ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.109 by root, Wed Jan 14 02:03:43 2009 UTC vs.
Revision 1.158 by root, Fri Jul 24 08:40:35 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 3use Scalar::Util ();
9use Carp (); 4use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR); 5use Errno qw(EAGAIN EINTR);
12 6
7use AnyEvent (); BEGIN { AnyEvent::common_sense }
8use AnyEvent::Util qw(WSAEWOULDBLOCK);
9
13=head1 NAME 10=head1 NAME
14 11
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 12AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 13
17=cut 14=cut
18 15
19our $VERSION = 4.331; 16our $VERSION = 4.86;
20 17
21=head1 SYNOPSIS 18=head1 SYNOPSIS
22 19
23 use AnyEvent; 20 use AnyEvent;
24 use AnyEvent::Handle; 21 use AnyEvent::Handle;
25 22
26 my $cv = AnyEvent->condvar; 23 my $cv = AnyEvent->condvar;
27 24
28 my $handle = 25 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 26 fh => \*STDIN,
31 on_eof => sub { 27 on_error => sub {
28 my ($hdl, $fatal, $msg) = @_;
29 warn "got error $msg\n";
30 $hdl->destroy;
32 $cv->send; 31 $cv->send;
33 },
34 ); 32 );
35 33
36 # send some request line 34 # send some request line
37 $handle->push_write ("getinfo\015\012"); 35 $hdl->push_write ("getinfo\015\012");
38 36
39 # read the response line 37 # read the response line
40 $handle->push_read (line => sub { 38 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 39 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 40 warn "got line <$line>\n";
43 $cv->send; 41 $cv->send;
44 }); 42 });
45 43
46 $cv->recv; 44 $cv->recv;
47 45
63 61
64=head1 METHODS 62=head1 METHODS
65 63
66=over 4 64=over 4
67 65
68=item B<new (%args)> 66=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
69 67
70The constructor supports these arguments (all as key => value pairs). 68The constructor supports these arguments (all as C<< key => value >> pairs).
71 69
72=over 4 70=over 4
73 71
74=item fh => $filehandle [MANDATORY] 72=item fh => $filehandle [MANDATORY]
75 73
74#=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
75
76The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
77
78NOTE: The filehandle will be set to non-blocking mode (using 77NOTE: The filehandle will be set to non-blocking mode (using
79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in 78C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode. 79that mode.
81 80
81#=item connect => [$host, $service]
82#
83# You have to specify either this parameter, or C<connect>, below.
84#Try to connect to the specified host and service (port), using
85#C<AnyEvent::Socket::tcp_connect>.
86#
87#When this
88
82=item on_eof => $cb->($handle) 89=item on_eof => $cb->($handle)
83 90
84Set the callback to be called when an end-of-file condition is detected, 91Set the callback to be called when an end-of-file condition is detected,
85i.e. in the case of a socket, when the other side has closed the 92i.e. in the case of a socket, when the other side has closed the
86connection cleanly. 93connection cleanly, and there are no outstanding read requests in the
94queue (if there are read requests, then an EOF counts as an unexpected
95connection close and will be flagged as an error).
87 96
88For sockets, this just means that the other side has stopped sending data, 97For sockets, this just means that the other side has stopped sending data,
89you can still try to write data, and, in fact, one can return from the EOF 98you can still try to write data, and, in fact, one can return from the EOF
90callback and continue writing data, as only the read part has been shut 99callback and continue writing data, as only the read part has been shut
91down. 100down.
92 101
93While not mandatory, it is I<highly> recommended to set an EOF callback,
94otherwise you might end up with a closed socket while you are still
95waiting for data.
96
97If an EOF condition has been detected but no C<on_eof> callback has been 102If an EOF condition has been detected but no C<on_eof> callback has been
98set, then a fatal error will be raised with C<$!> set to <0>. 103set, then a fatal error will be raised with C<$!> set to <0>.
99 104
100=item on_error => $cb->($handle, $fatal) 105=item on_error => $cb->($handle, $fatal, $message)
101 106
102This is the error callback, which is called when, well, some error 107This is the error callback, which is called when, well, some error
103occured, such as not being able to resolve the hostname, failure to 108occured, such as not being able to resolve the hostname, failure to
104connect or a read error. 109connect or a read error.
105 110
106Some errors are fatal (which is indicated by C<$fatal> being true). On 111Some errors are fatal (which is indicated by C<$fatal> being true). On
107fatal errors the handle object will be shut down and will not be usable 112fatal errors the handle object will be destroyed (by a call to C<< ->
108(but you are free to look at the current C<< ->rbuf >>). Examples of fatal 113destroy >>) after invoking the error callback (which means you are free to
109errors are an EOF condition with active (but unsatisifable) read watchers 114examine the handle object). Examples of fatal errors are an EOF condition
110(C<EPIPE>) or I/O errors. 115with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors.
116
117AnyEvent::Handle tries to find an appropriate error code for you to check
118against, but in some cases (TLS errors), this does not work well. It is
119recommended to always output the C<$message> argument in human-readable
120error messages (it's usually the same as C<"$!">).
111 121
112Non-fatal errors can be retried by simply returning, but it is recommended 122Non-fatal errors can be retried by simply returning, but it is recommended
113to simply ignore this parameter and instead abondon the handle object 123to simply ignore this parameter and instead abondon the handle object
114when this callback is invoked. Examples of non-fatal errors are timeouts 124when this callback is invoked. Examples of non-fatal errors are timeouts
115C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>). 125C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
116 126
117On callback entrance, the value of C<$!> contains the operating system 127On callback entrance, the value of C<$!> contains the operating system
118error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 128error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
129C<EPROTO>).
119 130
120While not mandatory, it is I<highly> recommended to set this callback, as 131While not mandatory, it is I<highly> recommended to set this callback, as
121you will not be notified of errors otherwise. The default simply calls 132you will not be notified of errors otherwise. The default simply calls
122C<croak>. 133C<croak>.
123 134
127and no read request is in the queue (unlike read queue callbacks, this 138and no read request is in the queue (unlike read queue callbacks, this
128callback will only be called when at least one octet of data is in the 139callback will only be called when at least one octet of data is in the
129read buffer). 140read buffer).
130 141
131To access (and remove data from) the read buffer, use the C<< ->rbuf >> 142To access (and remove data from) the read buffer, use the C<< ->rbuf >>
132method or access the C<$handle->{rbuf}> member directly. 143method or access the C<< $handle->{rbuf} >> member directly. Note that you
144must not enlarge or modify the read buffer, you can only remove data at
145the beginning from it.
133 146
134When an EOF condition is detected then AnyEvent::Handle will first try to 147When an EOF condition is detected then AnyEvent::Handle will first try to
135feed all the remaining data to the queued callbacks and C<on_read> before 148feed all the remaining data to the queued callbacks and C<on_read> before
136calling the C<on_eof> callback. If no progress can be made, then a fatal 149calling the C<on_eof> callback. If no progress can be made, then a fatal
137error will be raised (with C<$!> set to C<EPIPE>). 150error will be raised (with C<$!> set to C<EPIPE>).
151
152Note that, unlike requests in the read queue, an C<on_read> callback
153doesn't mean you I<require> some data: if there is an EOF and there
154are outstanding read requests then an error will be flagged. With an
155C<on_read> callback, the C<on_eof> callback will be invoked.
138 156
139=item on_drain => $cb->($handle) 157=item on_drain => $cb->($handle)
140 158
141This sets the callback that is called when the write buffer becomes empty 159This sets the callback that is called when the write buffer becomes empty
142(or when the callback is set and the buffer is empty already). 160(or when the callback is set and the buffer is empty already).
235 253
236This will not work for partial TLS data that could not be encoded 254This will not work for partial TLS data that could not be encoded
237yet. This data will be lost. Calling the C<stoptls> method in time might 255yet. This data will be lost. Calling the C<stoptls> method in time might
238help. 256help.
239 257
258=item peername => $string
259
260A string used to identify the remote site - usually the DNS hostname
261(I<not> IDN!) used to create the connection, rarely the IP address.
262
263Apart from being useful in error messages, this string is also used in TLS
264peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
265verification will be skipped when C<peername> is not specified or
266C<undef>.
267
240=item tls => "accept" | "connect" | Net::SSLeay::SSL object 268=item tls => "accept" | "connect" | Net::SSLeay::SSL object
241 269
242When this parameter is given, it enables TLS (SSL) mode, that means 270When this parameter is given, it enables TLS (SSL) mode, that means
243AnyEvent will start a TLS handshake as soon as the conenction has been 271AnyEvent will start a TLS handshake as soon as the conenction has been
244established and will transparently encrypt/decrypt data afterwards. 272established and will transparently encrypt/decrypt data afterwards.
273
274All TLS protocol errors will be signalled as C<EPROTO>, with an
275appropriate error message.
245 276
246TLS mode requires Net::SSLeay to be installed (it will be loaded 277TLS mode requires Net::SSLeay to be installed (it will be loaded
247automatically when you try to create a TLS handle): this module doesn't 278automatically when you try to create a TLS handle): this module doesn't
248have a dependency on that module, so if your module requires it, you have 279have a dependency on that module, so if your module requires it, you have
249to add the dependency yourself. 280to add the dependency yourself.
253mode. 284mode.
254 285
255You can also provide your own TLS connection object, but you have 286You can also provide your own TLS connection object, but you have
256to make sure that you call either C<Net::SSLeay::set_connect_state> 287to make sure that you call either C<Net::SSLeay::set_connect_state>
257or C<Net::SSLeay::set_accept_state> on it before you pass it to 288or C<Net::SSLeay::set_accept_state> on it before you pass it to
258AnyEvent::Handle. 289AnyEvent::Handle. Also, this module will take ownership of this connection
290object.
291
292At some future point, AnyEvent::Handle might switch to another TLS
293implementation, then the option to use your own session object will go
294away.
259 295
260B<IMPORTANT:> since Net::SSLeay "objects" are really only integers, 296B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
261passing in the wrong integer will lead to certain crash. This most often 297passing in the wrong integer will lead to certain crash. This most often
262happens when one uses a stylish C<< tls => 1 >> and is surprised about the 298happens when one uses a stylish C<< tls => 1 >> and is surprised about the
263segmentation fault. 299segmentation fault.
264 300
265See the C<< ->starttls >> method for when need to start TLS negotiation later. 301See the C<< ->starttls >> method for when need to start TLS negotiation later.
266 302
267=item tls_ctx => $ssl_ctx 303=item tls_ctx => $anyevent_tls
268 304
269Use the given C<Net::SSLeay::CTX> object to create the new TLS connection 305Use the given C<AnyEvent::TLS> object to create the new TLS connection
270(unless a connection object was specified directly). If this parameter is 306(unless a connection object was specified directly). If this parameter is
271missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 307missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
308
309Instead of an object, you can also specify a hash reference with C<< key
310=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
311new TLS context object.
312
313=item on_starttls => $cb->($handle, $success[, $error_message])
314
315This callback will be invoked when the TLS/SSL handshake has finished. If
316C<$success> is true, then the TLS handshake succeeded, otherwise it failed
317(C<on_stoptls> will not be called in this case).
318
319The session in C<< $handle->{tls} >> can still be examined in this
320callback, even when the handshake was not successful.
321
322TLS handshake failures will not cause C<on_error> to be invoked when this
323callback is in effect, instead, the error message will be passed to C<on_starttls>.
324
325Without this callback, handshake failures lead to C<on_error> being
326called, as normal.
327
328Note that you cannot call C<starttls> right again in this callback. If you
329need to do that, start an zero-second timer instead whose callback can
330then call C<< ->starttls >> again.
331
332=item on_stoptls => $cb->($handle)
333
334When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
335set, then it will be invoked after freeing the TLS session. If it is not,
336then a TLS shutdown condition will be treated like a normal EOF condition
337on the handle.
338
339The session in C<< $handle->{tls} >> can still be examined in this
340callback.
341
342This callback will only be called on TLS shutdowns, not when the
343underlying handle signals EOF.
272 344
273=item json => JSON or JSON::XS object 345=item json => JSON or JSON::XS object
274 346
275This is the json coder object used by the C<json> read and write types. 347This is the json coder object used by the C<json> read and write types.
276 348
285 357
286=cut 358=cut
287 359
288sub new { 360sub new {
289 my $class = shift; 361 my $class = shift;
290
291 my $self = bless { @_ }, $class; 362 my $self = bless { @_ }, $class;
292 363
293 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 364 $self->{fh} or Carp::croak "mandatory argument fh is missing";
294 365
295 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 366 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
367
368 $self->{_activity} = AnyEvent->now;
369 $self->_timeout;
370
371 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
296 372
297 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}) 373 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
298 if $self->{tls}; 374 if $self->{tls};
299 375
300 $self->{_activity} = AnyEvent->now;
301 $self->_timeout;
302
303 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain}; 376 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
304 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
305 377
306 $self->start_read 378 $self->start_read
307 if $self->{on_read}; 379 if $self->{on_read};
308 380
309 $self 381 $self->{fh} && $self
310} 382}
311 383
312sub _shutdown { 384#sub _shutdown {
313 my ($self) = @_; 385# my ($self) = @_;
314 386#
315 delete $self->{_tw}; 387# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
316 delete $self->{_rw}; 388# $self->{_eof} = 1; # tell starttls et. al to stop trying
317 delete $self->{_ww}; 389#
318 delete $self->{fh};
319
320 &_freetls; 390# &_freetls;
321 391#}
322 delete $self->{on_read};
323 delete $self->{_queue};
324}
325 392
326sub _error { 393sub _error {
327 my ($self, $errno, $fatal) = @_; 394 my ($self, $errno, $fatal, $message) = @_;
328
329 $self->_shutdown
330 if $fatal;
331 395
332 $! = $errno; 396 $! = $errno;
397 $message ||= "$!";
333 398
334 if ($self->{on_error}) { 399 if ($self->{on_error}) {
335 $self->{on_error}($self, $fatal); 400 $self->{on_error}($self, $fatal, $message);
401 $self->destroy if $fatal;
336 } elsif ($self->{fh}) { 402 } elsif ($self->{fh}) {
403 $self->destroy;
337 Carp::croak "AnyEvent::Handle uncaught error: $!"; 404 Carp::croak "AnyEvent::Handle uncaught error: $message";
338 } 405 }
339} 406}
340 407
341=item $fh = $handle->fh 408=item $fh = $handle->fh
342 409
403 local $SIG{__DIE__}; 470 local $SIG{__DIE__};
404 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 471 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
405 }; 472 };
406} 473}
407 474
475=item $handle->on_starttls ($cb)
476
477Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
478
479=cut
480
481sub on_starttls {
482 $_[0]{on_starttls} = $_[1];
483}
484
485=item $handle->on_stoptls ($cb)
486
487Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
488
489=cut
490
491sub on_starttls {
492 $_[0]{on_stoptls} = $_[1];
493}
494
408############################################################################# 495#############################################################################
409 496
410=item $handle->timeout ($seconds) 497=item $handle->timeout ($seconds)
411 498
412Configures (or disables) the inactivity timeout. 499Configures (or disables) the inactivity timeout.
436 $self->{_activity} = $NOW; 523 $self->{_activity} = $NOW;
437 524
438 if ($self->{on_timeout}) { 525 if ($self->{on_timeout}) {
439 $self->{on_timeout}($self); 526 $self->{on_timeout}($self);
440 } else { 527 } else {
441 $self->_error (&Errno::ETIMEDOUT); 528 $self->_error (Errno::ETIMEDOUT);
442 } 529 }
443 530
444 # callback could have changed timeout value, optimise 531 # callback could have changed timeout value, optimise
445 return unless $self->{timeout}; 532 return unless $self->{timeout};
446 533
509 Scalar::Util::weaken $self; 596 Scalar::Util::weaken $self;
510 597
511 my $cb = sub { 598 my $cb = sub {
512 my $len = syswrite $self->{fh}, $self->{wbuf}; 599 my $len = syswrite $self->{fh}, $self->{wbuf};
513 600
514 if ($len >= 0) { 601 if (defined $len) {
515 substr $self->{wbuf}, 0, $len, ""; 602 substr $self->{wbuf}, 0, $len, "";
516 603
517 $self->{_activity} = AnyEvent->now; 604 $self->{_activity} = AnyEvent->now;
518 605
519 $self->{on_drain}($self) 606 $self->{on_drain}($self)
654 741
655 pack "w/a*", Storable::nfreeze ($ref) 742 pack "w/a*", Storable::nfreeze ($ref)
656}; 743};
657 744
658=back 745=back
746
747=item $handle->push_shutdown
748
749Sometimes you know you want to close the socket after writing your data
750before it was actually written. One way to do that is to replace your
751C<on_drain> handler by a callback that shuts down the socket (and set
752C<low_water_mark> to C<0>). This method is a shorthand for just that, and
753replaces the C<on_drain> callback with:
754
755 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
756
757This simply shuts down the write side and signals an EOF condition to the
758the peer.
759
760You can rely on the normal read queue and C<on_eof> handling
761afterwards. This is the cleanest way to close a connection.
762
763=cut
764
765sub push_shutdown {
766 my ($self) = @_;
767
768 delete $self->{low_water_mark};
769 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
770}
659 771
660=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 772=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
661 773
662This function (not method) lets you add your own types to C<push_write>. 774This function (not method) lets you add your own types to C<push_write>.
663Whenever the given C<type> is used, C<push_write> will invoke the code 775Whenever the given C<type> is used, C<push_write> will invoke the code
763 875
764 if ( 876 if (
765 defined $self->{rbuf_max} 877 defined $self->{rbuf_max}
766 && $self->{rbuf_max} < length $self->{rbuf} 878 && $self->{rbuf_max} < length $self->{rbuf}
767 ) { 879 ) {
768 $self->_error (&Errno::ENOSPC, 1), return; 880 $self->_error (Errno::ENOSPC, 1), return;
769 } 881 }
770 882
771 while () { 883 while () {
884 # we need to use a separate tls read buffer, as we must not receive data while
885 # we are draining the buffer, and this can only happen with TLS.
886 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
887
772 my $len = length $self->{rbuf}; 888 my $len = length $self->{rbuf};
773 889
774 if (my $cb = shift @{ $self->{_queue} }) { 890 if (my $cb = shift @{ $self->{_queue} }) {
775 unless ($cb->($self)) { 891 unless ($cb->($self)) {
776 if ($self->{_eof}) { 892 if ($self->{_eof}) {
777 # no progress can be made (not enough data and no data forthcoming) 893 # no progress can be made (not enough data and no data forthcoming)
778 $self->_error (&Errno::EPIPE, 1), return; 894 $self->_error (Errno::EPIPE, 1), return;
779 } 895 }
780 896
781 unshift @{ $self->{_queue} }, $cb; 897 unshift @{ $self->{_queue} }, $cb;
782 last; 898 last;
783 } 899 }
791 && !@{ $self->{_queue} } # and the queue is still empty 907 && !@{ $self->{_queue} } # and the queue is still empty
792 && $self->{on_read} # but we still have on_read 908 && $self->{on_read} # but we still have on_read
793 ) { 909 ) {
794 # no further data will arrive 910 # no further data will arrive
795 # so no progress can be made 911 # so no progress can be made
796 $self->_error (&Errno::EPIPE, 1), return 912 $self->_error (Errno::EPIPE, 1), return
797 if $self->{_eof}; 913 if $self->{_eof};
798 914
799 last; # more data might arrive 915 last; # more data might arrive
800 } 916 }
801 } else { 917 } else {
807 923
808 if ($self->{_eof}) { 924 if ($self->{_eof}) {
809 if ($self->{on_eof}) { 925 if ($self->{on_eof}) {
810 $self->{on_eof}($self) 926 $self->{on_eof}($self)
811 } else { 927 } else {
812 $self->_error (0, 1); 928 $self->_error (0, 1, "Unexpected end-of-file");
813 } 929 }
814 } 930 }
815 931
816 # may need to restart read watcher 932 # may need to restart read watcher
817 unless ($self->{_rw}) { 933 unless ($self->{_rw}) {
837 953
838=item $handle->rbuf 954=item $handle->rbuf
839 955
840Returns the read buffer (as a modifiable lvalue). 956Returns the read buffer (as a modifiable lvalue).
841 957
842You can access the read buffer directly as the C<< ->{rbuf} >> member, if 958You can access the read buffer directly as the C<< ->{rbuf} >>
843you want. 959member, if you want. However, the only operation allowed on the
960read buffer (apart from looking at it) is removing data from its
961beginning. Otherwise modifying or appending to it is not allowed and will
962lead to hard-to-track-down bugs.
844 963
845NOTE: The read buffer should only be used or modified if the C<on_read>, 964NOTE: The read buffer should only be used or modified if the C<on_read>,
846C<push_read> or C<unshift_read> methods are used. The other read methods 965C<push_read> or C<unshift_read> methods are used. The other read methods
847automatically manage the read buffer. 966automatically manage the read buffer.
848 967
1048 return 1; 1167 return 1;
1049 } 1168 }
1050 1169
1051 # reject 1170 # reject
1052 if ($reject && $$rbuf =~ $reject) { 1171 if ($reject && $$rbuf =~ $reject) {
1053 $self->_error (&Errno::EBADMSG); 1172 $self->_error (Errno::EBADMSG);
1054 } 1173 }
1055 1174
1056 # skip 1175 # skip
1057 if ($skip && $$rbuf =~ $skip) { 1176 if ($skip && $$rbuf =~ $skip) {
1058 $data .= substr $$rbuf, 0, $+[0], ""; 1177 $data .= substr $$rbuf, 0, $+[0], "";
1074 my ($self, $cb) = @_; 1193 my ($self, $cb) = @_;
1075 1194
1076 sub { 1195 sub {
1077 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1196 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1078 if ($_[0]{rbuf} =~ /[^0-9]/) { 1197 if ($_[0]{rbuf} =~ /[^0-9]/) {
1079 $self->_error (&Errno::EBADMSG); 1198 $self->_error (Errno::EBADMSG);
1080 } 1199 }
1081 return; 1200 return;
1082 } 1201 }
1083 1202
1084 my $len = $1; 1203 my $len = $1;
1087 my $string = $_[1]; 1206 my $string = $_[1];
1088 $_[0]->unshift_read (chunk => 1, sub { 1207 $_[0]->unshift_read (chunk => 1, sub {
1089 if ($_[1] eq ",") { 1208 if ($_[1] eq ",") {
1090 $cb->($_[0], $string); 1209 $cb->($_[0], $string);
1091 } else { 1210 } else {
1092 $self->_error (&Errno::EBADMSG); 1211 $self->_error (Errno::EBADMSG);
1093 } 1212 }
1094 }); 1213 });
1095 }); 1214 });
1096 1215
1097 1 1216 1
1144 } 1263 }
1145}; 1264};
1146 1265
1147=item json => $cb->($handle, $hash_or_arrayref) 1266=item json => $cb->($handle, $hash_or_arrayref)
1148 1267
1149Reads a JSON object or array, decodes it and passes it to the callback. 1268Reads a JSON object or array, decodes it and passes it to the
1269callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1150 1270
1151If a C<json> object was passed to the constructor, then that will be used 1271If a C<json> object was passed to the constructor, then that will be used
1152for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1272for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1153 1273
1154This read type uses the incremental parser available with JSON version 1274This read type uses the incremental parser available with JSON version
1163=cut 1283=cut
1164 1284
1165register_read_type json => sub { 1285register_read_type json => sub {
1166 my ($self, $cb) = @_; 1286 my ($self, $cb) = @_;
1167 1287
1168 require JSON; 1288 my $json = $self->{json} ||=
1289 eval { require JSON::XS; JSON::XS->new->utf8 }
1290 || do { require JSON; JSON->new->utf8 };
1169 1291
1170 my $data; 1292 my $data;
1171 my $rbuf = \$self->{rbuf}; 1293 my $rbuf = \$self->{rbuf};
1172 1294
1173 my $json = $self->{json} ||= JSON->new->utf8;
1174
1175 sub { 1295 sub {
1176 my $ref = $json->incr_parse ($self->{rbuf}); 1296 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1177 1297
1178 if ($ref) { 1298 if ($ref) {
1179 $self->{rbuf} = $json->incr_text; 1299 $self->{rbuf} = $json->incr_text;
1180 $json->incr_text = ""; 1300 $json->incr_text = "";
1181 $cb->($self, $ref); 1301 $cb->($self, $ref);
1182 1302
1183 1 1303 1
1304 } elsif ($@) {
1305 # error case
1306 $json->incr_skip;
1307
1308 $self->{rbuf} = $json->incr_text;
1309 $json->incr_text = "";
1310
1311 $self->_error (Errno::EBADMSG);
1312
1313 ()
1184 } else { 1314 } else {
1185 $self->{rbuf} = ""; 1315 $self->{rbuf} = "";
1316
1186 () 1317 ()
1187 } 1318 }
1188 } 1319 }
1189}; 1320};
1190 1321
1222 # read remaining chunk 1353 # read remaining chunk
1223 $_[0]->unshift_read (chunk => $len, sub { 1354 $_[0]->unshift_read (chunk => $len, sub {
1224 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1355 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1225 $cb->($_[0], $ref); 1356 $cb->($_[0], $ref);
1226 } else { 1357 } else {
1227 $self->_error (&Errno::EBADMSG); 1358 $self->_error (Errno::EBADMSG);
1228 } 1359 }
1229 }); 1360 });
1230 } 1361 }
1231 1362
1232 1 1363 1
1311 } 1442 }
1312 }); 1443 });
1313 } 1444 }
1314} 1445}
1315 1446
1447our $ERROR_SYSCALL;
1448our $ERROR_WANT_READ;
1449
1450sub _tls_error {
1451 my ($self, $err) = @_;
1452
1453 return $self->_error ($!, 1)
1454 if $err == Net::SSLeay::ERROR_SYSCALL ();
1455
1456 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1457
1458 # reduce error string to look less scary
1459 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1460
1461 if ($self->{_on_starttls}) {
1462 (delete $self->{_on_starttls})->($self, undef, $err);
1463 &_freetls;
1464 } else {
1465 &_freetls;
1466 $self->_error (Errno::EPROTO, 1, $err);
1467 }
1468}
1469
1316# poll the write BIO and send the data if applicable 1470# poll the write BIO and send the data if applicable
1471# also decode read data if possible
1472# this is basiclaly our TLS state machine
1473# more efficient implementations are possible with openssl,
1474# but not with the buggy and incomplete Net::SSLeay.
1317sub _dotls { 1475sub _dotls {
1318 my ($self) = @_; 1476 my ($self) = @_;
1319 1477
1320 my $tmp; 1478 my $tmp;
1321 1479
1322 if (length $self->{_tls_wbuf}) { 1480 if (length $self->{_tls_wbuf}) {
1323 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1481 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1324 substr $self->{_tls_wbuf}, 0, $tmp, ""; 1482 substr $self->{_tls_wbuf}, 0, $tmp, "";
1325 } 1483 }
1484
1485 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1486 return $self->_tls_error ($tmp)
1487 if $tmp != $ERROR_WANT_READ
1488 && ($tmp != $ERROR_SYSCALL || $!);
1326 } 1489 }
1327 1490
1328 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) { 1491 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1329 unless (length $tmp) { 1492 unless (length $tmp) {
1330 # let's treat SSL-eof as we treat normal EOF 1493 $self->{_on_starttls}
1331 delete $self->{_rw}; 1494 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1332 $self->{_eof} = 1;
1333 &_freetls; 1495 &_freetls;
1496
1497 if ($self->{on_stoptls}) {
1498 $self->{on_stoptls}($self);
1499 return;
1500 } else {
1501 # let's treat SSL-eof as we treat normal EOF
1502 delete $self->{_rw};
1503 $self->{_eof} = 1;
1504 }
1334 } 1505 }
1335 1506
1336 $self->{rbuf} .= $tmp; 1507 $self->{_tls_rbuf} .= $tmp;
1337 $self->_drain_rbuf unless $self->{_in_drain}; 1508 $self->_drain_rbuf unless $self->{_in_drain};
1338 $self->{tls} or return; # tls session might have gone away in callback 1509 $self->{tls} or return; # tls session might have gone away in callback
1339 } 1510 }
1340 1511
1341 $tmp = Net::SSLeay::get_error ($self->{tls}, -1); 1512 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1342
1343 if ($tmp != Net::SSLeay::ERROR_WANT_READ ()) {
1344 if ($tmp == Net::SSLeay::ERROR_SYSCALL ()) {
1345 return $self->_error ($!, 1); 1513 return $self->_tls_error ($tmp)
1346 } elsif ($tmp == Net::SSLeay::ERROR_SSL ()) { 1514 if $tmp != $ERROR_WANT_READ
1347 return $self->_error (&Errno::EIO, 1); 1515 && ($tmp != $ERROR_SYSCALL || $!);
1348 }
1349
1350 # all other errors are fine for our purposes
1351 }
1352 1516
1353 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1517 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1354 $self->{wbuf} .= $tmp; 1518 $self->{wbuf} .= $tmp;
1355 $self->_drain_wbuf; 1519 $self->_drain_wbuf;
1356 } 1520 }
1521
1522 $self->{_on_starttls}
1523 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1524 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1357} 1525}
1358 1526
1359=item $handle->starttls ($tls[, $tls_ctx]) 1527=item $handle->starttls ($tls[, $tls_ctx])
1360 1528
1361Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1529Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1362object is created, you can also do that at a later time by calling 1530object is created, you can also do that at a later time by calling
1363C<starttls>. 1531C<starttls>.
1364 1532
1533Starting TLS is currently an asynchronous operation - when you push some
1534write data and then call C<< ->starttls >> then TLS negotiation will start
1535immediately, after which the queued write data is then sent.
1536
1365The first argument is the same as the C<tls> constructor argument (either 1537The first argument is the same as the C<tls> constructor argument (either
1366C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1538C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1367 1539
1368The second argument is the optional C<Net::SSLeay::CTX> object that is 1540The second argument is the optional C<AnyEvent::TLS> object that is used
1369used when AnyEvent::Handle has to create its own TLS connection object. 1541when AnyEvent::Handle has to create its own TLS connection object, or
1542a hash reference with C<< key => value >> pairs that will be used to
1543construct a new context.
1370 1544
1371The TLS connection object will end up in C<< $handle->{tls} >> after this 1545The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1372call and can be used or changed to your liking. Note that the handshake 1546context in C<< $handle->{tls_ctx} >> after this call and can be used or
1373might have already started when this function returns. 1547changed to your liking. Note that the handshake might have already started
1548when this function returns.
1374 1549
1375If it an error to start a TLS handshake more than once per 1550If it an error to start a TLS handshake more than once per
1376AnyEvent::Handle object (this is due to bugs in OpenSSL). 1551AnyEvent::Handle object (this is due to bugs in OpenSSL).
1377 1552
1378=cut 1553=cut
1379 1554
1555our %TLS_CACHE; #TODO not yet documented, should we?
1556
1380sub starttls { 1557sub starttls {
1381 my ($self, $ssl, $ctx) = @_; 1558 my ($self, $ssl, $ctx) = @_;
1382 1559
1383 require Net::SSLeay; 1560 require Net::SSLeay;
1384 1561
1385 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object" 1562 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1386 if $self->{tls}; 1563 if $self->{tls};
1564
1565 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1566 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1567
1568 $ctx ||= $self->{tls_ctx};
1569
1570 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1571
1572 if ("HASH" eq ref $ctx) {
1573 require AnyEvent::TLS;
1574
1575 if ($ctx->{cache}) {
1576 my $key = $ctx+0;
1577 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1578 } else {
1579 $ctx = new AnyEvent::TLS %$ctx;
1580 }
1581 }
1387 1582
1388 if ($ssl eq "accept") { 1583 $self->{tls_ctx} = $ctx || TLS_CTX ();
1389 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1584 $self->{tls} = $ssl = $self->{tls_ctx}->_get_session ($ssl, $self, $self->{peername});
1390 Net::SSLeay::set_accept_state ($ssl);
1391 } elsif ($ssl eq "connect") {
1392 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1393 Net::SSLeay::set_connect_state ($ssl);
1394 }
1395
1396 $self->{tls} = $ssl;
1397 1585
1398 # basically, this is deep magic (because SSL_read should have the same issues) 1586 # basically, this is deep magic (because SSL_read should have the same issues)
1399 # but the openssl maintainers basically said: "trust us, it just works". 1587 # but the openssl maintainers basically said: "trust us, it just works".
1400 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1588 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1401 # and mismaintained ssleay-module doesn't even offer them). 1589 # and mismaintained ssleay-module doesn't even offer them).
1405 # 1593 #
1406 # note that we do not try to keep the length constant between writes as we are required to do. 1594 # note that we do not try to keep the length constant between writes as we are required to do.
1407 # we assume that most (but not all) of this insanity only applies to non-blocking cases, 1595 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1408 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to 1596 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1409 # have identity issues in that area. 1597 # have identity issues in that area.
1410 Net::SSLeay::CTX_set_mode ($self->{tls}, 1598# Net::SSLeay::CTX_set_mode ($ssl,
1411 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1599# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1412 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1600# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1601 Net::SSLeay::CTX_set_mode ($ssl, 1|2);
1413 1602
1414 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1603 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1415 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1604 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1416 1605
1417 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1606 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1607
1608 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1609 if $self->{on_starttls};
1418 1610
1419 &_dotls; # need to trigger the initial handshake 1611 &_dotls; # need to trigger the initial handshake
1420 $self->start_read; # make sure we actually do read 1612 $self->start_read; # make sure we actually do read
1421} 1613}
1422 1614
1435 if ($self->{tls}) { 1627 if ($self->{tls}) {
1436 Net::SSLeay::shutdown ($self->{tls}); 1628 Net::SSLeay::shutdown ($self->{tls});
1437 1629
1438 &_dotls; 1630 &_dotls;
1439 1631
1440 # we don't give a shit. no, we do, but we can't. no... 1632# # we don't give a shit. no, we do, but we can't. no...#d#
1441 # we, we... have to use openssl :/ 1633# # we, we... have to use openssl :/#d#
1442 &_freetls; 1634# &_freetls;#d#
1443 } 1635 }
1444} 1636}
1445 1637
1446sub _freetls { 1638sub _freetls {
1447 my ($self) = @_; 1639 my ($self) = @_;
1448 1640
1449 return unless $self->{tls}; 1641 return unless $self->{tls};
1450 1642
1451 Net::SSLeay::free (delete $self->{tls}); 1643 $self->{tls_ctx}->_put_session (delete $self->{tls});
1452 1644
1453 delete @$self{qw(_rbio _wbio _tls_wbuf)}; 1645 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1454} 1646}
1455 1647
1456sub DESTROY { 1648sub DESTROY {
1457 my $self = shift; 1649 my ($self) = @_;
1458 1650
1459 &_freetls; 1651 &_freetls;
1460 1652
1461 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1653 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1462 1654
1463 if ($linger && length $self->{wbuf}) { 1655 if ($linger && length $self->{wbuf} && $self->{fh}) {
1464 my $fh = delete $self->{fh}; 1656 my $fh = delete $self->{fh};
1465 my $wbuf = delete $self->{wbuf}; 1657 my $wbuf = delete $self->{wbuf};
1466 1658
1467 my @linger; 1659 my @linger;
1468 1660
1482} 1674}
1483 1675
1484=item $handle->destroy 1676=item $handle->destroy
1485 1677
1486Shuts down the handle object as much as possible - this call ensures that 1678Shuts down the handle object as much as possible - this call ensures that
1487no further callbacks will be invoked and resources will be freed as much 1679no further callbacks will be invoked and as many resources as possible
1488as possible. You must not call any methods on the object afterwards. 1680will be freed. You must not call any methods on the object afterwards.
1489 1681
1490Normally, you can just "forget" any references to an AnyEvent::Handle 1682Normally, you can just "forget" any references to an AnyEvent::Handle
1491object and it will simply shut down. This works in fatal error and EOF 1683object and it will simply shut down. This works in fatal error and EOF
1492callbacks, as well as code outside. It does I<NOT> work in a read or write 1684callbacks, as well as code outside. It does I<NOT> work in a read or write
1493callback, so when you want to destroy the AnyEvent::Handle object from 1685callback, so when you want to destroy the AnyEvent::Handle object from
1494within such an callback. You I<MUST> call C<< ->destroy >> explicitly in 1686within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1495that case. 1687that case.
1496 1688
1689Destroying the handle object in this way has the advantage that callbacks
1690will be removed as well, so if those are the only reference holders (as
1691is common), then one doesn't need to do anything special to break any
1692reference cycles.
1693
1497The handle might still linger in the background and write out remaining 1694The handle might still linger in the background and write out remaining
1498data, as specified by the C<linger> option, however. 1695data, as specified by the C<linger> option, however.
1499 1696
1500=cut 1697=cut
1501 1698
1506 %$self = (); 1703 %$self = ();
1507} 1704}
1508 1705
1509=item AnyEvent::Handle::TLS_CTX 1706=item AnyEvent::Handle::TLS_CTX
1510 1707
1511This function creates and returns the Net::SSLeay::CTX object used by 1708This function creates and returns the AnyEvent::TLS object used by default
1512default for TLS mode. 1709for TLS mode.
1513 1710
1514The context is created like this: 1711The context is created by calling L<AnyEvent::TLS> without any arguments.
1515
1516 Net::SSLeay::load_error_strings;
1517 Net::SSLeay::SSLeay_add_ssl_algorithms;
1518 Net::SSLeay::randomize;
1519
1520 my $CTX = Net::SSLeay::CTX_new;
1521
1522 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1523 1712
1524=cut 1713=cut
1525 1714
1526our $TLS_CTX; 1715our $TLS_CTX;
1527 1716
1528sub TLS_CTX() { 1717sub TLS_CTX() {
1529 $TLS_CTX || do { 1718 $TLS_CTX ||= do {
1530 require Net::SSLeay; 1719 require AnyEvent::TLS;
1531 1720
1532 Net::SSLeay::load_error_strings (); 1721 new AnyEvent::TLS
1533 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1534 Net::SSLeay::randomize ();
1535
1536 $TLS_CTX = Net::SSLeay::CTX_new ();
1537
1538 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1539
1540 $TLS_CTX
1541 } 1722 }
1542} 1723}
1543 1724
1544=back 1725=back
1545 1726
1584 1765
1585 $handle->on_read (sub { }); 1766 $handle->on_read (sub { });
1586 $handle->on_eof (undef); 1767 $handle->on_eof (undef);
1587 $handle->on_error (sub { 1768 $handle->on_error (sub {
1588 my $data = delete $_[0]{rbuf}; 1769 my $data = delete $_[0]{rbuf};
1589 undef $handle;
1590 }); 1770 });
1591 1771
1592The reason to use C<on_error> is that TCP connections, due to latencies 1772The reason to use C<on_error> is that TCP connections, due to latencies
1593and packets loss, might get closed quite violently with an error, when in 1773and packets loss, might get closed quite violently with an error, when in
1594fact, all data has been received. 1774fact, all data has been received.
1610 $handle->on_drain (sub { 1790 $handle->on_drain (sub {
1611 warn "all data submitted to the kernel\n"; 1791 warn "all data submitted to the kernel\n";
1612 undef $handle; 1792 undef $handle;
1613 }); 1793 });
1614 1794
1795If you just want to queue some data and then signal EOF to the other side,
1796consider using C<< ->push_shutdown >> instead.
1797
1798=item I want to contact a TLS/SSL server, I don't care about security.
1799
1800If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1801simply connect to it and then create the AnyEvent::Handle with the C<tls>
1802parameter:
1803
1804 tcp_connect $host, $port, sub {
1805 my ($fh) = @_;
1806
1807 my $handle = new AnyEvent::Handle
1808 fh => $fh,
1809 tls => "connect",
1810 on_error => sub { ... };
1811
1812 $handle->push_write (...);
1813 };
1814
1815=item I want to contact a TLS/SSL server, I do care about security.
1816
1817Then you should additionally enable certificate verification, including
1818peername verification, if the protocol you use supports it (see
1819L<AnyEvent::TLS>, C<verify_peername>).
1820
1821E.g. for HTTPS:
1822
1823 tcp_connect $host, $port, sub {
1824 my ($fh) = @_;
1825
1826 my $handle = new AnyEvent::Handle
1827 fh => $fh,
1828 peername => $host,
1829 tls => "connect",
1830 tls_ctx => { verify => 1, verify_peername => "https" },
1831 ...
1832
1833Note that you must specify the hostname you connected to (or whatever
1834"peername" the protocol needs) as the C<peername> argument, otherwise no
1835peername verification will be done.
1836
1837The above will use the system-dependent default set of trusted CA
1838certificates. If you want to check against a specific CA, add the
1839C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1840
1841 tls_ctx => {
1842 verify => 1,
1843 verify_peername => "https",
1844 ca_file => "my-ca-cert.pem",
1845 },
1846
1847=item I want to create a TLS/SSL server, how do I do that?
1848
1849Well, you first need to get a server certificate and key. You have
1850three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1851self-signed certificate (cheap. check the search engine of your choice,
1852there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1853nice program for that purpose).
1854
1855Then create a file with your private key (in PEM format, see
1856L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1857file should then look like this:
1858
1859 -----BEGIN RSA PRIVATE KEY-----
1860 ...header data
1861 ... lots of base64'y-stuff
1862 -----END RSA PRIVATE KEY-----
1863
1864 -----BEGIN CERTIFICATE-----
1865 ... lots of base64'y-stuff
1866 -----END CERTIFICATE-----
1867
1868The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
1869specify this file as C<cert_file>:
1870
1871 tcp_server undef, $port, sub {
1872 my ($fh) = @_;
1873
1874 my $handle = new AnyEvent::Handle
1875 fh => $fh,
1876 tls => "accept",
1877 tls_ctx => { cert_file => "my-server-keycert.pem" },
1878 ...
1879
1880When you have intermediate CA certificates that your clients might not
1881know about, just append them to the C<cert_file>.
1882
1615=back 1883=back
1616 1884
1617 1885
1618=head1 SUBCLASSING AnyEvent::Handle 1886=head1 SUBCLASSING AnyEvent::Handle
1619 1887

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines