ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.109 by root, Wed Jan 14 02:03:43 2009 UTC vs.
Revision 1.152 by root, Fri Jul 17 14:57:03 2009 UTC

14 14
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17=cut 17=cut
18 18
19our $VERSION = 4.331; 19our $VERSION = 4.83;
20 20
21=head1 SYNOPSIS 21=head1 SYNOPSIS
22 22
23 use AnyEvent; 23 use AnyEvent;
24 use AnyEvent::Handle; 24 use AnyEvent::Handle;
25 25
26 my $cv = AnyEvent->condvar; 26 my $cv = AnyEvent->condvar;
27 27
28 my $handle = 28 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 29 fh => \*STDIN,
31 on_eof => sub { 30 on_error => sub {
31 my ($hdl, $fatal, $msg) = @_;
32 warn "got error $msg\n";
33 $hdl->destroy;
32 $cv->send; 34 $cv->send;
33 },
34 ); 35 );
35 36
36 # send some request line 37 # send some request line
37 $handle->push_write ("getinfo\015\012"); 38 $hdl->push_write ("getinfo\015\012");
38 39
39 # read the response line 40 # read the response line
40 $handle->push_read (line => sub { 41 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 42 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 43 warn "got line <$line>\n";
43 $cv->send; 44 $cv->send;
44 }); 45 });
45 46
46 $cv->recv; 47 $cv->recv;
47 48
63 64
64=head1 METHODS 65=head1 METHODS
65 66
66=over 4 67=over 4
67 68
68=item B<new (%args)> 69=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
69 70
70The constructor supports these arguments (all as key => value pairs). 71The constructor supports these arguments (all as C<< key => value >> pairs).
71 72
72=over 4 73=over 4
73 74
74=item fh => $filehandle [MANDATORY] 75=item fh => $filehandle [MANDATORY]
75 76
81 82
82=item on_eof => $cb->($handle) 83=item on_eof => $cb->($handle)
83 84
84Set the callback to be called when an end-of-file condition is detected, 85Set the callback to be called when an end-of-file condition is detected,
85i.e. in the case of a socket, when the other side has closed the 86i.e. in the case of a socket, when the other side has closed the
86connection cleanly. 87connection cleanly, and there are no outstanding read requests in the
88queue (if there are read requests, then an EOF counts as an unexpected
89connection close and will be flagged as an error).
87 90
88For sockets, this just means that the other side has stopped sending data, 91For sockets, this just means that the other side has stopped sending data,
89you can still try to write data, and, in fact, one can return from the EOF 92you can still try to write data, and, in fact, one can return from the EOF
90callback and continue writing data, as only the read part has been shut 93callback and continue writing data, as only the read part has been shut
91down. 94down.
92 95
93While not mandatory, it is I<highly> recommended to set an EOF callback,
94otherwise you might end up with a closed socket while you are still
95waiting for data.
96
97If an EOF condition has been detected but no C<on_eof> callback has been 96If an EOF condition has been detected but no C<on_eof> callback has been
98set, then a fatal error will be raised with C<$!> set to <0>. 97set, then a fatal error will be raised with C<$!> set to <0>.
99 98
100=item on_error => $cb->($handle, $fatal) 99=item on_error => $cb->($handle, $fatal, $message)
101 100
102This is the error callback, which is called when, well, some error 101This is the error callback, which is called when, well, some error
103occured, such as not being able to resolve the hostname, failure to 102occured, such as not being able to resolve the hostname, failure to
104connect or a read error. 103connect or a read error.
105 104
106Some errors are fatal (which is indicated by C<$fatal> being true). On 105Some errors are fatal (which is indicated by C<$fatal> being true). On
107fatal errors the handle object will be shut down and will not be usable 106fatal errors the handle object will be destroyed (by a call to C<< ->
108(but you are free to look at the current C<< ->rbuf >>). Examples of fatal 107destroy >>) after invoking the error callback (which means you are free to
109errors are an EOF condition with active (but unsatisifable) read watchers 108examine the handle object). Examples of fatal errors are an EOF condition
110(C<EPIPE>) or I/O errors. 109with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors.
110
111AnyEvent::Handle tries to find an appropriate error code for you to check
112against, but in some cases (TLS errors), this does not work well. It is
113recommended to always output the C<$message> argument in human-readable
114error messages (it's usually the same as C<"$!">).
111 115
112Non-fatal errors can be retried by simply returning, but it is recommended 116Non-fatal errors can be retried by simply returning, but it is recommended
113to simply ignore this parameter and instead abondon the handle object 117to simply ignore this parameter and instead abondon the handle object
114when this callback is invoked. Examples of non-fatal errors are timeouts 118when this callback is invoked. Examples of non-fatal errors are timeouts
115C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>). 119C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
116 120
117On callback entrance, the value of C<$!> contains the operating system 121On callback entrance, the value of C<$!> contains the operating system
118error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 122error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
123C<EPROTO>).
119 124
120While not mandatory, it is I<highly> recommended to set this callback, as 125While not mandatory, it is I<highly> recommended to set this callback, as
121you will not be notified of errors otherwise. The default simply calls 126you will not be notified of errors otherwise. The default simply calls
122C<croak>. 127C<croak>.
123 128
127and no read request is in the queue (unlike read queue callbacks, this 132and no read request is in the queue (unlike read queue callbacks, this
128callback will only be called when at least one octet of data is in the 133callback will only be called when at least one octet of data is in the
129read buffer). 134read buffer).
130 135
131To access (and remove data from) the read buffer, use the C<< ->rbuf >> 136To access (and remove data from) the read buffer, use the C<< ->rbuf >>
132method or access the C<$handle->{rbuf}> member directly. 137method or access the C<< $handle->{rbuf} >> member directly. Note that you
138must not enlarge or modify the read buffer, you can only remove data at
139the beginning from it.
133 140
134When an EOF condition is detected then AnyEvent::Handle will first try to 141When an EOF condition is detected then AnyEvent::Handle will first try to
135feed all the remaining data to the queued callbacks and C<on_read> before 142feed all the remaining data to the queued callbacks and C<on_read> before
136calling the C<on_eof> callback. If no progress can be made, then a fatal 143calling the C<on_eof> callback. If no progress can be made, then a fatal
137error will be raised (with C<$!> set to C<EPIPE>). 144error will be raised (with C<$!> set to C<EPIPE>).
145
146Note that, unlike requests in the read queue, an C<on_read> callback
147doesn't mean you I<require> some data: if there is an EOF and there
148are outstanding read requests then an error will be flagged. With an
149C<on_read> callback, the C<on_eof> callback will be invoked.
138 150
139=item on_drain => $cb->($handle) 151=item on_drain => $cb->($handle)
140 152
141This sets the callback that is called when the write buffer becomes empty 153This sets the callback that is called when the write buffer becomes empty
142(or when the callback is set and the buffer is empty already). 154(or when the callback is set and the buffer is empty already).
235 247
236This will not work for partial TLS data that could not be encoded 248This will not work for partial TLS data that could not be encoded
237yet. This data will be lost. Calling the C<stoptls> method in time might 249yet. This data will be lost. Calling the C<stoptls> method in time might
238help. 250help.
239 251
252=item peername => $string
253
254A string used to identify the remote site - usually the DNS hostname
255(I<not> IDN!) used to create the connection, rarely the IP address.
256
257Apart from being useful in error messages, this string is also used in TLS
258peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
259verification will be skipped when C<peername> is not specified or
260C<undef>.
261
240=item tls => "accept" | "connect" | Net::SSLeay::SSL object 262=item tls => "accept" | "connect" | Net::SSLeay::SSL object
241 263
242When this parameter is given, it enables TLS (SSL) mode, that means 264When this parameter is given, it enables TLS (SSL) mode, that means
243AnyEvent will start a TLS handshake as soon as the conenction has been 265AnyEvent will start a TLS handshake as soon as the conenction has been
244established and will transparently encrypt/decrypt data afterwards. 266established and will transparently encrypt/decrypt data afterwards.
267
268All TLS protocol errors will be signalled as C<EPROTO>, with an
269appropriate error message.
245 270
246TLS mode requires Net::SSLeay to be installed (it will be loaded 271TLS mode requires Net::SSLeay to be installed (it will be loaded
247automatically when you try to create a TLS handle): this module doesn't 272automatically when you try to create a TLS handle): this module doesn't
248have a dependency on that module, so if your module requires it, you have 273have a dependency on that module, so if your module requires it, you have
249to add the dependency yourself. 274to add the dependency yourself.
253mode. 278mode.
254 279
255You can also provide your own TLS connection object, but you have 280You can also provide your own TLS connection object, but you have
256to make sure that you call either C<Net::SSLeay::set_connect_state> 281to make sure that you call either C<Net::SSLeay::set_connect_state>
257or C<Net::SSLeay::set_accept_state> on it before you pass it to 282or C<Net::SSLeay::set_accept_state> on it before you pass it to
258AnyEvent::Handle. 283AnyEvent::Handle. Also, this module will take ownership of this connection
284object.
285
286At some future point, AnyEvent::Handle might switch to another TLS
287implementation, then the option to use your own session object will go
288away.
259 289
260B<IMPORTANT:> since Net::SSLeay "objects" are really only integers, 290B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
261passing in the wrong integer will lead to certain crash. This most often 291passing in the wrong integer will lead to certain crash. This most often
262happens when one uses a stylish C<< tls => 1 >> and is surprised about the 292happens when one uses a stylish C<< tls => 1 >> and is surprised about the
263segmentation fault. 293segmentation fault.
264 294
265See the C<< ->starttls >> method for when need to start TLS negotiation later. 295See the C<< ->starttls >> method for when need to start TLS negotiation later.
266 296
267=item tls_ctx => $ssl_ctx 297=item tls_ctx => $anyevent_tls
268 298
269Use the given C<Net::SSLeay::CTX> object to create the new TLS connection 299Use the given C<AnyEvent::TLS> object to create the new TLS connection
270(unless a connection object was specified directly). If this parameter is 300(unless a connection object was specified directly). If this parameter is
271missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 301missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
302
303Instead of an object, you can also specify a hash reference with C<< key
304=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
305new TLS context object.
306
307=item on_starttls => $cb->($handle, $success[, $error_message])
308
309This callback will be invoked when the TLS/SSL handshake has finished. If
310C<$success> is true, then the TLS handshake succeeded, otherwise it failed
311(C<on_stoptls> will not be called in this case).
312
313The session in C<< $handle->{tls} >> can still be examined in this
314callback, even when the handshake was not successful.
315
316TLS handshake failures will not cause C<on_error> to be invoked when this
317callback is in effect, instead, the error message will be passed to C<on_starttls>.
318
319Without this callback, handshake failures lead to C<on_error> being
320called, as normal.
321
322Note that you cannot call C<starttls> right again in this callback. If you
323need to do that, start an zero-second timer instead whose callback can
324then call C<< ->starttls >> again.
325
326=item on_stoptls => $cb->($handle)
327
328When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
329set, then it will be invoked after freeing the TLS session. If it is not,
330then a TLS shutdown condition will be treated like a normal EOF condition
331on the handle.
332
333The session in C<< $handle->{tls} >> can still be examined in this
334callback.
335
336This callback will only be called on TLS shutdowns, not when the
337underlying handle signals EOF.
272 338
273=item json => JSON or JSON::XS object 339=item json => JSON or JSON::XS object
274 340
275This is the json coder object used by the C<json> read and write types. 341This is the json coder object used by the C<json> read and write types.
276 342
285 351
286=cut 352=cut
287 353
288sub new { 354sub new {
289 my $class = shift; 355 my $class = shift;
290
291 my $self = bless { @_ }, $class; 356 my $self = bless { @_ }, $class;
292 357
293 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 358 $self->{fh} or Carp::croak "mandatory argument fh is missing";
294 359
295 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 360 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
361
362 $self->{_activity} = AnyEvent->now;
363 $self->_timeout;
364
365 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
296 366
297 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}) 367 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
298 if $self->{tls}; 368 if $self->{tls};
299 369
300 $self->{_activity} = AnyEvent->now;
301 $self->_timeout;
302
303 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain}; 370 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
304 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
305 371
306 $self->start_read 372 $self->start_read
307 if $self->{on_read}; 373 if $self->{on_read};
308 374
309 $self 375 $self->{fh} && $self
310} 376}
311 377
312sub _shutdown { 378#sub _shutdown {
313 my ($self) = @_; 379# my ($self) = @_;
314 380#
315 delete $self->{_tw}; 381# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
316 delete $self->{_rw}; 382# $self->{_eof} = 1; # tell starttls et. al to stop trying
317 delete $self->{_ww}; 383#
318 delete $self->{fh};
319
320 &_freetls; 384# &_freetls;
321 385#}
322 delete $self->{on_read};
323 delete $self->{_queue};
324}
325 386
326sub _error { 387sub _error {
327 my ($self, $errno, $fatal) = @_; 388 my ($self, $errno, $fatal, $message) = @_;
328
329 $self->_shutdown
330 if $fatal;
331 389
332 $! = $errno; 390 $! = $errno;
391 $message ||= "$!";
333 392
334 if ($self->{on_error}) { 393 if ($self->{on_error}) {
335 $self->{on_error}($self, $fatal); 394 $self->{on_error}($self, $fatal, $message);
395 $self->destroy if $fatal;
336 } elsif ($self->{fh}) { 396 } elsif ($self->{fh}) {
397 $self->destroy;
337 Carp::croak "AnyEvent::Handle uncaught error: $!"; 398 Carp::croak "AnyEvent::Handle uncaught error: $message";
338 } 399 }
339} 400}
340 401
341=item $fh = $handle->fh 402=item $fh = $handle->fh
342 403
403 local $SIG{__DIE__}; 464 local $SIG{__DIE__};
404 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 465 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
405 }; 466 };
406} 467}
407 468
469=item $handle->on_starttls ($cb)
470
471Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
472
473=cut
474
475sub on_starttls {
476 $_[0]{on_starttls} = $_[1];
477}
478
479=item $handle->on_stoptls ($cb)
480
481Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
482
483=cut
484
485sub on_starttls {
486 $_[0]{on_stoptls} = $_[1];
487}
488
408############################################################################# 489#############################################################################
409 490
410=item $handle->timeout ($seconds) 491=item $handle->timeout ($seconds)
411 492
412Configures (or disables) the inactivity timeout. 493Configures (or disables) the inactivity timeout.
436 $self->{_activity} = $NOW; 517 $self->{_activity} = $NOW;
437 518
438 if ($self->{on_timeout}) { 519 if ($self->{on_timeout}) {
439 $self->{on_timeout}($self); 520 $self->{on_timeout}($self);
440 } else { 521 } else {
441 $self->_error (&Errno::ETIMEDOUT); 522 $self->_error (Errno::ETIMEDOUT);
442 } 523 }
443 524
444 # callback could have changed timeout value, optimise 525 # callback could have changed timeout value, optimise
445 return unless $self->{timeout}; 526 return unless $self->{timeout};
446 527
509 Scalar::Util::weaken $self; 590 Scalar::Util::weaken $self;
510 591
511 my $cb = sub { 592 my $cb = sub {
512 my $len = syswrite $self->{fh}, $self->{wbuf}; 593 my $len = syswrite $self->{fh}, $self->{wbuf};
513 594
514 if ($len >= 0) { 595 if (defined $len) {
515 substr $self->{wbuf}, 0, $len, ""; 596 substr $self->{wbuf}, 0, $len, "";
516 597
517 $self->{_activity} = AnyEvent->now; 598 $self->{_activity} = AnyEvent->now;
518 599
519 $self->{on_drain}($self) 600 $self->{on_drain}($self)
654 735
655 pack "w/a*", Storable::nfreeze ($ref) 736 pack "w/a*", Storable::nfreeze ($ref)
656}; 737};
657 738
658=back 739=back
740
741=item $handle->push_shutdown
742
743Sometimes you know you want to close the socket after writing your data
744before it was actually written. One way to do that is to replace your
745C<on_drain> handler by a callback that shuts down the socket (and set
746C<low_water_mark> to C<0>). This method is a shorthand for just that, and
747replaces the C<on_drain> callback with:
748
749 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
750
751This simply shuts down the write side and signals an EOF condition to the
752the peer.
753
754You can rely on the normal read queue and C<on_eof> handling
755afterwards. This is the cleanest way to close a connection.
756
757=cut
758
759sub push_shutdown {
760 my ($self) = @_;
761
762 delete $self->{low_water_mark};
763 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
764}
659 765
660=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 766=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
661 767
662This function (not method) lets you add your own types to C<push_write>. 768This function (not method) lets you add your own types to C<push_write>.
663Whenever the given C<type> is used, C<push_write> will invoke the code 769Whenever the given C<type> is used, C<push_write> will invoke the code
763 869
764 if ( 870 if (
765 defined $self->{rbuf_max} 871 defined $self->{rbuf_max}
766 && $self->{rbuf_max} < length $self->{rbuf} 872 && $self->{rbuf_max} < length $self->{rbuf}
767 ) { 873 ) {
768 $self->_error (&Errno::ENOSPC, 1), return; 874 $self->_error (Errno::ENOSPC, 1), return;
769 } 875 }
770 876
771 while () { 877 while () {
878 # we need to use a separate tls read buffer, as we must not receive data while
879 # we are draining the buffer, and this can only happen with TLS.
880 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
881
772 my $len = length $self->{rbuf}; 882 my $len = length $self->{rbuf};
773 883
774 if (my $cb = shift @{ $self->{_queue} }) { 884 if (my $cb = shift @{ $self->{_queue} }) {
775 unless ($cb->($self)) { 885 unless ($cb->($self)) {
776 if ($self->{_eof}) { 886 if ($self->{_eof}) {
777 # no progress can be made (not enough data and no data forthcoming) 887 # no progress can be made (not enough data and no data forthcoming)
778 $self->_error (&Errno::EPIPE, 1), return; 888 $self->_error (Errno::EPIPE, 1), return;
779 } 889 }
780 890
781 unshift @{ $self->{_queue} }, $cb; 891 unshift @{ $self->{_queue} }, $cb;
782 last; 892 last;
783 } 893 }
791 && !@{ $self->{_queue} } # and the queue is still empty 901 && !@{ $self->{_queue} } # and the queue is still empty
792 && $self->{on_read} # but we still have on_read 902 && $self->{on_read} # but we still have on_read
793 ) { 903 ) {
794 # no further data will arrive 904 # no further data will arrive
795 # so no progress can be made 905 # so no progress can be made
796 $self->_error (&Errno::EPIPE, 1), return 906 $self->_error (Errno::EPIPE, 1), return
797 if $self->{_eof}; 907 if $self->{_eof};
798 908
799 last; # more data might arrive 909 last; # more data might arrive
800 } 910 }
801 } else { 911 } else {
807 917
808 if ($self->{_eof}) { 918 if ($self->{_eof}) {
809 if ($self->{on_eof}) { 919 if ($self->{on_eof}) {
810 $self->{on_eof}($self) 920 $self->{on_eof}($self)
811 } else { 921 } else {
812 $self->_error (0, 1); 922 $self->_error (0, 1, "Unexpected end-of-file");
813 } 923 }
814 } 924 }
815 925
816 # may need to restart read watcher 926 # may need to restart read watcher
817 unless ($self->{_rw}) { 927 unless ($self->{_rw}) {
837 947
838=item $handle->rbuf 948=item $handle->rbuf
839 949
840Returns the read buffer (as a modifiable lvalue). 950Returns the read buffer (as a modifiable lvalue).
841 951
842You can access the read buffer directly as the C<< ->{rbuf} >> member, if 952You can access the read buffer directly as the C<< ->{rbuf} >>
843you want. 953member, if you want. However, the only operation allowed on the
954read buffer (apart from looking at it) is removing data from its
955beginning. Otherwise modifying or appending to it is not allowed and will
956lead to hard-to-track-down bugs.
844 957
845NOTE: The read buffer should only be used or modified if the C<on_read>, 958NOTE: The read buffer should only be used or modified if the C<on_read>,
846C<push_read> or C<unshift_read> methods are used. The other read methods 959C<push_read> or C<unshift_read> methods are used. The other read methods
847automatically manage the read buffer. 960automatically manage the read buffer.
848 961
1048 return 1; 1161 return 1;
1049 } 1162 }
1050 1163
1051 # reject 1164 # reject
1052 if ($reject && $$rbuf =~ $reject) { 1165 if ($reject && $$rbuf =~ $reject) {
1053 $self->_error (&Errno::EBADMSG); 1166 $self->_error (Errno::EBADMSG);
1054 } 1167 }
1055 1168
1056 # skip 1169 # skip
1057 if ($skip && $$rbuf =~ $skip) { 1170 if ($skip && $$rbuf =~ $skip) {
1058 $data .= substr $$rbuf, 0, $+[0], ""; 1171 $data .= substr $$rbuf, 0, $+[0], "";
1074 my ($self, $cb) = @_; 1187 my ($self, $cb) = @_;
1075 1188
1076 sub { 1189 sub {
1077 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1190 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1078 if ($_[0]{rbuf} =~ /[^0-9]/) { 1191 if ($_[0]{rbuf} =~ /[^0-9]/) {
1079 $self->_error (&Errno::EBADMSG); 1192 $self->_error (Errno::EBADMSG);
1080 } 1193 }
1081 return; 1194 return;
1082 } 1195 }
1083 1196
1084 my $len = $1; 1197 my $len = $1;
1087 my $string = $_[1]; 1200 my $string = $_[1];
1088 $_[0]->unshift_read (chunk => 1, sub { 1201 $_[0]->unshift_read (chunk => 1, sub {
1089 if ($_[1] eq ",") { 1202 if ($_[1] eq ",") {
1090 $cb->($_[0], $string); 1203 $cb->($_[0], $string);
1091 } else { 1204 } else {
1092 $self->_error (&Errno::EBADMSG); 1205 $self->_error (Errno::EBADMSG);
1093 } 1206 }
1094 }); 1207 });
1095 }); 1208 });
1096 1209
1097 1 1210 1
1144 } 1257 }
1145}; 1258};
1146 1259
1147=item json => $cb->($handle, $hash_or_arrayref) 1260=item json => $cb->($handle, $hash_or_arrayref)
1148 1261
1149Reads a JSON object or array, decodes it and passes it to the callback. 1262Reads a JSON object or array, decodes it and passes it to the
1263callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1150 1264
1151If a C<json> object was passed to the constructor, then that will be used 1265If a C<json> object was passed to the constructor, then that will be used
1152for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1266for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1153 1267
1154This read type uses the incremental parser available with JSON version 1268This read type uses the incremental parser available with JSON version
1163=cut 1277=cut
1164 1278
1165register_read_type json => sub { 1279register_read_type json => sub {
1166 my ($self, $cb) = @_; 1280 my ($self, $cb) = @_;
1167 1281
1168 require JSON; 1282 my $json = $self->{json} ||=
1283 eval { require JSON::XS; JSON::XS->new->utf8 }
1284 || do { require JSON; JSON->new->utf8 };
1169 1285
1170 my $data; 1286 my $data;
1171 my $rbuf = \$self->{rbuf}; 1287 my $rbuf = \$self->{rbuf};
1172 1288
1173 my $json = $self->{json} ||= JSON->new->utf8;
1174
1175 sub { 1289 sub {
1176 my $ref = $json->incr_parse ($self->{rbuf}); 1290 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1177 1291
1178 if ($ref) { 1292 if ($ref) {
1179 $self->{rbuf} = $json->incr_text; 1293 $self->{rbuf} = $json->incr_text;
1180 $json->incr_text = ""; 1294 $json->incr_text = "";
1181 $cb->($self, $ref); 1295 $cb->($self, $ref);
1182 1296
1183 1 1297 1
1298 } elsif ($@) {
1299 # error case
1300 $json->incr_skip;
1301
1302 $self->{rbuf} = $json->incr_text;
1303 $json->incr_text = "";
1304
1305 $self->_error (Errno::EBADMSG);
1306
1307 ()
1184 } else { 1308 } else {
1185 $self->{rbuf} = ""; 1309 $self->{rbuf} = "";
1310
1186 () 1311 ()
1187 } 1312 }
1188 } 1313 }
1189}; 1314};
1190 1315
1222 # read remaining chunk 1347 # read remaining chunk
1223 $_[0]->unshift_read (chunk => $len, sub { 1348 $_[0]->unshift_read (chunk => $len, sub {
1224 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1349 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1225 $cb->($_[0], $ref); 1350 $cb->($_[0], $ref);
1226 } else { 1351 } else {
1227 $self->_error (&Errno::EBADMSG); 1352 $self->_error (Errno::EBADMSG);
1228 } 1353 }
1229 }); 1354 });
1230 } 1355 }
1231 1356
1232 1 1357 1
1311 } 1436 }
1312 }); 1437 });
1313 } 1438 }
1314} 1439}
1315 1440
1441our $ERROR_SYSCALL;
1442our $ERROR_WANT_READ;
1443
1444sub _tls_error {
1445 my ($self, $err) = @_;
1446
1447 return $self->_error ($!, 1)
1448 if $err == Net::SSLeay::ERROR_SYSCALL ();
1449
1450 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1451
1452 # reduce error string to look less scary
1453 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1454
1455 if ($self->{_on_starttls}) {
1456 (delete $self->{_on_starttls})->($self, undef, $err);
1457 &_freetls;
1458 } else {
1459 &_freetls;
1460 $self->_error (Errno::EPROTO, 1, $err);
1461 }
1462}
1463
1316# poll the write BIO and send the data if applicable 1464# poll the write BIO and send the data if applicable
1465# also decode read data if possible
1466# this is basiclaly our TLS state machine
1467# more efficient implementations are possible with openssl,
1468# but not with the buggy and incomplete Net::SSLeay.
1317sub _dotls { 1469sub _dotls {
1318 my ($self) = @_; 1470 my ($self) = @_;
1319 1471
1320 my $tmp; 1472 my $tmp;
1321 1473
1322 if (length $self->{_tls_wbuf}) { 1474 if (length $self->{_tls_wbuf}) {
1323 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1475 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1324 substr $self->{_tls_wbuf}, 0, $tmp, ""; 1476 substr $self->{_tls_wbuf}, 0, $tmp, "";
1325 } 1477 }
1478
1479 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1480 return $self->_tls_error ($tmp)
1481 if $tmp != $ERROR_WANT_READ
1482 && ($tmp != $ERROR_SYSCALL || $!);
1326 } 1483 }
1327 1484
1328 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) { 1485 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1329 unless (length $tmp) { 1486 unless (length $tmp) {
1330 # let's treat SSL-eof as we treat normal EOF 1487 $self->{_on_starttls}
1331 delete $self->{_rw}; 1488 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1332 $self->{_eof} = 1;
1333 &_freetls; 1489 &_freetls;
1490
1491 if ($self->{on_stoptls}) {
1492 $self->{on_stoptls}($self);
1493 return;
1494 } else {
1495 # let's treat SSL-eof as we treat normal EOF
1496 delete $self->{_rw};
1497 $self->{_eof} = 1;
1498 }
1334 } 1499 }
1335 1500
1336 $self->{rbuf} .= $tmp; 1501 $self->{_tls_rbuf} .= $tmp;
1337 $self->_drain_rbuf unless $self->{_in_drain}; 1502 $self->_drain_rbuf unless $self->{_in_drain};
1338 $self->{tls} or return; # tls session might have gone away in callback 1503 $self->{tls} or return; # tls session might have gone away in callback
1339 } 1504 }
1340 1505
1341 $tmp = Net::SSLeay::get_error ($self->{tls}, -1); 1506 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1342
1343 if ($tmp != Net::SSLeay::ERROR_WANT_READ ()) {
1344 if ($tmp == Net::SSLeay::ERROR_SYSCALL ()) {
1345 return $self->_error ($!, 1); 1507 return $self->_tls_error ($tmp)
1346 } elsif ($tmp == Net::SSLeay::ERROR_SSL ()) { 1508 if $tmp != $ERROR_WANT_READ
1347 return $self->_error (&Errno::EIO, 1); 1509 && ($tmp != $ERROR_SYSCALL || $!);
1348 }
1349
1350 # all other errors are fine for our purposes
1351 }
1352 1510
1353 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1511 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1354 $self->{wbuf} .= $tmp; 1512 $self->{wbuf} .= $tmp;
1355 $self->_drain_wbuf; 1513 $self->_drain_wbuf;
1356 } 1514 }
1515
1516 $self->{_on_starttls}
1517 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1518 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1357} 1519}
1358 1520
1359=item $handle->starttls ($tls[, $tls_ctx]) 1521=item $handle->starttls ($tls[, $tls_ctx])
1360 1522
1361Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1523Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1363C<starttls>. 1525C<starttls>.
1364 1526
1365The first argument is the same as the C<tls> constructor argument (either 1527The first argument is the same as the C<tls> constructor argument (either
1366C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1528C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1367 1529
1368The second argument is the optional C<Net::SSLeay::CTX> object that is 1530The second argument is the optional C<AnyEvent::TLS> object that is used
1369used when AnyEvent::Handle has to create its own TLS connection object. 1531when AnyEvent::Handle has to create its own TLS connection object, or
1532a hash reference with C<< key => value >> pairs that will be used to
1533construct a new context.
1370 1534
1371The TLS connection object will end up in C<< $handle->{tls} >> after this 1535The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1372call and can be used or changed to your liking. Note that the handshake 1536context in C<< $handle->{tls_ctx} >> after this call and can be used or
1373might have already started when this function returns. 1537changed to your liking. Note that the handshake might have already started
1538when this function returns.
1374 1539
1375If it an error to start a TLS handshake more than once per 1540If it an error to start a TLS handshake more than once per
1376AnyEvent::Handle object (this is due to bugs in OpenSSL). 1541AnyEvent::Handle object (this is due to bugs in OpenSSL).
1377 1542
1378=cut 1543=cut
1379 1544
1545our %TLS_CACHE; #TODO not yet documented, should we?
1546
1380sub starttls { 1547sub starttls {
1381 my ($self, $ssl, $ctx) = @_; 1548 my ($self, $ssl, $ctx) = @_;
1382 1549
1383 require Net::SSLeay; 1550 require Net::SSLeay;
1384 1551
1385 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object" 1552 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1386 if $self->{tls}; 1553 if $self->{tls};
1554
1555 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1556 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1557
1558 $ctx ||= $self->{tls_ctx};
1559
1560 if ("HASH" eq ref $ctx) {
1561 require AnyEvent::TLS;
1562
1563 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context
1564
1565 if ($ctx->{cache}) {
1566 my $key = $ctx+0;
1567 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1568 } else {
1569 $ctx = new AnyEvent::TLS %$ctx;
1570 }
1571 }
1387 1572
1388 if ($ssl eq "accept") { 1573 $self->{tls_ctx} = $ctx || TLS_CTX ();
1389 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1574 $self->{tls} = $ssl = $self->{tls_ctx}->_get_session ($ssl, $self, $self->{peername});
1390 Net::SSLeay::set_accept_state ($ssl);
1391 } elsif ($ssl eq "connect") {
1392 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1393 Net::SSLeay::set_connect_state ($ssl);
1394 }
1395
1396 $self->{tls} = $ssl;
1397 1575
1398 # basically, this is deep magic (because SSL_read should have the same issues) 1576 # basically, this is deep magic (because SSL_read should have the same issues)
1399 # but the openssl maintainers basically said: "trust us, it just works". 1577 # but the openssl maintainers basically said: "trust us, it just works".
1400 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1578 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1401 # and mismaintained ssleay-module doesn't even offer them). 1579 # and mismaintained ssleay-module doesn't even offer them).
1405 # 1583 #
1406 # note that we do not try to keep the length constant between writes as we are required to do. 1584 # note that we do not try to keep the length constant between writes as we are required to do.
1407 # we assume that most (but not all) of this insanity only applies to non-blocking cases, 1585 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1408 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to 1586 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1409 # have identity issues in that area. 1587 # have identity issues in that area.
1410 Net::SSLeay::CTX_set_mode ($self->{tls}, 1588# Net::SSLeay::CTX_set_mode ($ssl,
1411 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1589# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1412 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1590# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1591 Net::SSLeay::CTX_set_mode ($ssl, 1|2);
1413 1592
1414 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1593 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1415 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1594 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1416 1595
1417 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1596 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1597
1598 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1599 if $self->{on_starttls};
1418 1600
1419 &_dotls; # need to trigger the initial handshake 1601 &_dotls; # need to trigger the initial handshake
1420 $self->start_read; # make sure we actually do read 1602 $self->start_read; # make sure we actually do read
1421} 1603}
1422 1604
1435 if ($self->{tls}) { 1617 if ($self->{tls}) {
1436 Net::SSLeay::shutdown ($self->{tls}); 1618 Net::SSLeay::shutdown ($self->{tls});
1437 1619
1438 &_dotls; 1620 &_dotls;
1439 1621
1440 # we don't give a shit. no, we do, but we can't. no... 1622# # we don't give a shit. no, we do, but we can't. no...#d#
1441 # we, we... have to use openssl :/ 1623# # we, we... have to use openssl :/#d#
1442 &_freetls; 1624# &_freetls;#d#
1443 } 1625 }
1444} 1626}
1445 1627
1446sub _freetls { 1628sub _freetls {
1447 my ($self) = @_; 1629 my ($self) = @_;
1448 1630
1449 return unless $self->{tls}; 1631 return unless $self->{tls};
1450 1632
1451 Net::SSLeay::free (delete $self->{tls}); 1633 $self->{tls_ctx}->_put_session (delete $self->{tls});
1452 1634
1453 delete @$self{qw(_rbio _wbio _tls_wbuf)}; 1635 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1454} 1636}
1455 1637
1456sub DESTROY { 1638sub DESTROY {
1457 my $self = shift; 1639 my ($self) = @_;
1458 1640
1459 &_freetls; 1641 &_freetls;
1460 1642
1461 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1643 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1462 1644
1482} 1664}
1483 1665
1484=item $handle->destroy 1666=item $handle->destroy
1485 1667
1486Shuts down the handle object as much as possible - this call ensures that 1668Shuts down the handle object as much as possible - this call ensures that
1487no further callbacks will be invoked and resources will be freed as much 1669no further callbacks will be invoked and as many resources as possible
1488as possible. You must not call any methods on the object afterwards. 1670will be freed. You must not call any methods on the object afterwards.
1489 1671
1490Normally, you can just "forget" any references to an AnyEvent::Handle 1672Normally, you can just "forget" any references to an AnyEvent::Handle
1491object and it will simply shut down. This works in fatal error and EOF 1673object and it will simply shut down. This works in fatal error and EOF
1492callbacks, as well as code outside. It does I<NOT> work in a read or write 1674callbacks, as well as code outside. It does I<NOT> work in a read or write
1493callback, so when you want to destroy the AnyEvent::Handle object from 1675callback, so when you want to destroy the AnyEvent::Handle object from
1494within such an callback. You I<MUST> call C<< ->destroy >> explicitly in 1676within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1495that case. 1677that case.
1496 1678
1679Destroying the handle object in this way has the advantage that callbacks
1680will be removed as well, so if those are the only reference holders (as
1681is common), then one doesn't need to do anything special to break any
1682reference cycles.
1683
1497The handle might still linger in the background and write out remaining 1684The handle might still linger in the background and write out remaining
1498data, as specified by the C<linger> option, however. 1685data, as specified by the C<linger> option, however.
1499 1686
1500=cut 1687=cut
1501 1688
1506 %$self = (); 1693 %$self = ();
1507} 1694}
1508 1695
1509=item AnyEvent::Handle::TLS_CTX 1696=item AnyEvent::Handle::TLS_CTX
1510 1697
1511This function creates and returns the Net::SSLeay::CTX object used by 1698This function creates and returns the AnyEvent::TLS object used by default
1512default for TLS mode. 1699for TLS mode.
1513 1700
1514The context is created like this: 1701The context is created by calling L<AnyEvent::TLS> without any arguments.
1515
1516 Net::SSLeay::load_error_strings;
1517 Net::SSLeay::SSLeay_add_ssl_algorithms;
1518 Net::SSLeay::randomize;
1519
1520 my $CTX = Net::SSLeay::CTX_new;
1521
1522 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1523 1702
1524=cut 1703=cut
1525 1704
1526our $TLS_CTX; 1705our $TLS_CTX;
1527 1706
1528sub TLS_CTX() { 1707sub TLS_CTX() {
1529 $TLS_CTX || do { 1708 $TLS_CTX ||= do {
1530 require Net::SSLeay; 1709 require AnyEvent::TLS;
1531 1710
1532 Net::SSLeay::load_error_strings (); 1711 new AnyEvent::TLS
1533 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1534 Net::SSLeay::randomize ();
1535
1536 $TLS_CTX = Net::SSLeay::CTX_new ();
1537
1538 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1539
1540 $TLS_CTX
1541 } 1712 }
1542} 1713}
1543 1714
1544=back 1715=back
1545 1716
1584 1755
1585 $handle->on_read (sub { }); 1756 $handle->on_read (sub { });
1586 $handle->on_eof (undef); 1757 $handle->on_eof (undef);
1587 $handle->on_error (sub { 1758 $handle->on_error (sub {
1588 my $data = delete $_[0]{rbuf}; 1759 my $data = delete $_[0]{rbuf};
1589 undef $handle;
1590 }); 1760 });
1591 1761
1592The reason to use C<on_error> is that TCP connections, due to latencies 1762The reason to use C<on_error> is that TCP connections, due to latencies
1593and packets loss, might get closed quite violently with an error, when in 1763and packets loss, might get closed quite violently with an error, when in
1594fact, all data has been received. 1764fact, all data has been received.
1610 $handle->on_drain (sub { 1780 $handle->on_drain (sub {
1611 warn "all data submitted to the kernel\n"; 1781 warn "all data submitted to the kernel\n";
1612 undef $handle; 1782 undef $handle;
1613 }); 1783 });
1614 1784
1785If you just want to queue some data and then signal EOF to the other side,
1786consider using C<< ->push_shutdown >> instead.
1787
1788=item I want to contact a TLS/SSL server, I don't care about security.
1789
1790If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1791simply connect to it and then create the AnyEvent::Handle with the C<tls>
1792parameter:
1793
1794 tcp_connect $host, $port, sub {
1795 my ($fh) = @_;
1796
1797 my $handle = new AnyEvent::Handle
1798 fh => $fh,
1799 tls => "connect",
1800 on_error => sub { ... };
1801
1802 $handle->push_write (...);
1803 };
1804
1805=item I want to contact a TLS/SSL server, I do care about security.
1806
1807Then you should additionally enable certificate verification, including
1808peername verification, if the protocol you use supports it (see
1809L<AnyEvent::TLS>, C<verify_peername>).
1810
1811E.g. for HTTPS:
1812
1813 tcp_connect $host, $port, sub {
1814 my ($fh) = @_;
1815
1816 my $handle = new AnyEvent::Handle
1817 fh => $fh,
1818 peername => $host,
1819 tls => "connect",
1820 tls_ctx => { verify => 1, verify_peername => "https" },
1821 ...
1822
1823Note that you must specify the hostname you connected to (or whatever
1824"peername" the protocol needs) as the C<peername> argument, otherwise no
1825peername verification will be done.
1826
1827The above will use the system-dependent default set of trusted CA
1828certificates. If you want to check against a specific CA, add the
1829C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1830
1831 tls_ctx => {
1832 verify => 1,
1833 verify_peername => "https",
1834 ca_file => "my-ca-cert.pem",
1835 },
1836
1837=item I want to create a TLS/SSL server, how do I do that?
1838
1839Well, you first need to get a server certificate and key. You have
1840three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1841self-signed certificate (cheap. check the search engine of your choice,
1842there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1843nice program for that purpose).
1844
1845Then create a file with your private key (in PEM format, see
1846L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1847file should then look like this:
1848
1849 -----BEGIN RSA PRIVATE KEY-----
1850 ...header data
1851 ... lots of base64'y-stuff
1852 -----END RSA PRIVATE KEY-----
1853
1854 -----BEGIN CERTIFICATE-----
1855 ... lots of base64'y-stuff
1856 -----END CERTIFICATE-----
1857
1858The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
1859specify this file as C<cert_file>:
1860
1861 tcp_server undef, $port, sub {
1862 my ($fh) = @_;
1863
1864 my $handle = new AnyEvent::Handle
1865 fh => $fh,
1866 tls => "accept",
1867 tls_ctx => { cert_file => "my-server-keycert.pem" },
1868 ...
1869
1870When you have intermediate CA certificates that your clients might not
1871know about, just append them to the C<cert_file>.
1872
1615=back 1873=back
1616 1874
1617 1875
1618=head1 SUBCLASSING AnyEvent::Handle 1876=head1 SUBCLASSING AnyEvent::Handle
1619 1877

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines