ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.43 by root, Wed May 28 23:57:38 2008 UTC vs.
Revision 1.103 by root, Thu Oct 30 03:43:14 2008 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent (); 6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK); 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 8use Scalar::Util ();
9use Carp (); 9use Carp ();
10use Fcntl (); 10use Fcntl ();
11use Errno qw(EAGAIN EINTR); 11use Errno qw(EAGAIN EINTR);
12use Time::HiRes qw(time);
13 12
14=head1 NAME 13=head1 NAME
15 14
16AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
17 16
18=cut 17=cut
19 18
20our $VERSION = '0.04'; 19our $VERSION = 4.31;
21 20
22=head1 SYNOPSIS 21=head1 SYNOPSIS
23 22
24 use AnyEvent; 23 use AnyEvent;
25 use AnyEvent::Handle; 24 use AnyEvent::Handle;
50 49
51This module is a helper module to make it easier to do event-based I/O on 50This module is a helper module to make it easier to do event-based I/O on
52filehandles. For utility functions for doing non-blocking connects and accepts 51filehandles. For utility functions for doing non-blocking connects and accepts
53on sockets see L<AnyEvent::Util>. 52on sockets see L<AnyEvent::Util>.
54 53
54The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples.
56
55In the following, when the documentation refers to of "bytes" then this 57In the following, when the documentation refers to of "bytes" then this
56means characters. As sysread and syswrite are used for all I/O, their 58means characters. As sysread and syswrite are used for all I/O, their
57treatment of characters applies to this module as well. 59treatment of characters applies to this module as well.
58 60
59All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
71 73
72=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [MANDATORY]
73 75
74The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
75 77
76NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
77AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
78 81
79=item on_eof => $cb->($handle) 82=item on_eof => $cb->($handle)
80 83
81Set the callback to be called on EOF. 84Set the callback to be called when an end-of-file condition is detected,
85i.e. in the case of a socket, when the other side has closed the
86connection cleanly.
82 87
88For sockets, this just means that the other side has stopped sending data,
89you can still try to write data, and, in fact, one can return from the EOF
90callback and continue writing data, as only the read part has been shut
91down.
92
83While not mandatory, it is highly recommended to set an eof callback, 93While not mandatory, it is I<highly> recommended to set an EOF callback,
84otherwise you might end up with a closed socket while you are still 94otherwise you might end up with a closed socket while you are still
85waiting for data. 95waiting for data.
86 96
97If an EOF condition has been detected but no C<on_eof> callback has been
98set, then a fatal error will be raised with C<$!> set to <0>.
99
87=item on_error => $cb->($handle) 100=item on_error => $cb->($handle, $fatal)
88 101
89This is the fatal error callback, that is called when, well, a fatal error 102This is the error callback, which is called when, well, some error
90occurs, such as not being able to resolve the hostname, failure to connect 103occured, such as not being able to resolve the hostname, failure to
91or a read error. 104connect or a read error.
92 105
93The object will not be in a usable state when this callback has been 106Some errors are fatal (which is indicated by C<$fatal> being true). On
94called. 107fatal errors the handle object will be shut down and will not be usable
108(but you are free to look at the current C<< ->rbuf >>). Examples of fatal
109errors are an EOF condition with active (but unsatisifable) read watchers
110(C<EPIPE>) or I/O errors.
111
112Non-fatal errors can be retried by simply returning, but it is recommended
113to simply ignore this parameter and instead abondon the handle object
114when this callback is invoked. Examples of non-fatal errors are timeouts
115C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
95 116
96On callback entrance, the value of C<$!> contains the operating system 117On callback entrance, the value of C<$!> contains the operating system
97error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 118error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
98 119
99The callback should throw an exception. If it returns, then
100AnyEvent::Handle will C<croak> for you.
101
102While not mandatory, it is I<highly> recommended to set this callback, as 120While not mandatory, it is I<highly> recommended to set this callback, as
103you will not be notified of errors otherwise. The default simply calls 121you will not be notified of errors otherwise. The default simply calls
104die. 122C<croak>.
105 123
106=item on_read => $cb->($handle) 124=item on_read => $cb->($handle)
107 125
108This sets the default read callback, which is called when data arrives 126This sets the default read callback, which is called when data arrives
109and no read request is in the queue. 127and no read request is in the queue (unlike read queue callbacks, this
128callback will only be called when at least one octet of data is in the
129read buffer).
110 130
111To access (and remove data from) the read buffer, use the C<< ->rbuf >> 131To access (and remove data from) the read buffer, use the C<< ->rbuf >>
112method or access the C<$handle->{rbuf}> member directly. 132method or access the C<$handle->{rbuf}> member directly.
113 133
114When an EOF condition is detected then AnyEvent::Handle will first try to 134When an EOF condition is detected then AnyEvent::Handle will first try to
121This sets the callback that is called when the write buffer becomes empty 141This sets the callback that is called when the write buffer becomes empty
122(or when the callback is set and the buffer is empty already). 142(or when the callback is set and the buffer is empty already).
123 143
124To append to the write buffer, use the C<< ->push_write >> method. 144To append to the write buffer, use the C<< ->push_write >> method.
125 145
146This callback is useful when you don't want to put all of your write data
147into the queue at once, for example, when you want to write the contents
148of some file to the socket you might not want to read the whole file into
149memory and push it into the queue, but instead only read more data from
150the file when the write queue becomes empty.
151
126=item timeout => $fractional_seconds 152=item timeout => $fractional_seconds
127 153
128If non-zero, then this enables an "inactivity" timeout: whenever this many 154If non-zero, then this enables an "inactivity" timeout: whenever this many
129seconds pass without a successful read or write on the underlying file 155seconds pass without a successful read or write on the underlying file
130handle, the C<on_timeout> callback will be invoked (and if that one is 156handle, the C<on_timeout> callback will be invoked (and if that one is
131missing, an C<ETIMEDOUT> errror will be raised). 157missing, a non-fatal C<ETIMEDOUT> error will be raised).
132 158
133Note that timeout processing is also active when you currently do not have 159Note that timeout processing is also active when you currently do not have
134any outstanding read or write requests: If you plan to keep the connection 160any outstanding read or write requests: If you plan to keep the connection
135idle then you should disable the timout temporarily or ignore the timeout 161idle then you should disable the timout temporarily or ignore the timeout
136in the C<on_timeout> callback. 162in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
163restart the timeout.
137 164
138Zero (the default) disables this timeout. 165Zero (the default) disables this timeout.
139 166
140=item on_timeout => $cb->($handle) 167=item on_timeout => $cb->($handle)
141 168
145 172
146=item rbuf_max => <bytes> 173=item rbuf_max => <bytes>
147 174
148If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 175If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
149when the read buffer ever (strictly) exceeds this size. This is useful to 176when the read buffer ever (strictly) exceeds this size. This is useful to
150avoid denial-of-service attacks. 177avoid some forms of denial-of-service attacks.
151 178
152For example, a server accepting connections from untrusted sources should 179For example, a server accepting connections from untrusted sources should
153be configured to accept only so-and-so much data that it cannot act on 180be configured to accept only so-and-so much data that it cannot act on
154(for example, when expecting a line, an attacker could send an unlimited 181(for example, when expecting a line, an attacker could send an unlimited
155amount of data without a callback ever being called as long as the line 182amount of data without a callback ever being called as long as the line
156isn't finished). 183isn't finished).
157 184
185=item autocork => <boolean>
186
187When disabled (the default), then C<push_write> will try to immediately
188write the data to the handle, if possible. This avoids having to register
189a write watcher and wait for the next event loop iteration, but can
190be inefficient if you write multiple small chunks (on the wire, this
191disadvantage is usually avoided by your kernel's nagle algorithm, see
192C<no_delay>, but this option can save costly syscalls).
193
194When enabled, then writes will always be queued till the next event loop
195iteration. This is efficient when you do many small writes per iteration,
196but less efficient when you do a single write only per iteration (or when
197the write buffer often is full). It also increases write latency.
198
199=item no_delay => <boolean>
200
201When doing small writes on sockets, your operating system kernel might
202wait a bit for more data before actually sending it out. This is called
203the Nagle algorithm, and usually it is beneficial.
204
205In some situations you want as low a delay as possible, which can be
206accomplishd by setting this option to a true value.
207
208The default is your opertaing system's default behaviour (most likely
209enabled), this option explicitly enables or disables it, if possible.
210
158=item read_size => <bytes> 211=item read_size => <bytes>
159 212
160The default read block size (the amount of bytes this module will try to read 213The default read block size (the amount of bytes this module will
161on each [loop iteration). Default: C<4096>. 214try to read during each loop iteration, which affects memory
215requirements). Default: C<8192>.
162 216
163=item low_water_mark => <bytes> 217=item low_water_mark => <bytes>
164 218
165Sets the amount of bytes (default: C<0>) that make up an "empty" write 219Sets the amount of bytes (default: C<0>) that make up an "empty" write
166buffer: If the write reaches this size or gets even samller it is 220buffer: If the write reaches this size or gets even samller it is
167considered empty. 221considered empty.
168 222
223Sometimes it can be beneficial (for performance reasons) to add data to
224the write buffer before it is fully drained, but this is a rare case, as
225the operating system kernel usually buffers data as well, so the default
226is good in almost all cases.
227
228=item linger => <seconds>
229
230If non-zero (default: C<3600>), then the destructor of the
231AnyEvent::Handle object will check whether there is still outstanding
232write data and will install a watcher that will write this data to the
233socket. No errors will be reported (this mostly matches how the operating
234system treats outstanding data at socket close time).
235
236This will not work for partial TLS data that could not be encoded
237yet. This data will be lost. Calling the C<stoptls> method in time might
238help.
239
169=item tls => "accept" | "connect" | Net::SSLeay::SSL object 240=item tls => "accept" | "connect" | Net::SSLeay::SSL object
170 241
171When this parameter is given, it enables TLS (SSL) mode, that means it 242When this parameter is given, it enables TLS (SSL) mode, that means
172will start making tls handshake and will transparently encrypt/decrypt 243AnyEvent will start a TLS handshake as soon as the conenction has been
173data. 244established and will transparently encrypt/decrypt data afterwards.
174 245
175TLS mode requires Net::SSLeay to be installed (it will be loaded 246TLS mode requires Net::SSLeay to be installed (it will be loaded
176automatically when you try to create a TLS handle). 247automatically when you try to create a TLS handle): this module doesn't
248have a dependency on that module, so if your module requires it, you have
249to add the dependency yourself.
177 250
178For the TLS server side, use C<accept>, and for the TLS client side of a 251Unlike TCP, TLS has a server and client side: for the TLS server side, use
179connection, use C<connect> mode. 252C<accept>, and for the TLS client side of a connection, use C<connect>
253mode.
180 254
181You can also provide your own TLS connection object, but you have 255You can also provide your own TLS connection object, but you have
182to make sure that you call either C<Net::SSLeay::set_connect_state> 256to make sure that you call either C<Net::SSLeay::set_connect_state>
183or C<Net::SSLeay::set_accept_state> on it before you pass it to 257or C<Net::SSLeay::set_accept_state> on it before you pass it to
184AnyEvent::Handle. 258AnyEvent::Handle.
185 259
186See the C<starttls> method if you need to start TLs negotiation later. 260See the C<< ->starttls >> method for when need to start TLS negotiation later.
187 261
188=item tls_ctx => $ssl_ctx 262=item tls_ctx => $ssl_ctx
189 263
190Use the given Net::SSLeay::CTX object to create the new TLS connection 264Use the given C<Net::SSLeay::CTX> object to create the new TLS connection
191(unless a connection object was specified directly). If this parameter is 265(unless a connection object was specified directly). If this parameter is
192missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 266missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
193 267
194=item json => JSON or JSON::XS object 268=item json => JSON or JSON::XS object
195 269
196This is the json coder object used by the C<json> read and write types. 270This is the json coder object used by the C<json> read and write types.
197 271
198If you don't supply it, then AnyEvent::Handle will create and use a 272If you don't supply it, then AnyEvent::Handle will create and use a
199suitable one, which will write and expect UTF-8 encoded JSON texts. 273suitable one (on demand), which will write and expect UTF-8 encoded JSON
274texts.
200 275
201Note that you are responsible to depend on the JSON module if you want to 276Note that you are responsible to depend on the JSON module if you want to
202use this functionality, as AnyEvent does not have a dependency itself. 277use this functionality, as AnyEvent does not have a dependency itself.
203 278
204=item filter_r => $cb
205
206=item filter_w => $cb
207
208These exist, but are undocumented at this time.
209
210=back 279=back
211 280
212=cut 281=cut
213 282
214sub new { 283sub new {
218 287
219 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 288 $self->{fh} or Carp::croak "mandatory argument fh is missing";
220 289
221 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 290 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
222 291
223 if ($self->{tls}) {
224 require Net::SSLeay;
225 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 292 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
226 } 293 if $self->{tls};
227 294
228# $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; # nop
229# $self->on_error (delete $self->{on_error}) if $self->{on_error}; # nop
230# $self->on_read (delete $self->{on_read} ) if $self->{on_read}; # nop
231 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
232
233 $self->{_activity} = time; 295 $self->{_activity} = AnyEvent->now;
234 $self->_timeout; 296 $self->_timeout;
235 297
298 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
299 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
300
236 $self->start_read; 301 $self->start_read
302 if $self->{on_read};
237 303
238 $self 304 $self
239} 305}
240 306
241sub _shutdown { 307sub _shutdown {
242 my ($self) = @_; 308 my ($self) = @_;
243 309
310 delete $self->{_tw};
244 delete $self->{_rw}; 311 delete $self->{_rw};
245 delete $self->{_ww}; 312 delete $self->{_ww};
246 delete $self->{fh}; 313 delete $self->{fh};
247}
248 314
315 &_freetls;
316
317 delete $self->{on_read};
318 delete $self->{_queue};
319}
320
249sub error { 321sub _error {
250 my ($self) = @_; 322 my ($self, $errno, $fatal) = @_;
251 323
252 {
253 local $!;
254 $self->_shutdown; 324 $self->_shutdown
255 } 325 if $fatal;
256 326
257 $self->{on_error}($self) 327 $! = $errno;
328
258 if $self->{on_error}; 329 if ($self->{on_error}) {
259 330 $self->{on_error}($self, $fatal);
331 } elsif ($self->{fh}) {
260 Carp::croak "AnyEvent::Handle uncaught fatal error: $!"; 332 Carp::croak "AnyEvent::Handle uncaught error: $!";
333 }
261} 334}
262 335
263=item $fh = $handle->fh 336=item $fh = $handle->fh
264 337
265This method returns the file handle of the L<AnyEvent::Handle> object. 338This method returns the file handle used to create the L<AnyEvent::Handle> object.
266 339
267=cut 340=cut
268 341
269sub fh { $_[0]{fh} } 342sub fh { $_[0]{fh} }
270 343
288 $_[0]{on_eof} = $_[1]; 361 $_[0]{on_eof} = $_[1];
289} 362}
290 363
291=item $handle->on_timeout ($cb) 364=item $handle->on_timeout ($cb)
292 365
293Replace the current C<on_timeout> callback, or disables the callback 366Replace the current C<on_timeout> callback, or disables the callback (but
294(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor 367not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
295argument. 368argument and method.
296 369
297=cut 370=cut
298 371
299sub on_timeout { 372sub on_timeout {
300 $_[0]{on_timeout} = $_[1]; 373 $_[0]{on_timeout} = $_[1];
374}
375
376=item $handle->autocork ($boolean)
377
378Enables or disables the current autocork behaviour (see C<autocork>
379constructor argument).
380
381=cut
382
383=item $handle->no_delay ($boolean)
384
385Enables or disables the C<no_delay> setting (see constructor argument of
386the same name for details).
387
388=cut
389
390sub no_delay {
391 $_[0]{no_delay} = $_[1];
392
393 eval {
394 local $SIG{__DIE__};
395 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
396 };
301} 397}
302 398
303############################################################################# 399#############################################################################
304 400
305=item $handle->timeout ($seconds) 401=item $handle->timeout ($seconds)
319# also check for time-outs 415# also check for time-outs
320sub _timeout { 416sub _timeout {
321 my ($self) = @_; 417 my ($self) = @_;
322 418
323 if ($self->{timeout}) { 419 if ($self->{timeout}) {
324 my $NOW = time; 420 my $NOW = AnyEvent->now;
325 421
326 # when would the timeout trigger? 422 # when would the timeout trigger?
327 my $after = $self->{_activity} + $self->{timeout} - $NOW; 423 my $after = $self->{_activity} + $self->{timeout} - $NOW;
328
329 warn "next to in $after\n";#d#
330 424
331 # now or in the past already? 425 # now or in the past already?
332 if ($after <= 0) { 426 if ($after <= 0) {
333 $self->{_activity} = $NOW; 427 $self->{_activity} = $NOW;
334 428
335 if ($self->{on_timeout}) { 429 if ($self->{on_timeout}) {
336 $self->{on_timeout}->($self); 430 $self->{on_timeout}($self);
337 } else { 431 } else {
338 $! = Errno::ETIMEDOUT; 432 $self->_error (&Errno::ETIMEDOUT);
339 $self->error;
340 } 433 }
341 434
342 # callbakx could have changed timeout value, optimise 435 # callback could have changed timeout value, optimise
343 return unless $self->{timeout}; 436 return unless $self->{timeout};
344 437
345 # calculate new after 438 # calculate new after
346 $after = $self->{timeout}; 439 $after = $self->{timeout};
347 } 440 }
348 441
349 Scalar::Util::weaken $self; 442 Scalar::Util::weaken $self;
443 return unless $self; # ->error could have destroyed $self
350 444
351 warn "after $after\n";#d#
352 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub { 445 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
353 delete $self->{_tw}; 446 delete $self->{_tw};
354 $self->_timeout; 447 $self->_timeout;
355 }); 448 });
356 } else { 449 } else {
386 my ($self, $cb) = @_; 479 my ($self, $cb) = @_;
387 480
388 $self->{on_drain} = $cb; 481 $self->{on_drain} = $cb;
389 482
390 $cb->($self) 483 $cb->($self)
391 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 484 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
392} 485}
393 486
394=item $handle->push_write ($data) 487=item $handle->push_write ($data)
395 488
396Queues the given scalar to be written. You can push as much data as you 489Queues the given scalar to be written. You can push as much data as you
410 my $len = syswrite $self->{fh}, $self->{wbuf}; 503 my $len = syswrite $self->{fh}, $self->{wbuf};
411 504
412 if ($len >= 0) { 505 if ($len >= 0) {
413 substr $self->{wbuf}, 0, $len, ""; 506 substr $self->{wbuf}, 0, $len, "";
414 507
415 $self->{_activity} = time; 508 $self->{_activity} = AnyEvent->now;
416 509
417 $self->{on_drain}($self) 510 $self->{on_drain}($self)
418 if $self->{low_water_mark} >= length $self->{wbuf} 511 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
419 && $self->{on_drain}; 512 && $self->{on_drain};
420 513
421 delete $self->{_ww} unless length $self->{wbuf}; 514 delete $self->{_ww} unless length $self->{wbuf};
422 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 515 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
423 $self->error; 516 $self->_error ($!, 1);
424 } 517 }
425 }; 518 };
426 519
427 # try to write data immediately 520 # try to write data immediately
428 $cb->(); 521 $cb->() unless $self->{autocork};
429 522
430 # if still data left in wbuf, we need to poll 523 # if still data left in wbuf, we need to poll
431 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 524 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
432 if length $self->{wbuf}; 525 if length $self->{wbuf};
433 }; 526 };
447 540
448 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 541 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
449 ->($self, @_); 542 ->($self, @_);
450 } 543 }
451 544
452 if ($self->{filter_w}) { 545 if ($self->{tls}) {
453 $self->{filter_w}->($self, \$_[0]); 546 $self->{_tls_wbuf} .= $_[0];
547
548 &_dotls ($self);
454 } else { 549 } else {
455 $self->{wbuf} .= $_[0]; 550 $self->{wbuf} .= $_[0];
456 $self->_drain_wbuf; 551 $self->_drain_wbuf;
457 } 552 }
458} 553}
459 554
460=item $handle->push_write (type => @args) 555=item $handle->push_write (type => @args)
461 556
462=item $handle->unshift_write (type => @args)
463
464Instead of formatting your data yourself, you can also let this module do 557Instead of formatting your data yourself, you can also let this module do
465the job by specifying a type and type-specific arguments. 558the job by specifying a type and type-specific arguments.
466 559
467Predefined types are (if you have ideas for additional types, feel free to 560Predefined types are (if you have ideas for additional types, feel free to
468drop by and tell us): 561drop by and tell us):
472=item netstring => $string 565=item netstring => $string
473 566
474Formats the given value as netstring 567Formats the given value as netstring
475(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them). 568(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
476 569
477=back
478
479=cut 570=cut
480 571
481register_write_type netstring => sub { 572register_write_type netstring => sub {
482 my ($self, $string) = @_; 573 my ($self, $string) = @_;
483 574
484 sprintf "%d:%s,", (length $string), $string 575 (length $string) . ":$string,"
576};
577
578=item packstring => $format, $data
579
580An octet string prefixed with an encoded length. The encoding C<$format>
581uses the same format as a Perl C<pack> format, but must specify a single
582integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
583optional C<!>, C<< < >> or C<< > >> modifier).
584
585=cut
586
587register_write_type packstring => sub {
588 my ($self, $format, $string) = @_;
589
590 pack "$format/a*", $string
485}; 591};
486 592
487=item json => $array_or_hashref 593=item json => $array_or_hashref
488 594
489Encodes the given hash or array reference into a JSON object. Unless you 595Encodes the given hash or array reference into a JSON object. Unless you
523 629
524 $self->{json} ? $self->{json}->encode ($ref) 630 $self->{json} ? $self->{json}->encode ($ref)
525 : JSON::encode_json ($ref) 631 : JSON::encode_json ($ref)
526}; 632};
527 633
634=item storable => $reference
635
636Freezes the given reference using L<Storable> and writes it to the
637handle. Uses the C<nfreeze> format.
638
639=cut
640
641register_write_type storable => sub {
642 my ($self, $ref) = @_;
643
644 require Storable;
645
646 pack "w/a*", Storable::nfreeze ($ref)
647};
648
649=back
650
528=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 651=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
529 652
530This function (not method) lets you add your own types to C<push_write>. 653This function (not method) lets you add your own types to C<push_write>.
531Whenever the given C<type> is used, C<push_write> will invoke the code 654Whenever the given C<type> is used, C<push_write> will invoke the code
532reference with the handle object and the remaining arguments. 655reference with the handle object and the remaining arguments.
552ways, the "simple" way, using only C<on_read> and the "complex" way, using 675ways, the "simple" way, using only C<on_read> and the "complex" way, using
553a queue. 676a queue.
554 677
555In the simple case, you just install an C<on_read> callback and whenever 678In the simple case, you just install an C<on_read> callback and whenever
556new data arrives, it will be called. You can then remove some data (if 679new data arrives, it will be called. You can then remove some data (if
557enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 680enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
558or not. 681leave the data there if you want to accumulate more (e.g. when only a
682partial message has been received so far).
559 683
560In the more complex case, you want to queue multiple callbacks. In this 684In the more complex case, you want to queue multiple callbacks. In this
561case, AnyEvent::Handle will call the first queued callback each time new 685case, AnyEvent::Handle will call the first queued callback each time new
562data arrives and removes it when it has done its job (see C<push_read>, 686data arrives (also the first time it is queued) and removes it when it has
563below). 687done its job (see C<push_read>, below).
564 688
565This way you can, for example, push three line-reads, followed by reading 689This way you can, for example, push three line-reads, followed by reading
566a chunk of data, and AnyEvent::Handle will execute them in order. 690a chunk of data, and AnyEvent::Handle will execute them in order.
567 691
568Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 692Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
569the specified number of bytes which give an XML datagram. 693the specified number of bytes which give an XML datagram.
570 694
571 # in the default state, expect some header bytes 695 # in the default state, expect some header bytes
572 $handle->on_read (sub { 696 $handle->on_read (sub {
573 # some data is here, now queue the length-header-read (4 octets) 697 # some data is here, now queue the length-header-read (4 octets)
574 shift->unshift_read_chunk (4, sub { 698 shift->unshift_read (chunk => 4, sub {
575 # header arrived, decode 699 # header arrived, decode
576 my $len = unpack "N", $_[1]; 700 my $len = unpack "N", $_[1];
577 701
578 # now read the payload 702 # now read the payload
579 shift->unshift_read_chunk ($len, sub { 703 shift->unshift_read (chunk => $len, sub {
580 my $xml = $_[1]; 704 my $xml = $_[1];
581 # handle xml 705 # handle xml
582 }); 706 });
583 }); 707 });
584 }); 708 });
585 709
586Example 2: Implement a client for a protocol that replies either with 710Example 2: Implement a client for a protocol that replies either with "OK"
587"OK" and another line or "ERROR" for one request, and 64 bytes for the 711and another line or "ERROR" for the first request that is sent, and 64
588second request. Due tot he availability of a full queue, we can just 712bytes for the second request. Due to the availability of a queue, we can
589pipeline sending both requests and manipulate the queue as necessary in 713just pipeline sending both requests and manipulate the queue as necessary
590the callbacks: 714in the callbacks.
591 715
592 # request one 716When the first callback is called and sees an "OK" response, it will
717C<unshift> another line-read. This line-read will be queued I<before> the
71864-byte chunk callback.
719
720 # request one, returns either "OK + extra line" or "ERROR"
593 $handle->push_write ("request 1\015\012"); 721 $handle->push_write ("request 1\015\012");
594 722
595 # we expect "ERROR" or "OK" as response, so push a line read 723 # we expect "ERROR" or "OK" as response, so push a line read
596 $handle->push_read_line (sub { 724 $handle->push_read (line => sub {
597 # if we got an "OK", we have to _prepend_ another line, 725 # if we got an "OK", we have to _prepend_ another line,
598 # so it will be read before the second request reads its 64 bytes 726 # so it will be read before the second request reads its 64 bytes
599 # which are already in the queue when this callback is called 727 # which are already in the queue when this callback is called
600 # we don't do this in case we got an error 728 # we don't do this in case we got an error
601 if ($_[1] eq "OK") { 729 if ($_[1] eq "OK") {
602 $_[0]->unshift_read_line (sub { 730 $_[0]->unshift_read (line => sub {
603 my $response = $_[1]; 731 my $response = $_[1];
604 ... 732 ...
605 }); 733 });
606 } 734 }
607 }); 735 });
608 736
609 # request two 737 # request two, simply returns 64 octets
610 $handle->push_write ("request 2\015\012"); 738 $handle->push_write ("request 2\015\012");
611 739
612 # simply read 64 bytes, always 740 # simply read 64 bytes, always
613 $handle->push_read_chunk (64, sub { 741 $handle->push_read (chunk => 64, sub {
614 my $response = $_[1]; 742 my $response = $_[1];
615 ... 743 ...
616 }); 744 });
617 745
618=over 4 746=over 4
619 747
620=cut 748=cut
621 749
622sub _drain_rbuf { 750sub _drain_rbuf {
623 my ($self) = @_; 751 my ($self) = @_;
752
753 local $self->{_in_drain} = 1;
624 754
625 if ( 755 if (
626 defined $self->{rbuf_max} 756 defined $self->{rbuf_max}
627 && $self->{rbuf_max} < length $self->{rbuf} 757 && $self->{rbuf_max} < length $self->{rbuf}
628 ) { 758 ) {
629 $! = &Errno::ENOSPC; 759 $self->_error (&Errno::ENOSPC, 1), return;
630 $self->error;
631 } 760 }
632 761
633 return if $self->{in_drain}; 762 while () {
634 local $self->{in_drain} = 1;
635
636 while (my $len = length $self->{rbuf}) { 763 my $len = length $self->{rbuf};
637 no strict 'refs'; 764
638 if (my $cb = shift @{ $self->{_queue} }) { 765 if (my $cb = shift @{ $self->{_queue} }) {
639 unless ($cb->($self)) { 766 unless ($cb->($self)) {
640 if ($self->{_eof}) { 767 if ($self->{_eof}) {
641 # no progress can be made (not enough data and no data forthcoming) 768 # no progress can be made (not enough data and no data forthcoming)
642 $! = &Errno::EPIPE; 769 $self->_error (&Errno::EPIPE, 1), return;
643 $self->error;
644 } 770 }
645 771
646 unshift @{ $self->{_queue} }, $cb; 772 unshift @{ $self->{_queue} }, $cb;
647 return; 773 last;
648 } 774 }
649 } elsif ($self->{on_read}) { 775 } elsif ($self->{on_read}) {
776 last unless $len;
777
650 $self->{on_read}($self); 778 $self->{on_read}($self);
651 779
652 if ( 780 if (
653 $self->{_eof} # if no further data will arrive
654 && $len == length $self->{rbuf} # and no data has been consumed 781 $len == length $self->{rbuf} # if no data has been consumed
655 && !@{ $self->{_queue} } # and the queue is still empty 782 && !@{ $self->{_queue} } # and the queue is still empty
656 && $self->{on_read} # and we still want to read data 783 && $self->{on_read} # but we still have on_read
657 ) { 784 ) {
785 # no further data will arrive
658 # then no progress can be made 786 # so no progress can be made
659 $! = &Errno::EPIPE; 787 $self->_error (&Errno::EPIPE, 1), return
660 $self->error; 788 if $self->{_eof};
789
790 last; # more data might arrive
661 } 791 }
662 } else { 792 } else {
663 # read side becomes idle 793 # read side becomes idle
664 delete $self->{_rw}; 794 delete $self->{_rw} unless $self->{tls};
665 return; 795 last;
666 } 796 }
667 } 797 }
668 798
669 if ($self->{_eof}) { 799 if ($self->{_eof}) {
670 $self->_shutdown; 800 if ($self->{on_eof}) {
671 $self->{on_eof}($self) 801 $self->{on_eof}($self)
672 if $self->{on_eof}; 802 } else {
803 $self->_error (0, 1);
804 }
805 }
806
807 # may need to restart read watcher
808 unless ($self->{_rw}) {
809 $self->start_read
810 if $self->{on_read} || @{ $self->{_queue} };
673 } 811 }
674} 812}
675 813
676=item $handle->on_read ($cb) 814=item $handle->on_read ($cb)
677 815
683 821
684sub on_read { 822sub on_read {
685 my ($self, $cb) = @_; 823 my ($self, $cb) = @_;
686 824
687 $self->{on_read} = $cb; 825 $self->{on_read} = $cb;
826 $self->_drain_rbuf if $cb && !$self->{_in_drain};
688} 827}
689 828
690=item $handle->rbuf 829=item $handle->rbuf
691 830
692Returns the read buffer (as a modifiable lvalue). 831Returns the read buffer (as a modifiable lvalue).
741 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 880 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
742 ->($self, $cb, @_); 881 ->($self, $cb, @_);
743 } 882 }
744 883
745 push @{ $self->{_queue} }, $cb; 884 push @{ $self->{_queue} }, $cb;
746 $self->_drain_rbuf; 885 $self->_drain_rbuf unless $self->{_in_drain};
747} 886}
748 887
749sub unshift_read { 888sub unshift_read {
750 my $self = shift; 889 my $self = shift;
751 my $cb = pop; 890 my $cb = pop;
757 ->($self, $cb, @_); 896 ->($self, $cb, @_);
758 } 897 }
759 898
760 899
761 unshift @{ $self->{_queue} }, $cb; 900 unshift @{ $self->{_queue} }, $cb;
762 $self->_drain_rbuf; 901 $self->_drain_rbuf unless $self->{_in_drain};
763} 902}
764 903
765=item $handle->push_read (type => @args, $cb) 904=item $handle->push_read (type => @args, $cb)
766 905
767=item $handle->unshift_read (type => @args, $cb) 906=item $handle->unshift_read (type => @args, $cb)
797 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 936 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
798 1 937 1
799 } 938 }
800}; 939};
801 940
802# compatibility with older API
803sub push_read_chunk {
804 $_[0]->push_read (chunk => $_[1], $_[2]);
805}
806
807sub unshift_read_chunk {
808 $_[0]->unshift_read (chunk => $_[1], $_[2]);
809}
810
811=item line => [$eol, ]$cb->($handle, $line, $eol) 941=item line => [$eol, ]$cb->($handle, $line, $eol)
812 942
813The callback will be called only once a full line (including the end of 943The callback will be called only once a full line (including the end of
814line marker, C<$eol>) has been read. This line (excluding the end of line 944line marker, C<$eol>) has been read. This line (excluding the end of line
815marker) will be passed to the callback as second argument (C<$line>), and 945marker) will be passed to the callback as second argument (C<$line>), and
830=cut 960=cut
831 961
832register_read_type line => sub { 962register_read_type line => sub {
833 my ($self, $cb, $eol) = @_; 963 my ($self, $cb, $eol) = @_;
834 964
835 $eol = qr|(\015?\012)| if @_ < 3; 965 if (@_ < 3) {
836 $eol = quotemeta $eol unless ref $eol; 966 # this is more than twice as fast as the generic code below
837 $eol = qr|^(.*?)($eol)|s;
838
839 sub { 967 sub {
840 $_[0]{rbuf} =~ s/$eol// or return; 968 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
841 969
842 $cb->($_[0], $1, $2); 970 $cb->($_[0], $1, $2);
843 1
844 }
845};
846
847# compatibility with older API
848sub push_read_line {
849 my $self = shift;
850 $self->push_read (line => @_);
851}
852
853sub unshift_read_line {
854 my $self = shift;
855 $self->unshift_read (line => @_);
856}
857
858=item netstring => $cb->($handle, $string)
859
860A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
861
862Throws an error with C<$!> set to EBADMSG on format violations.
863
864=cut
865
866register_read_type netstring => sub {
867 my ($self, $cb) = @_;
868
869 sub {
870 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
871 if ($_[0]{rbuf} =~ /[^0-9]/) {
872 $! = &Errno::EBADMSG;
873 $self->error;
874 } 971 1
875 return;
876 } 972 }
973 } else {
974 $eol = quotemeta $eol unless ref $eol;
975 $eol = qr|^(.*?)($eol)|s;
877 976
878 my $len = $1; 977 sub {
978 $_[0]{rbuf} =~ s/$eol// or return;
879 979
880 $self->unshift_read (chunk => $len, sub { 980 $cb->($_[0], $1, $2);
881 my $string = $_[1];
882 $_[0]->unshift_read (chunk => 1, sub {
883 if ($_[1] eq ",") {
884 $cb->($_[0], $string);
885 } else {
886 $! = &Errno::EBADMSG;
887 $self->error;
888 }
889 }); 981 1
890 }); 982 }
891
892 1
893 } 983 }
894}; 984};
895 985
896=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 986=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
897 987
949 return 1; 1039 return 1;
950 } 1040 }
951 1041
952 # reject 1042 # reject
953 if ($reject && $$rbuf =~ $reject) { 1043 if ($reject && $$rbuf =~ $reject) {
954 $! = &Errno::EBADMSG; 1044 $self->_error (&Errno::EBADMSG);
955 $self->error;
956 } 1045 }
957 1046
958 # skip 1047 # skip
959 if ($skip && $$rbuf =~ $skip) { 1048 if ($skip && $$rbuf =~ $skip) {
960 $data .= substr $$rbuf, 0, $+[0], ""; 1049 $data .= substr $$rbuf, 0, $+[0], "";
962 1051
963 () 1052 ()
964 } 1053 }
965}; 1054};
966 1055
1056=item netstring => $cb->($handle, $string)
1057
1058A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1059
1060Throws an error with C<$!> set to EBADMSG on format violations.
1061
1062=cut
1063
1064register_read_type netstring => sub {
1065 my ($self, $cb) = @_;
1066
1067 sub {
1068 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1069 if ($_[0]{rbuf} =~ /[^0-9]/) {
1070 $self->_error (&Errno::EBADMSG);
1071 }
1072 return;
1073 }
1074
1075 my $len = $1;
1076
1077 $self->unshift_read (chunk => $len, sub {
1078 my $string = $_[1];
1079 $_[0]->unshift_read (chunk => 1, sub {
1080 if ($_[1] eq ",") {
1081 $cb->($_[0], $string);
1082 } else {
1083 $self->_error (&Errno::EBADMSG);
1084 }
1085 });
1086 });
1087
1088 1
1089 }
1090};
1091
1092=item packstring => $format, $cb->($handle, $string)
1093
1094An octet string prefixed with an encoded length. The encoding C<$format>
1095uses the same format as a Perl C<pack> format, but must specify a single
1096integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1097optional C<!>, C<< < >> or C<< > >> modifier).
1098
1099For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1100EPP uses a prefix of C<N> (4 octtes).
1101
1102Example: read a block of data prefixed by its length in BER-encoded
1103format (very efficient).
1104
1105 $handle->push_read (packstring => "w", sub {
1106 my ($handle, $data) = @_;
1107 });
1108
1109=cut
1110
1111register_read_type packstring => sub {
1112 my ($self, $cb, $format) = @_;
1113
1114 sub {
1115 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1116 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1117 or return;
1118
1119 $format = length pack $format, $len;
1120
1121 # bypass unshift if we already have the remaining chunk
1122 if ($format + $len <= length $_[0]{rbuf}) {
1123 my $data = substr $_[0]{rbuf}, $format, $len;
1124 substr $_[0]{rbuf}, 0, $format + $len, "";
1125 $cb->($_[0], $data);
1126 } else {
1127 # remove prefix
1128 substr $_[0]{rbuf}, 0, $format, "";
1129
1130 # read remaining chunk
1131 $_[0]->unshift_read (chunk => $len, $cb);
1132 }
1133
1134 1
1135 }
1136};
1137
967=item json => $cb->($handle, $hash_or_arrayref) 1138=item json => $cb->($handle, $hash_or_arrayref)
968 1139
969Reads a JSON object or array, decodes it and passes it to the callback. 1140Reads a JSON object or array, decodes it and passes it to the callback.
970 1141
971If a C<json> object was passed to the constructor, then that will be used 1142If a C<json> object was passed to the constructor, then that will be used
981the C<json> write type description, above, for an actual example. 1152the C<json> write type description, above, for an actual example.
982 1153
983=cut 1154=cut
984 1155
985register_read_type json => sub { 1156register_read_type json => sub {
986 my ($self, $cb, $accept, $reject, $skip) = @_; 1157 my ($self, $cb) = @_;
987 1158
988 require JSON; 1159 require JSON;
989 1160
990 my $data; 1161 my $data;
991 my $rbuf = \$self->{rbuf}; 1162 my $rbuf = \$self->{rbuf};
1006 () 1177 ()
1007 } 1178 }
1008 } 1179 }
1009}; 1180};
1010 1181
1182=item storable => $cb->($handle, $ref)
1183
1184Deserialises a L<Storable> frozen representation as written by the
1185C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1186data).
1187
1188Raises C<EBADMSG> error if the data could not be decoded.
1189
1190=cut
1191
1192register_read_type storable => sub {
1193 my ($self, $cb) = @_;
1194
1195 require Storable;
1196
1197 sub {
1198 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1199 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1200 or return;
1201
1202 my $format = length pack "w", $len;
1203
1204 # bypass unshift if we already have the remaining chunk
1205 if ($format + $len <= length $_[0]{rbuf}) {
1206 my $data = substr $_[0]{rbuf}, $format, $len;
1207 substr $_[0]{rbuf}, 0, $format + $len, "";
1208 $cb->($_[0], Storable::thaw ($data));
1209 } else {
1210 # remove prefix
1211 substr $_[0]{rbuf}, 0, $format, "";
1212
1213 # read remaining chunk
1214 $_[0]->unshift_read (chunk => $len, sub {
1215 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1216 $cb->($_[0], $ref);
1217 } else {
1218 $self->_error (&Errno::EBADMSG);
1219 }
1220 });
1221 }
1222
1223 1
1224 }
1225};
1226
1011=back 1227=back
1012 1228
1013=item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args) 1229=item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1014 1230
1015This function (not method) lets you add your own types to C<push_read>. 1231This function (not method) lets you add your own types to C<push_read>.
1033=item $handle->stop_read 1249=item $handle->stop_read
1034 1250
1035=item $handle->start_read 1251=item $handle->start_read
1036 1252
1037In rare cases you actually do not want to read anything from the 1253In rare cases you actually do not want to read anything from the
1038socket. In this case you can call C<stop_read>. Neither C<on_read> no 1254socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1039any queued callbacks will be executed then. To start reading again, call 1255any queued callbacks will be executed then. To start reading again, call
1040C<start_read>. 1256C<start_read>.
1041 1257
1258Note that AnyEvent::Handle will automatically C<start_read> for you when
1259you change the C<on_read> callback or push/unshift a read callback, and it
1260will automatically C<stop_read> for you when neither C<on_read> is set nor
1261there are any read requests in the queue.
1262
1263These methods will have no effect when in TLS mode (as TLS doesn't support
1264half-duplex connections).
1265
1042=cut 1266=cut
1043 1267
1044sub stop_read { 1268sub stop_read {
1045 my ($self) = @_; 1269 my ($self) = @_;
1046 1270
1047 delete $self->{_rw}; 1271 delete $self->{_rw} unless $self->{tls};
1048} 1272}
1049 1273
1050sub start_read { 1274sub start_read {
1051 my ($self) = @_; 1275 my ($self) = @_;
1052 1276
1053 unless ($self->{_rw} || $self->{_eof}) { 1277 unless ($self->{_rw} || $self->{_eof}) {
1054 Scalar::Util::weaken $self; 1278 Scalar::Util::weaken $self;
1055 1279
1056 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1280 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1057 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1281 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1058 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1282 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1059 1283
1060 if ($len > 0) { 1284 if ($len > 0) {
1061 $self->{_activity} = time; 1285 $self->{_activity} = AnyEvent->now;
1062 1286
1063 $self->{filter_r} 1287 if ($self->{tls}) {
1064 ? $self->{filter_r}->($self, $rbuf) 1288 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1065 : $self->_drain_rbuf; 1289
1290 &_dotls ($self);
1291 } else {
1292 $self->_drain_rbuf unless $self->{_in_drain};
1293 }
1066 1294
1067 } elsif (defined $len) { 1295 } elsif (defined $len) {
1068 delete $self->{_rw}; 1296 delete $self->{_rw};
1069 delete $self->{_ww};
1070 delete $self->{_tw};
1071 $self->{_eof} = 1; 1297 $self->{_eof} = 1;
1072 $self->_drain_rbuf; 1298 $self->_drain_rbuf unless $self->{_in_drain};
1073 1299
1074 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1300 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1075 return $self->error; 1301 return $self->_error ($!, 1);
1076 } 1302 }
1077 }); 1303 });
1078 } 1304 }
1079} 1305}
1080 1306
1307# poll the write BIO and send the data if applicable
1081sub _dotls { 1308sub _dotls {
1082 my ($self) = @_; 1309 my ($self) = @_;
1083 1310
1311 my $tmp;
1312
1084 if (length $self->{_tls_wbuf}) { 1313 if (length $self->{_tls_wbuf}) {
1085 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1314 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1086 substr $self->{_tls_wbuf}, 0, $len, ""; 1315 substr $self->{_tls_wbuf}, 0, $tmp, "";
1087 } 1316 }
1088 } 1317 }
1089 1318
1319 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1320 unless (length $tmp) {
1321 # let's treat SSL-eof as we treat normal EOF
1322 delete $self->{_rw};
1323 $self->{_eof} = 1;
1324 &_freetls;
1325 }
1326
1327 $self->{rbuf} .= $tmp;
1328 $self->_drain_rbuf unless $self->{_in_drain};
1329 $self->{tls} or return; # tls session might have gone away in callback
1330 }
1331
1332 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1333
1334 if ($tmp != Net::SSLeay::ERROR_WANT_READ ()) {
1335 if ($tmp == Net::SSLeay::ERROR_SYSCALL ()) {
1336 return $self->_error ($!, 1);
1337 } elsif ($tmp == Net::SSLeay::ERROR_SSL ()) {
1338 return $self->_error (&Errno::EIO, 1);
1339 }
1340
1341 # all other errors are fine for our purposes
1342 }
1343
1090 if (defined (my $buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1344 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1091 $self->{wbuf} .= $buf; 1345 $self->{wbuf} .= $tmp;
1092 $self->_drain_wbuf; 1346 $self->_drain_wbuf;
1093 }
1094
1095 while (defined (my $buf = Net::SSLeay::read ($self->{tls}))) {
1096 $self->{rbuf} .= $buf;
1097 $self->_drain_rbuf;
1098 }
1099
1100 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1101
1102 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1103 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1104 $self->error;
1105 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1106 $! = &Errno::EIO;
1107 $self->error;
1108 }
1109
1110 # all others are fine for our purposes
1111 } 1347 }
1112} 1348}
1113 1349
1114=item $handle->starttls ($tls[, $tls_ctx]) 1350=item $handle->starttls ($tls[, $tls_ctx])
1115 1351
1125 1361
1126The TLS connection object will end up in C<< $handle->{tls} >> after this 1362The TLS connection object will end up in C<< $handle->{tls} >> after this
1127call and can be used or changed to your liking. Note that the handshake 1363call and can be used or changed to your liking. Note that the handshake
1128might have already started when this function returns. 1364might have already started when this function returns.
1129 1365
1130=cut 1366If it an error to start a TLS handshake more than once per
1367AnyEvent::Handle object (this is due to bugs in OpenSSL).
1131 1368
1132# TODO: maybe document... 1369=cut
1370
1133sub starttls { 1371sub starttls {
1134 my ($self, $ssl, $ctx) = @_; 1372 my ($self, $ssl, $ctx) = @_;
1135 1373
1136 $self->stoptls; 1374 require Net::SSLeay;
1137 1375
1376 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1377 if $self->{tls};
1378
1138 if ($ssl eq "accept") { 1379 if ($ssl eq "accept") {
1139 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1380 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1140 Net::SSLeay::set_accept_state ($ssl); 1381 Net::SSLeay::set_accept_state ($ssl);
1141 } elsif ($ssl eq "connect") { 1382 } elsif ($ssl eq "connect") {
1142 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1383 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1148 # basically, this is deep magic (because SSL_read should have the same issues) 1389 # basically, this is deep magic (because SSL_read should have the same issues)
1149 # but the openssl maintainers basically said: "trust us, it just works". 1390 # but the openssl maintainers basically said: "trust us, it just works".
1150 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1391 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1151 # and mismaintained ssleay-module doesn't even offer them). 1392 # and mismaintained ssleay-module doesn't even offer them).
1152 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1393 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1394 #
1395 # in short: this is a mess.
1396 #
1397 # note that we do not try to keep the length constant between writes as we are required to do.
1398 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1399 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1400 # have identity issues in that area.
1153 Net::SSLeay::CTX_set_mode ($self->{tls}, 1401 Net::SSLeay::CTX_set_mode ($self->{tls},
1154 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1402 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1155 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1403 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1156 1404
1157 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1405 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1158 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1406 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1159 1407
1160 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1408 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1161 1409
1162 $self->{filter_w} = sub { 1410 &_dotls; # need to trigger the initial handshake
1163 $_[0]{_tls_wbuf} .= ${$_[1]}; 1411 $self->start_read; # make sure we actually do read
1164 &_dotls;
1165 };
1166 $self->{filter_r} = sub {
1167 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1168 &_dotls;
1169 };
1170} 1412}
1171 1413
1172=item $handle->stoptls 1414=item $handle->stoptls
1173 1415
1174Destroys the SSL connection, if any. Partial read or write data will be 1416Shuts down the SSL connection - this makes a proper EOF handshake by
1175lost. 1417sending a close notify to the other side, but since OpenSSL doesn't
1418support non-blocking shut downs, it is not possible to re-use the stream
1419afterwards.
1176 1420
1177=cut 1421=cut
1178 1422
1179sub stoptls { 1423sub stoptls {
1180 my ($self) = @_; 1424 my ($self) = @_;
1181 1425
1426 if ($self->{tls}) {
1427 Net::SSLeay::shutdown ($self->{tls});
1428
1429 &_dotls;
1430
1431 # we don't give a shit. no, we do, but we can't. no...
1432 # we, we... have to use openssl :/
1433 &_freetls;
1434 }
1435}
1436
1437sub _freetls {
1438 my ($self) = @_;
1439
1440 return unless $self->{tls};
1441
1182 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1442 Net::SSLeay::free (delete $self->{tls});
1183 1443
1184 delete $self->{_rbio}; 1444 delete @$self{qw(_rbio _wbio _tls_wbuf)};
1185 delete $self->{_wbio};
1186 delete $self->{_tls_wbuf};
1187 delete $self->{filter_r};
1188 delete $self->{filter_w};
1189} 1445}
1190 1446
1191sub DESTROY { 1447sub DESTROY {
1192 my $self = shift; 1448 my $self = shift;
1193 1449
1194 $self->stoptls; 1450 &_freetls;
1451
1452 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1453
1454 if ($linger && length $self->{wbuf}) {
1455 my $fh = delete $self->{fh};
1456 my $wbuf = delete $self->{wbuf};
1457
1458 my @linger;
1459
1460 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1461 my $len = syswrite $fh, $wbuf, length $wbuf;
1462
1463 if ($len > 0) {
1464 substr $wbuf, 0, $len, "";
1465 } else {
1466 @linger = (); # end
1467 }
1468 });
1469 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1470 @linger = ();
1471 });
1472 }
1473}
1474
1475=item $handle->destroy
1476
1477Shuts down the handle object as much as possible - this call ensures that
1478no further callbacks will be invoked and resources will be freed as much
1479as possible. You must not call any methods on the object afterwards.
1480
1481Normally, you can just "forget" any references to an AnyEvent::Handle
1482object and it will simply shut down. This works in fatal error and EOF
1483callbacks, as well as code outside. It does I<NOT> work in a read or write
1484callback, so when you want to destroy the AnyEvent::Handle object from
1485within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1486that case.
1487
1488The handle might still linger in the background and write out remaining
1489data, as specified by the C<linger> option, however.
1490
1491=cut
1492
1493sub destroy {
1494 my ($self) = @_;
1495
1496 $self->DESTROY;
1497 %$self = ();
1195} 1498}
1196 1499
1197=item AnyEvent::Handle::TLS_CTX 1500=item AnyEvent::Handle::TLS_CTX
1198 1501
1199This function creates and returns the Net::SSLeay::CTX object used by 1502This function creates and returns the Net::SSLeay::CTX object used by
1229 } 1532 }
1230} 1533}
1231 1534
1232=back 1535=back
1233 1536
1537
1538=head1 NONFREQUENTLY ASKED QUESTIONS
1539
1540=over 4
1541
1542=item I C<undef> the AnyEvent::Handle reference inside my callback and
1543still get further invocations!
1544
1545That's because AnyEvent::Handle keeps a reference to itself when handling
1546read or write callbacks.
1547
1548It is only safe to "forget" the reference inside EOF or error callbacks,
1549from within all other callbacks, you need to explicitly call the C<<
1550->destroy >> method.
1551
1552=item I get different callback invocations in TLS mode/Why can't I pause
1553reading?
1554
1555Unlike, say, TCP, TLS connections do not consist of two independent
1556communication channels, one for each direction. Or put differently. The
1557read and write directions are not independent of each other: you cannot
1558write data unless you are also prepared to read, and vice versa.
1559
1560This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1561callback invocations when you are not expecting any read data - the reason
1562is that AnyEvent::Handle always reads in TLS mode.
1563
1564During the connection, you have to make sure that you always have a
1565non-empty read-queue, or an C<on_read> watcher. At the end of the
1566connection (or when you no longer want to use it) you can call the
1567C<destroy> method.
1568
1569=item How do I read data until the other side closes the connection?
1570
1571If you just want to read your data into a perl scalar, the easiest way
1572to achieve this is by setting an C<on_read> callback that does nothing,
1573clearing the C<on_eof> callback and in the C<on_error> callback, the data
1574will be in C<$_[0]{rbuf}>:
1575
1576 $handle->on_read (sub { });
1577 $handle->on_eof (undef);
1578 $handle->on_error (sub {
1579 my $data = delete $_[0]{rbuf};
1580 undef $handle;
1581 });
1582
1583The reason to use C<on_error> is that TCP connections, due to latencies
1584and packets loss, might get closed quite violently with an error, when in
1585fact, all data has been received.
1586
1587It is usually better to use acknowledgements when transferring data,
1588to make sure the other side hasn't just died and you got the data
1589intact. This is also one reason why so many internet protocols have an
1590explicit QUIT command.
1591
1592=item I don't want to destroy the handle too early - how do I wait until
1593all data has been written?
1594
1595After writing your last bits of data, set the C<on_drain> callback
1596and destroy the handle in there - with the default setting of
1597C<low_water_mark> this will be called precisely when all data has been
1598written to the socket:
1599
1600 $handle->push_write (...);
1601 $handle->on_drain (sub {
1602 warn "all data submitted to the kernel\n";
1603 undef $handle;
1604 });
1605
1606=back
1607
1608
1234=head1 SUBCLASSING AnyEvent::Handle 1609=head1 SUBCLASSING AnyEvent::Handle
1235 1610
1236In many cases, you might want to subclass AnyEvent::Handle. 1611In many cases, you might want to subclass AnyEvent::Handle.
1237 1612
1238To make this easier, a given version of AnyEvent::Handle uses these 1613To make this easier, a given version of AnyEvent::Handle uses these
1241=over 4 1616=over 4
1242 1617
1243=item * all constructor arguments become object members. 1618=item * all constructor arguments become object members.
1244 1619
1245At least initially, when you pass a C<tls>-argument to the constructor it 1620At least initially, when you pass a C<tls>-argument to the constructor it
1246will end up in C<< $handle->{tls} >>. Those members might be changes or 1621will end up in C<< $handle->{tls} >>. Those members might be changed or
1247mutated later on (for example C<tls> will hold the TLS connection object). 1622mutated later on (for example C<tls> will hold the TLS connection object).
1248 1623
1249=item * other object member names are prefixed with an C<_>. 1624=item * other object member names are prefixed with an C<_>.
1250 1625
1251All object members not explicitly documented (internal use) are prefixed 1626All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines