ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.58 by root, Wed Jun 4 22:51:15 2008 UTC vs.
Revision 1.100 by root, Thu Oct 23 02:44:50 2008 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent (); 6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK); 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 8use Scalar::Util ();
9use Carp (); 9use Carp ();
14 14
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17=cut 17=cut
18 18
19our $VERSION = 4.13; 19our $VERSION = 4.3;
20 20
21=head1 SYNOPSIS 21=head1 SYNOPSIS
22 22
23 use AnyEvent; 23 use AnyEvent;
24 use AnyEvent::Handle; 24 use AnyEvent::Handle;
49 49
50This module is a helper module to make it easier to do event-based I/O on 50This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 51filehandles. For utility functions for doing non-blocking connects and accepts
52on sockets see L<AnyEvent::Util>. 52on sockets see L<AnyEvent::Util>.
53 53
54The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples.
56
54In the following, when the documentation refers to of "bytes" then this 57In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 58means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 59treatment of characters applies to this module as well.
57 60
58All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
70 73
71=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [MANDATORY]
72 75
73The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
74 77
75NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
77 81
78=item on_eof => $cb->($handle) 82=item on_eof => $cb->($handle)
79 83
80Set the callback to be called when an end-of-file condition is detcted, 84Set the callback to be called when an end-of-file condition is detected,
81i.e. in the case of a socket, when the other side has closed the 85i.e. in the case of a socket, when the other side has closed the
82connection cleanly. 86connection cleanly.
83 87
88For sockets, this just means that the other side has stopped sending data,
89you can still try to write data, and, in fact, one can return from the eof
90callback and continue writing data, as only the read part has been shut
91down.
92
84While not mandatory, it is highly recommended to set an eof callback, 93While not mandatory, it is I<highly> recommended to set an eof callback,
85otherwise you might end up with a closed socket while you are still 94otherwise you might end up with a closed socket while you are still
86waiting for data. 95waiting for data.
96
97If an EOF condition has been detected but no C<on_eof> callback has been
98set, then a fatal error will be raised with C<$!> set to <0>.
87 99
88=item on_error => $cb->($handle, $fatal) 100=item on_error => $cb->($handle, $fatal)
89 101
90This is the error callback, which is called when, well, some error 102This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 103occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 104connect or a read error.
93 105
94Some errors are fatal (which is indicated by C<$fatal> being true). On 106Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 107fatal errors the handle object will be shut down and will not be usable
108(but you are free to look at the current C<< ->rbuf >>). Examples of fatal
109errors are an EOF condition with active (but unsatisifable) read watchers
110(C<EPIPE>) or I/O errors.
111
96usable. Non-fatal errors can be retried by simply returning, but it is 112Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 113to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 114when this callback is invoked. Examples of non-fatal errors are timeouts
115C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 116
100On callback entrance, the value of C<$!> contains the operating system 117On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 118error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
102 119
103While not mandatory, it is I<highly> recommended to set this callback, as 120While not mandatory, it is I<highly> recommended to set this callback, as
105C<croak>. 122C<croak>.
106 123
107=item on_read => $cb->($handle) 124=item on_read => $cb->($handle)
108 125
109This sets the default read callback, which is called when data arrives 126This sets the default read callback, which is called when data arrives
110and no read request is in the queue. 127and no read request is in the queue (unlike read queue callbacks, this
128callback will only be called when at least one octet of data is in the
129read buffer).
111 130
112To access (and remove data from) the read buffer, use the C<< ->rbuf >> 131To access (and remove data from) the read buffer, use the C<< ->rbuf >>
113method or access the C<$handle->{rbuf}> member directly. 132method or access the C<$handle->{rbuf}> member directly.
114 133
115When an EOF condition is detected then AnyEvent::Handle will first try to 134When an EOF condition is detected then AnyEvent::Handle will first try to
122This sets the callback that is called when the write buffer becomes empty 141This sets the callback that is called when the write buffer becomes empty
123(or when the callback is set and the buffer is empty already). 142(or when the callback is set and the buffer is empty already).
124 143
125To append to the write buffer, use the C<< ->push_write >> method. 144To append to the write buffer, use the C<< ->push_write >> method.
126 145
146This callback is useful when you don't want to put all of your write data
147into the queue at once, for example, when you want to write the contents
148of some file to the socket you might not want to read the whole file into
149memory and push it into the queue, but instead only read more data from
150the file when the write queue becomes empty.
151
127=item timeout => $fractional_seconds 152=item timeout => $fractional_seconds
128 153
129If non-zero, then this enables an "inactivity" timeout: whenever this many 154If non-zero, then this enables an "inactivity" timeout: whenever this many
130seconds pass without a successful read or write on the underlying file 155seconds pass without a successful read or write on the underlying file
131handle, the C<on_timeout> callback will be invoked (and if that one is 156handle, the C<on_timeout> callback will be invoked (and if that one is
132missing, an C<ETIMEDOUT> error will be raised). 157missing, a non-fatal C<ETIMEDOUT> error will be raised).
133 158
134Note that timeout processing is also active when you currently do not have 159Note that timeout processing is also active when you currently do not have
135any outstanding read or write requests: If you plan to keep the connection 160any outstanding read or write requests: If you plan to keep the connection
136idle then you should disable the timout temporarily or ignore the timeout 161idle then you should disable the timout temporarily or ignore the timeout
137in the C<on_timeout> callback. 162in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
163restart the timeout.
138 164
139Zero (the default) disables this timeout. 165Zero (the default) disables this timeout.
140 166
141=item on_timeout => $cb->($handle) 167=item on_timeout => $cb->($handle)
142 168
146 172
147=item rbuf_max => <bytes> 173=item rbuf_max => <bytes>
148 174
149If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 175If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
150when the read buffer ever (strictly) exceeds this size. This is useful to 176when the read buffer ever (strictly) exceeds this size. This is useful to
151avoid denial-of-service attacks. 177avoid some forms of denial-of-service attacks.
152 178
153For example, a server accepting connections from untrusted sources should 179For example, a server accepting connections from untrusted sources should
154be configured to accept only so-and-so much data that it cannot act on 180be configured to accept only so-and-so much data that it cannot act on
155(for example, when expecting a line, an attacker could send an unlimited 181(for example, when expecting a line, an attacker could send an unlimited
156amount of data without a callback ever being called as long as the line 182amount of data without a callback ever being called as long as the line
157isn't finished). 183isn't finished).
158 184
185=item autocork => <boolean>
186
187When disabled (the default), then C<push_write> will try to immediately
188write the data to the handle, if possible. This avoids having to register
189a write watcher and wait for the next event loop iteration, but can
190be inefficient if you write multiple small chunks (on the wire, this
191disadvantage is usually avoided by your kernel's nagle algorithm, see
192C<no_delay>, but this option can save costly syscalls).
193
194When enabled, then writes will always be queued till the next event loop
195iteration. This is efficient when you do many small writes per iteration,
196but less efficient when you do a single write only per iteration (or when
197the write buffer often is full). It also increases write latency.
198
199=item no_delay => <boolean>
200
201When doing small writes on sockets, your operating system kernel might
202wait a bit for more data before actually sending it out. This is called
203the Nagle algorithm, and usually it is beneficial.
204
205In some situations you want as low a delay as possible, which can be
206accomplishd by setting this option to a true value.
207
208The default is your opertaing system's default behaviour (most likely
209enabled), this option explicitly enables or disables it, if possible.
210
159=item read_size => <bytes> 211=item read_size => <bytes>
160 212
161The default read block size (the amount of bytes this module will try to read 213The default read block size (the amount of bytes this module will
162during each (loop iteration). Default: C<8192>. 214try to read during each loop iteration, which affects memory
215requirements). Default: C<8192>.
163 216
164=item low_water_mark => <bytes> 217=item low_water_mark => <bytes>
165 218
166Sets the amount of bytes (default: C<0>) that make up an "empty" write 219Sets the amount of bytes (default: C<0>) that make up an "empty" write
167buffer: If the write reaches this size or gets even samller it is 220buffer: If the write reaches this size or gets even samller it is
168considered empty. 221considered empty.
169 222
223Sometimes it can be beneficial (for performance reasons) to add data to
224the write buffer before it is fully drained, but this is a rare case, as
225the operating system kernel usually buffers data as well, so the default
226is good in almost all cases.
227
228=item linger => <seconds>
229
230If non-zero (default: C<3600>), then the destructor of the
231AnyEvent::Handle object will check whether there is still outstanding
232write data and will install a watcher that will write this data to the
233socket. No errors will be reported (this mostly matches how the operating
234system treats outstanding data at socket close time).
235
236This will not work for partial TLS data that could not be encoded
237yet. This data will be lost. Calling the C<stoptls> method in time might
238help.
239
170=item tls => "accept" | "connect" | Net::SSLeay::SSL object 240=item tls => "accept" | "connect" | Net::SSLeay::SSL object
171 241
172When this parameter is given, it enables TLS (SSL) mode, that means it 242When this parameter is given, it enables TLS (SSL) mode, that means
173will start making tls handshake and will transparently encrypt/decrypt 243AnyEvent will start a TLS handshake as soon as the conenction has been
174data. 244established and will transparently encrypt/decrypt data afterwards.
175 245
176TLS mode requires Net::SSLeay to be installed (it will be loaded 246TLS mode requires Net::SSLeay to be installed (it will be loaded
177automatically when you try to create a TLS handle). 247automatically when you try to create a TLS handle): this module doesn't
248have a dependency on that module, so if your module requires it, you have
249to add the dependency yourself.
178 250
179For the TLS server side, use C<accept>, and for the TLS client side of a 251Unlike TCP, TLS has a server and client side: for the TLS server side, use
180connection, use C<connect> mode. 252C<accept>, and for the TLS client side of a connection, use C<connect>
253mode.
181 254
182You can also provide your own TLS connection object, but you have 255You can also provide your own TLS connection object, but you have
183to make sure that you call either C<Net::SSLeay::set_connect_state> 256to make sure that you call either C<Net::SSLeay::set_connect_state>
184or C<Net::SSLeay::set_accept_state> on it before you pass it to 257or C<Net::SSLeay::set_accept_state> on it before you pass it to
185AnyEvent::Handle. 258AnyEvent::Handle.
186 259
187See the C<starttls> method if you need to start TLs negotiation later. 260See the C<< ->starttls >> method for when need to start TLS negotiation later.
188 261
189=item tls_ctx => $ssl_ctx 262=item tls_ctx => $ssl_ctx
190 263
191Use the given Net::SSLeay::CTX object to create the new TLS connection 264Use the given C<Net::SSLeay::CTX> object to create the new TLS connection
192(unless a connection object was specified directly). If this parameter is 265(unless a connection object was specified directly). If this parameter is
193missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 266missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
194 267
195=item json => JSON or JSON::XS object 268=item json => JSON or JSON::XS object
196 269
197This is the json coder object used by the C<json> read and write types. 270This is the json coder object used by the C<json> read and write types.
198 271
199If you don't supply it, then AnyEvent::Handle will create and use a 272If you don't supply it, then AnyEvent::Handle will create and use a
200suitable one, which will write and expect UTF-8 encoded JSON texts. 273suitable one (on demand), which will write and expect UTF-8 encoded JSON
274texts.
201 275
202Note that you are responsible to depend on the JSON module if you want to 276Note that you are responsible to depend on the JSON module if you want to
203use this functionality, as AnyEvent does not have a dependency itself. 277use this functionality, as AnyEvent does not have a dependency itself.
204 278
205=item filter_r => $cb
206
207=item filter_w => $cb
208
209These exist, but are undocumented at this time.
210
211=back 279=back
212 280
213=cut 281=cut
214 282
215sub new { 283sub new {
219 287
220 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 288 $self->{fh} or Carp::croak "mandatory argument fh is missing";
221 289
222 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 290 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
223 291
224 if ($self->{tls}) {
225 require Net::SSLeay;
226 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 292 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
227 } 293 if $self->{tls};
228 294
229 $self->{_activity} = AnyEvent->now; 295 $self->{_activity} = AnyEvent->now;
230 $self->_timeout; 296 $self->_timeout;
231 297
232 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 298 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
233 $self->on_read (delete $self->{on_read} ) if $self->{on_read}; 299 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
300
301 $self->start_read
302 if $self->{on_read};
234 303
235 $self 304 $self
236} 305}
237 306
238sub _shutdown { 307sub _shutdown {
241 delete $self->{_tw}; 310 delete $self->{_tw};
242 delete $self->{_rw}; 311 delete $self->{_rw};
243 delete $self->{_ww}; 312 delete $self->{_ww};
244 delete $self->{fh}; 313 delete $self->{fh};
245 314
246 $self->stoptls; 315 &_freetls;
316
317 delete $self->{on_read};
318 delete $self->{_queue};
247} 319}
248 320
249sub _error { 321sub _error {
250 my ($self, $errno, $fatal) = @_; 322 my ($self, $errno, $fatal) = @_;
251 323
254 326
255 $! = $errno; 327 $! = $errno;
256 328
257 if ($self->{on_error}) { 329 if ($self->{on_error}) {
258 $self->{on_error}($self, $fatal); 330 $self->{on_error}($self, $fatal);
259 } else { 331 } elsif ($self->{fh}) {
260 Carp::croak "AnyEvent::Handle uncaught error: $!"; 332 Carp::croak "AnyEvent::Handle uncaught error: $!";
261 } 333 }
262} 334}
263 335
264=item $fh = $handle->fh 336=item $fh = $handle->fh
265 337
266This method returns the file handle of the L<AnyEvent::Handle> object. 338This method returns the file handle used to create the L<AnyEvent::Handle> object.
267 339
268=cut 340=cut
269 341
270sub fh { $_[0]{fh} } 342sub fh { $_[0]{fh} }
271 343
289 $_[0]{on_eof} = $_[1]; 361 $_[0]{on_eof} = $_[1];
290} 362}
291 363
292=item $handle->on_timeout ($cb) 364=item $handle->on_timeout ($cb)
293 365
294Replace the current C<on_timeout> callback, or disables the callback 366Replace the current C<on_timeout> callback, or disables the callback (but
295(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor 367not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
296argument. 368argument and method.
297 369
298=cut 370=cut
299 371
300sub on_timeout { 372sub on_timeout {
301 $_[0]{on_timeout} = $_[1]; 373 $_[0]{on_timeout} = $_[1];
374}
375
376=item $handle->autocork ($boolean)
377
378Enables or disables the current autocork behaviour (see C<autocork>
379constructor argument).
380
381=cut
382
383=item $handle->no_delay ($boolean)
384
385Enables or disables the C<no_delay> setting (see constructor argument of
386the same name for details).
387
388=cut
389
390sub no_delay {
391 $_[0]{no_delay} = $_[1];
392
393 eval {
394 local $SIG{__DIE__};
395 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
396 };
302} 397}
303 398
304############################################################################# 399#############################################################################
305 400
306=item $handle->timeout ($seconds) 401=item $handle->timeout ($seconds)
384 my ($self, $cb) = @_; 479 my ($self, $cb) = @_;
385 480
386 $self->{on_drain} = $cb; 481 $self->{on_drain} = $cb;
387 482
388 $cb->($self) 483 $cb->($self)
389 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 484 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
390} 485}
391 486
392=item $handle->push_write ($data) 487=item $handle->push_write ($data)
393 488
394Queues the given scalar to be written. You can push as much data as you 489Queues the given scalar to be written. You can push as much data as you
411 substr $self->{wbuf}, 0, $len, ""; 506 substr $self->{wbuf}, 0, $len, "";
412 507
413 $self->{_activity} = AnyEvent->now; 508 $self->{_activity} = AnyEvent->now;
414 509
415 $self->{on_drain}($self) 510 $self->{on_drain}($self)
416 if $self->{low_water_mark} >= length $self->{wbuf} 511 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
417 && $self->{on_drain}; 512 && $self->{on_drain};
418 513
419 delete $self->{_ww} unless length $self->{wbuf}; 514 delete $self->{_ww} unless length $self->{wbuf};
420 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 515 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
421 $self->_error ($!, 1); 516 $self->_error ($!, 1);
422 } 517 }
423 }; 518 };
424 519
425 # try to write data immediately 520 # try to write data immediately
426 $cb->(); 521 $cb->() unless $self->{autocork};
427 522
428 # if still data left in wbuf, we need to poll 523 # if still data left in wbuf, we need to poll
429 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 524 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
430 if length $self->{wbuf}; 525 if length $self->{wbuf};
431 }; 526 };
445 540
446 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 541 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
447 ->($self, @_); 542 ->($self, @_);
448 } 543 }
449 544
450 if ($self->{filter_w}) { 545 if ($self->{tls}) {
451 $self->{filter_w}($self, \$_[0]); 546 $self->{_tls_wbuf} .= $_[0];
547
548 &_dotls ($self);
452 } else { 549 } else {
453 $self->{wbuf} .= $_[0]; 550 $self->{wbuf} .= $_[0];
454 $self->_drain_wbuf; 551 $self->_drain_wbuf;
455 } 552 }
456} 553}
473=cut 570=cut
474 571
475register_write_type netstring => sub { 572register_write_type netstring => sub {
476 my ($self, $string) = @_; 573 my ($self, $string) = @_;
477 574
478 sprintf "%d:%s,", (length $string), $string 575 (length $string) . ":$string,"
576};
577
578=item packstring => $format, $data
579
580An octet string prefixed with an encoded length. The encoding C<$format>
581uses the same format as a Perl C<pack> format, but must specify a single
582integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
583optional C<!>, C<< < >> or C<< > >> modifier).
584
585=cut
586
587register_write_type packstring => sub {
588 my ($self, $format, $string) = @_;
589
590 pack "$format/a*", $string
479}; 591};
480 592
481=item json => $array_or_hashref 593=item json => $array_or_hashref
482 594
483Encodes the given hash or array reference into a JSON object. Unless you 595Encodes the given hash or array reference into a JSON object. Unless you
517 629
518 $self->{json} ? $self->{json}->encode ($ref) 630 $self->{json} ? $self->{json}->encode ($ref)
519 : JSON::encode_json ($ref) 631 : JSON::encode_json ($ref)
520}; 632};
521 633
634=item storable => $reference
635
636Freezes the given reference using L<Storable> and writes it to the
637handle. Uses the C<nfreeze> format.
638
639=cut
640
641register_write_type storable => sub {
642 my ($self, $ref) = @_;
643
644 require Storable;
645
646 pack "w/a*", Storable::nfreeze ($ref)
647};
648
522=back 649=back
523 650
524=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 651=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
525 652
526This function (not method) lets you add your own types to C<push_write>. 653This function (not method) lets you add your own types to C<push_write>.
548ways, the "simple" way, using only C<on_read> and the "complex" way, using 675ways, the "simple" way, using only C<on_read> and the "complex" way, using
549a queue. 676a queue.
550 677
551In the simple case, you just install an C<on_read> callback and whenever 678In the simple case, you just install an C<on_read> callback and whenever
552new data arrives, it will be called. You can then remove some data (if 679new data arrives, it will be called. You can then remove some data (if
553enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 680enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
554or not. 681leave the data there if you want to accumulate more (e.g. when only a
682partial message has been received so far).
555 683
556In the more complex case, you want to queue multiple callbacks. In this 684In the more complex case, you want to queue multiple callbacks. In this
557case, AnyEvent::Handle will call the first queued callback each time new 685case, AnyEvent::Handle will call the first queued callback each time new
558data arrives and removes it when it has done its job (see C<push_read>, 686data arrives (also the first time it is queued) and removes it when it has
559below). 687done its job (see C<push_read>, below).
560 688
561This way you can, for example, push three line-reads, followed by reading 689This way you can, for example, push three line-reads, followed by reading
562a chunk of data, and AnyEvent::Handle will execute them in order. 690a chunk of data, and AnyEvent::Handle will execute them in order.
563 691
564Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 692Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
577 # handle xml 705 # handle xml
578 }); 706 });
579 }); 707 });
580 }); 708 });
581 709
582Example 2: Implement a client for a protocol that replies either with 710Example 2: Implement a client for a protocol that replies either with "OK"
583"OK" and another line or "ERROR" for one request, and 64 bytes for the 711and another line or "ERROR" for the first request that is sent, and 64
584second request. Due tot he availability of a full queue, we can just 712bytes for the second request. Due to the availability of a queue, we can
585pipeline sending both requests and manipulate the queue as necessary in 713just pipeline sending both requests and manipulate the queue as necessary
586the callbacks: 714in the callbacks.
587 715
588 # request one 716When the first callback is called and sees an "OK" response, it will
717C<unshift> another line-read. This line-read will be queued I<before> the
71864-byte chunk callback.
719
720 # request one, returns either "OK + extra line" or "ERROR"
589 $handle->push_write ("request 1\015\012"); 721 $handle->push_write ("request 1\015\012");
590 722
591 # we expect "ERROR" or "OK" as response, so push a line read 723 # we expect "ERROR" or "OK" as response, so push a line read
592 $handle->push_read (line => sub { 724 $handle->push_read (line => sub {
593 # if we got an "OK", we have to _prepend_ another line, 725 # if we got an "OK", we have to _prepend_ another line,
600 ... 732 ...
601 }); 733 });
602 } 734 }
603 }); 735 });
604 736
605 # request two 737 # request two, simply returns 64 octets
606 $handle->push_write ("request 2\015\012"); 738 $handle->push_write ("request 2\015\012");
607 739
608 # simply read 64 bytes, always 740 # simply read 64 bytes, always
609 $handle->push_read (chunk => 64, sub { 741 $handle->push_read (chunk => 64, sub {
610 my $response = $_[1]; 742 my $response = $_[1];
616=cut 748=cut
617 749
618sub _drain_rbuf { 750sub _drain_rbuf {
619 my ($self) = @_; 751 my ($self) = @_;
620 752
753 local $self->{_in_drain} = 1;
754
621 if ( 755 if (
622 defined $self->{rbuf_max} 756 defined $self->{rbuf_max}
623 && $self->{rbuf_max} < length $self->{rbuf} 757 && $self->{rbuf_max} < length $self->{rbuf}
624 ) { 758 ) {
625 return $self->_error (&Errno::ENOSPC, 1); 759 $self->_error (&Errno::ENOSPC, 1), return;
626 } 760 }
627 761
628 return if $self->{in_drain}; 762 while () {
629 local $self->{in_drain} = 1;
630
631 while (my $len = length $self->{rbuf}) { 763 my $len = length $self->{rbuf};
632 no strict 'refs'; 764
633 if (my $cb = shift @{ $self->{_queue} }) { 765 if (my $cb = shift @{ $self->{_queue} }) {
634 unless ($cb->($self)) { 766 unless ($cb->($self)) {
635 if ($self->{_eof}) { 767 if ($self->{_eof}) {
636 # no progress can be made (not enough data and no data forthcoming) 768 # no progress can be made (not enough data and no data forthcoming)
637 return $self->_error (&Errno::EPIPE, 1); 769 $self->_error (&Errno::EPIPE, 1), return;
638 } 770 }
639 771
640 unshift @{ $self->{_queue} }, $cb; 772 unshift @{ $self->{_queue} }, $cb;
641 last; 773 last;
642 } 774 }
643 } elsif ($self->{on_read}) { 775 } elsif ($self->{on_read}) {
776 last unless $len;
777
644 $self->{on_read}($self); 778 $self->{on_read}($self);
645 779
646 if ( 780 if (
647 $len == length $self->{rbuf} # if no data has been consumed 781 $len == length $self->{rbuf} # if no data has been consumed
648 && !@{ $self->{_queue} } # and the queue is still empty 782 && !@{ $self->{_queue} } # and the queue is still empty
649 && $self->{on_read} # but we still have on_read 783 && $self->{on_read} # but we still have on_read
650 ) { 784 ) {
651 # no further data will arrive 785 # no further data will arrive
652 # so no progress can be made 786 # so no progress can be made
653 return $self->_error (&Errno::EPIPE, 1) 787 $self->_error (&Errno::EPIPE, 1), return
654 if $self->{_eof}; 788 if $self->{_eof};
655 789
656 last; # more data might arrive 790 last; # more data might arrive
657 } 791 }
658 } else { 792 } else {
659 # read side becomes idle 793 # read side becomes idle
660 delete $self->{_rw}; 794 delete $self->{_rw} unless $self->{tls};
661 last; 795 last;
662 } 796 }
663 } 797 }
664 798
799 if ($self->{_eof}) {
800 if ($self->{on_eof}) {
665 $self->{on_eof}($self) 801 $self->{on_eof}($self)
666 if $self->{_eof} && $self->{on_eof}; 802 } else {
803 $self->_error (0, 1);
804 }
805 }
667 806
668 # may need to restart read watcher 807 # may need to restart read watcher
669 unless ($self->{_rw}) { 808 unless ($self->{_rw}) {
670 $self->start_read 809 $self->start_read
671 if $self->{on_read} || @{ $self->{_queue} }; 810 if $self->{on_read} || @{ $self->{_queue} };
682 821
683sub on_read { 822sub on_read {
684 my ($self, $cb) = @_; 823 my ($self, $cb) = @_;
685 824
686 $self->{on_read} = $cb; 825 $self->{on_read} = $cb;
687 $self->_drain_rbuf if $cb; 826 $self->_drain_rbuf if $cb && !$self->{_in_drain};
688} 827}
689 828
690=item $handle->rbuf 829=item $handle->rbuf
691 830
692Returns the read buffer (as a modifiable lvalue). 831Returns the read buffer (as a modifiable lvalue).
741 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 880 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
742 ->($self, $cb, @_); 881 ->($self, $cb, @_);
743 } 882 }
744 883
745 push @{ $self->{_queue} }, $cb; 884 push @{ $self->{_queue} }, $cb;
746 $self->_drain_rbuf; 885 $self->_drain_rbuf unless $self->{_in_drain};
747} 886}
748 887
749sub unshift_read { 888sub unshift_read {
750 my $self = shift; 889 my $self = shift;
751 my $cb = pop; 890 my $cb = pop;
757 ->($self, $cb, @_); 896 ->($self, $cb, @_);
758 } 897 }
759 898
760 899
761 unshift @{ $self->{_queue} }, $cb; 900 unshift @{ $self->{_queue} }, $cb;
762 $self->_drain_rbuf; 901 $self->_drain_rbuf unless $self->{_in_drain};
763} 902}
764 903
765=item $handle->push_read (type => @args, $cb) 904=item $handle->push_read (type => @args, $cb)
766 905
767=item $handle->unshift_read (type => @args, $cb) 906=item $handle->unshift_read (type => @args, $cb)
797 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 936 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
798 1 937 1
799 } 938 }
800}; 939};
801 940
802# compatibility with older API
803sub push_read_chunk {
804 $_[0]->push_read (chunk => $_[1], $_[2]);
805}
806
807sub unshift_read_chunk {
808 $_[0]->unshift_read (chunk => $_[1], $_[2]);
809}
810
811=item line => [$eol, ]$cb->($handle, $line, $eol) 941=item line => [$eol, ]$cb->($handle, $line, $eol)
812 942
813The callback will be called only once a full line (including the end of 943The callback will be called only once a full line (including the end of
814line marker, C<$eol>) has been read. This line (excluding the end of line 944line marker, C<$eol>) has been read. This line (excluding the end of line
815marker) will be passed to the callback as second argument (C<$line>), and 945marker) will be passed to the callback as second argument (C<$line>), and
830=cut 960=cut
831 961
832register_read_type line => sub { 962register_read_type line => sub {
833 my ($self, $cb, $eol) = @_; 963 my ($self, $cb, $eol) = @_;
834 964
835 $eol = qr|(\015?\012)| if @_ < 3; 965 if (@_ < 3) {
836 $eol = quotemeta $eol unless ref $eol; 966 # this is more than twice as fast as the generic code below
837 $eol = qr|^(.*?)($eol)|s;
838
839 sub { 967 sub {
840 $_[0]{rbuf} =~ s/$eol// or return; 968 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
841 969
842 $cb->($_[0], $1, $2); 970 $cb->($_[0], $1, $2);
843 1
844 }
845};
846
847# compatibility with older API
848sub push_read_line {
849 my $self = shift;
850 $self->push_read (line => @_);
851}
852
853sub unshift_read_line {
854 my $self = shift;
855 $self->unshift_read (line => @_);
856}
857
858=item netstring => $cb->($handle, $string)
859
860A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
861
862Throws an error with C<$!> set to EBADMSG on format violations.
863
864=cut
865
866register_read_type netstring => sub {
867 my ($self, $cb) = @_;
868
869 sub {
870 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
871 if ($_[0]{rbuf} =~ /[^0-9]/) {
872 $self->_error (&Errno::EBADMSG);
873 } 971 1
874 return;
875 } 972 }
973 } else {
974 $eol = quotemeta $eol unless ref $eol;
975 $eol = qr|^(.*?)($eol)|s;
876 976
877 my $len = $1; 977 sub {
978 $_[0]{rbuf} =~ s/$eol// or return;
878 979
879 $self->unshift_read (chunk => $len, sub { 980 $cb->($_[0], $1, $2);
880 my $string = $_[1];
881 $_[0]->unshift_read (chunk => 1, sub {
882 if ($_[1] eq ",") {
883 $cb->($_[0], $string);
884 } else {
885 $self->_error (&Errno::EBADMSG);
886 }
887 }); 981 1
888 }); 982 }
889
890 1
891 } 983 }
892}; 984};
893 985
894=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 986=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
895 987
959 1051
960 () 1052 ()
961 } 1053 }
962}; 1054};
963 1055
1056=item netstring => $cb->($handle, $string)
1057
1058A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1059
1060Throws an error with C<$!> set to EBADMSG on format violations.
1061
1062=cut
1063
1064register_read_type netstring => sub {
1065 my ($self, $cb) = @_;
1066
1067 sub {
1068 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1069 if ($_[0]{rbuf} =~ /[^0-9]/) {
1070 $self->_error (&Errno::EBADMSG);
1071 }
1072 return;
1073 }
1074
1075 my $len = $1;
1076
1077 $self->unshift_read (chunk => $len, sub {
1078 my $string = $_[1];
1079 $_[0]->unshift_read (chunk => 1, sub {
1080 if ($_[1] eq ",") {
1081 $cb->($_[0], $string);
1082 } else {
1083 $self->_error (&Errno::EBADMSG);
1084 }
1085 });
1086 });
1087
1088 1
1089 }
1090};
1091
1092=item packstring => $format, $cb->($handle, $string)
1093
1094An octet string prefixed with an encoded length. The encoding C<$format>
1095uses the same format as a Perl C<pack> format, but must specify a single
1096integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1097optional C<!>, C<< < >> or C<< > >> modifier).
1098
1099For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1100EPP uses a prefix of C<N> (4 octtes).
1101
1102Example: read a block of data prefixed by its length in BER-encoded
1103format (very efficient).
1104
1105 $handle->push_read (packstring => "w", sub {
1106 my ($handle, $data) = @_;
1107 });
1108
1109=cut
1110
1111register_read_type packstring => sub {
1112 my ($self, $cb, $format) = @_;
1113
1114 sub {
1115 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1116 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1117 or return;
1118
1119 $format = length pack $format, $len;
1120
1121 # bypass unshift if we already have the remaining chunk
1122 if ($format + $len <= length $_[0]{rbuf}) {
1123 my $data = substr $_[0]{rbuf}, $format, $len;
1124 substr $_[0]{rbuf}, 0, $format + $len, "";
1125 $cb->($_[0], $data);
1126 } else {
1127 # remove prefix
1128 substr $_[0]{rbuf}, 0, $format, "";
1129
1130 # read remaining chunk
1131 $_[0]->unshift_read (chunk => $len, $cb);
1132 }
1133
1134 1
1135 }
1136};
1137
964=item json => $cb->($handle, $hash_or_arrayref) 1138=item json => $cb->($handle, $hash_or_arrayref)
965 1139
966Reads a JSON object or array, decodes it and passes it to the callback. 1140Reads a JSON object or array, decodes it and passes it to the callback.
967 1141
968If a C<json> object was passed to the constructor, then that will be used 1142If a C<json> object was passed to the constructor, then that will be used
978the C<json> write type description, above, for an actual example. 1152the C<json> write type description, above, for an actual example.
979 1153
980=cut 1154=cut
981 1155
982register_read_type json => sub { 1156register_read_type json => sub {
983 my ($self, $cb, $accept, $reject, $skip) = @_; 1157 my ($self, $cb) = @_;
984 1158
985 require JSON; 1159 require JSON;
986 1160
987 my $data; 1161 my $data;
988 my $rbuf = \$self->{rbuf}; 1162 my $rbuf = \$self->{rbuf};
1003 () 1177 ()
1004 } 1178 }
1005 } 1179 }
1006}; 1180};
1007 1181
1182=item storable => $cb->($handle, $ref)
1183
1184Deserialises a L<Storable> frozen representation as written by the
1185C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1186data).
1187
1188Raises C<EBADMSG> error if the data could not be decoded.
1189
1190=cut
1191
1192register_read_type storable => sub {
1193 my ($self, $cb) = @_;
1194
1195 require Storable;
1196
1197 sub {
1198 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1199 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1200 or return;
1201
1202 my $format = length pack "w", $len;
1203
1204 # bypass unshift if we already have the remaining chunk
1205 if ($format + $len <= length $_[0]{rbuf}) {
1206 my $data = substr $_[0]{rbuf}, $format, $len;
1207 substr $_[0]{rbuf}, 0, $format + $len, "";
1208 $cb->($_[0], Storable::thaw ($data));
1209 } else {
1210 # remove prefix
1211 substr $_[0]{rbuf}, 0, $format, "";
1212
1213 # read remaining chunk
1214 $_[0]->unshift_read (chunk => $len, sub {
1215 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1216 $cb->($_[0], $ref);
1217 } else {
1218 $self->_error (&Errno::EBADMSG);
1219 }
1220 });
1221 }
1222
1223 1
1224 }
1225};
1226
1008=back 1227=back
1009 1228
1010=item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args) 1229=item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1011 1230
1012This function (not method) lets you add your own types to C<push_read>. 1231This function (not method) lets you add your own types to C<push_read>.
1039Note that AnyEvent::Handle will automatically C<start_read> for you when 1258Note that AnyEvent::Handle will automatically C<start_read> for you when
1040you change the C<on_read> callback or push/unshift a read callback, and it 1259you change the C<on_read> callback or push/unshift a read callback, and it
1041will automatically C<stop_read> for you when neither C<on_read> is set nor 1260will automatically C<stop_read> for you when neither C<on_read> is set nor
1042there are any read requests in the queue. 1261there are any read requests in the queue.
1043 1262
1263These methods will have no effect when in TLS mode (as TLS doesn't support
1264half-duplex connections).
1265
1044=cut 1266=cut
1045 1267
1046sub stop_read { 1268sub stop_read {
1047 my ($self) = @_; 1269 my ($self) = @_;
1048 1270
1049 delete $self->{_rw}; 1271 delete $self->{_rw} unless $self->{tls};
1050} 1272}
1051 1273
1052sub start_read { 1274sub start_read {
1053 my ($self) = @_; 1275 my ($self) = @_;
1054 1276
1055 unless ($self->{_rw} || $self->{_eof}) { 1277 unless ($self->{_rw} || $self->{_eof}) {
1056 Scalar::Util::weaken $self; 1278 Scalar::Util::weaken $self;
1057 1279
1058 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1280 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1059 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1281 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1060 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1282 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1061 1283
1062 if ($len > 0) { 1284 if ($len > 0) {
1063 $self->{_activity} = AnyEvent->now; 1285 $self->{_activity} = AnyEvent->now;
1064 1286
1065 $self->{filter_r} 1287 if ($self->{tls}) {
1066 ? $self->{filter_r}($self, $rbuf) 1288 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1067 : $self->_drain_rbuf; 1289
1290 &_dotls ($self);
1291 } else {
1292 $self->_drain_rbuf unless $self->{_in_drain};
1293 }
1068 1294
1069 } elsif (defined $len) { 1295 } elsif (defined $len) {
1070 delete $self->{_rw}; 1296 delete $self->{_rw};
1071 $self->{_eof} = 1; 1297 $self->{_eof} = 1;
1072 $self->_drain_rbuf; 1298 $self->_drain_rbuf unless $self->{_in_drain};
1073 1299
1074 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1300 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1075 return $self->_error ($!, 1); 1301 return $self->_error ($!, 1);
1076 } 1302 }
1077 }); 1303 });
1078 } 1304 }
1079} 1305}
1080 1306
1307# poll the write BIO and send the data if applicable
1081sub _dotls { 1308sub _dotls {
1082 my ($self) = @_; 1309 my ($self) = @_;
1083 1310
1084 my $buf; 1311 my $tmp;
1085 1312
1086 if (length $self->{_tls_wbuf}) { 1313 if (length $self->{_tls_wbuf}) {
1087 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1314 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1088 substr $self->{_tls_wbuf}, 0, $len, ""; 1315 substr $self->{_tls_wbuf}, 0, $tmp, "";
1089 } 1316 }
1090 } 1317 }
1091 1318
1092 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1093 $self->{wbuf} .= $buf;
1094 $self->_drain_wbuf;
1095 }
1096
1097 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1319 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1098 if (length $buf) { 1320 unless (length $tmp) {
1099 $self->{rbuf} .= $buf;
1100 $self->_drain_rbuf;
1101 } else {
1102 # let's treat SSL-eof as we treat normal EOF 1321 # let's treat SSL-eof as we treat normal EOF
1322 delete $self->{_rw};
1103 $self->{_eof} = 1; 1323 $self->{_eof} = 1;
1104 $self->_shutdown; 1324 &_freetls;
1105 return;
1106 } 1325 }
1107 }
1108 1326
1327 $self->{rbuf} .= $tmp;
1328 $self->_drain_rbuf unless $self->{_in_drain};
1329 $self->{tls} or return; # tls session might have gone away in callback
1330 }
1331
1109 my $err = Net::SSLeay::get_error ($self->{tls}, -1); 1332 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1110 1333
1111 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) { 1334 if ($tmp != Net::SSLeay::ERROR_WANT_READ ()) {
1112 if ($err == Net::SSLeay::ERROR_SYSCALL ()) { 1335 if ($tmp == Net::SSLeay::ERROR_SYSCALL ()) {
1113 return $self->_error ($!, 1); 1336 return $self->_error ($!, 1);
1114 } elsif ($err == Net::SSLeay::ERROR_SSL ()) { 1337 } elsif ($tmp == Net::SSLeay::ERROR_SSL ()) {
1115 return $self->_error (&Errno::EIO, 1); 1338 return $self->_error (&Errno::EIO, 1);
1116 } 1339 }
1117 1340
1118 # all others are fine for our purposes 1341 # all other errors are fine for our purposes
1342 }
1343
1344 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1345 $self->{wbuf} .= $tmp;
1346 $self->_drain_wbuf;
1119 } 1347 }
1120} 1348}
1121 1349
1122=item $handle->starttls ($tls[, $tls_ctx]) 1350=item $handle->starttls ($tls[, $tls_ctx])
1123 1351
1133 1361
1134The TLS connection object will end up in C<< $handle->{tls} >> after this 1362The TLS connection object will end up in C<< $handle->{tls} >> after this
1135call and can be used or changed to your liking. Note that the handshake 1363call and can be used or changed to your liking. Note that the handshake
1136might have already started when this function returns. 1364might have already started when this function returns.
1137 1365
1366If it an error to start a TLS handshake more than once per
1367AnyEvent::Handle object (this is due to bugs in OpenSSL).
1368
1138=cut 1369=cut
1139 1370
1140sub starttls { 1371sub starttls {
1141 my ($self, $ssl, $ctx) = @_; 1372 my ($self, $ssl, $ctx) = @_;
1142 1373
1143 $self->stoptls; 1374 require Net::SSLeay;
1144 1375
1376 Carp::croak "it is an error to call starttls more than once on an Anyevent::Handle object"
1377 if $self->{tls};
1378
1145 if ($ssl eq "accept") { 1379 if ($ssl eq "accept") {
1146 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1380 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1147 Net::SSLeay::set_accept_state ($ssl); 1381 Net::SSLeay::set_accept_state ($ssl);
1148 } elsif ($ssl eq "connect") { 1382 } elsif ($ssl eq "connect") {
1149 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1383 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1155 # basically, this is deep magic (because SSL_read should have the same issues) 1389 # basically, this is deep magic (because SSL_read should have the same issues)
1156 # but the openssl maintainers basically said: "trust us, it just works". 1390 # but the openssl maintainers basically said: "trust us, it just works".
1157 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1391 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1158 # and mismaintained ssleay-module doesn't even offer them). 1392 # and mismaintained ssleay-module doesn't even offer them).
1159 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1393 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1394 #
1395 # in short: this is a mess.
1396 #
1397 # note that we do not try to keep the length constant between writes as we are required to do.
1398 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1399 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1400 # have identity issues in that area.
1160 Net::SSLeay::CTX_set_mode ($self->{tls}, 1401 Net::SSLeay::CTX_set_mode ($self->{tls},
1161 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1402 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1162 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1403 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1163 1404
1164 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1405 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1165 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1406 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1166 1407
1167 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1408 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1168 1409
1169 $self->{filter_w} = sub { 1410 &_dotls; # need to trigger the initial handshake
1170 $_[0]{_tls_wbuf} .= ${$_[1]}; 1411 $self->start_read; # make sure we actually do read
1171 &_dotls;
1172 };
1173 $self->{filter_r} = sub {
1174 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1175 &_dotls;
1176 };
1177} 1412}
1178 1413
1179=item $handle->stoptls 1414=item $handle->stoptls
1180 1415
1181Destroys the SSL connection, if any. Partial read or write data will be 1416Shuts down the SSL connection - this makes a proper EOF handshake by
1182lost. 1417sending a close notify to the other side, but since OpenSSL doesn't
1418support non-blocking shut downs, it is not possible to re-use the stream
1419afterwards.
1183 1420
1184=cut 1421=cut
1185 1422
1186sub stoptls { 1423sub stoptls {
1187 my ($self) = @_; 1424 my ($self) = @_;
1188 1425
1426 if ($self->{tls}) {
1427 Net::SSLeay::shutdown ($self->{tls});
1428
1429 &_dotls;
1430
1431 # we don't give a shit. no, we do, but we can't. no...
1432 # we, we... have to use openssl :/
1433 &_freetls;
1434 }
1435}
1436
1437sub _freetls {
1438 my ($self) = @_;
1439
1440 return unless $self->{tls};
1441
1189 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1442 Net::SSLeay::free (delete $self->{tls});
1190 1443
1191 delete $self->{_rbio}; 1444 delete @$self{qw(_rbio _wbio _tls_wbuf)};
1192 delete $self->{_wbio};
1193 delete $self->{_tls_wbuf};
1194 delete $self->{filter_r};
1195 delete $self->{filter_w};
1196} 1445}
1197 1446
1198sub DESTROY { 1447sub DESTROY {
1199 my $self = shift; 1448 my $self = shift;
1200 1449
1201 $self->stoptls; 1450 &_freetls;
1451
1452 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1453
1454 if ($linger && length $self->{wbuf}) {
1455 my $fh = delete $self->{fh};
1456 my $wbuf = delete $self->{wbuf};
1457
1458 my @linger;
1459
1460 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1461 my $len = syswrite $fh, $wbuf, length $wbuf;
1462
1463 if ($len > 0) {
1464 substr $wbuf, 0, $len, "";
1465 } else {
1466 @linger = (); # end
1467 }
1468 });
1469 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1470 @linger = ();
1471 });
1472 }
1473}
1474
1475=item $handle->destroy
1476
1477Shut's down the handle object as much as possible - this call ensures that
1478no further callbacks will be invoked and resources will be freed as much
1479as possible. You must not call any methods on the object afterwards.
1480
1481The handle might still linger in the background and write out remaining
1482data, as specified by the C<linger> option, however.
1483
1484=cut
1485
1486sub destroy {
1487 my ($self) = @_;
1488
1489 $self->DESTROY;
1490 %$self = ();
1202} 1491}
1203 1492
1204=item AnyEvent::Handle::TLS_CTX 1493=item AnyEvent::Handle::TLS_CTX
1205 1494
1206This function creates and returns the Net::SSLeay::CTX object used by 1495This function creates and returns the Net::SSLeay::CTX object used by
1236 } 1525 }
1237} 1526}
1238 1527
1239=back 1528=back
1240 1529
1530
1531=head1 NONFREQUENTLY ASKED QUESTIONS
1532
1533=over 4
1534
1535=item How do I read data until the other side closes the connection?
1536
1537If you just want to read your data into a perl scalar, the easiest way
1538to achieve this is by setting an C<on_read> callback that does nothing,
1539clearing the C<on_eof> callback and in the C<on_error> callback, the data
1540will be in C<$_[0]{rbuf}>:
1541
1542 $handle->on_read (sub { });
1543 $handle->on_eof (undef);
1544 $handle->on_error (sub {
1545 my $data = delete $_[0]{rbuf};
1546 undef $handle;
1547 });
1548
1549The reason to use C<on_error> is that TCP connections, due to latencies
1550and packets loss, might get closed quite violently with an error, when in
1551fact, all data has been received.
1552
1553It is usually better to use acknowledgements when transfering data,
1554to make sure the other side hasn't just died and you got the data
1555intact. This is also one reason why so many internet protocols have an
1556explicit QUIT command.
1557
1558
1559=item I don't want to destroy the handle too early - how do I wait until
1560all data has been written?
1561
1562After writing your last bits of data, set the C<on_drain> callback
1563and destroy the handle in there - with the default setting of
1564C<low_water_mark> this will be called precisely when all data has been
1565written to the socket:
1566
1567 $handle->push_write (...);
1568 $handle->on_drain (sub {
1569 warn "all data submitted to the kernel\n";
1570 undef $handle;
1571 });
1572
1573=item I get different callback invocations in TLS mode/Why can't I pause
1574reading?
1575
1576Unlike, say, TCP, TLS conenctions do not consist of two independent
1577communication channels, one for each direction. Or put differently. the
1578read and write directions are not independent of each other: you cannot
1579write data unless you are also prepared to read, and vice versa.
1580
1581This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1582callback invocations when you are not expecting any read data - the reason
1583is that AnyEvent::Handle always reads in TLS mode.
1584
1585During the connection, you have to make sure that you always have a
1586non-empty read-queue, or an C<on_read> watcher. At the end of the
1587connection (or when you no longer want to use it) you can call the
1588C<destroy> method.
1589
1590=back
1591
1592
1241=head1 SUBCLASSING AnyEvent::Handle 1593=head1 SUBCLASSING AnyEvent::Handle
1242 1594
1243In many cases, you might want to subclass AnyEvent::Handle. 1595In many cases, you might want to subclass AnyEvent::Handle.
1244 1596
1245To make this easier, a given version of AnyEvent::Handle uses these 1597To make this easier, a given version of AnyEvent::Handle uses these
1248=over 4 1600=over 4
1249 1601
1250=item * all constructor arguments become object members. 1602=item * all constructor arguments become object members.
1251 1603
1252At least initially, when you pass a C<tls>-argument to the constructor it 1604At least initially, when you pass a C<tls>-argument to the constructor it
1253will end up in C<< $handle->{tls} >>. Those members might be changes or 1605will end up in C<< $handle->{tls} >>. Those members might be changed or
1254mutated later on (for example C<tls> will hold the TLS connection object). 1606mutated later on (for example C<tls> will hold the TLS connection object).
1255 1607
1256=item * other object member names are prefixed with an C<_>. 1608=item * other object member names are prefixed with an C<_>.
1257 1609
1258All object members not explicitly documented (internal use) are prefixed 1610All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines