ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.49 by root, Thu May 29 03:45:37 2008 UTC vs.
Revision 1.150 by root, Thu Jul 16 04:16:25 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent (); 6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK); 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 8use Scalar::Util ();
9use Carp (); 9use Carp ();
14 14
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17=cut 17=cut
18 18
19our $VERSION = '1.0'; 19our $VERSION = 4.82;
20 20
21=head1 SYNOPSIS 21=head1 SYNOPSIS
22 22
23 use AnyEvent; 23 use AnyEvent;
24 use AnyEvent::Handle; 24 use AnyEvent::Handle;
25 25
26 my $cv = AnyEvent->condvar; 26 my $cv = AnyEvent->condvar;
27 27
28 my $handle = 28 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 29 fh => \*STDIN,
31 on_eof => sub { 30 on_error => sub {
32 $cv->broadcast; 31 warn "got error $_[2]\n";
33 }, 32 $cv->send;
34 ); 33 );
35 34
36 # send some request line 35 # send some request line
37 $handle->push_write ("getinfo\015\012"); 36 $hdl->push_write ("getinfo\015\012");
38 37
39 # read the response line 38 # read the response line
40 $handle->push_read (line => sub { 39 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 40 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 41 warn "got line <$line>\n";
43 $cv->send; 42 $cv->send;
44 }); 43 });
45 44
46 $cv->recv; 45 $cv->recv;
47 46
49 48
50This module is a helper module to make it easier to do event-based I/O on 49This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 50filehandles. For utility functions for doing non-blocking connects and accepts
52on sockets see L<AnyEvent::Util>. 51on sockets see L<AnyEvent::Util>.
53 52
53The L<AnyEvent::Intro> tutorial contains some well-documented
54AnyEvent::Handle examples.
55
54In the following, when the documentation refers to of "bytes" then this 56In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 57means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 58treatment of characters applies to this module as well.
57 59
58All callbacks will be invoked with the handle object as their first 60All callbacks will be invoked with the handle object as their first
60 62
61=head1 METHODS 63=head1 METHODS
62 64
63=over 4 65=over 4
64 66
65=item B<new (%args)> 67=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 68
67The constructor supports these arguments (all as key => value pairs). 69The constructor supports these arguments (all as C<< key => value >> pairs).
68 70
69=over 4 71=over 4
70 72
71=item fh => $filehandle [MANDATORY] 73=item fh => $filehandle [MANDATORY]
72 74
73The filehandle this L<AnyEvent::Handle> object will operate on. 75The filehandle this L<AnyEvent::Handle> object will operate on.
74 76
75NOTE: The filehandle will be set to non-blocking (using 77NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 78C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
79that mode.
77 80
78=item on_eof => $cb->($handle) 81=item on_eof => $cb->($handle)
79 82
80Set the callback to be called on EOF. 83Set the callback to be called when an end-of-file condition is detected,
84i.e. in the case of a socket, when the other side has closed the
85connection cleanly, and there are no outstanding read requests in the
86queue (if there are read requests, then an EOF counts as an unexpected
87connection close and will be flagged as an error).
81 88
82While not mandatory, it is highly recommended to set an eof callback, 89For sockets, this just means that the other side has stopped sending data,
83otherwise you might end up with a closed socket while you are still 90you can still try to write data, and, in fact, one can return from the EOF
84waiting for data. 91callback and continue writing data, as only the read part has been shut
92down.
85 93
94If an EOF condition has been detected but no C<on_eof> callback has been
95set, then a fatal error will be raised with C<$!> set to <0>.
96
86=item on_error => $cb->($handle) 97=item on_error => $cb->($handle, $fatal, $message)
87 98
88This is the fatal error callback, that is called when, well, a fatal error 99This is the error callback, which is called when, well, some error
89occurs, such as not being able to resolve the hostname, failure to connect 100occured, such as not being able to resolve the hostname, failure to
90or a read error. 101connect or a read error.
91 102
92The object will not be in a usable state when this callback has been 103Some errors are fatal (which is indicated by C<$fatal> being true). On
93called. 104fatal errors the handle object will be destroyed (by a call to C<< ->
105destroy >>) after invoking the error callback (which means you are free to
106examine the handle object). Examples of fatal errors are an EOF condition
107with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors.
108
109AnyEvent::Handle tries to find an appropriate error code for you to check
110against, but in some cases (TLS errors), this does not work well. It is
111recommended to always output the C<$message> argument in human-readable
112error messages (it's usually the same as C<"$!">).
113
114Non-fatal errors can be retried by simply returning, but it is recommended
115to simply ignore this parameter and instead abondon the handle object
116when this callback is invoked. Examples of non-fatal errors are timeouts
117C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
94 118
95On callback entrance, the value of C<$!> contains the operating system 119On callback entrance, the value of C<$!> contains the operating system
96error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 120error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
97 121C<EPROTO>).
98The callback should throw an exception. If it returns, then
99AnyEvent::Handle will C<croak> for you.
100 122
101While not mandatory, it is I<highly> recommended to set this callback, as 123While not mandatory, it is I<highly> recommended to set this callback, as
102you will not be notified of errors otherwise. The default simply calls 124you will not be notified of errors otherwise. The default simply calls
103die. 125C<croak>.
104 126
105=item on_read => $cb->($handle) 127=item on_read => $cb->($handle)
106 128
107This sets the default read callback, which is called when data arrives 129This sets the default read callback, which is called when data arrives
108and no read request is in the queue. 130and no read request is in the queue (unlike read queue callbacks, this
131callback will only be called when at least one octet of data is in the
132read buffer).
109 133
110To access (and remove data from) the read buffer, use the C<< ->rbuf >> 134To access (and remove data from) the read buffer, use the C<< ->rbuf >>
111method or access the C<$handle->{rbuf}> member directly. 135method or access the C<< $handle->{rbuf} >> member directly. Note that you
136must not enlarge or modify the read buffer, you can only remove data at
137the beginning from it.
112 138
113When an EOF condition is detected then AnyEvent::Handle will first try to 139When an EOF condition is detected then AnyEvent::Handle will first try to
114feed all the remaining data to the queued callbacks and C<on_read> before 140feed all the remaining data to the queued callbacks and C<on_read> before
115calling the C<on_eof> callback. If no progress can be made, then a fatal 141calling the C<on_eof> callback. If no progress can be made, then a fatal
116error will be raised (with C<$!> set to C<EPIPE>). 142error will be raised (with C<$!> set to C<EPIPE>).
117 143
144Note that, unlike requests in the read queue, an C<on_read> callback
145doesn't mean you I<require> some data: if there is an EOF and there
146are outstanding read requests then an error will be flagged. With an
147C<on_read> callback, the C<on_eof> callback will be invoked.
148
118=item on_drain => $cb->($handle) 149=item on_drain => $cb->($handle)
119 150
120This sets the callback that is called when the write buffer becomes empty 151This sets the callback that is called when the write buffer becomes empty
121(or when the callback is set and the buffer is empty already). 152(or when the callback is set and the buffer is empty already).
122 153
123To append to the write buffer, use the C<< ->push_write >> method. 154To append to the write buffer, use the C<< ->push_write >> method.
155
156This callback is useful when you don't want to put all of your write data
157into the queue at once, for example, when you want to write the contents
158of some file to the socket you might not want to read the whole file into
159memory and push it into the queue, but instead only read more data from
160the file when the write queue becomes empty.
124 161
125=item timeout => $fractional_seconds 162=item timeout => $fractional_seconds
126 163
127If non-zero, then this enables an "inactivity" timeout: whenever this many 164If non-zero, then this enables an "inactivity" timeout: whenever this many
128seconds pass without a successful read or write on the underlying file 165seconds pass without a successful read or write on the underlying file
129handle, the C<on_timeout> callback will be invoked (and if that one is 166handle, the C<on_timeout> callback will be invoked (and if that one is
130missing, an C<ETIMEDOUT> error will be raised). 167missing, a non-fatal C<ETIMEDOUT> error will be raised).
131 168
132Note that timeout processing is also active when you currently do not have 169Note that timeout processing is also active when you currently do not have
133any outstanding read or write requests: If you plan to keep the connection 170any outstanding read or write requests: If you plan to keep the connection
134idle then you should disable the timout temporarily or ignore the timeout 171idle then you should disable the timout temporarily or ignore the timeout
135in the C<on_timeout> callback. 172in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
173restart the timeout.
136 174
137Zero (the default) disables this timeout. 175Zero (the default) disables this timeout.
138 176
139=item on_timeout => $cb->($handle) 177=item on_timeout => $cb->($handle)
140 178
144 182
145=item rbuf_max => <bytes> 183=item rbuf_max => <bytes>
146 184
147If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 185If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
148when the read buffer ever (strictly) exceeds this size. This is useful to 186when the read buffer ever (strictly) exceeds this size. This is useful to
149avoid denial-of-service attacks. 187avoid some forms of denial-of-service attacks.
150 188
151For example, a server accepting connections from untrusted sources should 189For example, a server accepting connections from untrusted sources should
152be configured to accept only so-and-so much data that it cannot act on 190be configured to accept only so-and-so much data that it cannot act on
153(for example, when expecting a line, an attacker could send an unlimited 191(for example, when expecting a line, an attacker could send an unlimited
154amount of data without a callback ever being called as long as the line 192amount of data without a callback ever being called as long as the line
155isn't finished). 193isn't finished).
156 194
195=item autocork => <boolean>
196
197When disabled (the default), then C<push_write> will try to immediately
198write the data to the handle, if possible. This avoids having to register
199a write watcher and wait for the next event loop iteration, but can
200be inefficient if you write multiple small chunks (on the wire, this
201disadvantage is usually avoided by your kernel's nagle algorithm, see
202C<no_delay>, but this option can save costly syscalls).
203
204When enabled, then writes will always be queued till the next event loop
205iteration. This is efficient when you do many small writes per iteration,
206but less efficient when you do a single write only per iteration (or when
207the write buffer often is full). It also increases write latency.
208
209=item no_delay => <boolean>
210
211When doing small writes on sockets, your operating system kernel might
212wait a bit for more data before actually sending it out. This is called
213the Nagle algorithm, and usually it is beneficial.
214
215In some situations you want as low a delay as possible, which can be
216accomplishd by setting this option to a true value.
217
218The default is your opertaing system's default behaviour (most likely
219enabled), this option explicitly enables or disables it, if possible.
220
157=item read_size => <bytes> 221=item read_size => <bytes>
158 222
159The default read block size (the amount of bytes this module will try to read 223The default read block size (the amount of bytes this module will
160during each (loop iteration). Default: C<8192>. 224try to read during each loop iteration, which affects memory
225requirements). Default: C<8192>.
161 226
162=item low_water_mark => <bytes> 227=item low_water_mark => <bytes>
163 228
164Sets the amount of bytes (default: C<0>) that make up an "empty" write 229Sets the amount of bytes (default: C<0>) that make up an "empty" write
165buffer: If the write reaches this size or gets even samller it is 230buffer: If the write reaches this size or gets even samller it is
166considered empty. 231considered empty.
167 232
233Sometimes it can be beneficial (for performance reasons) to add data to
234the write buffer before it is fully drained, but this is a rare case, as
235the operating system kernel usually buffers data as well, so the default
236is good in almost all cases.
237
238=item linger => <seconds>
239
240If non-zero (default: C<3600>), then the destructor of the
241AnyEvent::Handle object will check whether there is still outstanding
242write data and will install a watcher that will write this data to the
243socket. No errors will be reported (this mostly matches how the operating
244system treats outstanding data at socket close time).
245
246This will not work for partial TLS data that could not be encoded
247yet. This data will be lost. Calling the C<stoptls> method in time might
248help.
249
250=item peername => $string
251
252A string used to identify the remote site - usually the DNS hostname
253(I<not> IDN!) used to create the connection, rarely the IP address.
254
255Apart from being useful in error messages, this string is also used in TLS
256peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
257verification will be skipped when C<peername> is not specified or
258C<undef>.
259
168=item tls => "accept" | "connect" | Net::SSLeay::SSL object 260=item tls => "accept" | "connect" | Net::SSLeay::SSL object
169 261
170When this parameter is given, it enables TLS (SSL) mode, that means it 262When this parameter is given, it enables TLS (SSL) mode, that means
171will start making tls handshake and will transparently encrypt/decrypt 263AnyEvent will start a TLS handshake as soon as the conenction has been
172data. 264established and will transparently encrypt/decrypt data afterwards.
265
266All TLS protocol errors will be signalled as C<EPROTO>, with an
267appropriate error message.
173 268
174TLS mode requires Net::SSLeay to be installed (it will be loaded 269TLS mode requires Net::SSLeay to be installed (it will be loaded
175automatically when you try to create a TLS handle). 270automatically when you try to create a TLS handle): this module doesn't
271have a dependency on that module, so if your module requires it, you have
272to add the dependency yourself.
176 273
177For the TLS server side, use C<accept>, and for the TLS client side of a 274Unlike TCP, TLS has a server and client side: for the TLS server side, use
178connection, use C<connect> mode. 275C<accept>, and for the TLS client side of a connection, use C<connect>
276mode.
179 277
180You can also provide your own TLS connection object, but you have 278You can also provide your own TLS connection object, but you have
181to make sure that you call either C<Net::SSLeay::set_connect_state> 279to make sure that you call either C<Net::SSLeay::set_connect_state>
182or C<Net::SSLeay::set_accept_state> on it before you pass it to 280or C<Net::SSLeay::set_accept_state> on it before you pass it to
183AnyEvent::Handle. 281AnyEvent::Handle. Also, this module will take ownership of this connection
282object.
184 283
284At some future point, AnyEvent::Handle might switch to another TLS
285implementation, then the option to use your own session object will go
286away.
287
288B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
289passing in the wrong integer will lead to certain crash. This most often
290happens when one uses a stylish C<< tls => 1 >> and is surprised about the
291segmentation fault.
292
185See the C<starttls> method if you need to start TLs negotiation later. 293See the C<< ->starttls >> method for when need to start TLS negotiation later.
186 294
187=item tls_ctx => $ssl_ctx 295=item tls_ctx => $anyevent_tls
188 296
189Use the given Net::SSLeay::CTX object to create the new TLS connection 297Use the given C<AnyEvent::TLS> object to create the new TLS connection
190(unless a connection object was specified directly). If this parameter is 298(unless a connection object was specified directly). If this parameter is
191missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 299missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
192 300
301Instead of an object, you can also specify a hash reference with C<< key
302=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
303new TLS context object.
304
305=item on_starttls => $cb->($handle, $success[, $error_message])
306
307This callback will be invoked when the TLS/SSL handshake has finished. If
308C<$success> is true, then the TLS handshake succeeded, otherwise it failed
309(C<on_stoptls> will not be called in this case).
310
311The session in C<< $handle->{tls} >> can still be examined in this
312callback, even when the handshake was not successful.
313
314TLS handshake failures will not cause C<on_error> to be invoked when this
315callback is in effect, instead, the error message will be passed to C<on_starttls>.
316
317Without this callback, handshake failures lead to C<on_error> being
318called, as normal.
319
320Note that you cannot call C<starttls> right again in this callback. If you
321need to do that, start an zero-second timer instead whose callback can
322then call C<< ->starttls >> again.
323
324=item on_stoptls => $cb->($handle)
325
326When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
327set, then it will be invoked after freeing the TLS session. If it is not,
328then a TLS shutdown condition will be treated like a normal EOF condition
329on the handle.
330
331The session in C<< $handle->{tls} >> can still be examined in this
332callback.
333
334This callback will only be called on TLS shutdowns, not when the
335underlying handle signals EOF.
336
193=item json => JSON or JSON::XS object 337=item json => JSON or JSON::XS object
194 338
195This is the json coder object used by the C<json> read and write types. 339This is the json coder object used by the C<json> read and write types.
196 340
197If you don't supply it, then AnyEvent::Handle will create and use a 341If you don't supply it, then AnyEvent::Handle will create and use a
198suitable one, which will write and expect UTF-8 encoded JSON texts. 342suitable one (on demand), which will write and expect UTF-8 encoded JSON
343texts.
199 344
200Note that you are responsible to depend on the JSON module if you want to 345Note that you are responsible to depend on the JSON module if you want to
201use this functionality, as AnyEvent does not have a dependency itself. 346use this functionality, as AnyEvent does not have a dependency itself.
202 347
203=item filter_r => $cb
204
205=item filter_w => $cb
206
207These exist, but are undocumented at this time.
208
209=back 348=back
210 349
211=cut 350=cut
212 351
213sub new { 352sub new {
214 my $class = shift; 353 my $class = shift;
215
216 my $self = bless { @_ }, $class; 354 my $self = bless { @_ }, $class;
217 355
218 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 356 $self->{fh} or Carp::croak "mandatory argument fh is missing";
219 357
220 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 358 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
221
222 if ($self->{tls}) {
223 require Net::SSLeay;
224 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
225 }
226
227# $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; # nop
228# $self->on_error (delete $self->{on_error}) if $self->{on_error}; # nop
229# $self->on_read (delete $self->{on_read} ) if $self->{on_read}; # nop
230 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
231 359
232 $self->{_activity} = AnyEvent->now; 360 $self->{_activity} = AnyEvent->now;
233 $self->_timeout; 361 $self->_timeout;
234 362
363 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
364
365 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
366 if $self->{tls};
367
368 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
369
235 $self->start_read; 370 $self->start_read
371 if $self->{on_read};
236 372
237 $self 373 $self->{fh} && $self
238} 374}
239 375
240sub _shutdown { 376#sub _shutdown {
241 my ($self) = @_; 377# my ($self) = @_;
378#
379# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
380# $self->{_eof} = 1; # tell starttls et. al to stop trying
381#
382# &_freetls;
383#}
242 384
243 delete $self->{_tw};
244 delete $self->{_rw};
245 delete $self->{_ww};
246 delete $self->{fh};
247}
248
249sub error { 385sub _error {
250 my ($self) = @_; 386 my ($self, $errno, $fatal, $message) = @_;
251 387
252 { 388 $! = $errno;
253 local $!; 389 $message ||= "$!";
254 $self->_shutdown;
255 }
256 390
257 $self->{on_error}($self)
258 if $self->{on_error}; 391 if ($self->{on_error}) {
259 392 $self->{on_error}($self, $fatal, $message);
393 $self->destroy;
394 } elsif ($self->{fh}) {
395 $self->destroy;
260 Carp::croak "AnyEvent::Handle uncaught fatal error: $!"; 396 Carp::croak "AnyEvent::Handle uncaught error: $message";
397 }
261} 398}
262 399
263=item $fh = $handle->fh 400=item $fh = $handle->fh
264 401
265This method returns the file handle of the L<AnyEvent::Handle> object. 402This method returns the file handle used to create the L<AnyEvent::Handle> object.
266 403
267=cut 404=cut
268 405
269sub fh { $_[0]{fh} } 406sub fh { $_[0]{fh} }
270 407
288 $_[0]{on_eof} = $_[1]; 425 $_[0]{on_eof} = $_[1];
289} 426}
290 427
291=item $handle->on_timeout ($cb) 428=item $handle->on_timeout ($cb)
292 429
293Replace the current C<on_timeout> callback, or disables the callback 430Replace the current C<on_timeout> callback, or disables the callback (but
294(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor 431not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
295argument. 432argument and method.
296 433
297=cut 434=cut
298 435
299sub on_timeout { 436sub on_timeout {
300 $_[0]{on_timeout} = $_[1]; 437 $_[0]{on_timeout} = $_[1];
438}
439
440=item $handle->autocork ($boolean)
441
442Enables or disables the current autocork behaviour (see C<autocork>
443constructor argument). Changes will only take effect on the next write.
444
445=cut
446
447sub autocork {
448 $_[0]{autocork} = $_[1];
449}
450
451=item $handle->no_delay ($boolean)
452
453Enables or disables the C<no_delay> setting (see constructor argument of
454the same name for details).
455
456=cut
457
458sub no_delay {
459 $_[0]{no_delay} = $_[1];
460
461 eval {
462 local $SIG{__DIE__};
463 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
464 };
465}
466
467=item $handle->on_starttls ($cb)
468
469Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
470
471=cut
472
473sub on_starttls {
474 $_[0]{on_starttls} = $_[1];
475}
476
477=item $handle->on_stoptls ($cb)
478
479Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
480
481=cut
482
483sub on_starttls {
484 $_[0]{on_stoptls} = $_[1];
301} 485}
302 486
303############################################################################# 487#############################################################################
304 488
305=item $handle->timeout ($seconds) 489=item $handle->timeout ($seconds)
331 $self->{_activity} = $NOW; 515 $self->{_activity} = $NOW;
332 516
333 if ($self->{on_timeout}) { 517 if ($self->{on_timeout}) {
334 $self->{on_timeout}($self); 518 $self->{on_timeout}($self);
335 } else { 519 } else {
336 $! = Errno::ETIMEDOUT; 520 $self->_error (Errno::ETIMEDOUT);
337 $self->error;
338 } 521 }
339 522
340 # callbakx could have changed timeout value, optimise 523 # callback could have changed timeout value, optimise
341 return unless $self->{timeout}; 524 return unless $self->{timeout};
342 525
343 # calculate new after 526 # calculate new after
344 $after = $self->{timeout}; 527 $after = $self->{timeout};
345 } 528 }
346 529
347 Scalar::Util::weaken $self; 530 Scalar::Util::weaken $self;
531 return unless $self; # ->error could have destroyed $self
348 532
349 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub { 533 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
350 delete $self->{_tw}; 534 delete $self->{_tw};
351 $self->_timeout; 535 $self->_timeout;
352 }); 536 });
383 my ($self, $cb) = @_; 567 my ($self, $cb) = @_;
384 568
385 $self->{on_drain} = $cb; 569 $self->{on_drain} = $cb;
386 570
387 $cb->($self) 571 $cb->($self)
388 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 572 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
389} 573}
390 574
391=item $handle->push_write ($data) 575=item $handle->push_write ($data)
392 576
393Queues the given scalar to be written. You can push as much data as you 577Queues the given scalar to be written. You can push as much data as you
404 Scalar::Util::weaken $self; 588 Scalar::Util::weaken $self;
405 589
406 my $cb = sub { 590 my $cb = sub {
407 my $len = syswrite $self->{fh}, $self->{wbuf}; 591 my $len = syswrite $self->{fh}, $self->{wbuf};
408 592
409 if ($len >= 0) { 593 if (defined $len) {
410 substr $self->{wbuf}, 0, $len, ""; 594 substr $self->{wbuf}, 0, $len, "";
411 595
412 $self->{_activity} = AnyEvent->now; 596 $self->{_activity} = AnyEvent->now;
413 597
414 $self->{on_drain}($self) 598 $self->{on_drain}($self)
415 if $self->{low_water_mark} >= length $self->{wbuf} 599 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
416 && $self->{on_drain}; 600 && $self->{on_drain};
417 601
418 delete $self->{_ww} unless length $self->{wbuf}; 602 delete $self->{_ww} unless length $self->{wbuf};
419 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 603 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
420 $self->error; 604 $self->_error ($!, 1);
421 } 605 }
422 }; 606 };
423 607
424 # try to write data immediately 608 # try to write data immediately
425 $cb->(); 609 $cb->() unless $self->{autocork};
426 610
427 # if still data left in wbuf, we need to poll 611 # if still data left in wbuf, we need to poll
428 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 612 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
429 if length $self->{wbuf}; 613 if length $self->{wbuf};
430 }; 614 };
444 628
445 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 629 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
446 ->($self, @_); 630 ->($self, @_);
447 } 631 }
448 632
449 if ($self->{filter_w}) { 633 if ($self->{tls}) {
450 $self->{filter_w}($self, \$_[0]); 634 $self->{_tls_wbuf} .= $_[0];
635
636 &_dotls ($self);
451 } else { 637 } else {
452 $self->{wbuf} .= $_[0]; 638 $self->{wbuf} .= $_[0];
453 $self->_drain_wbuf; 639 $self->_drain_wbuf;
454 } 640 }
455} 641}
456 642
457=item $handle->push_write (type => @args) 643=item $handle->push_write (type => @args)
458 644
459=item $handle->unshift_write (type => @args)
460
461Instead of formatting your data yourself, you can also let this module do 645Instead of formatting your data yourself, you can also let this module do
462the job by specifying a type and type-specific arguments. 646the job by specifying a type and type-specific arguments.
463 647
464Predefined types are (if you have ideas for additional types, feel free to 648Predefined types are (if you have ideas for additional types, feel free to
465drop by and tell us): 649drop by and tell us):
469=item netstring => $string 653=item netstring => $string
470 654
471Formats the given value as netstring 655Formats the given value as netstring
472(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them). 656(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
473 657
474=back
475
476=cut 658=cut
477 659
478register_write_type netstring => sub { 660register_write_type netstring => sub {
479 my ($self, $string) = @_; 661 my ($self, $string) = @_;
480 662
481 sprintf "%d:%s,", (length $string), $string 663 (length $string) . ":$string,"
664};
665
666=item packstring => $format, $data
667
668An octet string prefixed with an encoded length. The encoding C<$format>
669uses the same format as a Perl C<pack> format, but must specify a single
670integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
671optional C<!>, C<< < >> or C<< > >> modifier).
672
673=cut
674
675register_write_type packstring => sub {
676 my ($self, $format, $string) = @_;
677
678 pack "$format/a*", $string
482}; 679};
483 680
484=item json => $array_or_hashref 681=item json => $array_or_hashref
485 682
486Encodes the given hash or array reference into a JSON object. Unless you 683Encodes the given hash or array reference into a JSON object. Unless you
520 717
521 $self->{json} ? $self->{json}->encode ($ref) 718 $self->{json} ? $self->{json}->encode ($ref)
522 : JSON::encode_json ($ref) 719 : JSON::encode_json ($ref)
523}; 720};
524 721
722=item storable => $reference
723
724Freezes the given reference using L<Storable> and writes it to the
725handle. Uses the C<nfreeze> format.
726
727=cut
728
729register_write_type storable => sub {
730 my ($self, $ref) = @_;
731
732 require Storable;
733
734 pack "w/a*", Storable::nfreeze ($ref)
735};
736
737=back
738
739=item $handle->push_shutdown
740
741Sometimes you know you want to close the socket after writing your data
742before it was actually written. One way to do that is to replace your
743C<on_drain> handler by a callback that shuts down the socket (and set
744C<low_water_mark> to C<0>). This method is a shorthand for just that, and
745replaces the C<on_drain> callback with:
746
747 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
748
749This simply shuts down the write side and signals an EOF condition to the
750the peer.
751
752You can rely on the normal read queue and C<on_eof> handling
753afterwards. This is the cleanest way to close a connection.
754
755=cut
756
757sub push_shutdown {
758 my ($self) = @_;
759
760 delete $self->{low_water_mark};
761 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
762}
763
525=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 764=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
526 765
527This function (not method) lets you add your own types to C<push_write>. 766This function (not method) lets you add your own types to C<push_write>.
528Whenever the given C<type> is used, C<push_write> will invoke the code 767Whenever the given C<type> is used, C<push_write> will invoke the code
529reference with the handle object and the remaining arguments. 768reference with the handle object and the remaining arguments.
549ways, the "simple" way, using only C<on_read> and the "complex" way, using 788ways, the "simple" way, using only C<on_read> and the "complex" way, using
550a queue. 789a queue.
551 790
552In the simple case, you just install an C<on_read> callback and whenever 791In the simple case, you just install an C<on_read> callback and whenever
553new data arrives, it will be called. You can then remove some data (if 792new data arrives, it will be called. You can then remove some data (if
554enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 793enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
555or not. 794leave the data there if you want to accumulate more (e.g. when only a
795partial message has been received so far).
556 796
557In the more complex case, you want to queue multiple callbacks. In this 797In the more complex case, you want to queue multiple callbacks. In this
558case, AnyEvent::Handle will call the first queued callback each time new 798case, AnyEvent::Handle will call the first queued callback each time new
559data arrives and removes it when it has done its job (see C<push_read>, 799data arrives (also the first time it is queued) and removes it when it has
560below). 800done its job (see C<push_read>, below).
561 801
562This way you can, for example, push three line-reads, followed by reading 802This way you can, for example, push three line-reads, followed by reading
563a chunk of data, and AnyEvent::Handle will execute them in order. 803a chunk of data, and AnyEvent::Handle will execute them in order.
564 804
565Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 805Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
566the specified number of bytes which give an XML datagram. 806the specified number of bytes which give an XML datagram.
567 807
568 # in the default state, expect some header bytes 808 # in the default state, expect some header bytes
569 $handle->on_read (sub { 809 $handle->on_read (sub {
570 # some data is here, now queue the length-header-read (4 octets) 810 # some data is here, now queue the length-header-read (4 octets)
571 shift->unshift_read_chunk (4, sub { 811 shift->unshift_read (chunk => 4, sub {
572 # header arrived, decode 812 # header arrived, decode
573 my $len = unpack "N", $_[1]; 813 my $len = unpack "N", $_[1];
574 814
575 # now read the payload 815 # now read the payload
576 shift->unshift_read_chunk ($len, sub { 816 shift->unshift_read (chunk => $len, sub {
577 my $xml = $_[1]; 817 my $xml = $_[1];
578 # handle xml 818 # handle xml
579 }); 819 });
580 }); 820 });
581 }); 821 });
582 822
583Example 2: Implement a client for a protocol that replies either with 823Example 2: Implement a client for a protocol that replies either with "OK"
584"OK" and another line or "ERROR" for one request, and 64 bytes for the 824and another line or "ERROR" for the first request that is sent, and 64
585second request. Due tot he availability of a full queue, we can just 825bytes for the second request. Due to the availability of a queue, we can
586pipeline sending both requests and manipulate the queue as necessary in 826just pipeline sending both requests and manipulate the queue as necessary
587the callbacks: 827in the callbacks.
588 828
589 # request one 829When the first callback is called and sees an "OK" response, it will
830C<unshift> another line-read. This line-read will be queued I<before> the
83164-byte chunk callback.
832
833 # request one, returns either "OK + extra line" or "ERROR"
590 $handle->push_write ("request 1\015\012"); 834 $handle->push_write ("request 1\015\012");
591 835
592 # we expect "ERROR" or "OK" as response, so push a line read 836 # we expect "ERROR" or "OK" as response, so push a line read
593 $handle->push_read_line (sub { 837 $handle->push_read (line => sub {
594 # if we got an "OK", we have to _prepend_ another line, 838 # if we got an "OK", we have to _prepend_ another line,
595 # so it will be read before the second request reads its 64 bytes 839 # so it will be read before the second request reads its 64 bytes
596 # which are already in the queue when this callback is called 840 # which are already in the queue when this callback is called
597 # we don't do this in case we got an error 841 # we don't do this in case we got an error
598 if ($_[1] eq "OK") { 842 if ($_[1] eq "OK") {
599 $_[0]->unshift_read_line (sub { 843 $_[0]->unshift_read (line => sub {
600 my $response = $_[1]; 844 my $response = $_[1];
601 ... 845 ...
602 }); 846 });
603 } 847 }
604 }); 848 });
605 849
606 # request two 850 # request two, simply returns 64 octets
607 $handle->push_write ("request 2\015\012"); 851 $handle->push_write ("request 2\015\012");
608 852
609 # simply read 64 bytes, always 853 # simply read 64 bytes, always
610 $handle->push_read_chunk (64, sub { 854 $handle->push_read (chunk => 64, sub {
611 my $response = $_[1]; 855 my $response = $_[1];
612 ... 856 ...
613 }); 857 });
614 858
615=over 4 859=over 4
616 860
617=cut 861=cut
618 862
619sub _drain_rbuf { 863sub _drain_rbuf {
620 my ($self) = @_; 864 my ($self) = @_;
865
866 local $self->{_in_drain} = 1;
621 867
622 if ( 868 if (
623 defined $self->{rbuf_max} 869 defined $self->{rbuf_max}
624 && $self->{rbuf_max} < length $self->{rbuf} 870 && $self->{rbuf_max} < length $self->{rbuf}
625 ) { 871 ) {
626 $! = &Errno::ENOSPC; 872 $self->_error (Errno::ENOSPC, 1), return;
627 $self->error;
628 } 873 }
629 874
630 return if $self->{in_drain}; 875 while () {
631 local $self->{in_drain} = 1; 876 # we need to use a separate tls read buffer, as we must not receive data while
877 # we are draining the buffer, and this can only happen with TLS.
878 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
632 879
633 while (my $len = length $self->{rbuf}) { 880 my $len = length $self->{rbuf};
634 no strict 'refs'; 881
635 if (my $cb = shift @{ $self->{_queue} }) { 882 if (my $cb = shift @{ $self->{_queue} }) {
636 unless ($cb->($self)) { 883 unless ($cb->($self)) {
637 if ($self->{_eof}) { 884 if ($self->{_eof}) {
638 # no progress can be made (not enough data and no data forthcoming) 885 # no progress can be made (not enough data and no data forthcoming)
639 $! = &Errno::EPIPE; 886 $self->_error (Errno::EPIPE, 1), return;
640 $self->error;
641 } 887 }
642 888
643 unshift @{ $self->{_queue} }, $cb; 889 unshift @{ $self->{_queue} }, $cb;
644 return; 890 last;
645 } 891 }
646 } elsif ($self->{on_read}) { 892 } elsif ($self->{on_read}) {
893 last unless $len;
894
647 $self->{on_read}($self); 895 $self->{on_read}($self);
648 896
649 if ( 897 if (
650 $self->{_eof} # if no further data will arrive
651 && $len == length $self->{rbuf} # and no data has been consumed 898 $len == length $self->{rbuf} # if no data has been consumed
652 && !@{ $self->{_queue} } # and the queue is still empty 899 && !@{ $self->{_queue} } # and the queue is still empty
653 && $self->{on_read} # and we still want to read data 900 && $self->{on_read} # but we still have on_read
654 ) { 901 ) {
902 # no further data will arrive
655 # then no progress can be made 903 # so no progress can be made
656 $! = &Errno::EPIPE; 904 $self->_error (Errno::EPIPE, 1), return
657 $self->error; 905 if $self->{_eof};
906
907 last; # more data might arrive
658 } 908 }
659 } else { 909 } else {
660 # read side becomes idle 910 # read side becomes idle
661 delete $self->{_rw}; 911 delete $self->{_rw} unless $self->{tls};
662 return; 912 last;
663 } 913 }
664 } 914 }
665 915
916 if ($self->{_eof}) {
917 if ($self->{on_eof}) {
666 $self->{on_eof}($self) 918 $self->{on_eof}($self)
667 if $self->{_eof} && $self->{on_eof}; 919 } else {
920 $self->_error (0, 1, "Unexpected end-of-file");
921 }
922 }
923
924 # may need to restart read watcher
925 unless ($self->{_rw}) {
926 $self->start_read
927 if $self->{on_read} || @{ $self->{_queue} };
928 }
668} 929}
669 930
670=item $handle->on_read ($cb) 931=item $handle->on_read ($cb)
671 932
672This replaces the currently set C<on_read> callback, or clears it (when 933This replaces the currently set C<on_read> callback, or clears it (when
677 938
678sub on_read { 939sub on_read {
679 my ($self, $cb) = @_; 940 my ($self, $cb) = @_;
680 941
681 $self->{on_read} = $cb; 942 $self->{on_read} = $cb;
943 $self->_drain_rbuf if $cb && !$self->{_in_drain};
682} 944}
683 945
684=item $handle->rbuf 946=item $handle->rbuf
685 947
686Returns the read buffer (as a modifiable lvalue). 948Returns the read buffer (as a modifiable lvalue).
687 949
688You can access the read buffer directly as the C<< ->{rbuf} >> member, if 950You can access the read buffer directly as the C<< ->{rbuf} >>
689you want. 951member, if you want. However, the only operation allowed on the
952read buffer (apart from looking at it) is removing data from its
953beginning. Otherwise modifying or appending to it is not allowed and will
954lead to hard-to-track-down bugs.
690 955
691NOTE: The read buffer should only be used or modified if the C<on_read>, 956NOTE: The read buffer should only be used or modified if the C<on_read>,
692C<push_read> or C<unshift_read> methods are used. The other read methods 957C<push_read> or C<unshift_read> methods are used. The other read methods
693automatically manage the read buffer. 958automatically manage the read buffer.
694 959
735 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1000 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
736 ->($self, $cb, @_); 1001 ->($self, $cb, @_);
737 } 1002 }
738 1003
739 push @{ $self->{_queue} }, $cb; 1004 push @{ $self->{_queue} }, $cb;
740 $self->_drain_rbuf; 1005 $self->_drain_rbuf unless $self->{_in_drain};
741} 1006}
742 1007
743sub unshift_read { 1008sub unshift_read {
744 my $self = shift; 1009 my $self = shift;
745 my $cb = pop; 1010 my $cb = pop;
751 ->($self, $cb, @_); 1016 ->($self, $cb, @_);
752 } 1017 }
753 1018
754 1019
755 unshift @{ $self->{_queue} }, $cb; 1020 unshift @{ $self->{_queue} }, $cb;
756 $self->_drain_rbuf; 1021 $self->_drain_rbuf unless $self->{_in_drain};
757} 1022}
758 1023
759=item $handle->push_read (type => @args, $cb) 1024=item $handle->push_read (type => @args, $cb)
760 1025
761=item $handle->unshift_read (type => @args, $cb) 1026=item $handle->unshift_read (type => @args, $cb)
791 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1056 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
792 1 1057 1
793 } 1058 }
794}; 1059};
795 1060
796# compatibility with older API
797sub push_read_chunk {
798 $_[0]->push_read (chunk => $_[1], $_[2]);
799}
800
801sub unshift_read_chunk {
802 $_[0]->unshift_read (chunk => $_[1], $_[2]);
803}
804
805=item line => [$eol, ]$cb->($handle, $line, $eol) 1061=item line => [$eol, ]$cb->($handle, $line, $eol)
806 1062
807The callback will be called only once a full line (including the end of 1063The callback will be called only once a full line (including the end of
808line marker, C<$eol>) has been read. This line (excluding the end of line 1064line marker, C<$eol>) has been read. This line (excluding the end of line
809marker) will be passed to the callback as second argument (C<$line>), and 1065marker) will be passed to the callback as second argument (C<$line>), and
824=cut 1080=cut
825 1081
826register_read_type line => sub { 1082register_read_type line => sub {
827 my ($self, $cb, $eol) = @_; 1083 my ($self, $cb, $eol) = @_;
828 1084
829 $eol = qr|(\015?\012)| if @_ < 3; 1085 if (@_ < 3) {
830 $eol = quotemeta $eol unless ref $eol; 1086 # this is more than twice as fast as the generic code below
831 $eol = qr|^(.*?)($eol)|s;
832
833 sub { 1087 sub {
834 $_[0]{rbuf} =~ s/$eol// or return; 1088 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
835 1089
836 $cb->($_[0], $1, $2); 1090 $cb->($_[0], $1, $2);
837 1
838 }
839};
840
841# compatibility with older API
842sub push_read_line {
843 my $self = shift;
844 $self->push_read (line => @_);
845}
846
847sub unshift_read_line {
848 my $self = shift;
849 $self->unshift_read (line => @_);
850}
851
852=item netstring => $cb->($handle, $string)
853
854A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
855
856Throws an error with C<$!> set to EBADMSG on format violations.
857
858=cut
859
860register_read_type netstring => sub {
861 my ($self, $cb) = @_;
862
863 sub {
864 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
865 if ($_[0]{rbuf} =~ /[^0-9]/) {
866 $! = &Errno::EBADMSG;
867 $self->error;
868 } 1091 1
869 return;
870 } 1092 }
1093 } else {
1094 $eol = quotemeta $eol unless ref $eol;
1095 $eol = qr|^(.*?)($eol)|s;
871 1096
872 my $len = $1; 1097 sub {
1098 $_[0]{rbuf} =~ s/$eol// or return;
873 1099
874 $self->unshift_read (chunk => $len, sub { 1100 $cb->($_[0], $1, $2);
875 my $string = $_[1];
876 $_[0]->unshift_read (chunk => 1, sub {
877 if ($_[1] eq ",") {
878 $cb->($_[0], $string);
879 } else {
880 $! = &Errno::EBADMSG;
881 $self->error;
882 }
883 }); 1101 1
884 }); 1102 }
885
886 1
887 } 1103 }
888}; 1104};
889 1105
890=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1106=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
891 1107
943 return 1; 1159 return 1;
944 } 1160 }
945 1161
946 # reject 1162 # reject
947 if ($reject && $$rbuf =~ $reject) { 1163 if ($reject && $$rbuf =~ $reject) {
948 $! = &Errno::EBADMSG; 1164 $self->_error (Errno::EBADMSG);
949 $self->error;
950 } 1165 }
951 1166
952 # skip 1167 # skip
953 if ($skip && $$rbuf =~ $skip) { 1168 if ($skip && $$rbuf =~ $skip) {
954 $data .= substr $$rbuf, 0, $+[0], ""; 1169 $data .= substr $$rbuf, 0, $+[0], "";
956 1171
957 () 1172 ()
958 } 1173 }
959}; 1174};
960 1175
1176=item netstring => $cb->($handle, $string)
1177
1178A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1179
1180Throws an error with C<$!> set to EBADMSG on format violations.
1181
1182=cut
1183
1184register_read_type netstring => sub {
1185 my ($self, $cb) = @_;
1186
1187 sub {
1188 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1189 if ($_[0]{rbuf} =~ /[^0-9]/) {
1190 $self->_error (Errno::EBADMSG);
1191 }
1192 return;
1193 }
1194
1195 my $len = $1;
1196
1197 $self->unshift_read (chunk => $len, sub {
1198 my $string = $_[1];
1199 $_[0]->unshift_read (chunk => 1, sub {
1200 if ($_[1] eq ",") {
1201 $cb->($_[0], $string);
1202 } else {
1203 $self->_error (Errno::EBADMSG);
1204 }
1205 });
1206 });
1207
1208 1
1209 }
1210};
1211
1212=item packstring => $format, $cb->($handle, $string)
1213
1214An octet string prefixed with an encoded length. The encoding C<$format>
1215uses the same format as a Perl C<pack> format, but must specify a single
1216integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1217optional C<!>, C<< < >> or C<< > >> modifier).
1218
1219For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1220EPP uses a prefix of C<N> (4 octtes).
1221
1222Example: read a block of data prefixed by its length in BER-encoded
1223format (very efficient).
1224
1225 $handle->push_read (packstring => "w", sub {
1226 my ($handle, $data) = @_;
1227 });
1228
1229=cut
1230
1231register_read_type packstring => sub {
1232 my ($self, $cb, $format) = @_;
1233
1234 sub {
1235 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1236 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1237 or return;
1238
1239 $format = length pack $format, $len;
1240
1241 # bypass unshift if we already have the remaining chunk
1242 if ($format + $len <= length $_[0]{rbuf}) {
1243 my $data = substr $_[0]{rbuf}, $format, $len;
1244 substr $_[0]{rbuf}, 0, $format + $len, "";
1245 $cb->($_[0], $data);
1246 } else {
1247 # remove prefix
1248 substr $_[0]{rbuf}, 0, $format, "";
1249
1250 # read remaining chunk
1251 $_[0]->unshift_read (chunk => $len, $cb);
1252 }
1253
1254 1
1255 }
1256};
1257
961=item json => $cb->($handle, $hash_or_arrayref) 1258=item json => $cb->($handle, $hash_or_arrayref)
962 1259
963Reads a JSON object or array, decodes it and passes it to the callback. 1260Reads a JSON object or array, decodes it and passes it to the
1261callback. When a parse error occurs, an C<EBADMSG> error will be raised.
964 1262
965If a C<json> object was passed to the constructor, then that will be used 1263If a C<json> object was passed to the constructor, then that will be used
966for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1264for the final decode, otherwise it will create a JSON coder expecting UTF-8.
967 1265
968This read type uses the incremental parser available with JSON version 1266This read type uses the incremental parser available with JSON version
975the C<json> write type description, above, for an actual example. 1273the C<json> write type description, above, for an actual example.
976 1274
977=cut 1275=cut
978 1276
979register_read_type json => sub { 1277register_read_type json => sub {
980 my ($self, $cb, $accept, $reject, $skip) = @_; 1278 my ($self, $cb) = @_;
981 1279
982 require JSON; 1280 my $json = $self->{json} ||=
1281 eval { require JSON::XS; JSON::XS->new->utf8 }
1282 || do { require JSON; JSON->new->utf8 };
983 1283
984 my $data; 1284 my $data;
985 my $rbuf = \$self->{rbuf}; 1285 my $rbuf = \$self->{rbuf};
986 1286
987 my $json = $self->{json} ||= JSON->new->utf8;
988
989 sub { 1287 sub {
990 my $ref = $json->incr_parse ($self->{rbuf}); 1288 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
991 1289
992 if ($ref) { 1290 if ($ref) {
993 $self->{rbuf} = $json->incr_text; 1291 $self->{rbuf} = $json->incr_text;
994 $json->incr_text = ""; 1292 $json->incr_text = "";
995 $cb->($self, $ref); 1293 $cb->($self, $ref);
996 1294
997 1 1295 1
1296 } elsif ($@) {
1297 # error case
1298 $json->incr_skip;
1299
1300 $self->{rbuf} = $json->incr_text;
1301 $json->incr_text = "";
1302
1303 $self->_error (Errno::EBADMSG);
1304
1305 ()
998 } else { 1306 } else {
999 $self->{rbuf} = ""; 1307 $self->{rbuf} = "";
1308
1000 () 1309 ()
1001 } 1310 }
1311 }
1312};
1313
1314=item storable => $cb->($handle, $ref)
1315
1316Deserialises a L<Storable> frozen representation as written by the
1317C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1318data).
1319
1320Raises C<EBADMSG> error if the data could not be decoded.
1321
1322=cut
1323
1324register_read_type storable => sub {
1325 my ($self, $cb) = @_;
1326
1327 require Storable;
1328
1329 sub {
1330 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1331 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1332 or return;
1333
1334 my $format = length pack "w", $len;
1335
1336 # bypass unshift if we already have the remaining chunk
1337 if ($format + $len <= length $_[0]{rbuf}) {
1338 my $data = substr $_[0]{rbuf}, $format, $len;
1339 substr $_[0]{rbuf}, 0, $format + $len, "";
1340 $cb->($_[0], Storable::thaw ($data));
1341 } else {
1342 # remove prefix
1343 substr $_[0]{rbuf}, 0, $format, "";
1344
1345 # read remaining chunk
1346 $_[0]->unshift_read (chunk => $len, sub {
1347 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1348 $cb->($_[0], $ref);
1349 } else {
1350 $self->_error (Errno::EBADMSG);
1351 }
1352 });
1353 }
1354
1355 1
1002 } 1356 }
1003}; 1357};
1004 1358
1005=back 1359=back
1006 1360
1027=item $handle->stop_read 1381=item $handle->stop_read
1028 1382
1029=item $handle->start_read 1383=item $handle->start_read
1030 1384
1031In rare cases you actually do not want to read anything from the 1385In rare cases you actually do not want to read anything from the
1032socket. In this case you can call C<stop_read>. Neither C<on_read> no 1386socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1033any queued callbacks will be executed then. To start reading again, call 1387any queued callbacks will be executed then. To start reading again, call
1034C<start_read>. 1388C<start_read>.
1035 1389
1390Note that AnyEvent::Handle will automatically C<start_read> for you when
1391you change the C<on_read> callback or push/unshift a read callback, and it
1392will automatically C<stop_read> for you when neither C<on_read> is set nor
1393there are any read requests in the queue.
1394
1395These methods will have no effect when in TLS mode (as TLS doesn't support
1396half-duplex connections).
1397
1036=cut 1398=cut
1037 1399
1038sub stop_read { 1400sub stop_read {
1039 my ($self) = @_; 1401 my ($self) = @_;
1040 1402
1041 delete $self->{_rw}; 1403 delete $self->{_rw} unless $self->{tls};
1042} 1404}
1043 1405
1044sub start_read { 1406sub start_read {
1045 my ($self) = @_; 1407 my ($self) = @_;
1046 1408
1047 unless ($self->{_rw} || $self->{_eof}) { 1409 unless ($self->{_rw} || $self->{_eof}) {
1048 Scalar::Util::weaken $self; 1410 Scalar::Util::weaken $self;
1049 1411
1050 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1412 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1051 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1413 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1052 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1414 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1053 1415
1054 if ($len > 0) { 1416 if ($len > 0) {
1055 $self->{_activity} = AnyEvent->now; 1417 $self->{_activity} = AnyEvent->now;
1056 1418
1057 $self->{filter_r} 1419 if ($self->{tls}) {
1058 ? $self->{filter_r}($self, $rbuf) 1420 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1059 : $self->_drain_rbuf; 1421
1422 &_dotls ($self);
1423 } else {
1424 $self->_drain_rbuf unless $self->{_in_drain};
1425 }
1060 1426
1061 } elsif (defined $len) { 1427 } elsif (defined $len) {
1062 delete $self->{_rw}; 1428 delete $self->{_rw};
1063 $self->{_eof} = 1; 1429 $self->{_eof} = 1;
1064 $self->_drain_rbuf; 1430 $self->_drain_rbuf unless $self->{_in_drain};
1065 1431
1066 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1432 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1067 return $self->error; 1433 return $self->_error ($!, 1);
1068 } 1434 }
1069 }); 1435 });
1070 } 1436 }
1071} 1437}
1072 1438
1439our $ERROR_SYSCALL;
1440our $ERROR_WANT_READ;
1441
1442sub _tls_error {
1443 my ($self, $err) = @_;
1444
1445 return $self->_error ($!, 1)
1446 if $err == Net::SSLeay::ERROR_SYSCALL ();
1447
1448 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1449
1450 # reduce error string to look less scary
1451 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1452
1453 if ($self->{_on_starttls}) {
1454 (delete $self->{_on_starttls})->($self, undef, $err);
1455 &_freetls;
1456 } else {
1457 &_freetls;
1458 $self->_error (Errno::EPROTO, 1, $err);
1459 }
1460}
1461
1462# poll the write BIO and send the data if applicable
1463# also decode read data if possible
1464# this is basiclaly our TLS state machine
1465# more efficient implementations are possible with openssl,
1466# but not with the buggy and incomplete Net::SSLeay.
1073sub _dotls { 1467sub _dotls {
1074 my ($self) = @_; 1468 my ($self) = @_;
1075 1469
1470 my $tmp;
1471
1076 if (length $self->{_tls_wbuf}) { 1472 if (length $self->{_tls_wbuf}) {
1077 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1473 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1078 substr $self->{_tls_wbuf}, 0, $len, ""; 1474 substr $self->{_tls_wbuf}, 0, $tmp, "";
1079 } 1475 }
1080 }
1081 1476
1477 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1478 return $self->_tls_error ($tmp)
1479 if $tmp != $ERROR_WANT_READ
1480 && ($tmp != $ERROR_SYSCALL || $!);
1481 }
1482
1483 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1484 unless (length $tmp) {
1485 $self->{_on_starttls}
1486 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1487 &_freetls;
1488
1489 if ($self->{on_stoptls}) {
1490 $self->{on_stoptls}($self);
1491 return;
1492 } else {
1493 # let's treat SSL-eof as we treat normal EOF
1494 delete $self->{_rw};
1495 $self->{_eof} = 1;
1496 }
1497 }
1498
1499 $self->{_tls_rbuf} .= $tmp;
1500 $self->_drain_rbuf unless $self->{_in_drain};
1501 $self->{tls} or return; # tls session might have gone away in callback
1502 }
1503
1504 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1505 return $self->_tls_error ($tmp)
1506 if $tmp != $ERROR_WANT_READ
1507 && ($tmp != $ERROR_SYSCALL || $!);
1508
1082 if (defined (my $buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1509 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1083 $self->{wbuf} .= $buf; 1510 $self->{wbuf} .= $tmp;
1084 $self->_drain_wbuf; 1511 $self->_drain_wbuf;
1085 } 1512 }
1086 1513
1087 while (defined (my $buf = Net::SSLeay::read ($self->{tls}))) { 1514 $self->{_on_starttls}
1088 $self->{rbuf} .= $buf; 1515 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1089 $self->_drain_rbuf; 1516 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1090 }
1091
1092 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1093
1094 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1095 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1096 $self->error;
1097 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1098 $! = &Errno::EIO;
1099 $self->error;
1100 }
1101
1102 # all others are fine for our purposes
1103 }
1104} 1517}
1105 1518
1106=item $handle->starttls ($tls[, $tls_ctx]) 1519=item $handle->starttls ($tls[, $tls_ctx])
1107 1520
1108Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1521Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1110C<starttls>. 1523C<starttls>.
1111 1524
1112The first argument is the same as the C<tls> constructor argument (either 1525The first argument is the same as the C<tls> constructor argument (either
1113C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1526C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1114 1527
1115The second argument is the optional C<Net::SSLeay::CTX> object that is 1528The second argument is the optional C<AnyEvent::TLS> object that is used
1116used when AnyEvent::Handle has to create its own TLS connection object. 1529when AnyEvent::Handle has to create its own TLS connection object, or
1530a hash reference with C<< key => value >> pairs that will be used to
1531construct a new context.
1117 1532
1118The TLS connection object will end up in C<< $handle->{tls} >> after this 1533The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1119call and can be used or changed to your liking. Note that the handshake 1534context in C<< $handle->{tls_ctx} >> after this call and can be used or
1120might have already started when this function returns. 1535changed to your liking. Note that the handshake might have already started
1536when this function returns.
1121 1537
1122=cut 1538If it an error to start a TLS handshake more than once per
1539AnyEvent::Handle object (this is due to bugs in OpenSSL).
1123 1540
1124# TODO: maybe document... 1541=cut
1542
1543our %TLS_CACHE; #TODO not yet documented, should we?
1544
1125sub starttls { 1545sub starttls {
1126 my ($self, $ssl, $ctx) = @_; 1546 my ($self, $ssl, $ctx) = @_;
1127 1547
1128 $self->stoptls; 1548 require Net::SSLeay;
1129 1549
1130 if ($ssl eq "accept") { 1550 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1131 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1551 if $self->{tls};
1132 Net::SSLeay::set_accept_state ($ssl); 1552
1133 } elsif ($ssl eq "connect") { 1553 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1134 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1554 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1135 Net::SSLeay::set_connect_state ($ssl); 1555
1556 $ctx ||= $self->{tls_ctx};
1557
1558 if ("HASH" eq ref $ctx) {
1559 require AnyEvent::TLS;
1560
1561 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context
1562
1563 if ($ctx->{cache}) {
1564 my $key = $ctx+0;
1565 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1566 } else {
1567 $ctx = new AnyEvent::TLS %$ctx;
1568 }
1569 }
1136 } 1570
1137 1571 $self->{tls_ctx} = $ctx || TLS_CTX ();
1138 $self->{tls} = $ssl; 1572 $self->{tls} = $ssl = $self->{tls_ctx}->_get_session ($ssl, $self, $self->{peername});
1139 1573
1140 # basically, this is deep magic (because SSL_read should have the same issues) 1574 # basically, this is deep magic (because SSL_read should have the same issues)
1141 # but the openssl maintainers basically said: "trust us, it just works". 1575 # but the openssl maintainers basically said: "trust us, it just works".
1142 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1576 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1143 # and mismaintained ssleay-module doesn't even offer them). 1577 # and mismaintained ssleay-module doesn't even offer them).
1144 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1578 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1579 #
1580 # in short: this is a mess.
1581 #
1582 # note that we do not try to keep the length constant between writes as we are required to do.
1583 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1584 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1585 # have identity issues in that area.
1145 Net::SSLeay::CTX_set_mode ($self->{tls}, 1586# Net::SSLeay::CTX_set_mode ($ssl,
1146 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1587# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1147 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1588# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1589 Net::SSLeay::CTX_set_mode ($ssl, 1|2);
1148 1590
1149 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1591 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1150 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1592 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1151 1593
1152 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1594 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1153 1595
1154 $self->{filter_w} = sub { 1596 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1155 $_[0]{_tls_wbuf} .= ${$_[1]}; 1597 if $self->{on_starttls};
1156 &_dotls; 1598
1157 }; 1599 &_dotls; # need to trigger the initial handshake
1158 $self->{filter_r} = sub { 1600 $self->start_read; # make sure we actually do read
1159 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1160 &_dotls;
1161 };
1162} 1601}
1163 1602
1164=item $handle->stoptls 1603=item $handle->stoptls
1165 1604
1166Destroys the SSL connection, if any. Partial read or write data will be 1605Shuts down the SSL connection - this makes a proper EOF handshake by
1167lost. 1606sending a close notify to the other side, but since OpenSSL doesn't
1607support non-blocking shut downs, it is not possible to re-use the stream
1608afterwards.
1168 1609
1169=cut 1610=cut
1170 1611
1171sub stoptls { 1612sub stoptls {
1172 my ($self) = @_; 1613 my ($self) = @_;
1173 1614
1174 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1615 if ($self->{tls}) {
1616 Net::SSLeay::shutdown ($self->{tls});
1175 1617
1176 delete $self->{_rbio}; 1618 &_dotls;
1177 delete $self->{_wbio}; 1619
1178 delete $self->{_tls_wbuf}; 1620# # we don't give a shit. no, we do, but we can't. no...#d#
1179 delete $self->{filter_r}; 1621# # we, we... have to use openssl :/#d#
1180 delete $self->{filter_w}; 1622# &_freetls;#d#
1623 }
1624}
1625
1626sub _freetls {
1627 my ($self) = @_;
1628
1629 return unless $self->{tls};
1630
1631 $self->{tls_ctx}->_put_session (delete $self->{tls});
1632
1633 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1181} 1634}
1182 1635
1183sub DESTROY { 1636sub DESTROY {
1184 my $self = shift; 1637 my ($self) = @_;
1185 1638
1186 $self->stoptls; 1639 &_freetls;
1640
1641 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1642
1643 if ($linger && length $self->{wbuf}) {
1644 my $fh = delete $self->{fh};
1645 my $wbuf = delete $self->{wbuf};
1646
1647 my @linger;
1648
1649 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1650 my $len = syswrite $fh, $wbuf, length $wbuf;
1651
1652 if ($len > 0) {
1653 substr $wbuf, 0, $len, "";
1654 } else {
1655 @linger = (); # end
1656 }
1657 });
1658 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1659 @linger = ();
1660 });
1661 }
1662}
1663
1664=item $handle->destroy
1665
1666Shuts down the handle object as much as possible - this call ensures that
1667no further callbacks will be invoked and as many resources as possible
1668will be freed. You must not call any methods on the object afterwards.
1669
1670Normally, you can just "forget" any references to an AnyEvent::Handle
1671object and it will simply shut down. This works in fatal error and EOF
1672callbacks, as well as code outside. It does I<NOT> work in a read or write
1673callback, so when you want to destroy the AnyEvent::Handle object from
1674within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1675that case.
1676
1677Destroying the handle object in this way has the advantage that callbacks
1678will be removed as well, so if those are the only reference holders (as
1679is common), then one doesn't need to do anything special to break any
1680reference cycles.
1681
1682The handle might still linger in the background and write out remaining
1683data, as specified by the C<linger> option, however.
1684
1685=cut
1686
1687sub destroy {
1688 my ($self) = @_;
1689
1690 $self->DESTROY;
1691 %$self = ();
1187} 1692}
1188 1693
1189=item AnyEvent::Handle::TLS_CTX 1694=item AnyEvent::Handle::TLS_CTX
1190 1695
1191This function creates and returns the Net::SSLeay::CTX object used by 1696This function creates and returns the AnyEvent::TLS object used by default
1192default for TLS mode. 1697for TLS mode.
1193 1698
1194The context is created like this: 1699The context is created by calling L<AnyEvent::TLS> without any arguments.
1195
1196 Net::SSLeay::load_error_strings;
1197 Net::SSLeay::SSLeay_add_ssl_algorithms;
1198 Net::SSLeay::randomize;
1199
1200 my $CTX = Net::SSLeay::CTX_new;
1201
1202 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1203 1700
1204=cut 1701=cut
1205 1702
1206our $TLS_CTX; 1703our $TLS_CTX;
1207 1704
1208sub TLS_CTX() { 1705sub TLS_CTX() {
1209 $TLS_CTX || do { 1706 $TLS_CTX ||= do {
1210 require Net::SSLeay; 1707 require AnyEvent::TLS;
1211 1708
1212 Net::SSLeay::load_error_strings (); 1709 new AnyEvent::TLS
1213 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1214 Net::SSLeay::randomize ();
1215
1216 $TLS_CTX = Net::SSLeay::CTX_new ();
1217
1218 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1219
1220 $TLS_CTX
1221 } 1710 }
1222} 1711}
1223 1712
1224=back 1713=back
1714
1715
1716=head1 NONFREQUENTLY ASKED QUESTIONS
1717
1718=over 4
1719
1720=item I C<undef> the AnyEvent::Handle reference inside my callback and
1721still get further invocations!
1722
1723That's because AnyEvent::Handle keeps a reference to itself when handling
1724read or write callbacks.
1725
1726It is only safe to "forget" the reference inside EOF or error callbacks,
1727from within all other callbacks, you need to explicitly call the C<<
1728->destroy >> method.
1729
1730=item I get different callback invocations in TLS mode/Why can't I pause
1731reading?
1732
1733Unlike, say, TCP, TLS connections do not consist of two independent
1734communication channels, one for each direction. Or put differently. The
1735read and write directions are not independent of each other: you cannot
1736write data unless you are also prepared to read, and vice versa.
1737
1738This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1739callback invocations when you are not expecting any read data - the reason
1740is that AnyEvent::Handle always reads in TLS mode.
1741
1742During the connection, you have to make sure that you always have a
1743non-empty read-queue, or an C<on_read> watcher. At the end of the
1744connection (or when you no longer want to use it) you can call the
1745C<destroy> method.
1746
1747=item How do I read data until the other side closes the connection?
1748
1749If you just want to read your data into a perl scalar, the easiest way
1750to achieve this is by setting an C<on_read> callback that does nothing,
1751clearing the C<on_eof> callback and in the C<on_error> callback, the data
1752will be in C<$_[0]{rbuf}>:
1753
1754 $handle->on_read (sub { });
1755 $handle->on_eof (undef);
1756 $handle->on_error (sub {
1757 my $data = delete $_[0]{rbuf};
1758 });
1759
1760The reason to use C<on_error> is that TCP connections, due to latencies
1761and packets loss, might get closed quite violently with an error, when in
1762fact, all data has been received.
1763
1764It is usually better to use acknowledgements when transferring data,
1765to make sure the other side hasn't just died and you got the data
1766intact. This is also one reason why so many internet protocols have an
1767explicit QUIT command.
1768
1769=item I don't want to destroy the handle too early - how do I wait until
1770all data has been written?
1771
1772After writing your last bits of data, set the C<on_drain> callback
1773and destroy the handle in there - with the default setting of
1774C<low_water_mark> this will be called precisely when all data has been
1775written to the socket:
1776
1777 $handle->push_write (...);
1778 $handle->on_drain (sub {
1779 warn "all data submitted to the kernel\n";
1780 undef $handle;
1781 });
1782
1783If you just want to queue some data and then signal EOF to the other side,
1784consider using C<< ->push_shutdown >> instead.
1785
1786=item I want to contact a TLS/SSL server, I don't care about security.
1787
1788If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1789simply connect to it and then create the AnyEvent::Handle with the C<tls>
1790parameter:
1791
1792 tcp_connect $host, $port, sub {
1793 my ($fh) = @_;
1794
1795 my $handle = new AnyEvent::Handle
1796 fh => $fh,
1797 tls => "connect",
1798 on_error => sub { ... };
1799
1800 $handle->push_write (...);
1801 };
1802
1803=item I want to contact a TLS/SSL server, I do care about security.
1804
1805Then you should additionally enable certificate verification, including
1806peername verification, if the protocol you use supports it (see
1807L<AnyEvent::TLS>, C<verify_peername>).
1808
1809E.g. for HTTPS:
1810
1811 tcp_connect $host, $port, sub {
1812 my ($fh) = @_;
1813
1814 my $handle = new AnyEvent::Handle
1815 fh => $fh,
1816 peername => $host,
1817 tls => "connect",
1818 tls_ctx => { verify => 1, verify_peername => "https" },
1819 ...
1820
1821Note that you must specify the hostname you connected to (or whatever
1822"peername" the protocol needs) as the C<peername> argument, otherwise no
1823peername verification will be done.
1824
1825The above will use the system-dependent default set of trusted CA
1826certificates. If you want to check against a specific CA, add the
1827C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1828
1829 tls_ctx => {
1830 verify => 1,
1831 verify_peername => "https",
1832 ca_file => "my-ca-cert.pem",
1833 },
1834
1835=item I want to create a TLS/SSL server, how do I do that?
1836
1837Well, you first need to get a server certificate and key. You have
1838three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1839self-signed certificate (cheap. check the search engine of your choice,
1840there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1841nice program for that purpose).
1842
1843Then create a file with your private key (in PEM format, see
1844L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1845file should then look like this:
1846
1847 -----BEGIN RSA PRIVATE KEY-----
1848 ...header data
1849 ... lots of base64'y-stuff
1850 -----END RSA PRIVATE KEY-----
1851
1852 -----BEGIN CERTIFICATE-----
1853 ... lots of base64'y-stuff
1854 -----END CERTIFICATE-----
1855
1856The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
1857specify this file as C<cert_file>:
1858
1859 tcp_server undef, $port, sub {
1860 my ($fh) = @_;
1861
1862 my $handle = new AnyEvent::Handle
1863 fh => $fh,
1864 tls => "accept",
1865 tls_ctx => { cert_file => "my-server-keycert.pem" },
1866 ...
1867
1868When you have intermediate CA certificates that your clients might not
1869know about, just append them to the C<cert_file>.
1870
1871=back
1872
1225 1873
1226=head1 SUBCLASSING AnyEvent::Handle 1874=head1 SUBCLASSING AnyEvent::Handle
1227 1875
1228In many cases, you might want to subclass AnyEvent::Handle. 1876In many cases, you might want to subclass AnyEvent::Handle.
1229 1877
1233=over 4 1881=over 4
1234 1882
1235=item * all constructor arguments become object members. 1883=item * all constructor arguments become object members.
1236 1884
1237At least initially, when you pass a C<tls>-argument to the constructor it 1885At least initially, when you pass a C<tls>-argument to the constructor it
1238will end up in C<< $handle->{tls} >>. Those members might be changes or 1886will end up in C<< $handle->{tls} >>. Those members might be changed or
1239mutated later on (for example C<tls> will hold the TLS connection object). 1887mutated later on (for example C<tls> will hold the TLS connection object).
1240 1888
1241=item * other object member names are prefixed with an C<_>. 1889=item * other object member names are prefixed with an C<_>.
1242 1890
1243All object members not explicitly documented (internal use) are prefixed 1891All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines