SSLeay::set_accept_state> on it before you pass it to 276or C<Net::SSLeay::set_accept_state> on it before you pass it to
185AnyEvent::Handle. 277AnyEvent::Handle. Also, this module will take ownership of this connection
278object.
186 279
280At some future point, AnyEvent::Handle might switch to another TLS
281implementation, then the option to use your own session object will go
282away.
283
284B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
285passing in the wrong integer will lead to certain crash. This most often
286happens when one uses a stylish C<< tls => 1 >> and is surprised about the
287segmentation fault.
288
187See the C<starttls> method if you need to start TLs negotiation later. 289See the C<< ->starttls >> method for when need to start TLS negotiation later.
188 290
189=item tls_ctx => $ssl_ctx 291=item tls_ctx => $anyevent_tls
190 292
191Use the given Net::SSLeay::CTX object to create the new TLS connection 293Use the given C<AnyEvent::TLS> object to create the new TLS connection
192(unless a connection object was specified directly). If this parameter is 294(unless a connection object was specified directly). If this parameter is
193missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 295missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
194 296
297Instead of an object, you can also specify a hash reference with C<< key
298=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
299new TLS context object.
300
195=item json => JSON or JSON::XS object 301=item json => JSON or JSON::XS object
196 302
197This is the json coder object used by the C<json> read and write types. 303This is the json coder object used by the C<json> read and write types.
198 304
199If you don't supply it, then AnyEvent::Handle will create and use a 305If you don't supply it, then AnyEvent::Handle will create and use a
200suitable one, which will write and expect UTF-8 encoded JSON texts. 306suitable one (on demand), which will write and expect UTF-8 encoded JSON
307texts.
201 308
202Note that you are responsible to depend on the JSON module if you want to 309Note that you are responsible to depend on the JSON module if you want to
203use this functionality, as AnyEvent does not have a dependency itself. 310use this functionality, as AnyEvent does not have a dependency itself.
204 311
205=item filter_r => $cb
206
207=item filter_w => $cb
208
209These exist, but are undocumented at this time.
210
211=back 312=back
212 313
213=cut 314=cut
214 315
215sub new { 316sub new {
216 my $class = shift; 317 my $class = shift;
217
218 my $self = bless { @_ }, $class; 318 my $self = bless { @_ }, $class;
219 319
220 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 320 $self->{fh} or Carp::croak "mandatory argument fh is missing";
221 321
222 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 322 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
223
224 if ($self->{tls}) {
225 require Net::SSLeay;
226 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
227 }
228
229# $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; # nop
230# $self->on_error (delete $self->{on_error}) if $self->{on_error}; # nop
231# $self->on_read (delete $self->{on_read} ) if $self->{on_read}; # nop
232 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
233 323
234 $self->{_activity} = AnyEvent->now; 324 $self->{_activity} = AnyEvent->now;
235 $self->_timeout; 325 $self->_timeout;
236 326
327 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
328
329 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
330 if $self->{tls};
331
332 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
333
237 $self->start_read; 334 $self->start_read
335 if $self->{on_read};
238 336
239 $self 337 $self->{fh} && $self
240} 338}
241 339
242sub _shutdown { 340sub _shutdown {
243 my ($self) = @_; 341 my ($self) = @_;
244 342
245 delete $self->{_tw}; 343 delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
246 delete $self->{_rw}; 344 $self->{_eof} = 1; # tell starttls et. al to stop trying
247 delete $self->{_ww};
248 delete $self->{fh};
249 345
250 $self->stoptls; 346 &_freetls;
251} 347}
252 348
253sub _error { 349sub _error {
254 my ($self, $errno, $fatal) = @_; 350 my ($self, $errno, $fatal, $message) = @_;
255 351
256 $self->_shutdown 352 $self->_shutdown
257 if $fatal; 353 if $fatal;
258 354
259 $! = $errno; 355 $! = $errno;
356 $message ||= "$!";
260 357
261 if ($self->{on_error}) { 358 if ($self->{on_error}) {
262 $self->{on_error}($self, $fatal); 359 $self->{on_error}($self, $fatal, $message);
263 } else { 360 } elsif ($self->{fh}) {
264 Carp::croak "AnyEvent::Handle uncaught error: $!"; 361 Carp::croak "AnyEvent::Handle uncaught error: $message";
265 } 362 }
266} 363}
267 364
268=item $fh = $handle->fh 365=item $fh = $handle->fh
269 366
270This method returns the file handle of the L<AnyEvent::Handle> object. 367This method returns the file handle used to create the L<AnyEvent::Handle> object.
271 368
272=cut 369=cut
273 370
274sub fh { $_[0]{fh} } 371sub fh { $_[0]{fh} }
275 372
293 $_[0]{on_eof} = $_[1]; 390 $_[0]{on_eof} = $_[1];
294} 391}
295 392
296=item $handle->on_timeout ($cb) 393=item $handle->on_timeout ($cb)
297 394
298Replace the current C<on_timeout> callback, or disables the callback 395Replace the current C<on_timeout> callback, or disables the callback (but
299(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor 396not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
300argument. 397argument and method.
301 398
302=cut 399=cut
303 400
304sub on_timeout { 401sub on_timeout {
305 $_[0]{on_timeout} = $_[1]; 402 $_[0]{on_timeout} = $_[1];
403}
404
405=item $handle->autocork ($boolean)
406
407Enables or disables the current autocork behaviour (see C<autocork>
408constructor argument). Changes will only take effect on the next write.
409
410=cut
411
412sub autocork {
413 $_[0]{autocork} = $_[1];
414}
415
416=item $handle->no_delay ($boolean)
417
418Enables or disables the C<no_delay> setting (see constructor argument of
419the same name for details).
420
421=cut
422
423sub no_delay {
424 $_[0]{no_delay} = $_[1];
425
426 eval {
427 local $SIG{__DIE__};
428 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
429 };
306} 430}
307 431
308############################################################################# 432#############################################################################
309 433
310=item $handle->timeout ($seconds) 434=item $handle->timeout ($seconds)
339 $self->{on_timeout}($self); 463 $self->{on_timeout}($self);
340 } else { 464 } else {
341 $self->_error (&Errno::ETIMEDOUT); 465 $self->_error (&Errno::ETIMEDOUT);
342 } 466 }
343 467
344 # callbakx could have changed timeout value, optimise 468 # callback could have changed timeout value, optimise
345 return unless $self->{timeout}; 469 return unless $self->{timeout};
346 470
347 # calculate new after 471 # calculate new after
348 $after = $self->{timeout}; 472 $after = $self->{timeout};
349 } 473 }
350 474
351 Scalar::Util::weaken $self; 475 Scalar::Util::weaken $self;
476 return unless $self; # ->error could have destroyed $self
352 477
353 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub { 478 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
354 delete $self->{_tw}; 479 delete $self->{_tw};
355 $self->_timeout; 480 $self->_timeout;
356 }); 481 });
387 my ($self, $cb) = @_; 512 my ($self, $cb) = @_;
388 513
389 $self->{on_drain} = $cb; 514 $self->{on_drain} = $cb;
390 515
391 $cb->($self) 516 $cb->($self)
392 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 517 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
393} 518}
394 519
395=item $handle->push_write ($data) 520=item $handle->push_write ($data)
396 521
397Queues the given scalar to be written. You can push as much data as you 522Queues the given scalar to be written. You can push as much data as you
414 substr $self->{wbuf}, 0, $len, ""; 539 substr $self->{wbuf}, 0, $len, "";
415 540
416 $self->{_activity} = AnyEvent->now; 541 $self->{_activity} = AnyEvent->now;
417 542
418 $self->{on_drain}($self) 543 $self->{on_drain}($self)
419 if $self->{low_water_mark} >= length $self->{wbuf} 544 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
420 && $self->{on_drain}; 545 && $self->{on_drain};
421 546
422 delete $self->{_ww} unless length $self->{wbuf}; 547 delete $self->{_ww} unless length $self->{wbuf};
423 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 548 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
424 $self->_error ($!, 1); 549 $self->_error ($!, 1);
425 } 550 }
426 }; 551 };
427 552
428 # try to write data immediately 553 # try to write data immediately
429 $cb->(); 554 $cb->() unless $self->{autocork};
430 555
431 # if still data left in wbuf, we need to poll 556 # if still data left in wbuf, we need to poll
432 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 557 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
433 if length $self->{wbuf}; 558 if length $self->{wbuf};
434 }; 559 };
448 573
449 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 574 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
450 ->($self, @_); 575 ->($self, @_);
451 } 576 }
452 577
453 if ($self->{filter_w}) { 578 if ($self->{tls}) {
454 $self->{filter_w}($self, \$_[0]); 579 $self->{_tls_wbuf} .= $_[0];
580
581 &_dotls ($self);
455 } else { 582 } else {
456 $self->{wbuf} .= $_[0]; 583 $self->{wbuf} .= $_[0];
457 $self->_drain_wbuf; 584 $self->_drain_wbuf;
458 } 585 }
459} 586}
476=cut 603=cut
477 604
478register_write_type netstring => sub { 605register_write_type netstring => sub {
479 my ($self, $string) = @_; 606 my ($self, $string) = @_;
480 607
481 sprintf "%d:%s,", (length $string), $string 608 (length $string) . ":$string,"
609};
610
611=item packstring => $format, $data
612
613An octet string prefixed with an encoded length. The encoding C<$format>
614uses the same format as a Perl C<pack> format, but must specify a single
615integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
616optional C<!>, C<< < >> or C<< > >> modifier).
617
618=cut
619
620register_write_type packstring => sub {
621 my ($self, $format, $string) = @_;
622
623 pack "$format/a*", $string
482}; 624};
483 625
484=item json => $array_or_hashref 626=item json => $array_or_hashref
485 627
486Encodes the given hash or array reference into a JSON object. Unless you 628Encodes the given hash or array reference into a JSON object. Unless you
520 662
521 $self->{json} ? $self->{json}->encode ($ref) 663 $self->{json} ? $self->{json}->encode ($ref)
522 : JSON::encode_json ($ref) 664 : JSON::encode_json ($ref)
523}; 665};
524 666
667=item storable => $reference
668
669Freezes the given reference using L<Storable> and writes it to the
670handle. Uses the C<nfreeze> format.
671
672=cut
673
674register_write_type storable => sub {
675 my ($self, $ref) = @_;
676
677 require Storable;
678
679 pack "w/a*", Storable::nfreeze ($ref)
680};
681
682=back
683
684=item $handle->push_shutdown
685
686Sometimes you know you want to close the socket after writing your data
687before it was actually written. One way to do that is to replace your
688C<on_drain> handler by a callback that shuts down the socket. This method
689is a shorthand for just that, and replaces the C<on_drain> callback with:
690
691 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
692
693This simply shuts down the write side and signals an EOF condition to the
694the peer.
695
696You can rely on the normal read queue and C<on_eof> handling
697afterwards. This is the cleanest way to close a connection.
698
699=cut
700
701sub push_shutdown {
702 $_[0]->{on_drain} = sub { shutdown $_[0]{fh}, 1 };
703}
704
525=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 705=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
526 706
527This function (not method) lets you add your own types to C<push_write>. 707This function (not method) lets you add your own types to C<push_write>.
528Whenever the given C<type> is used, C<push_write> will invoke the code 708Whenever the given C<type> is used, C<push_write> will invoke the code
529reference with the handle object and the remaining arguments. 709reference with the handle object and the remaining arguments.
532be appended to the write buffer. 712be appended to the write buffer.
533 713
534Note that this is a function, and all types registered this way will be 714Note that this is a function, and all types registered this way will be
535global, so try to use unique names. 715global, so try to use unique names.
536 716
537=back
538
539=cut 717=cut
540 718
541############################################################################# 719#############################################################################
542 720
543=back 721=back
551ways, the "simple" way, using only C<on_read> and the "complex" way, using 729ways, the "simple" way, using only C<on_read> and the "complex" way, using
552a queue. 730a queue.
553 731
554In the simple case, you just install an C<on_read> callback and whenever 732In the simple case, you just install an C<on_read> callback and whenever
555new data arrives, it will be called. You can then remove some data (if 733new data arrives, it will be called. You can then remove some data (if
556enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 734enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
557or not. 735leave the data there if you want to accumulate more (e.g. when only a
736partial message has been received so far).
558 737
559In the more complex case, you want to queue multiple callbacks. In this 738In the more complex case, you want to queue multiple callbacks. In this
560case, AnyEvent::Handle will call the first queued callback each time new 739case, AnyEvent::Handle will call the first queued callback each time new
561data arrives and removes it when it has done its job (see C<push_read>, 740data arrives (also the first time it is queued) and removes it when it has
562below). 741done its job (see C<push_read>, below).
563 742
564This way you can, for example, push three line-reads, followed by reading 743This way you can, for example, push three line-reads, followed by reading
565a chunk of data, and AnyEvent::Handle will execute them in order. 744a chunk of data, and AnyEvent::Handle will execute them in order.
566 745
567Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 746Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
580 # handle xml 759 # handle xml
581 }); 760 });
582 }); 761 });
583 }); 762 });
584 763
585Example 2: Implement a client for a protocol that replies either with 764Example 2: Implement a client for a protocol that replies either with "OK"
586"OK" and another line or "ERROR" for one request, and 64 bytes for the 765and another line or "ERROR" for the first request that is sent, and 64
587second request. Due tot he availability of a full queue, we can just 766bytes for the second request. Due to the availability of a queue, we can
588pipeline sending both requests and manipulate the queue as necessary in 767just pipeline sending both requests and manipulate the queue as necessary
589the callbacks: 768in the callbacks.
590 769
591 # request one 770When the first callback is called and sees an "OK" response, it will
771C<unshift> another line-read. This line-read will be queued I<before> the
77264-byte chunk callback.
773
774 # request one, returns either "OK + extra line" or "ERROR"
592 $handle->push_write ("request 1\015\012"); 775 $handle->push_write ("request 1\015\012");
593 776
594 # we expect "ERROR" or "OK" as response, so push a line read 777 # we expect "ERROR" or "OK" as response, so push a line read
595 $handle->push_read (line => sub { 778 $handle->push_read (line => sub {
596 # if we got an "OK", we have to _prepend_ another line, 779 # if we got an "OK", we have to _prepend_ another line,
603 ... 786 ...
604 }); 787 });
605 } 788 }
606 }); 789 });
607 790
608 # request two 791 # request two, simply returns 64 octets
609 $handle->push_write ("request 2\015\012"); 792 $handle->push_write ("request 2\015\012");
610 793
611 # simply read 64 bytes, always 794 # simply read 64 bytes, always
612 $handle->push_read (chunk => 64, sub { 795 $handle->push_read (chunk => 64, sub {
613 my $response = $_[1]; 796 my $response = $_[1];
619=cut 802=cut
620 803
621sub _drain_rbuf { 804sub _drain_rbuf {
622 my ($self) = @_; 805 my ($self) = @_;
623 806
807 local $self->{_in_drain} = 1;
808
624 if ( 809 if (
625 defined $self->{rbuf_max} 810 defined $self->{rbuf_max}
626 && $self->{rbuf_max} < length $self->{rbuf} 811 && $self->{rbuf_max} < length $self->{rbuf}
627 ) { 812 ) {
628 return $self->_error (&Errno::ENOSPC, 1); 813 $self->_error (&Errno::ENOSPC, 1), return;
629 } 814 }
630 815
631 return if $self->{in_drain}; 816 while () {
632 local $self->{in_drain} = 1; 817 # we need to use a separate tls read buffer, as we must not receive data while
818 # we are draining the buffer, and this can only happen with TLS.
819 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
633 820
634 while (my $len = length $self->{rbuf}) { 821 my $len = length $self->{rbuf};
635 no strict 'refs'; 822
636 if (my $cb = shift @{ $self->{_queue} }) { 823 if (my $cb = shift @{ $self->{_queue} }) {
637 unless ($cb->($self)) { 824 unless ($cb->($self)) {
638 if ($self->{_eof}) { 825 if ($self->{_eof}) {
639 # no progress can be made (not enough data and no data forthcoming) 826 # no progress can be made (not enough data and no data forthcoming)
640 return $self->_error (&Errno::EPIPE, 1); 827 $self->_error (&Errno::EPIPE, 1), return;
641 } 828 }
642 829
643 unshift @{ $self->{_queue} }, $cb; 830 unshift @{ $self->{_queue} }, $cb;
644 return; 831 last;
645 } 832 }
646 } elsif ($self->{on_read}) { 833 } elsif ($self->{on_read}) {
834 last unless $len;
835
647 $self->{on_read}($self); 836 $self->{on_read}($self);
648 837
649 if ( 838 if (
650 $self->{_eof} # if no further data will arrive
651 && $len == length $self->{rbuf} # and no data has been consumed 839 $len == length $self->{rbuf} # if no data has been consumed
652 && !@{ $self->{_queue} } # and the queue is still empty 840 && !@{ $self->{_queue} } # and the queue is still empty
653 && $self->{on_read} # and we still want to read data 841 && $self->{on_read} # but we still have on_read
654 ) { 842 ) {
843 # no further data will arrive
655 # then no progress can be made 844 # so no progress can be made
656 return $self->_error (&Errno::EPIPE, 1); 845 $self->_error (&Errno::EPIPE, 1), return
846 if $self->{_eof};
847
848 last; # more data might arrive
657 } 849 }
658 } else { 850 } else {
659 # read side becomes idle 851 # read side becomes idle
660 delete $self->{_rw}; 852 delete $self->{_rw} unless $self->{tls};
661 return; 853 last;
662 } 854 }
663 } 855 }
664 856
857 if ($self->{_eof}) {
858 if ($self->{on_eof}) {
665 $self->{on_eof}($self) 859 $self->{on_eof}($self)
666 if $self->{_eof} && $self->{on_eof}; 860 } else {
861 $self->_error (0, 1);
862 }
863 }
864
865 # may need to restart read watcher
866 unless ($self->{_rw}) {
867 $self->start_read
868 if $self->{on_read} || @{ $self->{_queue} };
869 }
667} 870}
668 871
669=item $handle->on_read ($cb) 872=item $handle->on_read ($cb)
670 873
671This replaces the currently set C<on_read> callback, or clears it (when 874This replaces the currently set C<on_read> callback, or clears it (when
676 879
677sub on_read { 880sub on_read {
678 my ($self, $cb) = @_; 881 my ($self, $cb) = @_;
679 882
680 $self->{on_read} = $cb; 883 $self->{on_read} = $cb;
884 $self->_drain_rbuf if $cb && !$self->{_in_drain};
681} 885}
682 886
683=item $handle->rbuf 887=item $handle->rbuf
684 888
685Returns the read buffer (as a modifiable lvalue). 889Returns the read buffer (as a modifiable lvalue).
686 890
687You can access the read buffer directly as the C<< ->{rbuf} >> member, if 891You can access the read buffer directly as the C<< ->{rbuf} >>
688you want. 892member, if you want. However, the only operation allowed on the
893read buffer (apart from looking at it) is removing data from its
894beginning. Otherwise modifying or appending to it is not allowed and will
895lead to hard-to-track-down bugs.
689 896
690NOTE: The read buffer should only be used or modified if the C<on_read>, 897NOTE: The read buffer should only be used or modified if the C<on_read>,
691C<push_read> or C<unshift_read> methods are used. The other read methods 898C<push_read> or C<unshift_read> methods are used. The other read methods
692automatically manage the read buffer. 899automatically manage the read buffer.
693 900
734 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 941 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
735 ->($self, $cb, @_); 942 ->($self, $cb, @_);
736 } 943 }
737 944
738 push @{ $self->{_queue} }, $cb; 945 push @{ $self->{_queue} }, $cb;
739 $self->_drain_rbuf; 946 $self->_drain_rbuf unless $self->{_in_drain};
740} 947}
741 948
742sub unshift_read { 949sub unshift_read {
743 my $self = shift; 950 my $self = shift;
744 my $cb = pop; 951 my $cb = pop;
750 ->($self, $cb, @_); 957 ->($self, $cb, @_);
751 } 958 }
752 959
753 960
754 unshift @{ $self->{_queue} }, $cb; 961 unshift @{ $self->{_queue} }, $cb;
755 $self->_drain_rbuf; 962 $self->_drain_rbuf unless $self->{_in_drain};
756} 963}
757 964
758=item $handle->push_read (type => @args, $cb) 965=item $handle->push_read (type => @args, $cb)
759 966
760=item $handle->unshift_read (type => @args, $cb) 967=item $handle->unshift_read (type => @args, $cb)
790 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 997 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
791 1 998 1
792 } 999 }
793}; 1000};
794 1001
795# compatibility with older API
796sub push_read_chunk {
797 $_[0]->push_read (chunk => $_[1], $_[2]);
798}
799
800sub unshift_read_chunk {
801 $_[0]->unshift_read (chunk => $_[1], $_[2]);
802}
803
804=item line => [$eol, ]$cb->($handle, $line, $eol) 1002=item line => [$eol, ]$cb->($handle, $line, $eol)
805 1003
806The callback will be called only once a full line (including the end of 1004The callback will be called only once a full line (including the end of
807line marker, C<$eol>) has been read. This line (excluding the end of line 1005line marker, C<$eol>) has been read. This line (excluding the end of line
808marker) will be passed to the callback as second argument (C<$line>), and 1006marker) will be passed to the callback as second argument (C<$line>), and
823=cut 1021=cut
824 1022
825register_read_type line => sub { 1023register_read_type line => sub {
826 my ($self, $cb, $eol) = @_; 1024 my ($self, $cb, $eol) = @_;
827 1025
828 $eol = qr|(\015?\012)| if @_ < 3; 1026 if (@_ < 3) {
829 $eol = quotemeta $eol unless ref $eol; 1027 # this is more than twice as fast as the generic code below
830 $eol = qr|^(.*?)($eol)|s;
831
832 sub { 1028 sub {
833 $_[0]{rbuf} =~ s/$eol// or return; 1029 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
834 1030
835 $cb->($_[0], $1, $2); 1031 $cb->($_[0], $1, $2);
836 1
837 }
838};
839
840# compatibility with older API
841sub push_read_line {
842 my $self = shift;
843 $self->push_read (line => @_);
844}
845
846sub unshift_read_line {
847 my $self = shift;
848 $self->unshift_read (line => @_);
849}
850
851=item netstring => $cb->($handle, $string)
852
853A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
854
855Throws an error with C<$!> set to EBADMSG on format violations.
856
857=cut
858
859register_read_type netstring => sub {
860 my ($self, $cb) = @_;
861
862 sub {
863 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
864 if ($_[0]{rbuf} =~ /[^0-9]/) {
865 $self->_error (&Errno::EBADMSG);
866 } 1032 1
867 return;
868 } 1033 }
1034 } else {
1035 $eol = quotemeta $eol unless ref $eol;
1036 $eol = qr|^(.*?)($eol)|s;
869 1037
870 my $len = $1; 1038 sub {
1039 $_[0]{rbuf} =~ s/$eol// or return;
871 1040
872 $self->unshift_read (chunk => $len, sub { 1041 $cb->($_[0], $1, $2);
873 my $string = $_[1];
874 $_[0]->unshift_read (chunk => 1, sub {
875 if ($_[1] eq ",") {
876 $cb->($_[0], $string);
877 } else {
878 $self->_error (&Errno::EBADMSG);
879 }
880 }); 1042 1
881 }); 1043 }
882
883 1
884 } 1044 }
885}; 1045};
886 1046
887=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1047=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
888 1048
952 1112
953 () 1113 ()
954 } 1114 }
955}; 1115};
956 1116
1117=item netstring => $cb->($handle, $string)
1118
1119A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1120
1121Throws an error with C<$!> set to EBADMSG on format violations.
1122
1123=cut
1124
1125register_read_type netstring => sub {
1126 my ($self, $cb) = @_;
1127
1128 sub {
1129 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1130 if ($_[0]{rbuf} =~ /[^0-9]/) {
1131 $self->_error (&Errno::EBADMSG);
1132 }
1133 return;
1134 }
1135
1136 my $len = $1;
1137
1138 $self->unshift_read (chunk => $len, sub {
1139 my $string = $_[1];
1140 $_[0]->unshift_read (chunk => 1, sub {
1141 if ($_[1] eq ",") {
1142 $cb->($_[0], $string);
1143 } else {
1144 $self->_error (&Errno::EBADMSG);
1145 }
1146 });
1147 });
1148
1149 1
1150 }
1151};
1152
1153=item packstring => $format, $cb->($handle, $string)
1154
1155An octet string prefixed with an encoded length. The encoding C<$format>
1156uses the same format as a Perl C<pack> format, but must specify a single
1157integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1158optional C<!>, C<< < >> or C<< > >> modifier).
1159
1160For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1161EPP uses a prefix of C<N> (4 octtes).
1162
1163Example: read a block of data prefixed by its length in BER-encoded
1164format (very efficient).
1165
1166 $handle->push_read (packstring => "w", sub {
1167 my ($handle, $data) = @_;
1168 });
1169
1170=cut
1171
1172register_read_type packstring => sub {
1173 my ($self, $cb, $format) = @_;
1174
1175 sub {
1176 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1177 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1178 or return;
1179
1180 $format = length pack $format, $len;
1181
1182 # bypass unshift if we already have the remaining chunk
1183 if ($format + $len <= length $_[0]{rbuf}) {
1184 my $data = substr $_[0]{rbuf}, $format, $len;
1185 substr $_[0]{rbuf}, 0, $format + $len, "";
1186 $cb->($_[0], $data);
1187 } else {
1188 # remove prefix
1189 substr $_[0]{rbuf}, 0, $format, "";
1190
1191 # read remaining chunk
1192 $_[0]->unshift_read (chunk => $len, $cb);
1193 }
1194
1195 1
1196 }
1197};
1198
957=item json => $cb->($handle, $hash_or_arrayref) 1199=item json => $cb->($handle, $hash_or_arrayref)
958 1200
959Reads a JSON object or array, decodes it and passes it to the callback. 1201Reads a JSON object or array, decodes it and passes it to the
1202callback. When a parse error occurs, an C<EBADMSG> error will be raised.
960 1203
961If a C<json> object was passed to the constructor, then that will be used 1204If a C<json> object was passed to the constructor, then that will be used
962for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1205for the final decode, otherwise it will create a JSON coder expecting UTF-8.
963 1206
964This read type uses the incremental parser available with JSON version 1207This read type uses the incremental parser available with JSON version
971the C<json> write type description, above, for an actual example. 1214the C<json> write type description, above, for an actual example.
972 1215
973=cut 1216=cut
974 1217
975register_read_type json => sub { 1218register_read_type json => sub {
976 my ($self, $cb, $accept, $reject, $skip) = @_; 1219 my ($self, $cb) = @_;
977 1220
978 require JSON; 1221 my $json = $self->{json} ||=
1222 eval { require JSON::XS; JSON::XS->new->utf8 }
1223 || do { require JSON; JSON->new->utf8 };
979 1224
980 my $data; 1225 my $data;
981 my $rbuf = \$self->{rbuf}; 1226 my $rbuf = \$self->{rbuf};
982 1227
983 my $json = $self->{json} ||= JSON->new->utf8;
984
985 sub { 1228 sub {
986 my $ref = $json->incr_parse ($self->{rbuf}); 1229 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
987 1230
988 if ($ref) { 1231 if ($ref) {
989 $self->{rbuf} = $json->incr_text; 1232 $self->{rbuf} = $json->incr_text;
990 $json->incr_text = ""; 1233 $json->incr_text = "";
991 $cb->($self, $ref); 1234 $cb->($self, $ref);
992 1235
993 1 1236 1
1237 } elsif ($@) {
1238 # error case
1239 $json->incr_skip;
1240
1241 $self->{rbuf} = $json->incr_text;
1242 $json->incr_text = "";
1243
1244 $self->_error (&Errno::EBADMSG);
1245
1246 ()
994 } else { 1247 } else {
995 $self->{rbuf} = ""; 1248 $self->{rbuf} = "";
1249
996 () 1250 ()
997 } 1251 }
1252 }
1253};
1254
1255=item storable => $cb->($handle, $ref)
1256
1257Deserialises a L<Storable> frozen representation as written by the
1258C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1259data).
1260
1261Raises C<EBADMSG> error if the data could not be decoded.
1262
1263=cut
1264
1265register_read_type storable => sub {
1266 my ($self, $cb) = @_;
1267
1268 require Storable;
1269
1270 sub {
1271 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1272 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1273 or return;
1274
1275 my $format = length pack "w", $len;
1276
1277 # bypass unshift if we already have the remaining chunk
1278 if ($format + $len <= length $_[0]{rbuf}) {
1279 my $data = substr $_[0]{rbuf}, $format, $len;
1280 substr $_[0]{rbuf}, 0, $format + $len, "";
1281 $cb->($_[0], Storable::thaw ($data));
1282 } else {
1283 # remove prefix
1284 substr $_[0]{rbuf}, 0, $format, "";
1285
1286 # read remaining chunk
1287 $_[0]->unshift_read (chunk => $len, sub {
1288 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1289 $cb->($_[0], $ref);
1290 } else {
1291 $self->_error (&Errno::EBADMSG);
1292 }
1293 });
1294 }
1295
1296 1
998 } 1297 }
999}; 1298};
1000 1299
1001=back 1300=back
1002 1301
1023=item $handle->stop_read 1322=item $handle->stop_read
1024 1323
1025=item $handle->start_read 1324=item $handle->start_read
1026 1325
1027In rare cases you actually do not want to read anything from the 1326In rare cases you actually do not want to read anything from the
1028socket. In this case you can call C<stop_read>. Neither C<on_read> no 1327socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1029any queued callbacks will be executed then. To start reading again, call 1328any queued callbacks will be executed then. To start reading again, call
1030C<start_read>. 1329C<start_read>.
1031 1330
1331Note that AnyEvent::Handle will automatically C<start_read> for you when
1332you change the C<on_read> callback or push/unshift a read callback, and it
1333will automatically C<stop_read> for you when neither C<on_read> is set nor
1334there are any read requests in the queue.
1335
1336These methods will have no effect when in TLS mode (as TLS doesn't support
1337half-duplex connections).
1338
1032=cut 1339=cut
1033 1340
1034sub stop_read { 1341sub stop_read {
1035 my ($self) = @_; 1342 my ($self) = @_;
1036 1343
1037 delete $self->{_rw}; 1344 delete $self->{_rw} unless $self->{tls};
1038} 1345}
1039 1346
1040sub start_read { 1347sub start_read {
1041 my ($self) = @_; 1348 my ($self) = @_;
1042 1349
1043 unless ($self->{_rw} || $self->{_eof}) { 1350 unless ($self->{_rw} || $self->{_eof}) {
1044 Scalar::Util::weaken $self; 1351 Scalar::Util::weaken $self;
1045 1352
1046 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1353 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1047 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1354 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1048 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1355 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1049 1356
1050 if ($len > 0) { 1357 if ($len > 0) {
1051 $self->{_activity} = AnyEvent->now; 1358 $self->{_activity} = AnyEvent->now;
1052 1359
1053 $self->{filter_r} 1360 if ($self->{tls}) {
1054 ? $self->{filter_r}($self, $rbuf) 1361 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1055 : $self->_drain_rbuf; 1362
1363 &_dotls ($self);
1364 } else {
1365 $self->_drain_rbuf unless $self->{_in_drain};
1366 }
1056 1367
1057 } elsif (defined $len) { 1368 } elsif (defined $len) {
1058 delete $self->{_rw}; 1369 delete $self->{_rw};
1059 $self->{_eof} = 1; 1370 $self->{_eof} = 1;
1060 $self->_drain_rbuf; 1371 $self->_drain_rbuf unless $self->{_in_drain};
1061 1372
1062 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1373 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1063 return $self->_error ($!, 1); 1374 return $self->_error ($!, 1);
1064 } 1375 }
1065 }); 1376 });
1066 } 1377 }
1067} 1378}
1068 1379
1380our $ERROR_SYSCALL;
1381our $ERROR_WANT_READ;
1382our $ERROR_ZERO_RETURN;
1383
1384sub _tls_error {
1385 my ($self, $err) = @_;
1386
1387 return $self->_error ($!, 1)
1388 if $err == Net::SSLeay::ERROR_SYSCALL ();
1389
1390 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1391
1392 # reduce error string to look less scary
1393 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1394
1395 $self->_error (&Errno::EPROTO, 1, $err);
1396}
1397
1398# poll the write BIO and send the data if applicable
1399# also decode read data if possible
1400# this is basiclaly our TLS state machine
1401# more efficient implementations are possible with openssl,
1402# but not with the buggy and incomplete Net::SSLeay.
1069sub _dotls { 1403sub _dotls {
1070 my ($self) = @_; 1404 my ($self) = @_;
1071 1405
1406 my $tmp;
1407
1072 if (length $self->{_tls_wbuf}) { 1408 if (length $self->{_tls_wbuf}) {
1073 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1409 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1074 substr $self->{_tls_wbuf}, 0, $len, ""; 1410 substr $self->{_tls_wbuf}, 0, $tmp, "";
1075 } 1411 }
1076 }
1077 1412
1413 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1414 return $self->_tls_error ($tmp)
1415 if $tmp != $ERROR_WANT_READ
1416 && ($tmp != $ERROR_SYSCALL || $!)
1417 && $tmp != $ERROR_ZERO_RETURN;
1418 }
1419
1420 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1421 unless (length $tmp) {
1422 # let's treat SSL-eof as we treat normal EOF
1423 delete $self->{_rw};
1424 $self->{_eof} = 1;
1425 &_freetls;
1426 }
1427
1428 $self->{_tls_rbuf} .= $tmp;
1429 $self->_drain_rbuf unless $self->{_in_drain};
1430 $self->{tls} or return; # tls session might have gone away in callback
1431 }
1432
1433 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1434 return $self->_tls_error ($tmp)
1435 if $tmp != $ERROR_WANT_READ
1436 && ($tmp != $ERROR_SYSCALL || $!)
1437 && $tmp != $ERROR_ZERO_RETURN;
1438
1078 if (defined (my $buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1439 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1079 $self->{wbuf} .= $buf; 1440 $self->{wbuf} .= $tmp;
1080 $self->_drain_wbuf; 1441 $self->_drain_wbuf;
1081 }
1082
1083 while (defined (my $buf = Net::SSLeay::read ($self->{tls}))) {
1084 $self->{rbuf} .= $buf;
1085 $self->_drain_rbuf;
1086 }
1087
1088 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1089
1090 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1091 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1092 return $self->_error ($!, 1);
1093 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1094 return $self->_error (&Errno::EIO, 1);
1095 }
1096
1097 # all others are fine for our purposes
1098 } 1442 }
1099} 1443}
1100 1444
1101=item $handle->starttls ($tls[, $tls_ctx]) 1445=item $handle->starttls ($tls[, $tls_ctx])
1102 1446
1105C<starttls>. 1449C<starttls>.
1106 1450
1107The first argument is the same as the C<tls> constructor argument (either 1451The first argument is the same as the C<tls> constructor argument (either
1108C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1452C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1109 1453
1110The second argument is the optional C<Net::SSLeay::CTX> object that is 1454The second argument is the optional C<AnyEvent::TLS> object that is used
1111used when AnyEvent::Handle has to create its own TLS connection object. 1455when AnyEvent::Handle has to create its own TLS connection object, or
1456a hash reference with C<< key => value >> pairs that will be used to
1457construct a new context.
1112 1458
1113The TLS connection object will end up in C<< $handle->{tls} >> after this 1459The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1114call and can be used or changed to your liking. Note that the handshake 1460context in C<< $handle->{tls_ctx} >> after this call and can be used or
1115might have already started when this function returns. 1461changed to your liking. Note that the handshake might have already started
1462when this function returns.
1116 1463
1464If it an error to start a TLS handshake more than once per
1465AnyEvent::Handle object (this is due to bugs in OpenSSL).
1466
1117=cut 1467=cut
1468
1469our %TLS_CACHE; #TODO not yet documented, should we?
1118 1470
1119sub starttls { 1471sub starttls {
1120 my ($self, $ssl, $ctx) = @_; 1472 my ($self, $ssl, $ctx) = @_;
1121 1473
1122 $self->stoptls; 1474 require Net::SSLeay;
1123 1475
1124 if ($ssl eq "accept") { 1476 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1125 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1477 if $self->{tls};
1126 Net::SSLeay::set_accept_state ($ssl); 1478
1127 } elsif ($ssl eq "connect") { 1479 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1128 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1480 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1129 Net::SSLeay::set_connect_state ($ssl); 1481 $ERROR_ZERO_RETURN = Net::SSLeay::ERROR_ZERO_RETURN ();
1482
1483 $ctx ||= $self->{tls_ctx};
1484
1485 if ("HASH" eq ref $ctx) {
1486 require AnyEvent::TLS;
1487
1488 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context
1489
1490 if ($ctx->{cache}) {
1491 my $key = $ctx+0;
1492 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1493 } else {
1494 $ctx = new AnyEvent::TLS %$ctx;
1495 }
1496 }
1130 } 1497
1131 1498 $self->{tls_ctx} = $ctx || TLS_CTX ();
1132 $self->{tls} = $ssl; 1499 $self->{tls} = $ssl = $self->{tls_ctx}->_get_session ($ssl, $self, $self->{peername});
1133 1500
1134 # basically, this is deep magic (because SSL_read should have the same issues) 1501 # basically, this is deep magic (because SSL_read should have the same issues)
1135 # but the openssl maintainers basically said: "trust us, it just works". 1502 # but the openssl maintainers basically said: "trust us, it just works".
1136 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1503 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1137 # and mismaintained ssleay-module doesn't even offer them). 1504 # and mismaintained ssleay-module doesn't even offer them).
1138 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1505 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1506 #
1507 # in short: this is a mess.
1508 #
1509 # note that we do not try to keep the length constant between writes as we are required to do.
1510 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1511 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1512 # have identity issues in that area.
1139 Net::SSLeay::CTX_set_mode ($self->{tls}, 1513# Net::SSLeay::CTX_set_mode ($ssl,
1140 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1514# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1141 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1515# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1516 Net::SSLeay::CTX_set_mode ($ssl, 1|2);
1142 1517
1143 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1518 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1144 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1519 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1145 1520
1146 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1521 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1147 1522
1148 $self->{filter_w} = sub { 1523 &_dotls; # need to trigger the initial handshake
1149 $_[0]{_tls_wbuf} .= ${$_[1]}; 1524 $self->start_read; # make sure we actually do read
1150 &_dotls;
1151 };
1152 $self->{filter_r} = sub {
1153 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1154 &_dotls;
1155 };
1156} 1525}
1157 1526
1158=item $handle->stoptls 1527=item $handle->stoptls
1159 1528
1160Destroys the SSL connection, if any. Partial read or write data will be 1529Shuts down the SSL connection - this makes a proper EOF handshake by
1161lost. 1530sending a close notify to the other side, but since OpenSSL doesn't
1531support non-blocking shut downs, it is not possible to re-use the stream
1532afterwards.
1162 1533
1163=cut 1534=cut
1164 1535
1165sub stoptls { 1536sub stoptls {
1166 my ($self) = @_; 1537 my ($self) = @_;
1167 1538
1168 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1539 if ($self->{tls}) {
1540 Net::SSLeay::shutdown ($self->{tls});
1169 1541
1170 delete $self->{_rbio}; 1542 &_dotls;
1171 delete $self->{_wbio}; 1543
1172 delete $self->{_tls_wbuf}; 1544 # we don't give a shit. no, we do, but we can't. no...
1173 delete $self->{filter_r}; 1545 # we, we... have to use openssl :/
1174 delete $self->{filter_w}; 1546 &_freetls;
1547 }
1548}
1549
1550sub _freetls {
1551 my ($self) = @_;
1552
1553 return unless $self->{tls};
1554
1555 $self->{tls_ctx}->_put_session (delete $self->{tls});
1556
1557 delete @$self{qw(_rbio _wbio _tls_wbuf)};
1175} 1558}
1176 1559
1177sub DESTROY { 1560sub DESTROY {
1178 my $self = shift; 1561 my ($self) = @_;
1179 1562
1180 $self->stoptls; 1563 &_freetls;
1564
1565 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1566
1567 if ($linger && length $self->{wbuf}) {
1568 my $fh = delete $self->{fh};
1569 my $wbuf = delete $self->{wbuf};
1570
1571 my @linger;
1572
1573 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1574 my $len = syswrite $fh, $wbuf, length $wbuf;
1575
1576 if ($len > 0) {
1577 substr $wbuf, 0, $len, "";
1578 } else {
1579 @linger = (); # end
1580 }
1581 });
1582 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1583 @linger = ();
1584 });
1585 }
1586}
1587
1588=item $handle->destroy
1589
1590Shuts down the handle object as much as possible - this call ensures that
1591no further callbacks will be invoked and resources will be freed as much
1592as possible. You must not call any methods on the object afterwards.
1593
1594Normally, you can just "forget" any references to an AnyEvent::Handle
1595object and it will simply shut down. This works in fatal error and EOF
1596callbacks, as well as code outside. It does I<NOT> work in a read or write
1597callback, so when you want to destroy the AnyEvent::Handle object from
1598within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1599that case.
1600
1601The handle might still linger in the background and write out remaining
1602data, as specified by the C<linger> option, however.
1603
1604=cut
1605
1606sub destroy {
1607 my ($self) = @_;
1608
1609 $self->DESTROY;
1610 %$self = ();
1181} 1611}
1182 1612
1183=item AnyEvent::Handle::TLS_CTX 1613=item AnyEvent::Handle::TLS_CTX
1184 1614
1185This function creates and returns the Net::SSLeay::CTX object used by 1615This function creates and returns the AnyEvent::TLS object used by default
1186default for TLS mode. 1616for TLS mode.
1187 1617
1188The context is created like this: 1618The context is created by calling L<AnyEvent::TLS> without any arguments.
1189
1190 Net::SSLeay::load_error_strings;
1191 Net::SSLeay::SSLeay_add_ssl_algorithms;
1192 Net::SSLeay::randomize;
1193
1194 my $CTX = Net::SSLeay::CTX_new;
1195
1196 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1197 1619
1198=cut 1620=cut
1199 1621
1200our $TLS_CTX; 1622our $TLS_CTX;
1201 1623
1202sub TLS_CTX() { 1624sub TLS_CTX() {
1203 $TLS_CTX || do { 1625 $TLS_CTX ||= do {
1204 require Net::SSLeay; 1626 require AnyEvent::TLS;
1205 1627
1206 Net::SSLeay::load_error_strings (); 1628 new AnyEvent::TLS
1207 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1208 Net::SSLeay::randomize ();
1209
1210 $TLS_CTX = Net::SSLeay::CTX_new ();
1211
1212 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1213
1214 $TLS_CTX
1215 } 1629 }
1216} 1630}
1217 1631
1218=back 1632=back
1633
1634
1635=head1 NONFREQUENTLY ASKED QUESTIONS
1636
1637=over 4
1638
1639=item I C<undef> the AnyEvent::Handle reference inside my callback and
1640still get further invocations!
1641
1642That's because AnyEvent::Handle keeps a reference to itself when handling
1643read or write callbacks.
1644
1645It is only safe to "forget" the reference inside EOF or error callbacks,
1646from within all other callbacks, you need to explicitly call the C<<
1647->destroy >> method.
1648
1649=item I get different callback invocations in TLS mode/Why can't I pause
1650reading?
1651
1652Unlike, say, TCP, TLS connections do not consist of two independent
1653communication channels, one for each direction. Or put differently. The
1654read and write directions are not independent of each other: you cannot
1655write data unless you are also prepared to read, and vice versa.
1656
1657This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1658callback invocations when you are not expecting any read data - the reason
1659is that AnyEvent::Handle always reads in TLS mode.
1660
1661During the connection, you have to make sure that you always have a
1662non-empty read-queue, or an C<on_read> watcher. At the end of the
1663connection (or when you no longer want to use it) you can call the
1664C<destroy> method.
1665
1666=item How do I read data until the other side closes the connection?
1667
1668If you just want to read your data into a perl scalar, the easiest way
1669to achieve this is by setting an C<on_read> callback that does nothing,
1670clearing the C<on_eof> callback and in the C<on_error> callback, the data
1671will be in C<$_[0]{rbuf}>:
1672
1673 $handle->on_read (sub { });
1674 $handle->on_eof (undef);
1675 $handle->on_error (sub {
1676 my $data = delete $_[0]{rbuf};
1677 undef $handle;
1678 });
1679
1680The reason to use C<on_error> is that TCP connections, due to latencies
1681and packets loss, might get closed quite violently with an error, when in
1682fact, all data has been received.
1683
1684It is usually better to use acknowledgements when transferring data,
1685to make sure the other side hasn't just died and you got the data
1686intact. This is also one reason why so many internet protocols have an
1687explicit QUIT command.
1688
1689=item I don't want to destroy the handle too early - how do I wait until
1690all data has been written?
1691
1692After writing your last bits of data, set the C<on_drain> callback
1693and destroy the handle in there - with the default setting of
1694C<low_water_mark> this will be called precisely when all data has been
1695written to the socket:
1696
1697 $handle->push_write (...);
1698 $handle->on_drain (sub {
1699 warn "all data submitted to the kernel\n";
1700 undef $handle;
1701 });
1702
1703=back
1704
1219 1705
1220=head1 SUBCLASSING AnyEvent::Handle 1706=head1 SUBCLASSING AnyEvent::Handle
1221 1707
1222In many cases, you might want to subclass AnyEvent::Handle. 1708In many cases, you might want to subclass AnyEvent::Handle.
1223 1709
1227=over 4 1713=over 4
1228 1714
1229=item * all constructor arguments become object members. 1715=item * all constructor arguments become object members.
1230 1716
1231At least initially, when you pass a C<tls>-argument to the constructor it 1717At least initially, when you pass a C<tls>-argument to the constructor it
1232will end up in C<< $handle->{tls} >>. Those members might be changes or 1718will end up in C<< $handle->{tls} >>. Those members might be changed or
1233mutated later on (for example C<tls> will hold the TLS connection object). 1719mutated later on (for example C<tls> will hold the TLS connection object).
1234 1720
1235=item * other object member names are prefixed with an C<_>. 1721=item * other object member names are prefixed with an C<_>.
1236 1722
1237All object members not explicitly documented (internal use) are prefixed 1723All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines