ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.11 by root, Sun May 11 17:54:13 2008 UTC vs.
Revision 1.84 by root, Thu Aug 21 19:13:05 2008 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent (); 6use AnyEvent ();
7use AnyEvent::Util (); 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 8use Scalar::Util ();
9use Carp (); 9use Carp ();
10use Fcntl (); 10use Fcntl ();
11use Errno qw/EAGAIN EINTR/; 11use Errno qw(EAGAIN EINTR);
12 12
13=head1 NAME 13=head1 NAME
14 14
15AnyEvent::Handle - non-blocking I/O on filehandles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17=cut 17=cut
18 18
19our $VERSION = '0.02'; 19our $VERSION = 4.232;
20 20
21=head1 SYNOPSIS 21=head1 SYNOPSIS
22 22
23 use AnyEvent; 23 use AnyEvent;
24 use AnyEvent::Handle; 24 use AnyEvent::Handle;
25 25
26 my $cv = AnyEvent->condvar; 26 my $cv = AnyEvent->condvar;
27 27
28 my $ae_fh = AnyEvent::Handle->new (fh => \*STDIN); 28 my $handle =
29
30 #TODO
31
32 # or use the constructor to pass the callback:
33
34 my $ae_fh2 =
35 AnyEvent::Handle->new ( 29 AnyEvent::Handle->new (
36 fh => \*STDIN, 30 fh => \*STDIN,
37 on_eof => sub { 31 on_eof => sub {
38 $cv->broadcast; 32 $cv->broadcast;
39 }, 33 },
40 #TODO
41 ); 34 );
42 35
43 $cv->wait; 36 # send some request line
37 $handle->push_write ("getinfo\015\012");
38
39 # read the response line
40 $handle->push_read (line => sub {
41 my ($handle, $line) = @_;
42 warn "read line <$line>\n";
43 $cv->send;
44 });
45
46 $cv->recv;
44 47
45=head1 DESCRIPTION 48=head1 DESCRIPTION
46 49
47This module is a helper module to make it easier to do event-based I/O on 50This module is a helper module to make it easier to do event-based I/O on
48filehandles (and sockets, see L<AnyEvent::Socket> for an easy way to make 51filehandles. For utility functions for doing non-blocking connects and accepts
49non-blocking resolves and connects). 52on sockets see L<AnyEvent::Util>.
53
54The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples.
50 56
51In the following, when the documentation refers to of "bytes" then this 57In the following, when the documentation refers to of "bytes" then this
52means characters. As sysread and syswrite are used for all I/O, their 58means characters. As sysread and syswrite are used for all I/O, their
53treatment of characters applies to this module as well. 59treatment of characters applies to this module as well.
54 60
67 73
68=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [MANDATORY]
69 75
70The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
71 77
72NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
73AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
74 81
75=item on_eof => $cb->($self) [MANDATORY]
76
77Set the callback to be called on EOF.
78
79=item on_error => $cb->($self) 82=item on_eof => $cb->($handle)
80 83
84Set the callback to be called when an end-of-file condition is detected,
85i.e. in the case of a socket, when the other side has closed the
86connection cleanly.
87
88For sockets, this just means that the other side has stopped sending data,
89you can still try to write data, and, in fact, one can return from the eof
90callback and continue writing data, as only the read part has been shut
91down.
92
93While not mandatory, it is I<highly> recommended to set an eof callback,
94otherwise you might end up with a closed socket while you are still
95waiting for data.
96
97If an EOF condition has been detected but no C<on_eof> callback has been
98set, then a fatal error will be raised with C<$!> set to <0>.
99
100=item on_error => $cb->($handle, $fatal)
101
81This is the fatal error callback, that is called when, well, a fatal error 102This is the error callback, which is called when, well, some error
82ocurs, such as not being able to resolve the hostname, failure to connect 103occured, such as not being able to resolve the hostname, failure to
83or a read error. 104connect or a read error.
84 105
85The object will not be in a usable state when this callback has been 106Some errors are fatal (which is indicated by C<$fatal> being true). On
86called. 107fatal errors the handle object will be shut down and will not be usable
108(but you are free to look at the current C< ->rbuf >). Examples of fatal
109errors are an EOF condition with active (but unsatisifable) read watchers
110(C<EPIPE>) or I/O errors.
111
112Non-fatal errors can be retried by simply returning, but it is recommended
113to simply ignore this parameter and instead abondon the handle object
114when this callback is invoked. Examples of non-fatal errors are timeouts
115C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
87 116
88On callback entrance, the value of C<$!> contains the operating system 117On callback entrance, the value of C<$!> contains the operating system
89error (or C<ENOSPC> or C<EPIPE>). 118error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
90 119
91While not mandatory, it is I<highly> recommended to set this callback, as 120While not mandatory, it is I<highly> recommended to set this callback, as
92you will not be notified of errors otherwise. The default simply calls 121you will not be notified of errors otherwise. The default simply calls
93die. 122C<croak>.
94 123
95=item on_read => $cb->($self) 124=item on_read => $cb->($handle)
96 125
97This sets the default read callback, which is called when data arrives 126This sets the default read callback, which is called when data arrives
98and no read request is in the queue. 127and no read request is in the queue (unlike read queue callbacks, this
128callback will only be called when at least one octet of data is in the
129read buffer).
99 130
100To access (and remove data from) the read buffer, use the C<< ->rbuf >> 131To access (and remove data from) the read buffer, use the C<< ->rbuf >>
101method or acces sthe C<$self->{rbuf}> member directly. 132method or access the C<$handle->{rbuf}> member directly.
102 133
103When an EOF condition is detected then AnyEvent::Handle will first try to 134When an EOF condition is detected then AnyEvent::Handle will first try to
104feed all the remaining data to the queued callbacks and C<on_read> before 135feed all the remaining data to the queued callbacks and C<on_read> before
105calling the C<on_eof> callback. If no progress can be made, then a fatal 136calling the C<on_eof> callback. If no progress can be made, then a fatal
106error will be raised (with C<$!> set to C<EPIPE>). 137error will be raised (with C<$!> set to C<EPIPE>).
107 138
108=item on_drain => $cb->() 139=item on_drain => $cb->($handle)
109 140
110This sets the callback that is called when the write buffer becomes empty 141This sets the callback that is called when the write buffer becomes empty
111(or when the callback is set and the buffer is empty already). 142(or when the callback is set and the buffer is empty already).
112 143
113To append to the write buffer, use the C<< ->push_write >> method. 144To append to the write buffer, use the C<< ->push_write >> method.
145
146This callback is useful when you don't want to put all of your write data
147into the queue at once, for example, when you want to write the contents
148of some file to the socket you might not want to read the whole file into
149memory and push it into the queue, but instead only read more data from
150the file when the write queue becomes empty.
151
152=item timeout => $fractional_seconds
153
154If non-zero, then this enables an "inactivity" timeout: whenever this many
155seconds pass without a successful read or write on the underlying file
156handle, the C<on_timeout> callback will be invoked (and if that one is
157missing, an C<ETIMEDOUT> error will be raised).
158
159Note that timeout processing is also active when you currently do not have
160any outstanding read or write requests: If you plan to keep the connection
161idle then you should disable the timout temporarily or ignore the timeout
162in the C<on_timeout> callback.
163
164Zero (the default) disables this timeout.
165
166=item on_timeout => $cb->($handle)
167
168Called whenever the inactivity timeout passes. If you return from this
169callback, then the timeout will be reset as if some activity had happened,
170so this condition is not fatal in any way.
114 171
115=item rbuf_max => <bytes> 172=item rbuf_max => <bytes>
116 173
117If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 174If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
118when the read buffer ever (strictly) exceeds this size. This is useful to 175when the read buffer ever (strictly) exceeds this size. This is useful to
122be configured to accept only so-and-so much data that it cannot act on 179be configured to accept only so-and-so much data that it cannot act on
123(for example, when expecting a line, an attacker could send an unlimited 180(for example, when expecting a line, an attacker could send an unlimited
124amount of data without a callback ever being called as long as the line 181amount of data without a callback ever being called as long as the line
125isn't finished). 182isn't finished).
126 183
184=item autocork => <boolean>
185
186When disabled (the default), then C<push_write> will try to immediately
187write the data to the handle if possible. This avoids having to register
188a write watcher and wait for the next event loop iteration, but can be
189inefficient if you write multiple small chunks (this disadvantage is
190usually avoided by your kernel's nagle algorithm, see C<low_delay>).
191
192When enabled, then writes will always be queued till the next event loop
193iteration. This is efficient when you do many small writes per iteration,
194but less efficient when you do a single write only.
195
196=item no_delay => <boolean>
197
198When doing small writes on sockets, your operating system kernel might
199wait a bit for more data before actually sending it out. This is called
200the Nagle algorithm, and usually it is beneficial.
201
202In some situations you want as low a delay as possible, which cna be
203accomplishd by setting this option to true.
204
205The default is your opertaing system's default behaviour, this option
206explicitly enables or disables it, if possible.
207
127=item read_size => <bytes> 208=item read_size => <bytes>
128 209
129The default read block size (the amount of bytes this module will try to read 210The default read block size (the amount of bytes this module will try to read
130on each [loop iteration). Default: C<4096>. 211during each (loop iteration). Default: C<8192>.
131 212
132=item low_water_mark => <bytes> 213=item low_water_mark => <bytes>
133 214
134Sets the amount of bytes (default: C<0>) that make up an "empty" write 215Sets the amount of bytes (default: C<0>) that make up an "empty" write
135buffer: If the write reaches this size or gets even samller it is 216buffer: If the write reaches this size or gets even samller it is
136considered empty. 217considered empty.
137 218
219=item linger => <seconds>
220
221If non-zero (default: C<3600>), then the destructor of the
222AnyEvent::Handle object will check wether there is still outstanding write
223data and will install a watcher that will write out this data. No errors
224will be reported (this mostly matches how the operating system treats
225outstanding data at socket close time).
226
227This will not work for partial TLS data that could not yet been
228encoded. This data will be lost.
229
230=item tls => "accept" | "connect" | Net::SSLeay::SSL object
231
232When this parameter is given, it enables TLS (SSL) mode, that means it
233will start making tls handshake and will transparently encrypt/decrypt
234data.
235
236TLS mode requires Net::SSLeay to be installed (it will be loaded
237automatically when you try to create a TLS handle).
238
239For the TLS server side, use C<accept>, and for the TLS client side of a
240connection, use C<connect> mode.
241
242You can also provide your own TLS connection object, but you have
243to make sure that you call either C<Net::SSLeay::set_connect_state>
244or C<Net::SSLeay::set_accept_state> on it before you pass it to
245AnyEvent::Handle.
246
247See the C<starttls> method if you need to start TLS negotiation later.
248
249=item tls_ctx => $ssl_ctx
250
251Use the given Net::SSLeay::CTX object to create the new TLS connection
252(unless a connection object was specified directly). If this parameter is
253missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
254
255=item json => JSON or JSON::XS object
256
257This is the json coder object used by the C<json> read and write types.
258
259If you don't supply it, then AnyEvent::Handle will create and use a
260suitable one, which will write and expect UTF-8 encoded JSON texts.
261
262Note that you are responsible to depend on the JSON module if you want to
263use this functionality, as AnyEvent does not have a dependency itself.
264
265=item filter_r => $cb
266
267=item filter_w => $cb
268
269These exist, but are undocumented at this time.
270
138=back 271=back
139 272
140=cut 273=cut
141 274
142sub new { 275sub new {
146 279
147 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 280 $self->{fh} or Carp::croak "mandatory argument fh is missing";
148 281
149 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 282 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
150 283
151 $self->on_eof ((delete $self->{on_eof} ) or Carp::croak "mandatory argument on_eof is missing"); 284 if ($self->{tls}) {
285 require Net::SSLeay;
286 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
287 }
152 288
153 $self->on_error (delete $self->{on_error}) if $self->{on_error}; 289 $self->{_activity} = AnyEvent->now;
290 $self->_timeout;
291
154 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 292 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
155 $self->on_read (delete $self->{on_read} ) if $self->{on_read}; 293 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
156 294
157 $self->start_read; 295 $self->start_read
296 if $self->{on_read};
158 297
159 $self 298 $self
160} 299}
161 300
162sub _shutdown { 301sub _shutdown {
163 my ($self) = @_; 302 my ($self) = @_;
164 303
304 delete $self->{_tw};
165 delete $self->{rw}; 305 delete $self->{_rw};
166 delete $self->{ww}; 306 delete $self->{_ww};
167 delete $self->{fh}; 307 delete $self->{fh};
168}
169 308
309 $self->stoptls;
310
311 delete $self->{on_read};
312 delete $self->{_queue};
313}
314
170sub error { 315sub _error {
171 my ($self) = @_; 316 my ($self, $errno, $fatal) = @_;
172 317
173 {
174 local $!;
175 $self->_shutdown; 318 $self->_shutdown
176 } 319 if $fatal;
320
321 $! = $errno;
177 322
178 if ($self->{on_error}) { 323 if ($self->{on_error}) {
179 $self->{on_error}($self); 324 $self->{on_error}($self, $fatal);
180 } else { 325 } else {
181 die "AnyEvent::Handle uncaught fatal error: $!"; 326 Carp::croak "AnyEvent::Handle uncaught error: $!";
182 } 327 }
183} 328}
184 329
185=item $fh = $handle->fh 330=item $fh = $handle->fh
186 331
187This method returns the filehandle of the L<AnyEvent::Handle> object. 332This method returns the file handle of the L<AnyEvent::Handle> object.
188 333
189=cut 334=cut
190 335
191sub fh { $_[0]->{fh} } 336sub fh { $_[0]{fh} }
192 337
193=item $handle->on_error ($cb) 338=item $handle->on_error ($cb)
194 339
195Replace the current C<on_error> callback (see the C<on_error> constructor argument). 340Replace the current C<on_error> callback (see the C<on_error> constructor argument).
196 341
208 353
209sub on_eof { 354sub on_eof {
210 $_[0]{on_eof} = $_[1]; 355 $_[0]{on_eof} = $_[1];
211} 356}
212 357
358=item $handle->on_timeout ($cb)
359
360Replace the current C<on_timeout> callback, or disables the callback
361(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
362argument.
363
364=cut
365
366sub on_timeout {
367 $_[0]{on_timeout} = $_[1];
368}
369
370=item $handle->autocork ($boolean)
371
372Enables or disables the current autocork behaviour (see C<autocork>
373constructor argument).
374
375=cut
376
377=item $handle->no_delay ($boolean)
378
379Enables or disables the C<no_delay> setting (see constructor argument of
380the same name for details).
381
382=cut
383
384sub no_delay {
385 $_[0]{no_delay} = $_[1];
386
387 eval {
388 local $SIG{__DIE__};
389 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
390 };
391}
392
393#############################################################################
394
395=item $handle->timeout ($seconds)
396
397Configures (or disables) the inactivity timeout.
398
399=cut
400
401sub timeout {
402 my ($self, $timeout) = @_;
403
404 $self->{timeout} = $timeout;
405 $self->_timeout;
406}
407
408# reset the timeout watcher, as neccessary
409# also check for time-outs
410sub _timeout {
411 my ($self) = @_;
412
413 if ($self->{timeout}) {
414 my $NOW = AnyEvent->now;
415
416 # when would the timeout trigger?
417 my $after = $self->{_activity} + $self->{timeout} - $NOW;
418
419 # now or in the past already?
420 if ($after <= 0) {
421 $self->{_activity} = $NOW;
422
423 if ($self->{on_timeout}) {
424 $self->{on_timeout}($self);
425 } else {
426 $self->_error (&Errno::ETIMEDOUT);
427 }
428
429 # callback could have changed timeout value, optimise
430 return unless $self->{timeout};
431
432 # calculate new after
433 $after = $self->{timeout};
434 }
435
436 Scalar::Util::weaken $self;
437 return unless $self; # ->error could have destroyed $self
438
439 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
440 delete $self->{_tw};
441 $self->_timeout;
442 });
443 } else {
444 delete $self->{_tw};
445 }
446}
447
213############################################################################# 448#############################################################################
214 449
215=back 450=back
216 451
217=head2 WRITE QUEUE 452=head2 WRITE QUEUE
220for reading. 455for reading.
221 456
222The write queue is very simple: you can add data to its end, and 457The write queue is very simple: you can add data to its end, and
223AnyEvent::Handle will automatically try to get rid of it for you. 458AnyEvent::Handle will automatically try to get rid of it for you.
224 459
225When data could be writtena nd the write buffer is shorter then the low 460When data could be written and the write buffer is shorter then the low
226water mark, the C<on_drain> callback will be invoked. 461water mark, the C<on_drain> callback will be invoked.
227 462
228=over 4 463=over 4
229 464
230=item $handle->on_drain ($cb) 465=item $handle->on_drain ($cb)
249want (only limited by the available memory), as C<AnyEvent::Handle> 484want (only limited by the available memory), as C<AnyEvent::Handle>
250buffers it independently of the kernel. 485buffers it independently of the kernel.
251 486
252=cut 487=cut
253 488
254sub push_write { 489sub _drain_wbuf {
255 my ($self, $data) = @_; 490 my ($self) = @_;
256 491
257 $self->{wbuf} .= $data; 492 if (!$self->{_ww} && length $self->{wbuf}) {
258 493
259 unless ($self->{ww}) {
260 Scalar::Util::weaken $self; 494 Scalar::Util::weaken $self;
495
261 my $cb = sub { 496 my $cb = sub {
262 my $len = syswrite $self->{fh}, $self->{wbuf}; 497 my $len = syswrite $self->{fh}, $self->{wbuf};
263 498
264 if ($len > 0) { 499 if ($len >= 0) {
265 substr $self->{wbuf}, 0, $len, ""; 500 substr $self->{wbuf}, 0, $len, "";
266 501
502 $self->{_activity} = AnyEvent->now;
267 503
268 $self->{on_drain}($self) 504 $self->{on_drain}($self)
269 if $self->{low_water_mark} >= length $self->{wbuf} 505 if $self->{low_water_mark} >= length $self->{wbuf}
270 && $self->{on_drain}; 506 && $self->{on_drain};
271 507
272 delete $self->{ww} unless length $self->{wbuf}; 508 delete $self->{_ww} unless length $self->{wbuf};
273 } elsif ($! != EAGAIN && $! != EINTR) { 509 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
274 $self->error; 510 $self->_error ($!, 1);
275 } 511 }
276 }; 512 };
277 513
514 # try to write data immediately
515 $cb->() unless $self->{autocork};
516
517 # if still data left in wbuf, we need to poll
278 $self->{ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb); 518 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
279 519 if length $self->{wbuf};
280 $cb->($self);
281 }; 520 };
282} 521}
522
523our %WH;
524
525sub register_write_type($$) {
526 $WH{$_[0]} = $_[1];
527}
528
529sub push_write {
530 my $self = shift;
531
532 if (@_ > 1) {
533 my $type = shift;
534
535 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
536 ->($self, @_);
537 }
538
539 if ($self->{filter_w}) {
540 $self->{filter_w}($self, \$_[0]);
541 } else {
542 $self->{wbuf} .= $_[0];
543 $self->_drain_wbuf;
544 }
545}
546
547=item $handle->push_write (type => @args)
548
549Instead of formatting your data yourself, you can also let this module do
550the job by specifying a type and type-specific arguments.
551
552Predefined types are (if you have ideas for additional types, feel free to
553drop by and tell us):
554
555=over 4
556
557=item netstring => $string
558
559Formats the given value as netstring
560(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
561
562=cut
563
564register_write_type netstring => sub {
565 my ($self, $string) = @_;
566
567 sprintf "%d:%s,", (length $string), $string
568};
569
570=item packstring => $format, $data
571
572An octet string prefixed with an encoded length. The encoding C<$format>
573uses the same format as a Perl C<pack> format, but must specify a single
574integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
575optional C<!>, C<< < >> or C<< > >> modifier).
576
577=cut
578
579register_write_type packstring => sub {
580 my ($self, $format, $string) = @_;
581
582 pack "$format/a*", $string
583};
584
585=item json => $array_or_hashref
586
587Encodes the given hash or array reference into a JSON object. Unless you
588provide your own JSON object, this means it will be encoded to JSON text
589in UTF-8.
590
591JSON objects (and arrays) are self-delimiting, so you can write JSON at
592one end of a handle and read them at the other end without using any
593additional framing.
594
595The generated JSON text is guaranteed not to contain any newlines: While
596this module doesn't need delimiters after or between JSON texts to be
597able to read them, many other languages depend on that.
598
599A simple RPC protocol that interoperates easily with others is to send
600JSON arrays (or objects, although arrays are usually the better choice as
601they mimic how function argument passing works) and a newline after each
602JSON text:
603
604 $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
605 $handle->push_write ("\012");
606
607An AnyEvent::Handle receiver would simply use the C<json> read type and
608rely on the fact that the newline will be skipped as leading whitespace:
609
610 $handle->push_read (json => sub { my $array = $_[1]; ... });
611
612Other languages could read single lines terminated by a newline and pass
613this line into their JSON decoder of choice.
614
615=cut
616
617register_write_type json => sub {
618 my ($self, $ref) = @_;
619
620 require JSON;
621
622 $self->{json} ? $self->{json}->encode ($ref)
623 : JSON::encode_json ($ref)
624};
625
626=item storable => $reference
627
628Freezes the given reference using L<Storable> and writes it to the
629handle. Uses the C<nfreeze> format.
630
631=cut
632
633register_write_type storable => sub {
634 my ($self, $ref) = @_;
635
636 require Storable;
637
638 pack "w/a*", Storable::nfreeze ($ref)
639};
640
641=back
642
643=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
644
645This function (not method) lets you add your own types to C<push_write>.
646Whenever the given C<type> is used, C<push_write> will invoke the code
647reference with the handle object and the remaining arguments.
648
649The code reference is supposed to return a single octet string that will
650be appended to the write buffer.
651
652Note that this is a function, and all types registered this way will be
653global, so try to use unique names.
654
655=cut
283 656
284############################################################################# 657#############################################################################
285 658
286=back 659=back
287 660
294ways, the "simple" way, using only C<on_read> and the "complex" way, using 667ways, the "simple" way, using only C<on_read> and the "complex" way, using
295a queue. 668a queue.
296 669
297In the simple case, you just install an C<on_read> callback and whenever 670In the simple case, you just install an C<on_read> callback and whenever
298new data arrives, it will be called. You can then remove some data (if 671new data arrives, it will be called. You can then remove some data (if
299enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 672enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
300or not. 673leave the data there if you want to accumulate more (e.g. when only a
674partial message has been received so far).
301 675
302In the more complex case, you want to queue multiple callbacks. In this 676In the more complex case, you want to queue multiple callbacks. In this
303case, AnyEvent::Handle will call the first queued callback each time new 677case, AnyEvent::Handle will call the first queued callback each time new
304data arrives and removes it when it has done its job (see C<push_read>, 678data arrives (also the first time it is queued) and removes it when it has
305below). 679done its job (see C<push_read>, below).
306 680
307This way you can, for example, push three line-reads, followed by reading 681This way you can, for example, push three line-reads, followed by reading
308a chunk of data, and AnyEvent::Handle will execute them in order. 682a chunk of data, and AnyEvent::Handle will execute them in order.
309 683
310Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 684Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
311the specified number of bytes which give an XML datagram. 685the specified number of bytes which give an XML datagram.
312 686
313 # in the default state, expect some header bytes 687 # in the default state, expect some header bytes
314 $handle->on_read (sub { 688 $handle->on_read (sub {
315 # some data is here, now queue the length-header-read (4 octets) 689 # some data is here, now queue the length-header-read (4 octets)
316 shift->unshift_read_chunk (4, sub { 690 shift->unshift_read (chunk => 4, sub {
317 # header arrived, decode 691 # header arrived, decode
318 my $len = unpack "N", $_[1]; 692 my $len = unpack "N", $_[1];
319 693
320 # now read the payload 694 # now read the payload
321 shift->unshift_read_chunk ($len, sub { 695 shift->unshift_read (chunk => $len, sub {
322 my $xml = $_[1]; 696 my $xml = $_[1];
323 # handle xml 697 # handle xml
324 }); 698 });
325 }); 699 });
326 }); 700 });
327 701
328Example 2: Implement a client for a protocol that replies either with 702Example 2: Implement a client for a protocol that replies either with "OK"
329"OK" and another line or "ERROR" for one request, and 64 bytes for the 703and another line or "ERROR" for the first request that is sent, and 64
330second request. Due tot he availability of a full queue, we can just 704bytes for the second request. Due to the availability of a queue, we can
331pipeline sending both requests and manipulate the queue as necessary in 705just pipeline sending both requests and manipulate the queue as necessary
332the callbacks: 706in the callbacks.
333 707
334 # request one 708When the first callback is called and sees an "OK" response, it will
709C<unshift> another line-read. This line-read will be queued I<before> the
71064-byte chunk callback.
711
712 # request one, returns either "OK + extra line" or "ERROR"
335 $handle->push_write ("request 1\015\012"); 713 $handle->push_write ("request 1\015\012");
336 714
337 # we expect "ERROR" or "OK" as response, so push a line read 715 # we expect "ERROR" or "OK" as response, so push a line read
338 $handle->push_read_line (sub { 716 $handle->push_read (line => sub {
339 # if we got an "OK", we have to _prepend_ another line, 717 # if we got an "OK", we have to _prepend_ another line,
340 # so it will be read before the second request reads its 64 bytes 718 # so it will be read before the second request reads its 64 bytes
341 # which are already in the queue when this callback is called 719 # which are already in the queue when this callback is called
342 # we don't do this in case we got an error 720 # we don't do this in case we got an error
343 if ($_[1] eq "OK") { 721 if ($_[1] eq "OK") {
344 $_[0]->unshift_read_line (sub { 722 $_[0]->unshift_read (line => sub {
345 my $response = $_[1]; 723 my $response = $_[1];
346 ... 724 ...
347 }); 725 });
348 } 726 }
349 }); 727 });
350 728
351 # request two 729 # request two, simply returns 64 octets
352 $handle->push_write ("request 2\015\012"); 730 $handle->push_write ("request 2\015\012");
353 731
354 # simply read 64 bytes, always 732 # simply read 64 bytes, always
355 $handle->push_read_chunk (64, sub { 733 $handle->push_read (chunk => 64, sub {
356 my $response = $_[1]; 734 my $response = $_[1];
357 ... 735 ...
358 }); 736 });
359 737
360=over 4 738=over 4
362=cut 740=cut
363 741
364sub _drain_rbuf { 742sub _drain_rbuf {
365 my ($self) = @_; 743 my ($self) = @_;
366 744
367 return if $self->{in_drain};
368 local $self->{in_drain} = 1; 745 local $self->{_in_drain} = 1;
369 746
747 if (
748 defined $self->{rbuf_max}
749 && $self->{rbuf_max} < length $self->{rbuf}
750 ) {
751 $self->_error (&Errno::ENOSPC, 1), return;
752 }
753
754 while () {
370 while (my $len = length $self->{rbuf}) { 755 my $len = length $self->{rbuf};
371 no strict 'refs'; 756
372 if (my $cb = shift @{ $self->{queue} }) { 757 if (my $cb = shift @{ $self->{_queue} }) {
373 if (!$cb->($self)) { 758 unless ($cb->($self)) {
374 if ($self->{eof}) { 759 if ($self->{_eof}) {
375 # no progress can be made (not enough data and no data forthcoming) 760 # no progress can be made (not enough data and no data forthcoming)
376 $! = &Errno::EPIPE; return $self->error; 761 $self->_error (&Errno::EPIPE, 1), return;
377 } 762 }
378 763
379 unshift @{ $self->{queue} }, $cb; 764 unshift @{ $self->{_queue} }, $cb;
380 return; 765 last;
381 } 766 }
382 } elsif ($self->{on_read}) { 767 } elsif ($self->{on_read}) {
768 last unless $len;
769
383 $self->{on_read}($self); 770 $self->{on_read}($self);
384 771
385 if ( 772 if (
386 $self->{eof} # if no further data will arrive
387 && $len == length $self->{rbuf} # and no data has been consumed 773 $len == length $self->{rbuf} # if no data has been consumed
388 && !@{ $self->{queue} } # and the queue is still empty 774 && !@{ $self->{_queue} } # and the queue is still empty
389 && $self->{on_read} # and we still want to read data 775 && $self->{on_read} # but we still have on_read
390 ) { 776 ) {
777 # no further data will arrive
391 # then no progress can be made 778 # so no progress can be made
392 $! = &Errno::EPIPE; return $self->error; 779 $self->_error (&Errno::EPIPE, 1), return
780 if $self->{_eof};
781
782 last; # more data might arrive
393 } 783 }
394 } else { 784 } else {
395 # read side becomes idle 785 # read side becomes idle
396 delete $self->{rw}; 786 delete $self->{_rw};
397 return; 787 last;
398 } 788 }
399 } 789 }
400 790
401 if ($self->{eof}) { 791 if ($self->{_eof}) {
402 $self->_shutdown; 792 if ($self->{on_eof}) {
403 $self->{on_eof}($self); 793 $self->{on_eof}($self)
794 } else {
795 $self->_error (0, 1);
796 }
797 }
798
799 # may need to restart read watcher
800 unless ($self->{_rw}) {
801 $self->start_read
802 if $self->{on_read} || @{ $self->{_queue} };
404 } 803 }
405} 804}
406 805
407=item $handle->on_read ($cb) 806=item $handle->on_read ($cb)
408 807
414 813
415sub on_read { 814sub on_read {
416 my ($self, $cb) = @_; 815 my ($self, $cb) = @_;
417 816
418 $self->{on_read} = $cb; 817 $self->{on_read} = $cb;
818 $self->_drain_rbuf if $cb && !$self->{_in_drain};
419} 819}
420 820
421=item $handle->rbuf 821=item $handle->rbuf
422 822
423Returns the read buffer (as a modifiable lvalue). 823Returns the read buffer (as a modifiable lvalue).
442Append the given callback to the end of the queue (C<push_read>) or 842Append the given callback to the end of the queue (C<push_read>) or
443prepend it (C<unshift_read>). 843prepend it (C<unshift_read>).
444 844
445The callback is called each time some additional read data arrives. 845The callback is called each time some additional read data arrives.
446 846
447It must check wether enough data is in the read buffer already. 847It must check whether enough data is in the read buffer already.
448 848
449If not enough data is available, it must return the empty list or a false 849If not enough data is available, it must return the empty list or a false
450value, in which case it will be called repeatedly until enough data is 850value, in which case it will be called repeatedly until enough data is
451available (or an error condition is detected). 851available (or an error condition is detected).
452 852
454interested in (which can be none at all) and return a true value. After returning 854interested in (which can be none at all) and return a true value. After returning
455true, it will be removed from the queue. 855true, it will be removed from the queue.
456 856
457=cut 857=cut
458 858
859our %RH;
860
861sub register_read_type($$) {
862 $RH{$_[0]} = $_[1];
863}
864
459sub push_read { 865sub push_read {
460 my ($self, $cb) = @_; 866 my $self = shift;
867 my $cb = pop;
461 868
869 if (@_) {
870 my $type = shift;
871
872 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
873 ->($self, $cb, @_);
874 }
875
462 push @{ $self->{queue} }, $cb; 876 push @{ $self->{_queue} }, $cb;
463 $self->_drain_rbuf; 877 $self->_drain_rbuf unless $self->{_in_drain};
464} 878}
465 879
466sub unshift_read { 880sub unshift_read {
467 my ($self, $cb) = @_; 881 my $self = shift;
882 my $cb = pop;
468 883
884 if (@_) {
885 my $type = shift;
886
887 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
888 ->($self, $cb, @_);
889 }
890
891
469 push @{ $self->{queue} }, $cb; 892 unshift @{ $self->{_queue} }, $cb;
470 $self->_drain_rbuf; 893 $self->_drain_rbuf unless $self->{_in_drain};
471} 894}
472 895
473=item $handle->push_read_chunk ($len, $cb->($self, $data)) 896=item $handle->push_read (type => @args, $cb)
474 897
475=item $handle->unshift_read_chunk ($len, $cb->($self, $data)) 898=item $handle->unshift_read (type => @args, $cb)
476 899
477Append the given callback to the end of the queue (C<push_read_chunk>) or 900Instead of providing a callback that parses the data itself you can chose
478prepend it (C<unshift_read_chunk>). 901between a number of predefined parsing formats, for chunks of data, lines
902etc.
479 903
480The callback will be called only once C<$len> bytes have been read, and 904Predefined types are (if you have ideas for additional types, feel free to
481these C<$len> bytes will be passed to the callback. 905drop by and tell us):
482 906
483=cut 907=over 4
484 908
485sub _read_chunk($$) { 909=item chunk => $octets, $cb->($handle, $data)
910
911Invoke the callback only once C<$octets> bytes have been read. Pass the
912data read to the callback. The callback will never be called with less
913data.
914
915Example: read 2 bytes.
916
917 $handle->push_read (chunk => 2, sub {
918 warn "yay ", unpack "H*", $_[1];
919 });
920
921=cut
922
923register_read_type chunk => sub {
486 my ($self, $len, $cb) = @_; 924 my ($self, $cb, $len) = @_;
487 925
488 sub { 926 sub {
489 $len <= length $_[0]{rbuf} or return; 927 $len <= length $_[0]{rbuf} or return;
490 $cb->($self, $_[0], substr $_[0]{rbuf}, 0, $len, ""); 928 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
491 1 929 1
492 } 930 }
493} 931};
494 932
495sub push_read_chunk { 933=item line => [$eol, ]$cb->($handle, $line, $eol)
496 $_[0]->push_read (&_read_chunk);
497}
498
499
500sub unshift_read_chunk {
501 $_[0]->unshift_read (&_read_chunk);
502}
503
504=item $handle->push_read_line ([$eol, ]$cb->($self, $line, $eol))
505
506=item $handle->unshift_read_line ([$eol, ]$cb->($self, $line, $eol))
507
508Append the given callback to the end of the queue (C<push_read_line>) or
509prepend it (C<unshift_read_line>).
510 934
511The callback will be called only once a full line (including the end of 935The callback will be called only once a full line (including the end of
512line marker, C<$eol>) has been read. This line (excluding the end of line 936line marker, C<$eol>) has been read. This line (excluding the end of line
513marker) will be passed to the callback as second argument (C<$line>), and 937marker) will be passed to the callback as second argument (C<$line>), and
514the end of line marker as the third argument (C<$eol>). 938the end of line marker as the third argument (C<$eol>).
525Partial lines at the end of the stream will never be returned, as they are 949Partial lines at the end of the stream will never be returned, as they are
526not marked by the end of line marker. 950not marked by the end of line marker.
527 951
528=cut 952=cut
529 953
530sub _read_line($$) { 954register_read_type line => sub {
531 my $self = shift; 955 my ($self, $cb, $eol) = @_;
532 my $cb = pop;
533 my $eol = @_ ? shift : qr|(\015?\012)|;
534 my $pos;
535 956
957 if (@_ < 3) {
958 # this is more than twice as fast as the generic code below
959 sub {
960 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
961
962 $cb->($_[0], $1, $2);
963 1
964 }
965 } else {
536 $eol = qr|(\Q$eol\E)| unless ref $eol; 966 $eol = quotemeta $eol unless ref $eol;
537 $eol = qr|^(.*?)($eol)|; 967 $eol = qr|^(.*?)($eol)|s;
968
969 sub {
970 $_[0]{rbuf} =~ s/$eol// or return;
971
972 $cb->($_[0], $1, $2);
973 1
974 }
975 }
976};
977
978=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
979
980Makes a regex match against the regex object C<$accept> and returns
981everything up to and including the match.
982
983Example: read a single line terminated by '\n'.
984
985 $handle->push_read (regex => qr<\n>, sub { ... });
986
987If C<$reject> is given and not undef, then it determines when the data is
988to be rejected: it is matched against the data when the C<$accept> regex
989does not match and generates an C<EBADMSG> error when it matches. This is
990useful to quickly reject wrong data (to avoid waiting for a timeout or a
991receive buffer overflow).
992
993Example: expect a single decimal number followed by whitespace, reject
994anything else (not the use of an anchor).
995
996 $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
997
998If C<$skip> is given and not C<undef>, then it will be matched against
999the receive buffer when neither C<$accept> nor C<$reject> match,
1000and everything preceding and including the match will be accepted
1001unconditionally. This is useful to skip large amounts of data that you
1002know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1003have to start matching from the beginning. This is purely an optimisation
1004and is usually worth only when you expect more than a few kilobytes.
1005
1006Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1007expect the header to be very large (it isn't in practise, but...), we use
1008a skip regex to skip initial portions. The skip regex is tricky in that
1009it only accepts something not ending in either \015 or \012, as these are
1010required for the accept regex.
1011
1012 $handle->push_read (regex =>
1013 qr<\015\012\015\012>,
1014 undef, # no reject
1015 qr<^.*[^\015\012]>,
1016 sub { ... });
1017
1018=cut
1019
1020register_read_type regex => sub {
1021 my ($self, $cb, $accept, $reject, $skip) = @_;
1022
1023 my $data;
1024 my $rbuf = \$self->{rbuf};
538 1025
539 sub { 1026 sub {
540 $_[0]{rbuf} =~ s/$eol// or return; 1027 # accept
541 1028 if ($$rbuf =~ $accept) {
1029 $data .= substr $$rbuf, 0, $+[0], "";
542 $cb->($self, $1, $2); 1030 $cb->($self, $data);
1031 return 1;
1032 }
1033
1034 # reject
1035 if ($reject && $$rbuf =~ $reject) {
1036 $self->_error (&Errno::EBADMSG);
1037 }
1038
1039 # skip
1040 if ($skip && $$rbuf =~ $skip) {
1041 $data .= substr $$rbuf, 0, $+[0], "";
1042 }
1043
1044 ()
1045 }
1046};
1047
1048=item netstring => $cb->($handle, $string)
1049
1050A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1051
1052Throws an error with C<$!> set to EBADMSG on format violations.
1053
1054=cut
1055
1056register_read_type netstring => sub {
1057 my ($self, $cb) = @_;
1058
1059 sub {
1060 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1061 if ($_[0]{rbuf} =~ /[^0-9]/) {
1062 $self->_error (&Errno::EBADMSG);
1063 }
1064 return;
1065 }
1066
1067 my $len = $1;
1068
1069 $self->unshift_read (chunk => $len, sub {
1070 my $string = $_[1];
1071 $_[0]->unshift_read (chunk => 1, sub {
1072 if ($_[1] eq ",") {
1073 $cb->($_[0], $string);
1074 } else {
1075 $self->_error (&Errno::EBADMSG);
1076 }
1077 });
1078 });
1079
543 1 1080 1
544 } 1081 }
545} 1082};
546 1083
547sub push_read_line { 1084=item packstring => $format, $cb->($handle, $string)
548 $_[0]->push_read (&_read_line);
549}
550 1085
551sub unshift_read_line { 1086An octet string prefixed with an encoded length. The encoding C<$format>
552 $_[0]->unshift_read (&_read_line); 1087uses the same format as a Perl C<pack> format, but must specify a single
553} 1088integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1089optional C<!>, C<< < >> or C<< > >> modifier).
1090
1091DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>.
1092
1093Example: read a block of data prefixed by its length in BER-encoded
1094format (very efficient).
1095
1096 $handle->push_read (packstring => "w", sub {
1097 my ($handle, $data) = @_;
1098 });
1099
1100=cut
1101
1102register_read_type packstring => sub {
1103 my ($self, $cb, $format) = @_;
1104
1105 sub {
1106 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1107 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1108 or return;
1109
1110 $format = length pack $format, $len;
1111
1112 # bypass unshift if we already have the remaining chunk
1113 if ($format + $len <= length $_[0]{rbuf}) {
1114 my $data = substr $_[0]{rbuf}, $format, $len;
1115 substr $_[0]{rbuf}, 0, $format + $len, "";
1116 $cb->($_[0], $data);
1117 } else {
1118 # remove prefix
1119 substr $_[0]{rbuf}, 0, $format, "";
1120
1121 # read remaining chunk
1122 $_[0]->unshift_read (chunk => $len, $cb);
1123 }
1124
1125 1
1126 }
1127};
1128
1129=item json => $cb->($handle, $hash_or_arrayref)
1130
1131Reads a JSON object or array, decodes it and passes it to the callback.
1132
1133If a C<json> object was passed to the constructor, then that will be used
1134for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1135
1136This read type uses the incremental parser available with JSON version
11372.09 (and JSON::XS version 2.2) and above. You have to provide a
1138dependency on your own: this module will load the JSON module, but
1139AnyEvent does not depend on it itself.
1140
1141Since JSON texts are fully self-delimiting, the C<json> read and write
1142types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1143the C<json> write type description, above, for an actual example.
1144
1145=cut
1146
1147register_read_type json => sub {
1148 my ($self, $cb) = @_;
1149
1150 require JSON;
1151
1152 my $data;
1153 my $rbuf = \$self->{rbuf};
1154
1155 my $json = $self->{json} ||= JSON->new->utf8;
1156
1157 sub {
1158 my $ref = $json->incr_parse ($self->{rbuf});
1159
1160 if ($ref) {
1161 $self->{rbuf} = $json->incr_text;
1162 $json->incr_text = "";
1163 $cb->($self, $ref);
1164
1165 1
1166 } else {
1167 $self->{rbuf} = "";
1168 ()
1169 }
1170 }
1171};
1172
1173=item storable => $cb->($handle, $ref)
1174
1175Deserialises a L<Storable> frozen representation as written by the
1176C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1177data).
1178
1179Raises C<EBADMSG> error if the data could not be decoded.
1180
1181=cut
1182
1183register_read_type storable => sub {
1184 my ($self, $cb) = @_;
1185
1186 require Storable;
1187
1188 sub {
1189 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1190 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1191 or return;
1192
1193 my $format = length pack "w", $len;
1194
1195 # bypass unshift if we already have the remaining chunk
1196 if ($format + $len <= length $_[0]{rbuf}) {
1197 my $data = substr $_[0]{rbuf}, $format, $len;
1198 substr $_[0]{rbuf}, 0, $format + $len, "";
1199 $cb->($_[0], Storable::thaw ($data));
1200 } else {
1201 # remove prefix
1202 substr $_[0]{rbuf}, 0, $format, "";
1203
1204 # read remaining chunk
1205 $_[0]->unshift_read (chunk => $len, sub {
1206 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1207 $cb->($_[0], $ref);
1208 } else {
1209 $self->_error (&Errno::EBADMSG);
1210 }
1211 });
1212 }
1213
1214 1
1215 }
1216};
1217
1218=back
1219
1220=item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1221
1222This function (not method) lets you add your own types to C<push_read>.
1223
1224Whenever the given C<type> is used, C<push_read> will invoke the code
1225reference with the handle object, the callback and the remaining
1226arguments.
1227
1228The code reference is supposed to return a callback (usually a closure)
1229that works as a plain read callback (see C<< ->push_read ($cb) >>).
1230
1231It should invoke the passed callback when it is done reading (remember to
1232pass C<$handle> as first argument as all other callbacks do that).
1233
1234Note that this is a function, and all types registered this way will be
1235global, so try to use unique names.
1236
1237For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1238search for C<register_read_type>)).
554 1239
555=item $handle->stop_read 1240=item $handle->stop_read
556 1241
557=item $handle->start_read 1242=item $handle->start_read
558 1243
559In rare cases you actually do not want to read anything form the 1244In rare cases you actually do not want to read anything from the
560socket. In this case you can call C<stop_read>. Neither C<on_read> no 1245socket. In this case you can call C<stop_read>. Neither C<on_read> nor
561any queued callbacks will be executed then. To start readign again, call 1246any queued callbacks will be executed then. To start reading again, call
562C<start_read>. 1247C<start_read>.
1248
1249Note that AnyEvent::Handle will automatically C<start_read> for you when
1250you change the C<on_read> callback or push/unshift a read callback, and it
1251will automatically C<stop_read> for you when neither C<on_read> is set nor
1252there are any read requests in the queue.
563 1253
564=cut 1254=cut
565 1255
566sub stop_read { 1256sub stop_read {
567 my ($self) = @_; 1257 my ($self) = @_;
568 1258
569 delete $self->{rw}; 1259 delete $self->{_rw};
570} 1260}
571 1261
572sub start_read { 1262sub start_read {
573 my ($self) = @_; 1263 my ($self) = @_;
574 1264
575 unless ($self->{rw} || $self->{eof}) { 1265 unless ($self->{_rw} || $self->{_eof}) {
576 Scalar::Util::weaken $self; 1266 Scalar::Util::weaken $self;
577 1267
578 $self->{rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1268 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1269 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
579 my $len = sysread $self->{fh}, $self->{rbuf}, $self->{read_size} || 8192, length $self->{rbuf}; 1270 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
580 1271
581 if ($len > 0) { 1272 if ($len > 0) {
582 if (defined $self->{rbuf_max}) { 1273 $self->{_activity} = AnyEvent->now;
583 if ($self->{rbuf_max} < length $self->{rbuf}) { 1274
584 $! = &Errno::ENOSPC; return $self->error; 1275 $self->{filter_r}
585 } 1276 ? $self->{filter_r}($self, $rbuf)
586 } 1277 : $self->{_in_drain} || $self->_drain_rbuf;
587 1278
588 } elsif (defined $len) { 1279 } elsif (defined $len) {
589 $self->{eof} = 1;
590 delete $self->{rw}; 1280 delete $self->{_rw};
1281 $self->{_eof} = 1;
1282 $self->_drain_rbuf unless $self->{_in_drain};
591 1283
592 } elsif ($! != EAGAIN && $! != EINTR) { 1284 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
593 return $self->error; 1285 return $self->_error ($!, 1);
594 } 1286 }
595
596 $self->_drain_rbuf;
597 }); 1287 });
598 } 1288 }
599} 1289}
600 1290
1291sub _dotls {
1292 my ($self) = @_;
1293
1294 my $buf;
1295
1296 if (length $self->{_tls_wbuf}) {
1297 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1298 substr $self->{_tls_wbuf}, 0, $len, "";
1299 }
1300 }
1301
1302 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1303 $self->{wbuf} .= $buf;
1304 $self->_drain_wbuf;
1305 }
1306
1307 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1308 if (length $buf) {
1309 $self->{rbuf} .= $buf;
1310 $self->_drain_rbuf unless $self->{_in_drain};
1311 } else {
1312 # let's treat SSL-eof as we treat normal EOF
1313 $self->{_eof} = 1;
1314 $self->_shutdown;
1315 return;
1316 }
1317 }
1318
1319 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1320
1321 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1322 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1323 return $self->_error ($!, 1);
1324 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1325 return $self->_error (&Errno::EIO, 1);
1326 }
1327
1328 # all others are fine for our purposes
1329 }
1330}
1331
1332=item $handle->starttls ($tls[, $tls_ctx])
1333
1334Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1335object is created, you can also do that at a later time by calling
1336C<starttls>.
1337
1338The first argument is the same as the C<tls> constructor argument (either
1339C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1340
1341The second argument is the optional C<Net::SSLeay::CTX> object that is
1342used when AnyEvent::Handle has to create its own TLS connection object.
1343
1344The TLS connection object will end up in C<< $handle->{tls} >> after this
1345call and can be used or changed to your liking. Note that the handshake
1346might have already started when this function returns.
1347
1348=cut
1349
1350sub starttls {
1351 my ($self, $ssl, $ctx) = @_;
1352
1353 $self->stoptls;
1354
1355 if ($ssl eq "accept") {
1356 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1357 Net::SSLeay::set_accept_state ($ssl);
1358 } elsif ($ssl eq "connect") {
1359 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1360 Net::SSLeay::set_connect_state ($ssl);
1361 }
1362
1363 $self->{tls} = $ssl;
1364
1365 # basically, this is deep magic (because SSL_read should have the same issues)
1366 # but the openssl maintainers basically said: "trust us, it just works".
1367 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1368 # and mismaintained ssleay-module doesn't even offer them).
1369 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1370 Net::SSLeay::CTX_set_mode ($self->{tls},
1371 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1372 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1373
1374 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1375 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1376
1377 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1378
1379 $self->{filter_w} = sub {
1380 $_[0]{_tls_wbuf} .= ${$_[1]};
1381 &_dotls;
1382 };
1383 $self->{filter_r} = sub {
1384 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1385 &_dotls;
1386 };
1387}
1388
1389=item $handle->stoptls
1390
1391Destroys the SSL connection, if any. Partial read or write data will be
1392lost.
1393
1394=cut
1395
1396sub stoptls {
1397 my ($self) = @_;
1398
1399 Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
1400
1401 delete $self->{_rbio};
1402 delete $self->{_wbio};
1403 delete $self->{_tls_wbuf};
1404 delete $self->{filter_r};
1405 delete $self->{filter_w};
1406}
1407
1408sub DESTROY {
1409 my $self = shift;
1410
1411 $self->stoptls;
1412
1413 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1414
1415 if ($linger && length $self->{wbuf}) {
1416 my $fh = delete $self->{fh};
1417 my $wbuf = delete $self->{wbuf};
1418
1419 my @linger;
1420
1421 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1422 my $len = syswrite $fh, $wbuf, length $wbuf;
1423
1424 if ($len > 0) {
1425 substr $wbuf, 0, $len, "";
1426 } else {
1427 @linger = (); # end
1428 }
1429 });
1430 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1431 @linger = ();
1432 });
1433 }
1434}
1435
1436=item AnyEvent::Handle::TLS_CTX
1437
1438This function creates and returns the Net::SSLeay::CTX object used by
1439default for TLS mode.
1440
1441The context is created like this:
1442
1443 Net::SSLeay::load_error_strings;
1444 Net::SSLeay::SSLeay_add_ssl_algorithms;
1445 Net::SSLeay::randomize;
1446
1447 my $CTX = Net::SSLeay::CTX_new;
1448
1449 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1450
1451=cut
1452
1453our $TLS_CTX;
1454
1455sub TLS_CTX() {
1456 $TLS_CTX || do {
1457 require Net::SSLeay;
1458
1459 Net::SSLeay::load_error_strings ();
1460 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1461 Net::SSLeay::randomize ();
1462
1463 $TLS_CTX = Net::SSLeay::CTX_new ();
1464
1465 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1466
1467 $TLS_CTX
1468 }
1469}
1470
601=back 1471=back
602 1472
1473=head1 SUBCLASSING AnyEvent::Handle
1474
1475In many cases, you might want to subclass AnyEvent::Handle.
1476
1477To make this easier, a given version of AnyEvent::Handle uses these
1478conventions:
1479
1480=over 4
1481
1482=item * all constructor arguments become object members.
1483
1484At least initially, when you pass a C<tls>-argument to the constructor it
1485will end up in C<< $handle->{tls} >>. Those members might be changed or
1486mutated later on (for example C<tls> will hold the TLS connection object).
1487
1488=item * other object member names are prefixed with an C<_>.
1489
1490All object members not explicitly documented (internal use) are prefixed
1491with an underscore character, so the remaining non-C<_>-namespace is free
1492for use for subclasses.
1493
1494=item * all members not documented here and not prefixed with an underscore
1495are free to use in subclasses.
1496
1497Of course, new versions of AnyEvent::Handle may introduce more "public"
1498member variables, but thats just life, at least it is documented.
1499
1500=back
1501
603=head1 AUTHOR 1502=head1 AUTHOR
604 1503
605Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>. 1504Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
606 1505
607=cut 1506=cut

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines