ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.12 by elmex, Thu May 15 09:03:43 2008 UTC vs.
Revision 1.80 by root, Sun Jul 27 08:43:32 2008 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent (); 6use AnyEvent ();
7use AnyEvent::Util (); 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 8use Scalar::Util ();
9use Carp (); 9use Carp ();
10use Fcntl (); 10use Fcntl ();
11use Errno qw/EAGAIN EINTR/; 11use Errno qw(EAGAIN EINTR);
12 12
13=head1 NAME 13=head1 NAME
14 14
15AnyEvent::Handle - non-blocking I/O on filehandles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17=cut 17=cut
18 18
19our $VERSION = '0.02'; 19our $VERSION = 4.22;
20 20
21=head1 SYNOPSIS 21=head1 SYNOPSIS
22 22
23 use AnyEvent; 23 use AnyEvent;
24 use AnyEvent::Handle; 24 use AnyEvent::Handle;
25 25
26 my $cv = AnyEvent->condvar; 26 my $cv = AnyEvent->condvar;
27 27
28 my $ae_fh = AnyEvent::Handle->new (fh => \*STDIN); 28 my $handle =
29
30 #TODO
31
32 # or use the constructor to pass the callback:
33
34 my $ae_fh2 =
35 AnyEvent::Handle->new ( 29 AnyEvent::Handle->new (
36 fh => \*STDIN, 30 fh => \*STDIN,
37 on_eof => sub { 31 on_eof => sub {
38 $cv->broadcast; 32 $cv->broadcast;
39 }, 33 },
40 #TODO
41 ); 34 );
42 35
43 $cv->wait; 36 # send some request line
37 $handle->push_write ("getinfo\015\012");
38
39 # read the response line
40 $handle->push_read (line => sub {
41 my ($handle, $line) = @_;
42 warn "read line <$line>\n";
43 $cv->send;
44 });
45
46 $cv->recv;
44 47
45=head1 DESCRIPTION 48=head1 DESCRIPTION
46 49
47This module is a helper module to make it easier to do event-based I/O on 50This module is a helper module to make it easier to do event-based I/O on
48filehandles (and sockets, see L<AnyEvent::Socket> for an easy way to make 51filehandles. For utility functions for doing non-blocking connects and accepts
49non-blocking resolves and connects). 52on sockets see L<AnyEvent::Util>.
50 53
51In the following, when the documentation refers to of "bytes" then this 54In the following, when the documentation refers to of "bytes" then this
52means characters. As sysread and syswrite are used for all I/O, their 55means characters. As sysread and syswrite are used for all I/O, their
53treatment of characters applies to this module as well. 56treatment of characters applies to this module as well.
54 57
70The filehandle this L<AnyEvent::Handle> object will operate on. 73The filehandle this L<AnyEvent::Handle> object will operate on.
71 74
72NOTE: The filehandle will be set to non-blocking (using 75NOTE: The filehandle will be set to non-blocking (using
73AnyEvent::Util::fh_nonblocking). 76AnyEvent::Util::fh_nonblocking).
74 77
75=item on_eof => $cb->($self) [MANDATORY]
76
77Set the callback to be called on EOF.
78
79=item on_error => $cb->($self) 78=item on_eof => $cb->($handle)
80 79
80Set the callback to be called when an end-of-file condition is detected,
81i.e. in the case of a socket, when the other side has closed the
82connection cleanly.
83
84While not mandatory, it is I<highly> recommended to set an eof callback,
85otherwise you might end up with a closed socket while you are still
86waiting for data.
87
88If an EOF condition has been detected but no C<on_eof> callback has been
89set, then a fatal error will be raised with C<$!> set to <0>.
90
91=item on_error => $cb->($handle, $fatal)
92
81This is the fatal error callback, that is called when, well, a fatal error 93This is the error callback, which is called when, well, some error
82ocurs, such as not being able to resolve the hostname, failure to connect 94occured, such as not being able to resolve the hostname, failure to
83or a read error. 95connect or a read error.
84 96
85The object will not be in a usable state when this callback has been 97Some errors are fatal (which is indicated by C<$fatal> being true). On
86called. 98fatal errors the handle object will be shut down and will not be
99usable. Non-fatal errors can be retried by simply returning, but it is
100recommended to simply ignore this parameter and instead abondon the handle
101object when this callback is invoked.
87 102
88On callback entrance, the value of C<$!> contains the operating system 103On callback entrance, the value of C<$!> contains the operating system
89error (or C<ENOSPC> or C<EPIPE>). 104error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
90 105
91While not mandatory, it is I<highly> recommended to set this callback, as 106While not mandatory, it is I<highly> recommended to set this callback, as
92you will not be notified of errors otherwise. The default simply calls 107you will not be notified of errors otherwise. The default simply calls
93die. 108C<croak>.
94 109
95=item on_read => $cb->($self) 110=item on_read => $cb->($handle)
96 111
97This sets the default read callback, which is called when data arrives 112This sets the default read callback, which is called when data arrives
98and no read request is in the queue. 113and no read request is in the queue (unlike read queue callbacks, this
114callback will only be called when at least one octet of data is in the
115read buffer).
99 116
100To access (and remove data from) the read buffer, use the C<< ->rbuf >> 117To access (and remove data from) the read buffer, use the C<< ->rbuf >>
101method or acces sthe C<$self->{rbuf}> member directly. 118method or access the C<$handle->{rbuf}> member directly.
102 119
103When an EOF condition is detected then AnyEvent::Handle will first try to 120When an EOF condition is detected then AnyEvent::Handle will first try to
104feed all the remaining data to the queued callbacks and C<on_read> before 121feed all the remaining data to the queued callbacks and C<on_read> before
105calling the C<on_eof> callback. If no progress can be made, then a fatal 122calling the C<on_eof> callback. If no progress can be made, then a fatal
106error will be raised (with C<$!> set to C<EPIPE>). 123error will be raised (with C<$!> set to C<EPIPE>).
107 124
108=item on_drain => $cb->() 125=item on_drain => $cb->($handle)
109 126
110This sets the callback that is called when the write buffer becomes empty 127This sets the callback that is called when the write buffer becomes empty
111(or when the callback is set and the buffer is empty already). 128(or when the callback is set and the buffer is empty already).
112 129
113To append to the write buffer, use the C<< ->push_write >> method. 130To append to the write buffer, use the C<< ->push_write >> method.
131
132This callback is useful when you don't want to put all of your write data
133into the queue at once, for example, when you want to write the contents
134of some file to the socket you might not want to read the whole file into
135memory and push it into the queue, but instead only read more data from
136the file when the write queue becomes empty.
137
138=item timeout => $fractional_seconds
139
140If non-zero, then this enables an "inactivity" timeout: whenever this many
141seconds pass without a successful read or write on the underlying file
142handle, the C<on_timeout> callback will be invoked (and if that one is
143missing, an C<ETIMEDOUT> error will be raised).
144
145Note that timeout processing is also active when you currently do not have
146any outstanding read or write requests: If you plan to keep the connection
147idle then you should disable the timout temporarily or ignore the timeout
148in the C<on_timeout> callback.
149
150Zero (the default) disables this timeout.
151
152=item on_timeout => $cb->($handle)
153
154Called whenever the inactivity timeout passes. If you return from this
155callback, then the timeout will be reset as if some activity had happened,
156so this condition is not fatal in any way.
114 157
115=item rbuf_max => <bytes> 158=item rbuf_max => <bytes>
116 159
117If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 160If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
118when the read buffer ever (strictly) exceeds this size. This is useful to 161when the read buffer ever (strictly) exceeds this size. This is useful to
122be configured to accept only so-and-so much data that it cannot act on 165be configured to accept only so-and-so much data that it cannot act on
123(for example, when expecting a line, an attacker could send an unlimited 166(for example, when expecting a line, an attacker could send an unlimited
124amount of data without a callback ever being called as long as the line 167amount of data without a callback ever being called as long as the line
125isn't finished). 168isn't finished).
126 169
170=item autocork => <boolean>
171
172When disabled (the default), then C<push_write> will try to immediately
173write the data to the handle if possible. This avoids having to register
174a write watcher and wait for the next event loop iteration, but can be
175inefficient if you write multiple small chunks (this disadvantage is
176usually avoided by your kernel's nagle algorithm, see C<low_delay>).
177
178When enabled, then writes will always be queued till the next event loop
179iteration. This is efficient when you do many small writes per iteration,
180but less efficient when you do a single write only.
181
182=item no_delay => <boolean>
183
184When doing small writes on sockets, your operating system kernel might
185wait a bit for more data before actually sending it out. This is called
186the Nagle algorithm, and usually it is beneficial.
187
188In some situations you want as low a delay as possible, which cna be
189accomplishd by setting this option to true.
190
191The default is your opertaing system's default behaviour, this option
192explicitly enables or disables it, if possible.
193
127=item read_size => <bytes> 194=item read_size => <bytes>
128 195
129The default read block size (the amount of bytes this module will try to read 196The default read block size (the amount of bytes this module will try to read
130on each [loop iteration). Default: C<4096>. 197during each (loop iteration). Default: C<8192>.
131 198
132=item low_water_mark => <bytes> 199=item low_water_mark => <bytes>
133 200
134Sets the amount of bytes (default: C<0>) that make up an "empty" write 201Sets the amount of bytes (default: C<0>) that make up an "empty" write
135buffer: If the write reaches this size or gets even samller it is 202buffer: If the write reaches this size or gets even samller it is
136considered empty. 203considered empty.
137 204
205=item linger => <seconds>
206
207If non-zero (default: C<3600>), then the destructor of the
208AnyEvent::Handle object will check wether there is still outstanding write
209data and will install a watcher that will write out this data. No errors
210will be reported (this mostly matches how the operating system treats
211outstanding data at socket close time).
212
213This will not work for partial TLS data that could not yet been
214encoded. This data will be lost.
215
216=item tls => "accept" | "connect" | Net::SSLeay::SSL object
217
218When this parameter is given, it enables TLS (SSL) mode, that means it
219will start making tls handshake and will transparently encrypt/decrypt
220data.
221
222TLS mode requires Net::SSLeay to be installed (it will be loaded
223automatically when you try to create a TLS handle).
224
225For the TLS server side, use C<accept>, and for the TLS client side of a
226connection, use C<connect> mode.
227
228You can also provide your own TLS connection object, but you have
229to make sure that you call either C<Net::SSLeay::set_connect_state>
230or C<Net::SSLeay::set_accept_state> on it before you pass it to
231AnyEvent::Handle.
232
233See the C<starttls> method if you need to start TLS negotiation later.
234
235=item tls_ctx => $ssl_ctx
236
237Use the given Net::SSLeay::CTX object to create the new TLS connection
238(unless a connection object was specified directly). If this parameter is
239missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
240
241=item json => JSON or JSON::XS object
242
243This is the json coder object used by the C<json> read and write types.
244
245If you don't supply it, then AnyEvent::Handle will create and use a
246suitable one, which will write and expect UTF-8 encoded JSON texts.
247
248Note that you are responsible to depend on the JSON module if you want to
249use this functionality, as AnyEvent does not have a dependency itself.
250
251=item filter_r => $cb
252
253=item filter_w => $cb
254
255These exist, but are undocumented at this time.
256
138=back 257=back
139 258
140=cut 259=cut
141 260
142sub new { 261sub new {
146 265
147 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 266 $self->{fh} or Carp::croak "mandatory argument fh is missing";
148 267
149 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 268 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
150 269
151 $self->on_eof ((delete $self->{on_eof} ) or Carp::croak "mandatory argument on_eof is missing"); 270 if ($self->{tls}) {
271 require Net::SSLeay;
272 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
273 }
152 274
153 $self->on_error (delete $self->{on_error}) if $self->{on_error}; 275 $self->{_activity} = AnyEvent->now;
276 $self->_timeout;
277
154 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 278 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
155 $self->on_read (delete $self->{on_read} ) if $self->{on_read}; 279 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
156 280
157 $self->start_read; 281 $self->start_read
282 if $self->{on_read};
158 283
159 $self 284 $self
160} 285}
161 286
162sub _shutdown { 287sub _shutdown {
163 my ($self) = @_; 288 my ($self) = @_;
164 289
290 delete $self->{_tw};
165 delete $self->{rw}; 291 delete $self->{_rw};
166 delete $self->{ww}; 292 delete $self->{_ww};
167 delete $self->{fh}; 293 delete $self->{fh};
168}
169 294
295 $self->stoptls;
296}
297
170sub error { 298sub _error {
171 my ($self) = @_; 299 my ($self, $errno, $fatal) = @_;
172 300
173 {
174 local $!;
175 $self->_shutdown; 301 $self->_shutdown
176 } 302 if $fatal;
303
304 $! = $errno;
177 305
178 if ($self->{on_error}) { 306 if ($self->{on_error}) {
179 $self->{on_error}($self); 307 $self->{on_error}($self, $fatal);
180 } else { 308 } else {
181 die "AnyEvent::Handle uncaught fatal error: $!"; 309 Carp::croak "AnyEvent::Handle uncaught error: $!";
182 } 310 }
183} 311}
184 312
185=item $fh = $handle->fh 313=item $fh = $handle->fh
186 314
187This method returns the filehandle of the L<AnyEvent::Handle> object. 315This method returns the file handle of the L<AnyEvent::Handle> object.
188 316
189=cut 317=cut
190 318
191sub fh { $_[0]->{fh} } 319sub fh { $_[0]{fh} }
192 320
193=item $handle->on_error ($cb) 321=item $handle->on_error ($cb)
194 322
195Replace the current C<on_error> callback (see the C<on_error> constructor argument). 323Replace the current C<on_error> callback (see the C<on_error> constructor argument).
196 324
208 336
209sub on_eof { 337sub on_eof {
210 $_[0]{on_eof} = $_[1]; 338 $_[0]{on_eof} = $_[1];
211} 339}
212 340
341=item $handle->on_timeout ($cb)
342
343Replace the current C<on_timeout> callback, or disables the callback
344(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
345argument.
346
347=cut
348
349sub on_timeout {
350 $_[0]{on_timeout} = $_[1];
351}
352
353=item $handle->autocork ($boolean)
354
355Enables or disables the current autocork behaviour (see C<autocork>
356constructor argument).
357
358=cut
359
360=item $handle->no_delay ($boolean)
361
362Enables or disables the C<no_delay> setting (see constructor argument of
363the same name for details).
364
365=cut
366
367sub no_delay {
368 $_[0]{no_delay} = $_[1];
369
370 eval {
371 local $SIG{__DIE__};
372 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
373 };
374}
375
376#############################################################################
377
378=item $handle->timeout ($seconds)
379
380Configures (or disables) the inactivity timeout.
381
382=cut
383
384sub timeout {
385 my ($self, $timeout) = @_;
386
387 $self->{timeout} = $timeout;
388 $self->_timeout;
389}
390
391# reset the timeout watcher, as neccessary
392# also check for time-outs
393sub _timeout {
394 my ($self) = @_;
395
396 if ($self->{timeout}) {
397 my $NOW = AnyEvent->now;
398
399 # when would the timeout trigger?
400 my $after = $self->{_activity} + $self->{timeout} - $NOW;
401
402 # now or in the past already?
403 if ($after <= 0) {
404 $self->{_activity} = $NOW;
405
406 if ($self->{on_timeout}) {
407 $self->{on_timeout}($self);
408 } else {
409 $self->_error (&Errno::ETIMEDOUT);
410 }
411
412 # callback could have changed timeout value, optimise
413 return unless $self->{timeout};
414
415 # calculate new after
416 $after = $self->{timeout};
417 }
418
419 Scalar::Util::weaken $self;
420 return unless $self; # ->error could have destroyed $self
421
422 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
423 delete $self->{_tw};
424 $self->_timeout;
425 });
426 } else {
427 delete $self->{_tw};
428 }
429}
430
213############################################################################# 431#############################################################################
214 432
215=back 433=back
216 434
217=head2 WRITE QUEUE 435=head2 WRITE QUEUE
220for reading. 438for reading.
221 439
222The write queue is very simple: you can add data to its end, and 440The write queue is very simple: you can add data to its end, and
223AnyEvent::Handle will automatically try to get rid of it for you. 441AnyEvent::Handle will automatically try to get rid of it for you.
224 442
225When data could be writtena nd the write buffer is shorter then the low 443When data could be written and the write buffer is shorter then the low
226water mark, the C<on_drain> callback will be invoked. 444water mark, the C<on_drain> callback will be invoked.
227 445
228=over 4 446=over 4
229 447
230=item $handle->on_drain ($cb) 448=item $handle->on_drain ($cb)
249want (only limited by the available memory), as C<AnyEvent::Handle> 467want (only limited by the available memory), as C<AnyEvent::Handle>
250buffers it independently of the kernel. 468buffers it independently of the kernel.
251 469
252=cut 470=cut
253 471
254sub push_write { 472sub _drain_wbuf {
255 my ($self, $data) = @_; 473 my ($self) = @_;
256 474
257 $self->{wbuf} .= $data; 475 if (!$self->{_ww} && length $self->{wbuf}) {
258 476
259 unless ($self->{ww}) {
260 Scalar::Util::weaken $self; 477 Scalar::Util::weaken $self;
478
261 my $cb = sub { 479 my $cb = sub {
262 my $len = syswrite $self->{fh}, $self->{wbuf}; 480 my $len = syswrite $self->{fh}, $self->{wbuf};
263 481
264 if ($len > 0) { 482 if ($len >= 0) {
265 substr $self->{wbuf}, 0, $len, ""; 483 substr $self->{wbuf}, 0, $len, "";
266 484
485 $self->{_activity} = AnyEvent->now;
267 486
268 $self->{on_drain}($self) 487 $self->{on_drain}($self)
269 if $self->{low_water_mark} >= length $self->{wbuf} 488 if $self->{low_water_mark} >= length $self->{wbuf}
270 && $self->{on_drain}; 489 && $self->{on_drain};
271 490
272 delete $self->{ww} unless length $self->{wbuf}; 491 delete $self->{_ww} unless length $self->{wbuf};
273 } elsif ($! != EAGAIN && $! != EINTR) { 492 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
274 $self->error; 493 $self->_error ($!, 1);
275 } 494 }
276 }; 495 };
277 496
497 # try to write data immediately
498 $cb->() unless $self->{autocork};
499
500 # if still data left in wbuf, we need to poll
278 $self->{ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb); 501 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
279 502 if length $self->{wbuf};
280 $cb->($self);
281 }; 503 };
282} 504}
505
506our %WH;
507
508sub register_write_type($$) {
509 $WH{$_[0]} = $_[1];
510}
511
512sub push_write {
513 my $self = shift;
514
515 if (@_ > 1) {
516 my $type = shift;
517
518 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
519 ->($self, @_);
520 }
521
522 if ($self->{filter_w}) {
523 $self->{filter_w}($self, \$_[0]);
524 } else {
525 $self->{wbuf} .= $_[0];
526 $self->_drain_wbuf;
527 }
528}
529
530=item $handle->push_write (type => @args)
531
532Instead of formatting your data yourself, you can also let this module do
533the job by specifying a type and type-specific arguments.
534
535Predefined types are (if you have ideas for additional types, feel free to
536drop by and tell us):
537
538=over 4
539
540=item netstring => $string
541
542Formats the given value as netstring
543(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
544
545=cut
546
547register_write_type netstring => sub {
548 my ($self, $string) = @_;
549
550 sprintf "%d:%s,", (length $string), $string
551};
552
553=item packstring => $format, $data
554
555An octet string prefixed with an encoded length. The encoding C<$format>
556uses the same format as a Perl C<pack> format, but must specify a single
557integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
558optional C<!>, C<< < >> or C<< > >> modifier).
559
560=cut
561
562register_write_type packstring => sub {
563 my ($self, $format, $string) = @_;
564
565 pack "$format/a*", $string
566};
567
568=item json => $array_or_hashref
569
570Encodes the given hash or array reference into a JSON object. Unless you
571provide your own JSON object, this means it will be encoded to JSON text
572in UTF-8.
573
574JSON objects (and arrays) are self-delimiting, so you can write JSON at
575one end of a handle and read them at the other end without using any
576additional framing.
577
578The generated JSON text is guaranteed not to contain any newlines: While
579this module doesn't need delimiters after or between JSON texts to be
580able to read them, many other languages depend on that.
581
582A simple RPC protocol that interoperates easily with others is to send
583JSON arrays (or objects, although arrays are usually the better choice as
584they mimic how function argument passing works) and a newline after each
585JSON text:
586
587 $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
588 $handle->push_write ("\012");
589
590An AnyEvent::Handle receiver would simply use the C<json> read type and
591rely on the fact that the newline will be skipped as leading whitespace:
592
593 $handle->push_read (json => sub { my $array = $_[1]; ... });
594
595Other languages could read single lines terminated by a newline and pass
596this line into their JSON decoder of choice.
597
598=cut
599
600register_write_type json => sub {
601 my ($self, $ref) = @_;
602
603 require JSON;
604
605 $self->{json} ? $self->{json}->encode ($ref)
606 : JSON::encode_json ($ref)
607};
608
609=item storable => $reference
610
611Freezes the given reference using L<Storable> and writes it to the
612handle. Uses the C<nfreeze> format.
613
614=cut
615
616register_write_type storable => sub {
617 my ($self, $ref) = @_;
618
619 require Storable;
620
621 pack "w/a*", Storable::nfreeze ($ref)
622};
623
624=back
625
626=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
627
628This function (not method) lets you add your own types to C<push_write>.
629Whenever the given C<type> is used, C<push_write> will invoke the code
630reference with the handle object and the remaining arguments.
631
632The code reference is supposed to return a single octet string that will
633be appended to the write buffer.
634
635Note that this is a function, and all types registered this way will be
636global, so try to use unique names.
637
638=cut
283 639
284############################################################################# 640#############################################################################
285 641
286=back 642=back
287 643
294ways, the "simple" way, using only C<on_read> and the "complex" way, using 650ways, the "simple" way, using only C<on_read> and the "complex" way, using
295a queue. 651a queue.
296 652
297In the simple case, you just install an C<on_read> callback and whenever 653In the simple case, you just install an C<on_read> callback and whenever
298new data arrives, it will be called. You can then remove some data (if 654new data arrives, it will be called. You can then remove some data (if
299enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 655enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
300or not. 656leave the data there if you want to accumulate more (e.g. when only a
657partial message has been received so far).
301 658
302In the more complex case, you want to queue multiple callbacks. In this 659In the more complex case, you want to queue multiple callbacks. In this
303case, AnyEvent::Handle will call the first queued callback each time new 660case, AnyEvent::Handle will call the first queued callback each time new
304data arrives and removes it when it has done its job (see C<push_read>, 661data arrives (also the first time it is queued) and removes it when it has
305below). 662done its job (see C<push_read>, below).
306 663
307This way you can, for example, push three line-reads, followed by reading 664This way you can, for example, push three line-reads, followed by reading
308a chunk of data, and AnyEvent::Handle will execute them in order. 665a chunk of data, and AnyEvent::Handle will execute them in order.
309 666
310Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 667Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
311the specified number of bytes which give an XML datagram. 668the specified number of bytes which give an XML datagram.
312 669
313 # in the default state, expect some header bytes 670 # in the default state, expect some header bytes
314 $handle->on_read (sub { 671 $handle->on_read (sub {
315 # some data is here, now queue the length-header-read (4 octets) 672 # some data is here, now queue the length-header-read (4 octets)
316 shift->unshift_read_chunk (4, sub { 673 shift->unshift_read (chunk => 4, sub {
317 # header arrived, decode 674 # header arrived, decode
318 my $len = unpack "N", $_[1]; 675 my $len = unpack "N", $_[1];
319 676
320 # now read the payload 677 # now read the payload
321 shift->unshift_read_chunk ($len, sub { 678 shift->unshift_read (chunk => $len, sub {
322 my $xml = $_[1]; 679 my $xml = $_[1];
323 # handle xml 680 # handle xml
324 }); 681 });
325 }); 682 });
326 }); 683 });
327 684
328Example 2: Implement a client for a protocol that replies either with 685Example 2: Implement a client for a protocol that replies either with "OK"
329"OK" and another line or "ERROR" for one request, and 64 bytes for the 686and another line or "ERROR" for the first request that is sent, and 64
330second request. Due tot he availability of a full queue, we can just 687bytes for the second request. Due to the availability of a queue, we can
331pipeline sending both requests and manipulate the queue as necessary in 688just pipeline sending both requests and manipulate the queue as necessary
332the callbacks: 689in the callbacks.
333 690
334 # request one 691When the first callback is called and sees an "OK" response, it will
692C<unshift> another line-read. This line-read will be queued I<before> the
69364-byte chunk callback.
694
695 # request one, returns either "OK + extra line" or "ERROR"
335 $handle->push_write ("request 1\015\012"); 696 $handle->push_write ("request 1\015\012");
336 697
337 # we expect "ERROR" or "OK" as response, so push a line read 698 # we expect "ERROR" or "OK" as response, so push a line read
338 $handle->push_read_line (sub { 699 $handle->push_read (line => sub {
339 # if we got an "OK", we have to _prepend_ another line, 700 # if we got an "OK", we have to _prepend_ another line,
340 # so it will be read before the second request reads its 64 bytes 701 # so it will be read before the second request reads its 64 bytes
341 # which are already in the queue when this callback is called 702 # which are already in the queue when this callback is called
342 # we don't do this in case we got an error 703 # we don't do this in case we got an error
343 if ($_[1] eq "OK") { 704 if ($_[1] eq "OK") {
344 $_[0]->unshift_read_line (sub { 705 $_[0]->unshift_read (line => sub {
345 my $response = $_[1]; 706 my $response = $_[1];
346 ... 707 ...
347 }); 708 });
348 } 709 }
349 }); 710 });
350 711
351 # request two 712 # request two, simply returns 64 octets
352 $handle->push_write ("request 2\015\012"); 713 $handle->push_write ("request 2\015\012");
353 714
354 # simply read 64 bytes, always 715 # simply read 64 bytes, always
355 $handle->push_read_chunk (64, sub { 716 $handle->push_read (chunk => 64, sub {
356 my $response = $_[1]; 717 my $response = $_[1];
357 ... 718 ...
358 }); 719 });
359 720
360=over 4 721=over 4
362=cut 723=cut
363 724
364sub _drain_rbuf { 725sub _drain_rbuf {
365 my ($self) = @_; 726 my ($self) = @_;
366 727
367 return if $self->{in_drain};
368 local $self->{in_drain} = 1; 728 local $self->{_in_drain} = 1;
369 729
730 if (
731 defined $self->{rbuf_max}
732 && $self->{rbuf_max} < length $self->{rbuf}
733 ) {
734 return $self->_error (&Errno::ENOSPC, 1);
735 }
736
737 while () {
370 while (my $len = length $self->{rbuf}) { 738 my $len = length $self->{rbuf};
371 no strict 'refs'; 739
372 if (my $cb = shift @{ $self->{queue} }) { 740 if (my $cb = shift @{ $self->{_queue} }) {
373 if (!$cb->($self)) { 741 unless ($cb->($self)) {
374 if ($self->{eof}) { 742 if ($self->{_eof}) {
375 # no progress can be made (not enough data and no data forthcoming) 743 # no progress can be made (not enough data and no data forthcoming)
376 $! = &Errno::EPIPE; return $self->error; 744 $self->_error (&Errno::EPIPE, 1), last;
377 } 745 }
378 746
379 unshift @{ $self->{queue} }, $cb; 747 unshift @{ $self->{_queue} }, $cb;
380 return; 748 last;
381 } 749 }
382 } elsif ($self->{on_read}) { 750 } elsif ($self->{on_read}) {
751 last unless $len;
752
383 $self->{on_read}($self); 753 $self->{on_read}($self);
384 754
385 if ( 755 if (
386 $self->{eof} # if no further data will arrive
387 && $len == length $self->{rbuf} # and no data has been consumed 756 $len == length $self->{rbuf} # if no data has been consumed
388 && !@{ $self->{queue} } # and the queue is still empty 757 && !@{ $self->{_queue} } # and the queue is still empty
389 && $self->{on_read} # and we still want to read data 758 && $self->{on_read} # but we still have on_read
390 ) { 759 ) {
760 # no further data will arrive
391 # then no progress can be made 761 # so no progress can be made
392 $! = &Errno::EPIPE; return $self->error; 762 $self->_error (&Errno::EPIPE, 1), last
763 if $self->{_eof};
764
765 last; # more data might arrive
393 } 766 }
394 } else { 767 } else {
395 # read side becomes idle 768 # read side becomes idle
396 delete $self->{rw}; 769 delete $self->{_rw};
397 return; 770 last;
398 } 771 }
399 } 772 }
400 773
401 if ($self->{eof}) { 774 if ($self->{_eof}) {
402 $self->_shutdown; 775 if ($self->{on_eof}) {
403 $self->{on_eof}($self); 776 $self->{on_eof}($self)
777 } else {
778 $self->_error (0, 1);
779 }
780 }
781
782 # may need to restart read watcher
783 unless ($self->{_rw}) {
784 $self->start_read
785 if $self->{on_read} || @{ $self->{_queue} };
404 } 786 }
405} 787}
406 788
407=item $handle->on_read ($cb) 789=item $handle->on_read ($cb)
408 790
414 796
415sub on_read { 797sub on_read {
416 my ($self, $cb) = @_; 798 my ($self, $cb) = @_;
417 799
418 $self->{on_read} = $cb; 800 $self->{on_read} = $cb;
801 $self->_drain_rbuf if $cb && !$self->{_in_drain};
419} 802}
420 803
421=item $handle->rbuf 804=item $handle->rbuf
422 805
423Returns the read buffer (as a modifiable lvalue). 806Returns the read buffer (as a modifiable lvalue).
442Append the given callback to the end of the queue (C<push_read>) or 825Append the given callback to the end of the queue (C<push_read>) or
443prepend it (C<unshift_read>). 826prepend it (C<unshift_read>).
444 827
445The callback is called each time some additional read data arrives. 828The callback is called each time some additional read data arrives.
446 829
447It must check wether enough data is in the read buffer already. 830It must check whether enough data is in the read buffer already.
448 831
449If not enough data is available, it must return the empty list or a false 832If not enough data is available, it must return the empty list or a false
450value, in which case it will be called repeatedly until enough data is 833value, in which case it will be called repeatedly until enough data is
451available (or an error condition is detected). 834available (or an error condition is detected).
452 835
454interested in (which can be none at all) and return a true value. After returning 837interested in (which can be none at all) and return a true value. After returning
455true, it will be removed from the queue. 838true, it will be removed from the queue.
456 839
457=cut 840=cut
458 841
842our %RH;
843
844sub register_read_type($$) {
845 $RH{$_[0]} = $_[1];
846}
847
459sub push_read { 848sub push_read {
460 my ($self, $cb) = @_; 849 my $self = shift;
850 my $cb = pop;
461 851
852 if (@_) {
853 my $type = shift;
854
855 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
856 ->($self, $cb, @_);
857 }
858
462 push @{ $self->{queue} }, $cb; 859 push @{ $self->{_queue} }, $cb;
463 $self->_drain_rbuf; 860 $self->_drain_rbuf unless $self->{_in_drain};
464} 861}
465 862
466sub unshift_read { 863sub unshift_read {
467 my ($self, $cb) = @_; 864 my $self = shift;
865 my $cb = pop;
468 866
867 if (@_) {
868 my $type = shift;
869
870 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
871 ->($self, $cb, @_);
872 }
873
874
469 push @{ $self->{queue} }, $cb; 875 unshift @{ $self->{_queue} }, $cb;
470 $self->_drain_rbuf; 876 $self->_drain_rbuf unless $self->{_in_drain};
471} 877}
472 878
473=item $handle->push_read_chunk ($len, $cb->($self, $data)) 879=item $handle->push_read (type => @args, $cb)
474 880
475=item $handle->unshift_read_chunk ($len, $cb->($self, $data)) 881=item $handle->unshift_read (type => @args, $cb)
476 882
477Append the given callback to the end of the queue (C<push_read_chunk>) or 883Instead of providing a callback that parses the data itself you can chose
478prepend it (C<unshift_read_chunk>). 884between a number of predefined parsing formats, for chunks of data, lines
885etc.
479 886
480The callback will be called only once C<$len> bytes have been read, and 887Predefined types are (if you have ideas for additional types, feel free to
481these C<$len> bytes will be passed to the callback. 888drop by and tell us):
482 889
483=cut 890=over 4
484 891
485sub _read_chunk($$) { 892=item chunk => $octets, $cb->($handle, $data)
893
894Invoke the callback only once C<$octets> bytes have been read. Pass the
895data read to the callback. The callback will never be called with less
896data.
897
898Example: read 2 bytes.
899
900 $handle->push_read (chunk => 2, sub {
901 warn "yay ", unpack "H*", $_[1];
902 });
903
904=cut
905
906register_read_type chunk => sub {
486 my ($self, $len, $cb) = @_; 907 my ($self, $cb, $len) = @_;
487 908
488 sub { 909 sub {
489 $len <= length $_[0]{rbuf} or return; 910 $len <= length $_[0]{rbuf} or return;
490 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 911 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
491 1 912 1
492 } 913 }
493} 914};
494 915
495sub push_read_chunk { 916=item line => [$eol, ]$cb->($handle, $line, $eol)
496 $_[0]->push_read (&_read_chunk);
497}
498
499
500sub unshift_read_chunk {
501 $_[0]->unshift_read (&_read_chunk);
502}
503
504=item $handle->push_read_line ([$eol, ]$cb->($self, $line, $eol))
505
506=item $handle->unshift_read_line ([$eol, ]$cb->($self, $line, $eol))
507
508Append the given callback to the end of the queue (C<push_read_line>) or
509prepend it (C<unshift_read_line>).
510 917
511The callback will be called only once a full line (including the end of 918The callback will be called only once a full line (including the end of
512line marker, C<$eol>) has been read. This line (excluding the end of line 919line marker, C<$eol>) has been read. This line (excluding the end of line
513marker) will be passed to the callback as second argument (C<$line>), and 920marker) will be passed to the callback as second argument (C<$line>), and
514the end of line marker as the third argument (C<$eol>). 921the end of line marker as the third argument (C<$eol>).
525Partial lines at the end of the stream will never be returned, as they are 932Partial lines at the end of the stream will never be returned, as they are
526not marked by the end of line marker. 933not marked by the end of line marker.
527 934
528=cut 935=cut
529 936
530sub _read_line($$) { 937register_read_type line => sub {
531 my $self = shift; 938 my ($self, $cb, $eol) = @_;
532 my $cb = pop;
533 my $eol = @_ ? shift : qr|(\015?\012)|;
534 my $pos;
535 939
940 if (@_ < 3) {
941 # this is more than twice as fast as the generic code below
942 sub {
943 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
944
945 $cb->($_[0], $1, $2);
946 1
947 }
948 } else {
536 $eol = qr|(\Q$eol\E)| unless ref $eol; 949 $eol = quotemeta $eol unless ref $eol;
537 $eol = qr|^(.*?)($eol)|; 950 $eol = qr|^(.*?)($eol)|s;
951
952 sub {
953 $_[0]{rbuf} =~ s/$eol// or return;
954
955 $cb->($_[0], $1, $2);
956 1
957 }
958 }
959};
960
961=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
962
963Makes a regex match against the regex object C<$accept> and returns
964everything up to and including the match.
965
966Example: read a single line terminated by '\n'.
967
968 $handle->push_read (regex => qr<\n>, sub { ... });
969
970If C<$reject> is given and not undef, then it determines when the data is
971to be rejected: it is matched against the data when the C<$accept> regex
972does not match and generates an C<EBADMSG> error when it matches. This is
973useful to quickly reject wrong data (to avoid waiting for a timeout or a
974receive buffer overflow).
975
976Example: expect a single decimal number followed by whitespace, reject
977anything else (not the use of an anchor).
978
979 $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
980
981If C<$skip> is given and not C<undef>, then it will be matched against
982the receive buffer when neither C<$accept> nor C<$reject> match,
983and everything preceding and including the match will be accepted
984unconditionally. This is useful to skip large amounts of data that you
985know cannot be matched, so that the C<$accept> or C<$reject> regex do not
986have to start matching from the beginning. This is purely an optimisation
987and is usually worth only when you expect more than a few kilobytes.
988
989Example: expect a http header, which ends at C<\015\012\015\012>. Since we
990expect the header to be very large (it isn't in practise, but...), we use
991a skip regex to skip initial portions. The skip regex is tricky in that
992it only accepts something not ending in either \015 or \012, as these are
993required for the accept regex.
994
995 $handle->push_read (regex =>
996 qr<\015\012\015\012>,
997 undef, # no reject
998 qr<^.*[^\015\012]>,
999 sub { ... });
1000
1001=cut
1002
1003register_read_type regex => sub {
1004 my ($self, $cb, $accept, $reject, $skip) = @_;
1005
1006 my $data;
1007 my $rbuf = \$self->{rbuf};
538 1008
539 sub { 1009 sub {
540 $_[0]{rbuf} =~ s/$eol// or return; 1010 # accept
1011 if ($$rbuf =~ $accept) {
1012 $data .= substr $$rbuf, 0, $+[0], "";
1013 $cb->($self, $data);
1014 return 1;
1015 }
1016
1017 # reject
1018 if ($reject && $$rbuf =~ $reject) {
1019 $self->_error (&Errno::EBADMSG);
1020 }
541 1021
542 $cb->($_[0], $1, $2); 1022 # skip
1023 if ($skip && $$rbuf =~ $skip) {
1024 $data .= substr $$rbuf, 0, $+[0], "";
1025 }
1026
1027 ()
1028 }
1029};
1030
1031=item netstring => $cb->($handle, $string)
1032
1033A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1034
1035Throws an error with C<$!> set to EBADMSG on format violations.
1036
1037=cut
1038
1039register_read_type netstring => sub {
1040 my ($self, $cb) = @_;
1041
1042 sub {
1043 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1044 if ($_[0]{rbuf} =~ /[^0-9]/) {
1045 $self->_error (&Errno::EBADMSG);
1046 }
1047 return;
1048 }
1049
1050 my $len = $1;
1051
1052 $self->unshift_read (chunk => $len, sub {
1053 my $string = $_[1];
1054 $_[0]->unshift_read (chunk => 1, sub {
1055 if ($_[1] eq ",") {
1056 $cb->($_[0], $string);
1057 } else {
1058 $self->_error (&Errno::EBADMSG);
1059 }
1060 });
1061 });
1062
543 1 1063 1
544 } 1064 }
545} 1065};
546 1066
547sub push_read_line { 1067=item packstring => $format, $cb->($handle, $string)
548 $_[0]->push_read (&_read_line);
549}
550 1068
551sub unshift_read_line { 1069An octet string prefixed with an encoded length. The encoding C<$format>
552 $_[0]->unshift_read (&_read_line); 1070uses the same format as a Perl C<pack> format, but must specify a single
553} 1071integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1072optional C<!>, C<< < >> or C<< > >> modifier).
1073
1074DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>.
1075
1076Example: read a block of data prefixed by its length in BER-encoded
1077format (very efficient).
1078
1079 $handle->push_read (packstring => "w", sub {
1080 my ($handle, $data) = @_;
1081 });
1082
1083=cut
1084
1085register_read_type packstring => sub {
1086 my ($self, $cb, $format) = @_;
1087
1088 sub {
1089 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1090 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1091 or return;
1092
1093 $format = length pack $format, $len;
1094
1095 # bypass unshift if we already have the remaining chunk
1096 if ($format + $len <= length $_[0]{rbuf}) {
1097 my $data = substr $_[0]{rbuf}, $format, $len;
1098 substr $_[0]{rbuf}, 0, $format + $len, "";
1099 $cb->($_[0], $data);
1100 } else {
1101 # remove prefix
1102 substr $_[0]{rbuf}, 0, $format, "";
1103
1104 # read remaining chunk
1105 $_[0]->unshift_read (chunk => $len, $cb);
1106 }
1107
1108 1
1109 }
1110};
1111
1112=item json => $cb->($handle, $hash_or_arrayref)
1113
1114Reads a JSON object or array, decodes it and passes it to the callback.
1115
1116If a C<json> object was passed to the constructor, then that will be used
1117for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1118
1119This read type uses the incremental parser available with JSON version
11202.09 (and JSON::XS version 2.2) and above. You have to provide a
1121dependency on your own: this module will load the JSON module, but
1122AnyEvent does not depend on it itself.
1123
1124Since JSON texts are fully self-delimiting, the C<json> read and write
1125types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1126the C<json> write type description, above, for an actual example.
1127
1128=cut
1129
1130register_read_type json => sub {
1131 my ($self, $cb) = @_;
1132
1133 require JSON;
1134
1135 my $data;
1136 my $rbuf = \$self->{rbuf};
1137
1138 my $json = $self->{json} ||= JSON->new->utf8;
1139
1140 sub {
1141 my $ref = $json->incr_parse ($self->{rbuf});
1142
1143 if ($ref) {
1144 $self->{rbuf} = $json->incr_text;
1145 $json->incr_text = "";
1146 $cb->($self, $ref);
1147
1148 1
1149 } else {
1150 $self->{rbuf} = "";
1151 ()
1152 }
1153 }
1154};
1155
1156=item storable => $cb->($handle, $ref)
1157
1158Deserialises a L<Storable> frozen representation as written by the
1159C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1160data).
1161
1162Raises C<EBADMSG> error if the data could not be decoded.
1163
1164=cut
1165
1166register_read_type storable => sub {
1167 my ($self, $cb) = @_;
1168
1169 require Storable;
1170
1171 sub {
1172 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1173 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1174 or return;
1175
1176 my $format = length pack "w", $len;
1177
1178 # bypass unshift if we already have the remaining chunk
1179 if ($format + $len <= length $_[0]{rbuf}) {
1180 my $data = substr $_[0]{rbuf}, $format, $len;
1181 substr $_[0]{rbuf}, 0, $format + $len, "";
1182 $cb->($_[0], Storable::thaw ($data));
1183 } else {
1184 # remove prefix
1185 substr $_[0]{rbuf}, 0, $format, "";
1186
1187 # read remaining chunk
1188 $_[0]->unshift_read (chunk => $len, sub {
1189 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1190 $cb->($_[0], $ref);
1191 } else {
1192 $self->_error (&Errno::EBADMSG);
1193 }
1194 });
1195 }
1196
1197 1
1198 }
1199};
1200
1201=back
1202
1203=item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1204
1205This function (not method) lets you add your own types to C<push_read>.
1206
1207Whenever the given C<type> is used, C<push_read> will invoke the code
1208reference with the handle object, the callback and the remaining
1209arguments.
1210
1211The code reference is supposed to return a callback (usually a closure)
1212that works as a plain read callback (see C<< ->push_read ($cb) >>).
1213
1214It should invoke the passed callback when it is done reading (remember to
1215pass C<$handle> as first argument as all other callbacks do that).
1216
1217Note that this is a function, and all types registered this way will be
1218global, so try to use unique names.
1219
1220For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1221search for C<register_read_type>)).
554 1222
555=item $handle->stop_read 1223=item $handle->stop_read
556 1224
557=item $handle->start_read 1225=item $handle->start_read
558 1226
559In rare cases you actually do not want to read anything form the 1227In rare cases you actually do not want to read anything from the
560socket. In this case you can call C<stop_read>. Neither C<on_read> no 1228socket. In this case you can call C<stop_read>. Neither C<on_read> nor
561any queued callbacks will be executed then. To start readign again, call 1229any queued callbacks will be executed then. To start reading again, call
562C<start_read>. 1230C<start_read>.
1231
1232Note that AnyEvent::Handle will automatically C<start_read> for you when
1233you change the C<on_read> callback or push/unshift a read callback, and it
1234will automatically C<stop_read> for you when neither C<on_read> is set nor
1235there are any read requests in the queue.
563 1236
564=cut 1237=cut
565 1238
566sub stop_read { 1239sub stop_read {
567 my ($self) = @_; 1240 my ($self) = @_;
568 1241
569 delete $self->{rw}; 1242 delete $self->{_rw};
570} 1243}
571 1244
572sub start_read { 1245sub start_read {
573 my ($self) = @_; 1246 my ($self) = @_;
574 1247
575 unless ($self->{rw} || $self->{eof}) { 1248 unless ($self->{_rw} || $self->{_eof}) {
576 Scalar::Util::weaken $self; 1249 Scalar::Util::weaken $self;
577 1250
578 $self->{rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1251 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1252 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
579 my $len = sysread $self->{fh}, $self->{rbuf}, $self->{read_size} || 8192, length $self->{rbuf}; 1253 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
580 1254
581 if ($len > 0) { 1255 if ($len > 0) {
582 if (defined $self->{rbuf_max}) { 1256 $self->{_activity} = AnyEvent->now;
583 if ($self->{rbuf_max} < length $self->{rbuf}) { 1257
584 $! = &Errno::ENOSPC; return $self->error; 1258 $self->{filter_r}
585 } 1259 ? $self->{filter_r}($self, $rbuf)
586 } 1260 : $self->{_in_drain} || $self->_drain_rbuf;
587 1261
588 } elsif (defined $len) { 1262 } elsif (defined $len) {
589 $self->{eof} = 1;
590 delete $self->{rw}; 1263 delete $self->{_rw};
1264 $self->{_eof} = 1;
1265 $self->_drain_rbuf unless $self->{_in_drain};
591 1266
592 } elsif ($! != EAGAIN && $! != EINTR) { 1267 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
593 return $self->error; 1268 return $self->_error ($!, 1);
594 } 1269 }
595
596 $self->_drain_rbuf;
597 }); 1270 });
598 } 1271 }
599} 1272}
600 1273
1274sub _dotls {
1275 my ($self) = @_;
1276
1277 my $buf;
1278
1279 if (length $self->{_tls_wbuf}) {
1280 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1281 substr $self->{_tls_wbuf}, 0, $len, "";
1282 }
1283 }
1284
1285 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1286 $self->{wbuf} .= $buf;
1287 $self->_drain_wbuf;
1288 }
1289
1290 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1291 if (length $buf) {
1292 $self->{rbuf} .= $buf;
1293 $self->_drain_rbuf unless $self->{_in_drain};
1294 } else {
1295 # let's treat SSL-eof as we treat normal EOF
1296 $self->{_eof} = 1;
1297 $self->_shutdown;
1298 return;
1299 }
1300 }
1301
1302 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1303
1304 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1305 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1306 return $self->_error ($!, 1);
1307 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1308 return $self->_error (&Errno::EIO, 1);
1309 }
1310
1311 # all others are fine for our purposes
1312 }
1313}
1314
1315=item $handle->starttls ($tls[, $tls_ctx])
1316
1317Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1318object is created, you can also do that at a later time by calling
1319C<starttls>.
1320
1321The first argument is the same as the C<tls> constructor argument (either
1322C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1323
1324The second argument is the optional C<Net::SSLeay::CTX> object that is
1325used when AnyEvent::Handle has to create its own TLS connection object.
1326
1327The TLS connection object will end up in C<< $handle->{tls} >> after this
1328call and can be used or changed to your liking. Note that the handshake
1329might have already started when this function returns.
1330
1331=cut
1332
1333sub starttls {
1334 my ($self, $ssl, $ctx) = @_;
1335
1336 $self->stoptls;
1337
1338 if ($ssl eq "accept") {
1339 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1340 Net::SSLeay::set_accept_state ($ssl);
1341 } elsif ($ssl eq "connect") {
1342 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1343 Net::SSLeay::set_connect_state ($ssl);
1344 }
1345
1346 $self->{tls} = $ssl;
1347
1348 # basically, this is deep magic (because SSL_read should have the same issues)
1349 # but the openssl maintainers basically said: "trust us, it just works".
1350 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1351 # and mismaintained ssleay-module doesn't even offer them).
1352 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1353 Net::SSLeay::CTX_set_mode ($self->{tls},
1354 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1355 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1356
1357 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1358 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1359
1360 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1361
1362 $self->{filter_w} = sub {
1363 $_[0]{_tls_wbuf} .= ${$_[1]};
1364 &_dotls;
1365 };
1366 $self->{filter_r} = sub {
1367 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1368 &_dotls;
1369 };
1370}
1371
1372=item $handle->stoptls
1373
1374Destroys the SSL connection, if any. Partial read or write data will be
1375lost.
1376
1377=cut
1378
1379sub stoptls {
1380 my ($self) = @_;
1381
1382 Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
1383
1384 delete $self->{_rbio};
1385 delete $self->{_wbio};
1386 delete $self->{_tls_wbuf};
1387 delete $self->{filter_r};
1388 delete $self->{filter_w};
1389}
1390
1391sub DESTROY {
1392 my $self = shift;
1393
1394 $self->stoptls;
1395
1396 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1397
1398 if ($linger && length $self->{wbuf}) {
1399 my $fh = delete $self->{fh};
1400 my $wbuf = delete $self->{wbuf};
1401
1402 my @linger;
1403
1404 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1405 my $len = syswrite $fh, $wbuf, length $wbuf;
1406
1407 if ($len > 0) {
1408 substr $wbuf, 0, $len, "";
1409 } else {
1410 @linger = (); # end
1411 }
1412 });
1413 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1414 @linger = ();
1415 });
1416 }
1417}
1418
1419=item AnyEvent::Handle::TLS_CTX
1420
1421This function creates and returns the Net::SSLeay::CTX object used by
1422default for TLS mode.
1423
1424The context is created like this:
1425
1426 Net::SSLeay::load_error_strings;
1427 Net::SSLeay::SSLeay_add_ssl_algorithms;
1428 Net::SSLeay::randomize;
1429
1430 my $CTX = Net::SSLeay::CTX_new;
1431
1432 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1433
1434=cut
1435
1436our $TLS_CTX;
1437
1438sub TLS_CTX() {
1439 $TLS_CTX || do {
1440 require Net::SSLeay;
1441
1442 Net::SSLeay::load_error_strings ();
1443 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1444 Net::SSLeay::randomize ();
1445
1446 $TLS_CTX = Net::SSLeay::CTX_new ();
1447
1448 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1449
1450 $TLS_CTX
1451 }
1452}
1453
601=back 1454=back
602 1455
1456=head1 SUBCLASSING AnyEvent::Handle
1457
1458In many cases, you might want to subclass AnyEvent::Handle.
1459
1460To make this easier, a given version of AnyEvent::Handle uses these
1461conventions:
1462
1463=over 4
1464
1465=item * all constructor arguments become object members.
1466
1467At least initially, when you pass a C<tls>-argument to the constructor it
1468will end up in C<< $handle->{tls} >>. Those members might be changed or
1469mutated later on (for example C<tls> will hold the TLS connection object).
1470
1471=item * other object member names are prefixed with an C<_>.
1472
1473All object members not explicitly documented (internal use) are prefixed
1474with an underscore character, so the remaining non-C<_>-namespace is free
1475for use for subclasses.
1476
1477=item * all members not documented here and not prefixed with an underscore
1478are free to use in subclasses.
1479
1480Of course, new versions of AnyEvent::Handle may introduce more "public"
1481member variables, but thats just life, at least it is documented.
1482
1483=back
1484
603=head1 AUTHOR 1485=head1 AUTHOR
604 1486
605Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>. 1487Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
606 1488
607=cut 1489=cut

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines