ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.90 by root, Mon Sep 29 02:08:57 2008 UTC vs.
Revision 1.164 by root, Mon Jul 27 22:44:43 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 3use Scalar::Util ();
9use Carp (); 4use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR); 5use Errno qw(EAGAIN EINTR);
12 6
7use AnyEvent (); BEGIN { AnyEvent::common_sense }
8use AnyEvent::Util qw(WSAEWOULDBLOCK);
9
13=head1 NAME 10=head1 NAME
14 11
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 12AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 13
17=cut 14=cut
18 15
19our $VERSION = 4.234; 16our $VERSION = 4.87;
20 17
21=head1 SYNOPSIS 18=head1 SYNOPSIS
22 19
23 use AnyEvent; 20 use AnyEvent;
24 use AnyEvent::Handle; 21 use AnyEvent::Handle;
25 22
26 my $cv = AnyEvent->condvar; 23 my $cv = AnyEvent->condvar;
27 24
28 my $handle = 25 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 26 fh => \*STDIN,
31 on_eof => sub { 27 on_error => sub {
32 $cv->broadcast; 28 my ($hdl, $fatal, $msg) = @_;
33 }, 29 warn "got error $msg\n";
30 $hdl->destroy;
31 $cv->send;
34 ); 32 );
35 33
36 # send some request line 34 # send some request line
37 $handle->push_write ("getinfo\015\012"); 35 $hdl->push_write ("getinfo\015\012");
38 36
39 # read the response line 37 # read the response line
40 $handle->push_read (line => sub { 38 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 39 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 40 warn "got line <$line>\n";
43 $cv->send; 41 $cv->send;
44 }); 42 });
45 43
46 $cv->recv; 44 $cv->recv;
47 45
48=head1 DESCRIPTION 46=head1 DESCRIPTION
49 47
50This module is a helper module to make it easier to do event-based I/O on 48This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 49filehandles.
52on sockets see L<AnyEvent::Util>.
53 50
54The L<AnyEvent::Intro> tutorial contains some well-documented 51The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples. 52AnyEvent::Handle examples.
56 53
57In the following, when the documentation refers to of "bytes" then this 54In the following, when the documentation refers to of "bytes" then this
58means characters. As sysread and syswrite are used for all I/O, their 55means characters. As sysread and syswrite are used for all I/O, their
59treatment of characters applies to this module as well. 56treatment of characters applies to this module as well.
60 57
58At the very minimum, you should specify C<fh> or C<connect>, and the
59C<on_error> callback.
60
61All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
62argument. 62argument.
63 63
64=head2 SIGPIPE is not handled by this module
65
66SIGPIPE is not handled by this module, so one of the practical
67requirements of using it is to ignore SIGPIPE (C<$SIG{PIPE} =
68'IGNORE'>). At least, this is highly recommend in a networked program: If
69you use AnyEvent::Handle in a filter program (like sort), exiting on
70SIGPIPE is probably the right thing to do.
71
72=head1 METHODS 64=head1 METHODS
73 65
74=over 4 66=over 4
75 67
76=item B<new (%args)> 68=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
77 69
78The constructor supports these arguments (all as key => value pairs). 70The constructor supports these arguments (all as C<< key => value >> pairs).
79 71
80=over 4 72=over 4
81 73
82=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
83 75
84The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
85
86NOTE: The filehandle will be set to non-blocking mode (using 77NOTE: The filehandle will be set to non-blocking mode (using
87C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in 78C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
88that mode. 79that mode.
89 80
81=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
82
83Try to connect to the specified host and service (port), using
84C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
85default C<peername>.
86
87You have to specify either this parameter, or C<fh>, above.
88
89It is possible to push requests on the read and write queues, and modify
90properties of the stream, even while AnyEvent::Handle is connecting.
91
92When this parameter is specified, then the C<on_prepare>,
93C<on_connect_error> and C<on_connect> callbacks will be called under the
94appropriate circumstances:
95
96=over 4
97
90=item on_eof => $cb->($handle) 98=item on_prepare => $cb->($handle)
91 99
92Set the callback to be called when an end-of-file condition is detected, 100This (rarely used) callback is called before a new connection is
93i.e. in the case of a socket, when the other side has closed the 101attempted, but after the file handle has been created. It could be used to
94connection cleanly. 102prepare the file handle with parameters required for the actual connect
103(as opposed to settings that can be changed when the connection is already
104established).
95 105
96For sockets, this just means that the other side has stopped sending data, 106The return value of this callback should be the connect timeout value in
97you can still try to write data, and, in fact, one can return from the eof 107seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
98callback and continue writing data, as only the read part has been shut 108timeout is to be used).
99down.
100 109
101While not mandatory, it is I<highly> recommended to set an eof callback, 110=item on_connect => $cb->($handle, $host, $port, $retry->())
102otherwise you might end up with a closed socket while you are still
103waiting for data.
104 111
105If an EOF condition has been detected but no C<on_eof> callback has been 112This callback is called when a connection has been successfully established.
106set, then a fatal error will be raised with C<$!> set to <0>.
107 113
114The actual numeric host and port (the socket peername) are passed as
115parameters, together with a retry callback.
116
117When, for some reason, the handle is not acceptable, then calling
118C<$retry> will continue with the next conenction target (in case of
119multi-homed hosts or SRV records there can be multiple connection
120endpoints). When it is called then the read and write queues, eof status,
121tls status and similar properties of the handle are being reset.
122
123In most cases, ignoring the C<$retry> parameter is the way to go.
124
125=item on_connect_error => $cb->($handle, $message)
126
127This callback is called when the conenction could not be
128established. C<$!> will contain the relevant error code, and C<$message> a
129message describing it (usually the same as C<"$!">).
130
131If this callback isn't specified, then C<on_error> will be called with a
132fatal error instead.
133
134=back
135
108=item on_error => $cb->($handle, $fatal) 136=item on_error => $cb->($handle, $fatal, $message)
109 137
110This is the error callback, which is called when, well, some error 138This is the error callback, which is called when, well, some error
111occured, such as not being able to resolve the hostname, failure to 139occured, such as not being able to resolve the hostname, failure to
112connect or a read error. 140connect or a read error.
113 141
114Some errors are fatal (which is indicated by C<$fatal> being true). On 142Some errors are fatal (which is indicated by C<$fatal> being true). On
115fatal errors the handle object will be shut down and will not be usable 143fatal errors the handle object will be destroyed (by a call to C<< ->
116(but you are free to look at the current C<< ->rbuf >>). Examples of fatal 144destroy >>) after invoking the error callback (which means you are free to
117errors are an EOF condition with active (but unsatisifable) read watchers 145examine the handle object). Examples of fatal errors are an EOF condition
118(C<EPIPE>) or I/O errors. 146with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
147cases where the other side can close the connection at their will it is
148often easiest to not report C<EPIPE> errors in this callback.
149
150AnyEvent::Handle tries to find an appropriate error code for you to check
151against, but in some cases (TLS errors), this does not work well. It is
152recommended to always output the C<$message> argument in human-readable
153error messages (it's usually the same as C<"$!">).
119 154
120Non-fatal errors can be retried by simply returning, but it is recommended 155Non-fatal errors can be retried by simply returning, but it is recommended
121to simply ignore this parameter and instead abondon the handle object 156to simply ignore this parameter and instead abondon the handle object
122when this callback is invoked. Examples of non-fatal errors are timeouts 157when this callback is invoked. Examples of non-fatal errors are timeouts
123C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>). 158C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
124 159
125On callback entrance, the value of C<$!> contains the operating system 160On callback entrance, the value of C<$!> contains the operating system
126error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 161error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
162C<EPROTO>).
127 163
128While not mandatory, it is I<highly> recommended to set this callback, as 164While not mandatory, it is I<highly> recommended to set this callback, as
129you will not be notified of errors otherwise. The default simply calls 165you will not be notified of errors otherwise. The default simply calls
130C<croak>. 166C<croak>.
131 167
135and no read request is in the queue (unlike read queue callbacks, this 171and no read request is in the queue (unlike read queue callbacks, this
136callback will only be called when at least one octet of data is in the 172callback will only be called when at least one octet of data is in the
137read buffer). 173read buffer).
138 174
139To access (and remove data from) the read buffer, use the C<< ->rbuf >> 175To access (and remove data from) the read buffer, use the C<< ->rbuf >>
140method or access the C<$handle->{rbuf}> member directly. 176method or access the C<< $handle->{rbuf} >> member directly. Note that you
177must not enlarge or modify the read buffer, you can only remove data at
178the beginning from it.
141 179
142When an EOF condition is detected then AnyEvent::Handle will first try to 180When an EOF condition is detected then AnyEvent::Handle will first try to
143feed all the remaining data to the queued callbacks and C<on_read> before 181feed all the remaining data to the queued callbacks and C<on_read> before
144calling the C<on_eof> callback. If no progress can be made, then a fatal 182calling the C<on_eof> callback. If no progress can be made, then a fatal
145error will be raised (with C<$!> set to C<EPIPE>). 183error will be raised (with C<$!> set to C<EPIPE>).
184
185Note that, unlike requests in the read queue, an C<on_read> callback
186doesn't mean you I<require> some data: if there is an EOF and there
187are outstanding read requests then an error will be flagged. With an
188C<on_read> callback, the C<on_eof> callback will be invoked.
189
190=item on_eof => $cb->($handle)
191
192Set the callback to be called when an end-of-file condition is detected,
193i.e. in the case of a socket, when the other side has closed the
194connection cleanly, and there are no outstanding read requests in the
195queue (if there are read requests, then an EOF counts as an unexpected
196connection close and will be flagged as an error).
197
198For sockets, this just means that the other side has stopped sending data,
199you can still try to write data, and, in fact, one can return from the EOF
200callback and continue writing data, as only the read part has been shut
201down.
202
203If an EOF condition has been detected but no C<on_eof> callback has been
204set, then a fatal error will be raised with C<$!> set to <0>.
146 205
147=item on_drain => $cb->($handle) 206=item on_drain => $cb->($handle)
148 207
149This sets the callback that is called when the write buffer becomes empty 208This sets the callback that is called when the write buffer becomes empty
150(or when the callback is set and the buffer is empty already). 209(or when the callback is set and the buffer is empty already).
240write data and will install a watcher that will write this data to the 299write data and will install a watcher that will write this data to the
241socket. No errors will be reported (this mostly matches how the operating 300socket. No errors will be reported (this mostly matches how the operating
242system treats outstanding data at socket close time). 301system treats outstanding data at socket close time).
243 302
244This will not work for partial TLS data that could not be encoded 303This will not work for partial TLS data that could not be encoded
245yet. This data will be lost. 304yet. This data will be lost. Calling the C<stoptls> method in time might
305help.
306
307=item peername => $string
308
309A string used to identify the remote site - usually the DNS hostname
310(I<not> IDN!) used to create the connection, rarely the IP address.
311
312Apart from being useful in error messages, this string is also used in TLS
313peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
314verification will be skipped when C<peername> is not specified or
315C<undef>.
246 316
247=item tls => "accept" | "connect" | Net::SSLeay::SSL object 317=item tls => "accept" | "connect" | Net::SSLeay::SSL object
248 318
249When this parameter is given, it enables TLS (SSL) mode, that means 319When this parameter is given, it enables TLS (SSL) mode, that means
250AnyEvent will start a TLS handshake as soon as the conenction has been 320AnyEvent will start a TLS handshake as soon as the conenction has been
251established and will transparently encrypt/decrypt data afterwards. 321established and will transparently encrypt/decrypt data afterwards.
322
323All TLS protocol errors will be signalled as C<EPROTO>, with an
324appropriate error message.
252 325
253TLS mode requires Net::SSLeay to be installed (it will be loaded 326TLS mode requires Net::SSLeay to be installed (it will be loaded
254automatically when you try to create a TLS handle): this module doesn't 327automatically when you try to create a TLS handle): this module doesn't
255have a dependency on that module, so if your module requires it, you have 328have a dependency on that module, so if your module requires it, you have
256to add the dependency yourself. 329to add the dependency yourself.
260mode. 333mode.
261 334
262You can also provide your own TLS connection object, but you have 335You can also provide your own TLS connection object, but you have
263to make sure that you call either C<Net::SSLeay::set_connect_state> 336to make sure that you call either C<Net::SSLeay::set_connect_state>
264or C<Net::SSLeay::set_accept_state> on it before you pass it to 337or C<Net::SSLeay::set_accept_state> on it before you pass it to
265AnyEvent::Handle. 338AnyEvent::Handle. Also, this module will take ownership of this connection
339object.
340
341At some future point, AnyEvent::Handle might switch to another TLS
342implementation, then the option to use your own session object will go
343away.
344
345B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
346passing in the wrong integer will lead to certain crash. This most often
347happens when one uses a stylish C<< tls => 1 >> and is surprised about the
348segmentation fault.
266 349
267See the C<< ->starttls >> method for when need to start TLS negotiation later. 350See the C<< ->starttls >> method for when need to start TLS negotiation later.
268 351
269=item tls_ctx => $ssl_ctx 352=item tls_ctx => $anyevent_tls
270 353
271Use the given C<Net::SSLeay::CTX> object to create the new TLS connection 354Use the given C<AnyEvent::TLS> object to create the new TLS connection
272(unless a connection object was specified directly). If this parameter is 355(unless a connection object was specified directly). If this parameter is
273missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 356missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
357
358Instead of an object, you can also specify a hash reference with C<< key
359=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
360new TLS context object.
361
362=item on_starttls => $cb->($handle, $success[, $error_message])
363
364This callback will be invoked when the TLS/SSL handshake has finished. If
365C<$success> is true, then the TLS handshake succeeded, otherwise it failed
366(C<on_stoptls> will not be called in this case).
367
368The session in C<< $handle->{tls} >> can still be examined in this
369callback, even when the handshake was not successful.
370
371TLS handshake failures will not cause C<on_error> to be invoked when this
372callback is in effect, instead, the error message will be passed to C<on_starttls>.
373
374Without this callback, handshake failures lead to C<on_error> being
375called, as normal.
376
377Note that you cannot call C<starttls> right again in this callback. If you
378need to do that, start an zero-second timer instead whose callback can
379then call C<< ->starttls >> again.
380
381=item on_stoptls => $cb->($handle)
382
383When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
384set, then it will be invoked after freeing the TLS session. If it is not,
385then a TLS shutdown condition will be treated like a normal EOF condition
386on the handle.
387
388The session in C<< $handle->{tls} >> can still be examined in this
389callback.
390
391This callback will only be called on TLS shutdowns, not when the
392underlying handle signals EOF.
274 393
275=item json => JSON or JSON::XS object 394=item json => JSON or JSON::XS object
276 395
277This is the json coder object used by the C<json> read and write types. 396This is the json coder object used by the C<json> read and write types.
278 397
281texts. 400texts.
282 401
283Note that you are responsible to depend on the JSON module if you want to 402Note that you are responsible to depend on the JSON module if you want to
284use this functionality, as AnyEvent does not have a dependency itself. 403use this functionality, as AnyEvent does not have a dependency itself.
285 404
286=item filter_r => $cb
287
288=item filter_w => $cb
289
290These exist, but are undocumented at this time. (They are used internally
291by the TLS code).
292
293=back 405=back
294 406
295=cut 407=cut
296 408
297sub new { 409sub new {
298 my $class = shift; 410 my $class = shift;
299
300 my $self = bless { @_ }, $class; 411 my $self = bless { @_ }, $class;
301 412
302 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 413 if ($self->{fh}) {
414 $self->_start;
415 return unless $self->{fh}; # could be gone by now
416
417 } elsif ($self->{connect}) {
418 require AnyEvent::Socket;
419
420 $self->{peername} = $self->{connect}[0]
421 unless exists $self->{peername};
422
423 $self->{_skip_drain_rbuf} = 1;
424
425 {
426 Scalar::Util::weaken (my $self = $self);
427
428 $self->{_connect} =
429 AnyEvent::Socket::tcp_connect (
430 $self->{connect}[0],
431 $self->{connect}[1],
432 sub {
433 my ($fh, $host, $port, $retry) = @_;
434
435 if ($fh) {
436 $self->{fh} = $fh;
437
438 delete $self->{_skip_drain_rbuf};
439 $self->_start;
440
441 $self->{on_connect}
442 and $self->{on_connect}($self, $host, $port, sub {
443 delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
444 $self->{_skip_drain_rbuf} = 1;
445 &$retry;
446 });
447
448 } else {
449 if ($self->{on_connect_error}) {
450 $self->{on_connect_error}($self, "$!");
451 $self->destroy;
452 } else {
453 $self->_error ($!, 1);
454 }
455 }
456 },
457 sub {
458 local $self->{fh} = $_[0];
459
460 $self->{on_prepare}
461 ? $self->{on_prepare}->($self)
462 : ()
463 }
464 );
465 }
466
467 } else {
468 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
469 }
470
471 $self
472}
473
474sub _start {
475 my ($self) = @_;
303 476
304 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 477 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
305
306 if ($self->{tls}) {
307 require Net::SSLeay;
308 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
309 }
310 478
311 $self->{_activity} = AnyEvent->now; 479 $self->{_activity} = AnyEvent->now;
312 $self->_timeout; 480 $self->_timeout;
313 481
314 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
315 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay}; 482 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
316 483
484 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
485 if $self->{tls};
486
487 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
488
317 $self->start_read 489 $self->start_read
318 if $self->{on_read}; 490 if $self->{on_read} || @{ $self->{_queue} };
319 491
320 $self 492 $self->_drain_wbuf;
321} 493}
322 494
323sub _shutdown { 495#sub _shutdown {
324 my ($self) = @_; 496# my ($self) = @_;
325 497#
326 delete $self->{_tw}; 498# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
327 delete $self->{_rw}; 499# $self->{_eof} = 1; # tell starttls et. al to stop trying
328 delete $self->{_ww}; 500#
329 delete $self->{fh}; 501# &_freetls;
330 502#}
331 $self->stoptls;
332
333 delete $self->{on_read};
334 delete $self->{_queue};
335}
336 503
337sub _error { 504sub _error {
338 my ($self, $errno, $fatal) = @_; 505 my ($self, $errno, $fatal, $message) = @_;
339
340 $self->_shutdown
341 if $fatal;
342 506
343 $! = $errno; 507 $! = $errno;
508 $message ||= "$!";
344 509
345 if ($self->{on_error}) { 510 if ($self->{on_error}) {
346 $self->{on_error}($self, $fatal); 511 $self->{on_error}($self, $fatal, $message);
347 } else { 512 $self->destroy if $fatal;
513 } elsif ($self->{fh}) {
514 $self->destroy;
348 Carp::croak "AnyEvent::Handle uncaught error: $!"; 515 Carp::croak "AnyEvent::Handle uncaught error: $message";
349 } 516 }
350} 517}
351 518
352=item $fh = $handle->fh 519=item $fh = $handle->fh
353 520
390} 557}
391 558
392=item $handle->autocork ($boolean) 559=item $handle->autocork ($boolean)
393 560
394Enables or disables the current autocork behaviour (see C<autocork> 561Enables or disables the current autocork behaviour (see C<autocork>
395constructor argument). 562constructor argument). Changes will only take effect on the next write.
396 563
397=cut 564=cut
565
566sub autocork {
567 $_[0]{autocork} = $_[1];
568}
398 569
399=item $handle->no_delay ($boolean) 570=item $handle->no_delay ($boolean)
400 571
401Enables or disables the C<no_delay> setting (see constructor argument of 572Enables or disables the C<no_delay> setting (see constructor argument of
402the same name for details). 573the same name for details).
406sub no_delay { 577sub no_delay {
407 $_[0]{no_delay} = $_[1]; 578 $_[0]{no_delay} = $_[1];
408 579
409 eval { 580 eval {
410 local $SIG{__DIE__}; 581 local $SIG{__DIE__};
411 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 582 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
583 if $_[0]{fh};
412 }; 584 };
585}
586
587=item $handle->on_starttls ($cb)
588
589Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
590
591=cut
592
593sub on_starttls {
594 $_[0]{on_starttls} = $_[1];
595}
596
597=item $handle->on_stoptls ($cb)
598
599Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
600
601=cut
602
603sub on_starttls {
604 $_[0]{on_stoptls} = $_[1];
413} 605}
414 606
415############################################################################# 607#############################################################################
416 608
417=item $handle->timeout ($seconds) 609=item $handle->timeout ($seconds)
430# reset the timeout watcher, as neccessary 622# reset the timeout watcher, as neccessary
431# also check for time-outs 623# also check for time-outs
432sub _timeout { 624sub _timeout {
433 my ($self) = @_; 625 my ($self) = @_;
434 626
435 if ($self->{timeout}) { 627 if ($self->{timeout} && $self->{fh}) {
436 my $NOW = AnyEvent->now; 628 my $NOW = AnyEvent->now;
437 629
438 # when would the timeout trigger? 630 # when would the timeout trigger?
439 my $after = $self->{_activity} + $self->{timeout} - $NOW; 631 my $after = $self->{_activity} + $self->{timeout} - $NOW;
440 632
443 $self->{_activity} = $NOW; 635 $self->{_activity} = $NOW;
444 636
445 if ($self->{on_timeout}) { 637 if ($self->{on_timeout}) {
446 $self->{on_timeout}($self); 638 $self->{on_timeout}($self);
447 } else { 639 } else {
448 $self->_error (&Errno::ETIMEDOUT); 640 $self->_error (Errno::ETIMEDOUT);
449 } 641 }
450 642
451 # callback could have changed timeout value, optimise 643 # callback could have changed timeout value, optimise
452 return unless $self->{timeout}; 644 return unless $self->{timeout};
453 645
495 my ($self, $cb) = @_; 687 my ($self, $cb) = @_;
496 688
497 $self->{on_drain} = $cb; 689 $self->{on_drain} = $cb;
498 690
499 $cb->($self) 691 $cb->($self)
500 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 692 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
501} 693}
502 694
503=item $handle->push_write ($data) 695=item $handle->push_write ($data)
504 696
505Queues the given scalar to be written. You can push as much data as you 697Queues the given scalar to be written. You can push as much data as you
516 Scalar::Util::weaken $self; 708 Scalar::Util::weaken $self;
517 709
518 my $cb = sub { 710 my $cb = sub {
519 my $len = syswrite $self->{fh}, $self->{wbuf}; 711 my $len = syswrite $self->{fh}, $self->{wbuf};
520 712
521 if ($len >= 0) { 713 if (defined $len) {
522 substr $self->{wbuf}, 0, $len, ""; 714 substr $self->{wbuf}, 0, $len, "";
523 715
524 $self->{_activity} = AnyEvent->now; 716 $self->{_activity} = AnyEvent->now;
525 717
526 $self->{on_drain}($self) 718 $self->{on_drain}($self)
527 if $self->{low_water_mark} >= length $self->{wbuf} 719 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
528 && $self->{on_drain}; 720 && $self->{on_drain};
529 721
530 delete $self->{_ww} unless length $self->{wbuf}; 722 delete $self->{_ww} unless length $self->{wbuf};
531 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 723 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
532 $self->_error ($!, 1); 724 $self->_error ($!, 1);
556 748
557 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 749 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
558 ->($self, @_); 750 ->($self, @_);
559 } 751 }
560 752
561 if ($self->{filter_w}) { 753 if ($self->{tls}) {
562 $self->{filter_w}($self, \$_[0]); 754 $self->{_tls_wbuf} .= $_[0];
755 &_dotls ($self) if $self->{fh};
563 } else { 756 } else {
564 $self->{wbuf} .= $_[0]; 757 $self->{wbuf} .= $_[0];
565 $self->_drain_wbuf; 758 $self->_drain_wbuf if $self->{fh};
566 } 759 }
567} 760}
568 761
569=item $handle->push_write (type => @args) 762=item $handle->push_write (type => @args)
570 763
584=cut 777=cut
585 778
586register_write_type netstring => sub { 779register_write_type netstring => sub {
587 my ($self, $string) = @_; 780 my ($self, $string) = @_;
588 781
589 sprintf "%d:%s,", (length $string), $string 782 (length $string) . ":$string,"
590}; 783};
591 784
592=item packstring => $format, $data 785=item packstring => $format, $data
593 786
594An octet string prefixed with an encoded length. The encoding C<$format> 787An octet string prefixed with an encoded length. The encoding C<$format>
659 852
660 pack "w/a*", Storable::nfreeze ($ref) 853 pack "w/a*", Storable::nfreeze ($ref)
661}; 854};
662 855
663=back 856=back
857
858=item $handle->push_shutdown
859
860Sometimes you know you want to close the socket after writing your data
861before it was actually written. One way to do that is to replace your
862C<on_drain> handler by a callback that shuts down the socket (and set
863C<low_water_mark> to C<0>). This method is a shorthand for just that, and
864replaces the C<on_drain> callback with:
865
866 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
867
868This simply shuts down the write side and signals an EOF condition to the
869the peer.
870
871You can rely on the normal read queue and C<on_eof> handling
872afterwards. This is the cleanest way to close a connection.
873
874=cut
875
876sub push_shutdown {
877 my ($self) = @_;
878
879 delete $self->{low_water_mark};
880 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
881}
664 882
665=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 883=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
666 884
667This function (not method) lets you add your own types to C<push_write>. 885This function (not method) lets you add your own types to C<push_write>.
668Whenever the given C<type> is used, C<push_write> will invoke the code 886Whenever the given C<type> is used, C<push_write> will invoke the code
762=cut 980=cut
763 981
764sub _drain_rbuf { 982sub _drain_rbuf {
765 my ($self) = @_; 983 my ($self) = @_;
766 984
985 # avoid recursion
986 return if exists $self->{_skip_drain_rbuf};
767 local $self->{_in_drain} = 1; 987 local $self->{_skip_drain_rbuf} = 1;
768 988
769 if ( 989 if (
770 defined $self->{rbuf_max} 990 defined $self->{rbuf_max}
771 && $self->{rbuf_max} < length $self->{rbuf} 991 && $self->{rbuf_max} < length $self->{rbuf}
772 ) { 992 ) {
773 $self->_error (&Errno::ENOSPC, 1), return; 993 $self->_error (Errno::ENOSPC, 1), return;
774 } 994 }
775 995
776 while () { 996 while () {
997 # we need to use a separate tls read buffer, as we must not receive data while
998 # we are draining the buffer, and this can only happen with TLS.
999 $self->{rbuf} .= delete $self->{_tls_rbuf}
1000 if exists $self->{_tls_rbuf};
1001
777 my $len = length $self->{rbuf}; 1002 my $len = length $self->{rbuf};
778 1003
779 if (my $cb = shift @{ $self->{_queue} }) { 1004 if (my $cb = shift @{ $self->{_queue} }) {
780 unless ($cb->($self)) { 1005 unless ($cb->($self)) {
781 if ($self->{_eof}) { 1006 # no progress can be made
782 # no progress can be made (not enough data and no data forthcoming) 1007 # (not enough data and no data forthcoming)
783 $self->_error (&Errno::EPIPE, 1), return; 1008 $self->_error (Errno::EPIPE, 1), return
784 } 1009 if $self->{_eof};
785 1010
786 unshift @{ $self->{_queue} }, $cb; 1011 unshift @{ $self->{_queue} }, $cb;
787 last; 1012 last;
788 } 1013 }
789 } elsif ($self->{on_read}) { 1014 } elsif ($self->{on_read}) {
796 && !@{ $self->{_queue} } # and the queue is still empty 1021 && !@{ $self->{_queue} } # and the queue is still empty
797 && $self->{on_read} # but we still have on_read 1022 && $self->{on_read} # but we still have on_read
798 ) { 1023 ) {
799 # no further data will arrive 1024 # no further data will arrive
800 # so no progress can be made 1025 # so no progress can be made
801 $self->_error (&Errno::EPIPE, 1), return 1026 $self->_error (Errno::EPIPE, 1), return
802 if $self->{_eof}; 1027 if $self->{_eof};
803 1028
804 last; # more data might arrive 1029 last; # more data might arrive
805 } 1030 }
806 } else { 1031 } else {
807 # read side becomes idle 1032 # read side becomes idle
808 delete $self->{_rw}; 1033 delete $self->{_rw} unless $self->{tls};
809 last; 1034 last;
810 } 1035 }
811 } 1036 }
812 1037
813 if ($self->{_eof}) { 1038 if ($self->{_eof}) {
814 if ($self->{on_eof}) { 1039 $self->{on_eof}
815 $self->{on_eof}($self) 1040 ? $self->{on_eof}($self)
816 } else { 1041 : $self->_error (0, 1, "Unexpected end-of-file");
817 $self->_error (0, 1); 1042
818 } 1043 return;
819 } 1044 }
820 1045
821 # may need to restart read watcher 1046 # may need to restart read watcher
822 unless ($self->{_rw}) { 1047 unless ($self->{_rw}) {
823 $self->start_read 1048 $self->start_read
835 1060
836sub on_read { 1061sub on_read {
837 my ($self, $cb) = @_; 1062 my ($self, $cb) = @_;
838 1063
839 $self->{on_read} = $cb; 1064 $self->{on_read} = $cb;
840 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1065 $self->_drain_rbuf if $cb;
841} 1066}
842 1067
843=item $handle->rbuf 1068=item $handle->rbuf
844 1069
845Returns the read buffer (as a modifiable lvalue). 1070Returns the read buffer (as a modifiable lvalue).
846 1071
847You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1072You can access the read buffer directly as the C<< ->{rbuf} >>
848you want. 1073member, if you want. However, the only operation allowed on the
1074read buffer (apart from looking at it) is removing data from its
1075beginning. Otherwise modifying or appending to it is not allowed and will
1076lead to hard-to-track-down bugs.
849 1077
850NOTE: The read buffer should only be used or modified if the C<on_read>, 1078NOTE: The read buffer should only be used or modified if the C<on_read>,
851C<push_read> or C<unshift_read> methods are used. The other read methods 1079C<push_read> or C<unshift_read> methods are used. The other read methods
852automatically manage the read buffer. 1080automatically manage the read buffer.
853 1081
894 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1122 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
895 ->($self, $cb, @_); 1123 ->($self, $cb, @_);
896 } 1124 }
897 1125
898 push @{ $self->{_queue} }, $cb; 1126 push @{ $self->{_queue} }, $cb;
899 $self->_drain_rbuf unless $self->{_in_drain}; 1127 $self->_drain_rbuf;
900} 1128}
901 1129
902sub unshift_read { 1130sub unshift_read {
903 my $self = shift; 1131 my $self = shift;
904 my $cb = pop; 1132 my $cb = pop;
910 ->($self, $cb, @_); 1138 ->($self, $cb, @_);
911 } 1139 }
912 1140
913 1141
914 unshift @{ $self->{_queue} }, $cb; 1142 unshift @{ $self->{_queue} }, $cb;
915 $self->_drain_rbuf unless $self->{_in_drain}; 1143 $self->_drain_rbuf;
916} 1144}
917 1145
918=item $handle->push_read (type => @args, $cb) 1146=item $handle->push_read (type => @args, $cb)
919 1147
920=item $handle->unshift_read (type => @args, $cb) 1148=item $handle->unshift_read (type => @args, $cb)
1053 return 1; 1281 return 1;
1054 } 1282 }
1055 1283
1056 # reject 1284 # reject
1057 if ($reject && $$rbuf =~ $reject) { 1285 if ($reject && $$rbuf =~ $reject) {
1058 $self->_error (&Errno::EBADMSG); 1286 $self->_error (Errno::EBADMSG);
1059 } 1287 }
1060 1288
1061 # skip 1289 # skip
1062 if ($skip && $$rbuf =~ $skip) { 1290 if ($skip && $$rbuf =~ $skip) {
1063 $data .= substr $$rbuf, 0, $+[0], ""; 1291 $data .= substr $$rbuf, 0, $+[0], "";
1079 my ($self, $cb) = @_; 1307 my ($self, $cb) = @_;
1080 1308
1081 sub { 1309 sub {
1082 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1310 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1083 if ($_[0]{rbuf} =~ /[^0-9]/) { 1311 if ($_[0]{rbuf} =~ /[^0-9]/) {
1084 $self->_error (&Errno::EBADMSG); 1312 $self->_error (Errno::EBADMSG);
1085 } 1313 }
1086 return; 1314 return;
1087 } 1315 }
1088 1316
1089 my $len = $1; 1317 my $len = $1;
1092 my $string = $_[1]; 1320 my $string = $_[1];
1093 $_[0]->unshift_read (chunk => 1, sub { 1321 $_[0]->unshift_read (chunk => 1, sub {
1094 if ($_[1] eq ",") { 1322 if ($_[1] eq ",") {
1095 $cb->($_[0], $string); 1323 $cb->($_[0], $string);
1096 } else { 1324 } else {
1097 $self->_error (&Errno::EBADMSG); 1325 $self->_error (Errno::EBADMSG);
1098 } 1326 }
1099 }); 1327 });
1100 }); 1328 });
1101 1329
1102 1 1330 1
1108An octet string prefixed with an encoded length. The encoding C<$format> 1336An octet string prefixed with an encoded length. The encoding C<$format>
1109uses the same format as a Perl C<pack> format, but must specify a single 1337uses the same format as a Perl C<pack> format, but must specify a single
1110integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1338integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1111optional C<!>, C<< < >> or C<< > >> modifier). 1339optional C<!>, C<< < >> or C<< > >> modifier).
1112 1340
1113DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1341For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1342EPP uses a prefix of C<N> (4 octtes).
1114 1343
1115Example: read a block of data prefixed by its length in BER-encoded 1344Example: read a block of data prefixed by its length in BER-encoded
1116format (very efficient). 1345format (very efficient).
1117 1346
1118 $handle->push_read (packstring => "w", sub { 1347 $handle->push_read (packstring => "w", sub {
1148 } 1377 }
1149}; 1378};
1150 1379
1151=item json => $cb->($handle, $hash_or_arrayref) 1380=item json => $cb->($handle, $hash_or_arrayref)
1152 1381
1153Reads a JSON object or array, decodes it and passes it to the callback. 1382Reads a JSON object or array, decodes it and passes it to the
1383callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1154 1384
1155If a C<json> object was passed to the constructor, then that will be used 1385If a C<json> object was passed to the constructor, then that will be used
1156for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1386for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1157 1387
1158This read type uses the incremental parser available with JSON version 1388This read type uses the incremental parser available with JSON version
1167=cut 1397=cut
1168 1398
1169register_read_type json => sub { 1399register_read_type json => sub {
1170 my ($self, $cb) = @_; 1400 my ($self, $cb) = @_;
1171 1401
1172 require JSON; 1402 my $json = $self->{json} ||=
1403 eval { require JSON::XS; JSON::XS->new->utf8 }
1404 || do { require JSON; JSON->new->utf8 };
1173 1405
1174 my $data; 1406 my $data;
1175 my $rbuf = \$self->{rbuf}; 1407 my $rbuf = \$self->{rbuf};
1176 1408
1177 my $json = $self->{json} ||= JSON->new->utf8;
1178
1179 sub { 1409 sub {
1180 my $ref = $json->incr_parse ($self->{rbuf}); 1410 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1181 1411
1182 if ($ref) { 1412 if ($ref) {
1183 $self->{rbuf} = $json->incr_text; 1413 $self->{rbuf} = $json->incr_text;
1184 $json->incr_text = ""; 1414 $json->incr_text = "";
1185 $cb->($self, $ref); 1415 $cb->($self, $ref);
1186 1416
1187 1 1417 1
1418 } elsif ($@) {
1419 # error case
1420 $json->incr_skip;
1421
1422 $self->{rbuf} = $json->incr_text;
1423 $json->incr_text = "";
1424
1425 $self->_error (Errno::EBADMSG);
1426
1427 ()
1188 } else { 1428 } else {
1189 $self->{rbuf} = ""; 1429 $self->{rbuf} = "";
1430
1190 () 1431 ()
1191 } 1432 }
1192 } 1433 }
1193}; 1434};
1194 1435
1226 # read remaining chunk 1467 # read remaining chunk
1227 $_[0]->unshift_read (chunk => $len, sub { 1468 $_[0]->unshift_read (chunk => $len, sub {
1228 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1469 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1229 $cb->($_[0], $ref); 1470 $cb->($_[0], $ref);
1230 } else { 1471 } else {
1231 $self->_error (&Errno::EBADMSG); 1472 $self->_error (Errno::EBADMSG);
1232 } 1473 }
1233 }); 1474 });
1234 } 1475 }
1235 1476
1236 1 1477 1
1271Note that AnyEvent::Handle will automatically C<start_read> for you when 1512Note that AnyEvent::Handle will automatically C<start_read> for you when
1272you change the C<on_read> callback or push/unshift a read callback, and it 1513you change the C<on_read> callback or push/unshift a read callback, and it
1273will automatically C<stop_read> for you when neither C<on_read> is set nor 1514will automatically C<stop_read> for you when neither C<on_read> is set nor
1274there are any read requests in the queue. 1515there are any read requests in the queue.
1275 1516
1517These methods will have no effect when in TLS mode (as TLS doesn't support
1518half-duplex connections).
1519
1276=cut 1520=cut
1277 1521
1278sub stop_read { 1522sub stop_read {
1279 my ($self) = @_; 1523 my ($self) = @_;
1280 1524
1281 delete $self->{_rw}; 1525 delete $self->{_rw} unless $self->{tls};
1282} 1526}
1283 1527
1284sub start_read { 1528sub start_read {
1285 my ($self) = @_; 1529 my ($self) = @_;
1286 1530
1287 unless ($self->{_rw} || $self->{_eof}) { 1531 unless ($self->{_rw} || $self->{_eof}) {
1288 Scalar::Util::weaken $self; 1532 Scalar::Util::weaken $self;
1289 1533
1290 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1534 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1291 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1535 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1292 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1536 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1293 1537
1294 if ($len > 0) { 1538 if ($len > 0) {
1295 $self->{_activity} = AnyEvent->now; 1539 $self->{_activity} = AnyEvent->now;
1296 1540
1297 $self->{filter_r} 1541 if ($self->{tls}) {
1298 ? $self->{filter_r}($self, $rbuf) 1542 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1299 : $self->{_in_drain} || $self->_drain_rbuf; 1543
1544 &_dotls ($self);
1545 } else {
1546 $self->_drain_rbuf;
1547 }
1300 1548
1301 } elsif (defined $len) { 1549 } elsif (defined $len) {
1302 delete $self->{_rw}; 1550 delete $self->{_rw};
1303 $self->{_eof} = 1; 1551 $self->{_eof} = 1;
1304 $self->_drain_rbuf unless $self->{_in_drain}; 1552 $self->_drain_rbuf;
1305 1553
1306 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1554 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1307 return $self->_error ($!, 1); 1555 return $self->_error ($!, 1);
1308 } 1556 }
1309 }); 1557 });
1310 } 1558 }
1311} 1559}
1312 1560
1561our $ERROR_SYSCALL;
1562our $ERROR_WANT_READ;
1563
1564sub _tls_error {
1565 my ($self, $err) = @_;
1566
1567 return $self->_error ($!, 1)
1568 if $err == Net::SSLeay::ERROR_SYSCALL ();
1569
1570 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1571
1572 # reduce error string to look less scary
1573 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1574
1575 if ($self->{_on_starttls}) {
1576 (delete $self->{_on_starttls})->($self, undef, $err);
1577 &_freetls;
1578 } else {
1579 &_freetls;
1580 $self->_error (Errno::EPROTO, 1, $err);
1581 }
1582}
1583
1584# poll the write BIO and send the data if applicable
1585# also decode read data if possible
1586# this is basiclaly our TLS state machine
1587# more efficient implementations are possible with openssl,
1588# but not with the buggy and incomplete Net::SSLeay.
1313sub _dotls { 1589sub _dotls {
1314 my ($self) = @_; 1590 my ($self) = @_;
1315 1591
1316 my $buf; 1592 my $tmp;
1317 1593
1318 if (length $self->{_tls_wbuf}) { 1594 if (length $self->{_tls_wbuf}) {
1319 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1595 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1320 substr $self->{_tls_wbuf}, 0, $len, ""; 1596 substr $self->{_tls_wbuf}, 0, $tmp, "";
1321 } 1597 }
1322 }
1323 1598
1599 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1600 return $self->_tls_error ($tmp)
1601 if $tmp != $ERROR_WANT_READ
1602 && ($tmp != $ERROR_SYSCALL || $!);
1603 }
1604
1605 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1606 unless (length $tmp) {
1607 $self->{_on_starttls}
1608 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1609 &_freetls;
1610
1611 if ($self->{on_stoptls}) {
1612 $self->{on_stoptls}($self);
1613 return;
1614 } else {
1615 # let's treat SSL-eof as we treat normal EOF
1616 delete $self->{_rw};
1617 $self->{_eof} = 1;
1618 }
1619 }
1620
1621 $self->{_tls_rbuf} .= $tmp;
1622 $self->_drain_rbuf;
1623 $self->{tls} or return; # tls session might have gone away in callback
1624 }
1625
1626 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1627 return $self->_tls_error ($tmp)
1628 if $tmp != $ERROR_WANT_READ
1629 && ($tmp != $ERROR_SYSCALL || $!);
1630
1324 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1631 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1325 $self->{wbuf} .= $buf; 1632 $self->{wbuf} .= $tmp;
1326 $self->_drain_wbuf; 1633 $self->_drain_wbuf;
1327 } 1634 }
1328 1635
1329 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1636 $self->{_on_starttls}
1330 if (length $buf) { 1637 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1331 $self->{rbuf} .= $buf; 1638 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1332 $self->_drain_rbuf unless $self->{_in_drain};
1333 } else {
1334 # let's treat SSL-eof as we treat normal EOF
1335 $self->{_eof} = 1;
1336 $self->_shutdown;
1337 return;
1338 }
1339 }
1340
1341 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1342
1343 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1344 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1345 return $self->_error ($!, 1);
1346 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1347 return $self->_error (&Errno::EIO, 1);
1348 }
1349
1350 # all others are fine for our purposes
1351 }
1352} 1639}
1353 1640
1354=item $handle->starttls ($tls[, $tls_ctx]) 1641=item $handle->starttls ($tls[, $tls_ctx])
1355 1642
1356Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1643Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1357object is created, you can also do that at a later time by calling 1644object is created, you can also do that at a later time by calling
1358C<starttls>. 1645C<starttls>.
1359 1646
1647Starting TLS is currently an asynchronous operation - when you push some
1648write data and then call C<< ->starttls >> then TLS negotiation will start
1649immediately, after which the queued write data is then sent.
1650
1360The first argument is the same as the C<tls> constructor argument (either 1651The first argument is the same as the C<tls> constructor argument (either
1361C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1652C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1362 1653
1363The second argument is the optional C<Net::SSLeay::CTX> object that is 1654The second argument is the optional C<AnyEvent::TLS> object that is used
1364used when AnyEvent::Handle has to create its own TLS connection object. 1655when AnyEvent::Handle has to create its own TLS connection object, or
1656a hash reference with C<< key => value >> pairs that will be used to
1657construct a new context.
1365 1658
1366The TLS connection object will end up in C<< $handle->{tls} >> after this 1659The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1367call and can be used or changed to your liking. Note that the handshake 1660context in C<< $handle->{tls_ctx} >> after this call and can be used or
1368might have already started when this function returns. 1661changed to your liking. Note that the handshake might have already started
1662when this function returns.
1369 1663
1664Due to bugs in OpenSSL, it might or might not be possible to do multiple
1665handshakes on the same stream. Best do not attempt to use the stream after
1666stopping TLS.
1667
1370=cut 1668=cut
1669
1670our %TLS_CACHE; #TODO not yet documented, should we?
1371 1671
1372sub starttls { 1672sub starttls {
1373 my ($self, $ssl, $ctx) = @_; 1673 my ($self, $tls, $ctx) = @_;
1374 1674
1375 $self->stoptls; 1675 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1676 if $self->{tls};
1376 1677
1377 if ($ssl eq "accept") { 1678 $self->{tls} = $tls;
1378 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1679 $self->{tls_ctx} = $ctx if @_ > 2;
1379 Net::SSLeay::set_accept_state ($ssl); 1680
1380 } elsif ($ssl eq "connect") { 1681 return unless $self->{fh};
1381 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1682
1382 Net::SSLeay::set_connect_state ($ssl); 1683 require Net::SSLeay;
1684
1685 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1686 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1687
1688 $tls = $self->{tls};
1689 $ctx = $self->{tls_ctx};
1690
1691 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1692
1693 if ("HASH" eq ref $ctx) {
1694 require AnyEvent::TLS;
1695
1696 if ($ctx->{cache}) {
1697 my $key = $ctx+0;
1698 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1699 } else {
1700 $ctx = new AnyEvent::TLS %$ctx;
1701 }
1702 }
1383 } 1703
1384 1704 $self->{tls_ctx} = $ctx || TLS_CTX ();
1385 $self->{tls} = $ssl; 1705 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1386 1706
1387 # basically, this is deep magic (because SSL_read should have the same issues) 1707 # basically, this is deep magic (because SSL_read should have the same issues)
1388 # but the openssl maintainers basically said: "trust us, it just works". 1708 # but the openssl maintainers basically said: "trust us, it just works".
1389 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1709 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1390 # and mismaintained ssleay-module doesn't even offer them). 1710 # and mismaintained ssleay-module doesn't even offer them).
1391 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1711 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1392 # 1712 #
1393 # in short: this is a mess. 1713 # in short: this is a mess.
1394 # 1714 #
1395 # note that we do not try to kepe the length constant between writes as we are required to do. 1715 # note that we do not try to keep the length constant between writes as we are required to do.
1396 # we assume that most (but not all) of this insanity only applies to non-blocking cases, 1716 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1397 # and we drive openssl fully in blocking mode here. 1717 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1718 # have identity issues in that area.
1398 Net::SSLeay::CTX_set_mode ($self->{tls}, 1719# Net::SSLeay::CTX_set_mode ($ssl,
1399 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1720# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1400 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1721# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1722 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1401 1723
1402 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1724 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1403 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1725 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1404 1726
1405 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1727 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1406 1728
1407 $self->{filter_w} = sub { 1729 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1408 $_[0]{_tls_wbuf} .= ${$_[1]}; 1730 if $self->{on_starttls};
1409 &_dotls; 1731
1410 }; 1732 &_dotls; # need to trigger the initial handshake
1411 $self->{filter_r} = sub { 1733 $self->start_read; # make sure we actually do read
1412 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1413 &_dotls;
1414 };
1415} 1734}
1416 1735
1417=item $handle->stoptls 1736=item $handle->stoptls
1418 1737
1419Destroys the SSL connection, if any. Partial read or write data will be 1738Shuts down the SSL connection - this makes a proper EOF handshake by
1420lost. 1739sending a close notify to the other side, but since OpenSSL doesn't
1740support non-blocking shut downs, it is not guarenteed that you can re-use
1741the stream afterwards.
1421 1742
1422=cut 1743=cut
1423 1744
1424sub stoptls { 1745sub stoptls {
1425 my ($self) = @_; 1746 my ($self) = @_;
1426 1747
1427 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1748 if ($self->{tls}) {
1749 Net::SSLeay::shutdown ($self->{tls});
1428 1750
1429 delete $self->{_rbio}; 1751 &_dotls;
1430 delete $self->{_wbio}; 1752
1431 delete $self->{_tls_wbuf}; 1753# # we don't give a shit. no, we do, but we can't. no...#d#
1432 delete $self->{filter_r}; 1754# # we, we... have to use openssl :/#d#
1433 delete $self->{filter_w}; 1755# &_freetls;#d#
1756 }
1757}
1758
1759sub _freetls {
1760 my ($self) = @_;
1761
1762 return unless $self->{tls};
1763
1764 $self->{tls_ctx}->_put_session (delete $self->{tls})
1765 if ref $self->{tls};
1766
1767 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1434} 1768}
1435 1769
1436sub DESTROY { 1770sub DESTROY {
1437 my $self = shift; 1771 my ($self) = @_;
1438 1772
1439 $self->stoptls; 1773 &_freetls;
1440 1774
1441 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1775 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1442 1776
1443 if ($linger && length $self->{wbuf}) { 1777 if ($linger && length $self->{wbuf} && $self->{fh}) {
1444 my $fh = delete $self->{fh}; 1778 my $fh = delete $self->{fh};
1445 my $wbuf = delete $self->{wbuf}; 1779 my $wbuf = delete $self->{wbuf};
1446 1780
1447 my @linger; 1781 my @linger;
1448 1782
1459 @linger = (); 1793 @linger = ();
1460 }); 1794 });
1461 } 1795 }
1462} 1796}
1463 1797
1798=item $handle->destroy
1799
1800Shuts down the handle object as much as possible - this call ensures that
1801no further callbacks will be invoked and as many resources as possible
1802will be freed. You must not call any methods on the object afterwards.
1803
1804Normally, you can just "forget" any references to an AnyEvent::Handle
1805object and it will simply shut down. This works in fatal error and EOF
1806callbacks, as well as code outside. It does I<NOT> work in a read or write
1807callback, so when you want to destroy the AnyEvent::Handle object from
1808within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1809that case.
1810
1811Destroying the handle object in this way has the advantage that callbacks
1812will be removed as well, so if those are the only reference holders (as
1813is common), then one doesn't need to do anything special to break any
1814reference cycles.
1815
1816The handle might still linger in the background and write out remaining
1817data, as specified by the C<linger> option, however.
1818
1819=cut
1820
1821sub destroy {
1822 my ($self) = @_;
1823
1824 $self->DESTROY;
1825 %$self = ();
1826 bless $self, "AnyEvent::Handle::destroyed";
1827}
1828
1829{
1830 package AnyEvent::Handle::destroyed;
1831
1832 sub AUTOLOAD {
1833 #nop
1834 }
1835}
1836
1464=item AnyEvent::Handle::TLS_CTX 1837=item AnyEvent::Handle::TLS_CTX
1465 1838
1466This function creates and returns the Net::SSLeay::CTX object used by 1839This function creates and returns the AnyEvent::TLS object used by default
1467default for TLS mode. 1840for TLS mode.
1468 1841
1469The context is created like this: 1842The context is created by calling L<AnyEvent::TLS> without any arguments.
1470
1471 Net::SSLeay::load_error_strings;
1472 Net::SSLeay::SSLeay_add_ssl_algorithms;
1473 Net::SSLeay::randomize;
1474
1475 my $CTX = Net::SSLeay::CTX_new;
1476
1477 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1478 1843
1479=cut 1844=cut
1480 1845
1481our $TLS_CTX; 1846our $TLS_CTX;
1482 1847
1483sub TLS_CTX() { 1848sub TLS_CTX() {
1484 $TLS_CTX || do { 1849 $TLS_CTX ||= do {
1485 require Net::SSLeay; 1850 require AnyEvent::TLS;
1486 1851
1487 Net::SSLeay::load_error_strings (); 1852 new AnyEvent::TLS
1488 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1489 Net::SSLeay::randomize ();
1490
1491 $TLS_CTX = Net::SSLeay::CTX_new ();
1492
1493 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1494
1495 $TLS_CTX
1496 } 1853 }
1497} 1854}
1498 1855
1499=back 1856=back
1857
1858
1859=head1 NONFREQUENTLY ASKED QUESTIONS
1860
1861=over 4
1862
1863=item I C<undef> the AnyEvent::Handle reference inside my callback and
1864still get further invocations!
1865
1866That's because AnyEvent::Handle keeps a reference to itself when handling
1867read or write callbacks.
1868
1869It is only safe to "forget" the reference inside EOF or error callbacks,
1870from within all other callbacks, you need to explicitly call the C<<
1871->destroy >> method.
1872
1873=item I get different callback invocations in TLS mode/Why can't I pause
1874reading?
1875
1876Unlike, say, TCP, TLS connections do not consist of two independent
1877communication channels, one for each direction. Or put differently. The
1878read and write directions are not independent of each other: you cannot
1879write data unless you are also prepared to read, and vice versa.
1880
1881This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1882callback invocations when you are not expecting any read data - the reason
1883is that AnyEvent::Handle always reads in TLS mode.
1884
1885During the connection, you have to make sure that you always have a
1886non-empty read-queue, or an C<on_read> watcher. At the end of the
1887connection (or when you no longer want to use it) you can call the
1888C<destroy> method.
1889
1890=item How do I read data until the other side closes the connection?
1891
1892If you just want to read your data into a perl scalar, the easiest way
1893to achieve this is by setting an C<on_read> callback that does nothing,
1894clearing the C<on_eof> callback and in the C<on_error> callback, the data
1895will be in C<$_[0]{rbuf}>:
1896
1897 $handle->on_read (sub { });
1898 $handle->on_eof (undef);
1899 $handle->on_error (sub {
1900 my $data = delete $_[0]{rbuf};
1901 });
1902
1903The reason to use C<on_error> is that TCP connections, due to latencies
1904and packets loss, might get closed quite violently with an error, when in
1905fact, all data has been received.
1906
1907It is usually better to use acknowledgements when transferring data,
1908to make sure the other side hasn't just died and you got the data
1909intact. This is also one reason why so many internet protocols have an
1910explicit QUIT command.
1911
1912=item I don't want to destroy the handle too early - how do I wait until
1913all data has been written?
1914
1915After writing your last bits of data, set the C<on_drain> callback
1916and destroy the handle in there - with the default setting of
1917C<low_water_mark> this will be called precisely when all data has been
1918written to the socket:
1919
1920 $handle->push_write (...);
1921 $handle->on_drain (sub {
1922 warn "all data submitted to the kernel\n";
1923 undef $handle;
1924 });
1925
1926If you just want to queue some data and then signal EOF to the other side,
1927consider using C<< ->push_shutdown >> instead.
1928
1929=item I want to contact a TLS/SSL server, I don't care about security.
1930
1931If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1932simply connect to it and then create the AnyEvent::Handle with the C<tls>
1933parameter:
1934
1935 tcp_connect $host, $port, sub {
1936 my ($fh) = @_;
1937
1938 my $handle = new AnyEvent::Handle
1939 fh => $fh,
1940 tls => "connect",
1941 on_error => sub { ... };
1942
1943 $handle->push_write (...);
1944 };
1945
1946=item I want to contact a TLS/SSL server, I do care about security.
1947
1948Then you should additionally enable certificate verification, including
1949peername verification, if the protocol you use supports it (see
1950L<AnyEvent::TLS>, C<verify_peername>).
1951
1952E.g. for HTTPS:
1953
1954 tcp_connect $host, $port, sub {
1955 my ($fh) = @_;
1956
1957 my $handle = new AnyEvent::Handle
1958 fh => $fh,
1959 peername => $host,
1960 tls => "connect",
1961 tls_ctx => { verify => 1, verify_peername => "https" },
1962 ...
1963
1964Note that you must specify the hostname you connected to (or whatever
1965"peername" the protocol needs) as the C<peername> argument, otherwise no
1966peername verification will be done.
1967
1968The above will use the system-dependent default set of trusted CA
1969certificates. If you want to check against a specific CA, add the
1970C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1971
1972 tls_ctx => {
1973 verify => 1,
1974 verify_peername => "https",
1975 ca_file => "my-ca-cert.pem",
1976 },
1977
1978=item I want to create a TLS/SSL server, how do I do that?
1979
1980Well, you first need to get a server certificate and key. You have
1981three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1982self-signed certificate (cheap. check the search engine of your choice,
1983there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1984nice program for that purpose).
1985
1986Then create a file with your private key (in PEM format, see
1987L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1988file should then look like this:
1989
1990 -----BEGIN RSA PRIVATE KEY-----
1991 ...header data
1992 ... lots of base64'y-stuff
1993 -----END RSA PRIVATE KEY-----
1994
1995 -----BEGIN CERTIFICATE-----
1996 ... lots of base64'y-stuff
1997 -----END CERTIFICATE-----
1998
1999The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2000specify this file as C<cert_file>:
2001
2002 tcp_server undef, $port, sub {
2003 my ($fh) = @_;
2004
2005 my $handle = new AnyEvent::Handle
2006 fh => $fh,
2007 tls => "accept",
2008 tls_ctx => { cert_file => "my-server-keycert.pem" },
2009 ...
2010
2011When you have intermediate CA certificates that your clients might not
2012know about, just append them to the C<cert_file>.
2013
2014=back
2015
1500 2016
1501=head1 SUBCLASSING AnyEvent::Handle 2017=head1 SUBCLASSING AnyEvent::Handle
1502 2018
1503In many cases, you might want to subclass AnyEvent::Handle. 2019In many cases, you might want to subclass AnyEvent::Handle.
1504 2020

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines