ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.87 by root, Thu Aug 21 20:52:39 2008 UTC vs.
Revision 1.153 by root, Fri Jul 17 23:12:20 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 3use Scalar::Util ();
9use Carp (); 4use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR); 5use Errno qw(EAGAIN EINTR);
12 6
7use AnyEvent (); BEGIN { AnyEvent::common_sense }
8use AnyEvent::Util qw(WSAEWOULDBLOCK);
9
13=head1 NAME 10=head1 NAME
14 11
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 12AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 13
17=cut 14=cut
18 15
19our $VERSION = 4.232; 16our $VERSION = 4.83;
20 17
21=head1 SYNOPSIS 18=head1 SYNOPSIS
22 19
23 use AnyEvent; 20 use AnyEvent;
24 use AnyEvent::Handle; 21 use AnyEvent::Handle;
25 22
26 my $cv = AnyEvent->condvar; 23 my $cv = AnyEvent->condvar;
27 24
28 my $handle = 25 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 26 fh => \*STDIN,
31 on_eof => sub { 27 on_error => sub {
32 $cv->broadcast; 28 my ($hdl, $fatal, $msg) = @_;
33 }, 29 warn "got error $msg\n";
30 $hdl->destroy;
31 $cv->send;
34 ); 32 );
35 33
36 # send some request line 34 # send some request line
37 $handle->push_write ("getinfo\015\012"); 35 $hdl->push_write ("getinfo\015\012");
38 36
39 # read the response line 37 # read the response line
40 $handle->push_read (line => sub { 38 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 39 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 40 warn "got line <$line>\n";
43 $cv->send; 41 $cv->send;
44 }); 42 });
45 43
46 $cv->recv; 44 $cv->recv;
47 45
63 61
64=head1 METHODS 62=head1 METHODS
65 63
66=over 4 64=over 4
67 65
68=item B<new (%args)> 66=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
69 67
70The constructor supports these arguments (all as key => value pairs). 68The constructor supports these arguments (all as C<< key => value >> pairs).
71 69
72=over 4 70=over 4
73 71
74=item fh => $filehandle [MANDATORY] 72=item fh => $filehandle [MANDATORY]
75 73
81 79
82=item on_eof => $cb->($handle) 80=item on_eof => $cb->($handle)
83 81
84Set the callback to be called when an end-of-file condition is detected, 82Set the callback to be called when an end-of-file condition is detected,
85i.e. in the case of a socket, when the other side has closed the 83i.e. in the case of a socket, when the other side has closed the
86connection cleanly. 84connection cleanly, and there are no outstanding read requests in the
85queue (if there are read requests, then an EOF counts as an unexpected
86connection close and will be flagged as an error).
87 87
88For sockets, this just means that the other side has stopped sending data, 88For sockets, this just means that the other side has stopped sending data,
89you can still try to write data, and, in fact, one can return from the eof 89you can still try to write data, and, in fact, one can return from the EOF
90callback and continue writing data, as only the read part has been shut 90callback and continue writing data, as only the read part has been shut
91down. 91down.
92 92
93While not mandatory, it is I<highly> recommended to set an eof callback,
94otherwise you might end up with a closed socket while you are still
95waiting for data.
96
97If an EOF condition has been detected but no C<on_eof> callback has been 93If an EOF condition has been detected but no C<on_eof> callback has been
98set, then a fatal error will be raised with C<$!> set to <0>. 94set, then a fatal error will be raised with C<$!> set to <0>.
99 95
100=item on_error => $cb->($handle, $fatal) 96=item on_error => $cb->($handle, $fatal, $message)
101 97
102This is the error callback, which is called when, well, some error 98This is the error callback, which is called when, well, some error
103occured, such as not being able to resolve the hostname, failure to 99occured, such as not being able to resolve the hostname, failure to
104connect or a read error. 100connect or a read error.
105 101
106Some errors are fatal (which is indicated by C<$fatal> being true). On 102Some errors are fatal (which is indicated by C<$fatal> being true). On
107fatal errors the handle object will be shut down and will not be usable 103fatal errors the handle object will be destroyed (by a call to C<< ->
108(but you are free to look at the current C< ->rbuf >). Examples of fatal 104destroy >>) after invoking the error callback (which means you are free to
109errors are an EOF condition with active (but unsatisifable) read watchers 105examine the handle object). Examples of fatal errors are an EOF condition
110(C<EPIPE>) or I/O errors. 106with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors.
107
108AnyEvent::Handle tries to find an appropriate error code for you to check
109against, but in some cases (TLS errors), this does not work well. It is
110recommended to always output the C<$message> argument in human-readable
111error messages (it's usually the same as C<"$!">).
111 112
112Non-fatal errors can be retried by simply returning, but it is recommended 113Non-fatal errors can be retried by simply returning, but it is recommended
113to simply ignore this parameter and instead abondon the handle object 114to simply ignore this parameter and instead abondon the handle object
114when this callback is invoked. Examples of non-fatal errors are timeouts 115when this callback is invoked. Examples of non-fatal errors are timeouts
115C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>). 116C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
116 117
117On callback entrance, the value of C<$!> contains the operating system 118On callback entrance, the value of C<$!> contains the operating system
118error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 119error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
120C<EPROTO>).
119 121
120While not mandatory, it is I<highly> recommended to set this callback, as 122While not mandatory, it is I<highly> recommended to set this callback, as
121you will not be notified of errors otherwise. The default simply calls 123you will not be notified of errors otherwise. The default simply calls
122C<croak>. 124C<croak>.
123 125
127and no read request is in the queue (unlike read queue callbacks, this 129and no read request is in the queue (unlike read queue callbacks, this
128callback will only be called when at least one octet of data is in the 130callback will only be called when at least one octet of data is in the
129read buffer). 131read buffer).
130 132
131To access (and remove data from) the read buffer, use the C<< ->rbuf >> 133To access (and remove data from) the read buffer, use the C<< ->rbuf >>
132method or access the C<$handle->{rbuf}> member directly. 134method or access the C<< $handle->{rbuf} >> member directly. Note that you
135must not enlarge or modify the read buffer, you can only remove data at
136the beginning from it.
133 137
134When an EOF condition is detected then AnyEvent::Handle will first try to 138When an EOF condition is detected then AnyEvent::Handle will first try to
135feed all the remaining data to the queued callbacks and C<on_read> before 139feed all the remaining data to the queued callbacks and C<on_read> before
136calling the C<on_eof> callback. If no progress can be made, then a fatal 140calling the C<on_eof> callback. If no progress can be made, then a fatal
137error will be raised (with C<$!> set to C<EPIPE>). 141error will be raised (with C<$!> set to C<EPIPE>).
142
143Note that, unlike requests in the read queue, an C<on_read> callback
144doesn't mean you I<require> some data: if there is an EOF and there
145are outstanding read requests then an error will be flagged. With an
146C<on_read> callback, the C<on_eof> callback will be invoked.
138 147
139=item on_drain => $cb->($handle) 148=item on_drain => $cb->($handle)
140 149
141This sets the callback that is called when the write buffer becomes empty 150This sets the callback that is called when the write buffer becomes empty
142(or when the callback is set and the buffer is empty already). 151(or when the callback is set and the buffer is empty already).
152=item timeout => $fractional_seconds 161=item timeout => $fractional_seconds
153 162
154If non-zero, then this enables an "inactivity" timeout: whenever this many 163If non-zero, then this enables an "inactivity" timeout: whenever this many
155seconds pass without a successful read or write on the underlying file 164seconds pass without a successful read or write on the underlying file
156handle, the C<on_timeout> callback will be invoked (and if that one is 165handle, the C<on_timeout> callback will be invoked (and if that one is
157missing, an C<ETIMEDOUT> error will be raised). 166missing, a non-fatal C<ETIMEDOUT> error will be raised).
158 167
159Note that timeout processing is also active when you currently do not have 168Note that timeout processing is also active when you currently do not have
160any outstanding read or write requests: If you plan to keep the connection 169any outstanding read or write requests: If you plan to keep the connection
161idle then you should disable the timout temporarily or ignore the timeout 170idle then you should disable the timout temporarily or ignore the timeout
162in the C<on_timeout> callback. 171in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
172restart the timeout.
163 173
164Zero (the default) disables this timeout. 174Zero (the default) disables this timeout.
165 175
166=item on_timeout => $cb->($handle) 176=item on_timeout => $cb->($handle)
167 177
171 181
172=item rbuf_max => <bytes> 182=item rbuf_max => <bytes>
173 183
174If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 184If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
175when the read buffer ever (strictly) exceeds this size. This is useful to 185when the read buffer ever (strictly) exceeds this size. This is useful to
176avoid denial-of-service attacks. 186avoid some forms of denial-of-service attacks.
177 187
178For example, a server accepting connections from untrusted sources should 188For example, a server accepting connections from untrusted sources should
179be configured to accept only so-and-so much data that it cannot act on 189be configured to accept only so-and-so much data that it cannot act on
180(for example, when expecting a line, an attacker could send an unlimited 190(for example, when expecting a line, an attacker could send an unlimited
181amount of data without a callback ever being called as long as the line 191amount of data without a callback ever being called as long as the line
182isn't finished). 192isn't finished).
183 193
184=item autocork => <boolean> 194=item autocork => <boolean>
185 195
186When disabled (the default), then C<push_write> will try to immediately 196When disabled (the default), then C<push_write> will try to immediately
187write the data to the handle if possible. This avoids having to register 197write the data to the handle, if possible. This avoids having to register
188a write watcher and wait for the next event loop iteration, but can be 198a write watcher and wait for the next event loop iteration, but can
189inefficient if you write multiple small chunks (this disadvantage is 199be inefficient if you write multiple small chunks (on the wire, this
190usually avoided by your kernel's nagle algorithm, see C<low_delay>). 200disadvantage is usually avoided by your kernel's nagle algorithm, see
201C<no_delay>, but this option can save costly syscalls).
191 202
192When enabled, then writes will always be queued till the next event loop 203When enabled, then writes will always be queued till the next event loop
193iteration. This is efficient when you do many small writes per iteration, 204iteration. This is efficient when you do many small writes per iteration,
194but less efficient when you do a single write only. 205but less efficient when you do a single write only per iteration (or when
206the write buffer often is full). It also increases write latency.
195 207
196=item no_delay => <boolean> 208=item no_delay => <boolean>
197 209
198When doing small writes on sockets, your operating system kernel might 210When doing small writes on sockets, your operating system kernel might
199wait a bit for more data before actually sending it out. This is called 211wait a bit for more data before actually sending it out. This is called
200the Nagle algorithm, and usually it is beneficial. 212the Nagle algorithm, and usually it is beneficial.
201 213
202In some situations you want as low a delay as possible, which cna be 214In some situations you want as low a delay as possible, which can be
203accomplishd by setting this option to true. 215accomplishd by setting this option to a true value.
204 216
205The default is your opertaing system's default behaviour, this option 217The default is your opertaing system's default behaviour (most likely
206explicitly enables or disables it, if possible. 218enabled), this option explicitly enables or disables it, if possible.
207 219
208=item read_size => <bytes> 220=item read_size => <bytes>
209 221
210The default read block size (the amount of bytes this module will try to read 222The default read block size (the amount of bytes this module will
211during each (loop iteration). Default: C<8192>. 223try to read during each loop iteration, which affects memory
224requirements). Default: C<8192>.
212 225
213=item low_water_mark => <bytes> 226=item low_water_mark => <bytes>
214 227
215Sets the amount of bytes (default: C<0>) that make up an "empty" write 228Sets the amount of bytes (default: C<0>) that make up an "empty" write
216buffer: If the write reaches this size or gets even samller it is 229buffer: If the write reaches this size or gets even samller it is
217considered empty. 230considered empty.
218 231
232Sometimes it can be beneficial (for performance reasons) to add data to
233the write buffer before it is fully drained, but this is a rare case, as
234the operating system kernel usually buffers data as well, so the default
235is good in almost all cases.
236
219=item linger => <seconds> 237=item linger => <seconds>
220 238
221If non-zero (default: C<3600>), then the destructor of the 239If non-zero (default: C<3600>), then the destructor of the
222AnyEvent::Handle object will check wether there is still outstanding write 240AnyEvent::Handle object will check whether there is still outstanding
223data and will install a watcher that will write out this data. No errors 241write data and will install a watcher that will write this data to the
224will be reported (this mostly matches how the operating system treats 242socket. No errors will be reported (this mostly matches how the operating
225outstanding data at socket close time). 243system treats outstanding data at socket close time).
226 244
227This will not work for partial TLS data that could not yet been 245This will not work for partial TLS data that could not be encoded
228encoded. This data will be lost. 246yet. This data will be lost. Calling the C<stoptls> method in time might
247help.
248
249=item peername => $string
250
251A string used to identify the remote site - usually the DNS hostname
252(I<not> IDN!) used to create the connection, rarely the IP address.
253
254Apart from being useful in error messages, this string is also used in TLS
255peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
256verification will be skipped when C<peername> is not specified or
257C<undef>.
229 258
230=item tls => "accept" | "connect" | Net::SSLeay::SSL object 259=item tls => "accept" | "connect" | Net::SSLeay::SSL object
231 260
232When this parameter is given, it enables TLS (SSL) mode, that means 261When this parameter is given, it enables TLS (SSL) mode, that means
233AnyEvent will start a TLS handshake and will transparently encrypt/decrypt 262AnyEvent will start a TLS handshake as soon as the conenction has been
234data. 263established and will transparently encrypt/decrypt data afterwards.
264
265All TLS protocol errors will be signalled as C<EPROTO>, with an
266appropriate error message.
235 267
236TLS mode requires Net::SSLeay to be installed (it will be loaded 268TLS mode requires Net::SSLeay to be installed (it will be loaded
237automatically when you try to create a TLS handle). 269automatically when you try to create a TLS handle): this module doesn't
270have a dependency on that module, so if your module requires it, you have
271to add the dependency yourself.
238 272
239Unlike TCP, TLS has a server and client side: for the TLS server side, use 273Unlike TCP, TLS has a server and client side: for the TLS server side, use
240C<accept>, and for the TLS client side of a connection, use C<connect> 274C<accept>, and for the TLS client side of a connection, use C<connect>
241mode. 275mode.
242 276
243You can also provide your own TLS connection object, but you have 277You can also provide your own TLS connection object, but you have
244to make sure that you call either C<Net::SSLeay::set_connect_state> 278to make sure that you call either C<Net::SSLeay::set_connect_state>
245or C<Net::SSLeay::set_accept_state> on it before you pass it to 279or C<Net::SSLeay::set_accept_state> on it before you pass it to
246AnyEvent::Handle. 280AnyEvent::Handle. Also, this module will take ownership of this connection
281object.
247 282
283At some future point, AnyEvent::Handle might switch to another TLS
284implementation, then the option to use your own session object will go
285away.
286
287B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
288passing in the wrong integer will lead to certain crash. This most often
289happens when one uses a stylish C<< tls => 1 >> and is surprised about the
290segmentation fault.
291
248See the C<starttls> method for when need to start TLS negotiation later. 292See the C<< ->starttls >> method for when need to start TLS negotiation later.
249 293
250=item tls_ctx => $ssl_ctx 294=item tls_ctx => $anyevent_tls
251 295
252Use the given Net::SSLeay::CTX object to create the new TLS connection 296Use the given C<AnyEvent::TLS> object to create the new TLS connection
253(unless a connection object was specified directly). If this parameter is 297(unless a connection object was specified directly). If this parameter is
254missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 298missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
299
300Instead of an object, you can also specify a hash reference with C<< key
301=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
302new TLS context object.
303
304=item on_starttls => $cb->($handle, $success[, $error_message])
305
306This callback will be invoked when the TLS/SSL handshake has finished. If
307C<$success> is true, then the TLS handshake succeeded, otherwise it failed
308(C<on_stoptls> will not be called in this case).
309
310The session in C<< $handle->{tls} >> can still be examined in this
311callback, even when the handshake was not successful.
312
313TLS handshake failures will not cause C<on_error> to be invoked when this
314callback is in effect, instead, the error message will be passed to C<on_starttls>.
315
316Without this callback, handshake failures lead to C<on_error> being
317called, as normal.
318
319Note that you cannot call C<starttls> right again in this callback. If you
320need to do that, start an zero-second timer instead whose callback can
321then call C<< ->starttls >> again.
322
323=item on_stoptls => $cb->($handle)
324
325When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
326set, then it will be invoked after freeing the TLS session. If it is not,
327then a TLS shutdown condition will be treated like a normal EOF condition
328on the handle.
329
330The session in C<< $handle->{tls} >> can still be examined in this
331callback.
332
333This callback will only be called on TLS shutdowns, not when the
334underlying handle signals EOF.
255 335
256=item json => JSON or JSON::XS object 336=item json => JSON or JSON::XS object
257 337
258This is the json coder object used by the C<json> read and write types. 338This is the json coder object used by the C<json> read and write types.
259 339
262texts. 342texts.
263 343
264Note that you are responsible to depend on the JSON module if you want to 344Note that you are responsible to depend on the JSON module if you want to
265use this functionality, as AnyEvent does not have a dependency itself. 345use this functionality, as AnyEvent does not have a dependency itself.
266 346
267=item filter_r => $cb
268
269=item filter_w => $cb
270
271These exist, but are undocumented at this time. (They are used internally
272by the TLS code).
273
274=back 347=back
275 348
276=cut 349=cut
277 350
278sub new { 351sub new {
279 my $class = shift; 352 my $class = shift;
280
281 my $self = bless { @_ }, $class; 353 my $self = bless { @_ }, $class;
282 354
283 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 355 $self->{fh} or Carp::croak "mandatory argument fh is missing";
284 356
285 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 357 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
286
287 if ($self->{tls}) {
288 require Net::SSLeay;
289 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
290 }
291 358
292 $self->{_activity} = AnyEvent->now; 359 $self->{_activity} = AnyEvent->now;
293 $self->_timeout; 360 $self->_timeout;
294 361
295 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
296 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay}; 362 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
363
364 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
365 if $self->{tls};
366
367 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
297 368
298 $self->start_read 369 $self->start_read
299 if $self->{on_read}; 370 if $self->{on_read};
300 371
301 $self 372 $self->{fh} && $self
302} 373}
303 374
304sub _shutdown { 375#sub _shutdown {
305 my ($self) = @_; 376# my ($self) = @_;
306 377#
307 delete $self->{_tw}; 378# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
308 delete $self->{_rw}; 379# $self->{_eof} = 1; # tell starttls et. al to stop trying
309 delete $self->{_ww}; 380#
310 delete $self->{fh}; 381# &_freetls;
311 382#}
312 $self->stoptls;
313
314 delete $self->{on_read};
315 delete $self->{_queue};
316}
317 383
318sub _error { 384sub _error {
319 my ($self, $errno, $fatal) = @_; 385 my ($self, $errno, $fatal, $message) = @_;
320
321 $self->_shutdown
322 if $fatal;
323 386
324 $! = $errno; 387 $! = $errno;
388 $message ||= "$!";
325 389
326 if ($self->{on_error}) { 390 if ($self->{on_error}) {
327 $self->{on_error}($self, $fatal); 391 $self->{on_error}($self, $fatal, $message);
328 } else { 392 $self->destroy if $fatal;
393 } elsif ($self->{fh}) {
394 $self->destroy;
329 Carp::croak "AnyEvent::Handle uncaught error: $!"; 395 Carp::croak "AnyEvent::Handle uncaught error: $message";
330 } 396 }
331} 397}
332 398
333=item $fh = $handle->fh 399=item $fh = $handle->fh
334 400
335This method returns the file handle of the L<AnyEvent::Handle> object. 401This method returns the file handle used to create the L<AnyEvent::Handle> object.
336 402
337=cut 403=cut
338 404
339sub fh { $_[0]{fh} } 405sub fh { $_[0]{fh} }
340 406
358 $_[0]{on_eof} = $_[1]; 424 $_[0]{on_eof} = $_[1];
359} 425}
360 426
361=item $handle->on_timeout ($cb) 427=item $handle->on_timeout ($cb)
362 428
363Replace the current C<on_timeout> callback, or disables the callback 429Replace the current C<on_timeout> callback, or disables the callback (but
364(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor 430not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
365argument. 431argument and method.
366 432
367=cut 433=cut
368 434
369sub on_timeout { 435sub on_timeout {
370 $_[0]{on_timeout} = $_[1]; 436 $_[0]{on_timeout} = $_[1];
371} 437}
372 438
373=item $handle->autocork ($boolean) 439=item $handle->autocork ($boolean)
374 440
375Enables or disables the current autocork behaviour (see C<autocork> 441Enables or disables the current autocork behaviour (see C<autocork>
376constructor argument). 442constructor argument). Changes will only take effect on the next write.
377 443
378=cut 444=cut
445
446sub autocork {
447 $_[0]{autocork} = $_[1];
448}
379 449
380=item $handle->no_delay ($boolean) 450=item $handle->no_delay ($boolean)
381 451
382Enables or disables the C<no_delay> setting (see constructor argument of 452Enables or disables the C<no_delay> setting (see constructor argument of
383the same name for details). 453the same name for details).
391 local $SIG{__DIE__}; 461 local $SIG{__DIE__};
392 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 462 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
393 }; 463 };
394} 464}
395 465
466=item $handle->on_starttls ($cb)
467
468Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
469
470=cut
471
472sub on_starttls {
473 $_[0]{on_starttls} = $_[1];
474}
475
476=item $handle->on_stoptls ($cb)
477
478Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
479
480=cut
481
482sub on_starttls {
483 $_[0]{on_stoptls} = $_[1];
484}
485
396############################################################################# 486#############################################################################
397 487
398=item $handle->timeout ($seconds) 488=item $handle->timeout ($seconds)
399 489
400Configures (or disables) the inactivity timeout. 490Configures (or disables) the inactivity timeout.
424 $self->{_activity} = $NOW; 514 $self->{_activity} = $NOW;
425 515
426 if ($self->{on_timeout}) { 516 if ($self->{on_timeout}) {
427 $self->{on_timeout}($self); 517 $self->{on_timeout}($self);
428 } else { 518 } else {
429 $self->_error (&Errno::ETIMEDOUT); 519 $self->_error (Errno::ETIMEDOUT);
430 } 520 }
431 521
432 # callback could have changed timeout value, optimise 522 # callback could have changed timeout value, optimise
433 return unless $self->{timeout}; 523 return unless $self->{timeout};
434 524
476 my ($self, $cb) = @_; 566 my ($self, $cb) = @_;
477 567
478 $self->{on_drain} = $cb; 568 $self->{on_drain} = $cb;
479 569
480 $cb->($self) 570 $cb->($self)
481 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 571 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
482} 572}
483 573
484=item $handle->push_write ($data) 574=item $handle->push_write ($data)
485 575
486Queues the given scalar to be written. You can push as much data as you 576Queues the given scalar to be written. You can push as much data as you
497 Scalar::Util::weaken $self; 587 Scalar::Util::weaken $self;
498 588
499 my $cb = sub { 589 my $cb = sub {
500 my $len = syswrite $self->{fh}, $self->{wbuf}; 590 my $len = syswrite $self->{fh}, $self->{wbuf};
501 591
502 if ($len >= 0) { 592 if (defined $len) {
503 substr $self->{wbuf}, 0, $len, ""; 593 substr $self->{wbuf}, 0, $len, "";
504 594
505 $self->{_activity} = AnyEvent->now; 595 $self->{_activity} = AnyEvent->now;
506 596
507 $self->{on_drain}($self) 597 $self->{on_drain}($self)
508 if $self->{low_water_mark} >= length $self->{wbuf} 598 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
509 && $self->{on_drain}; 599 && $self->{on_drain};
510 600
511 delete $self->{_ww} unless length $self->{wbuf}; 601 delete $self->{_ww} unless length $self->{wbuf};
512 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 602 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
513 $self->_error ($!, 1); 603 $self->_error ($!, 1);
537 627
538 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 628 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
539 ->($self, @_); 629 ->($self, @_);
540 } 630 }
541 631
542 if ($self->{filter_w}) { 632 if ($self->{tls}) {
543 $self->{filter_w}($self, \$_[0]); 633 $self->{_tls_wbuf} .= $_[0];
634
635 &_dotls ($self);
544 } else { 636 } else {
545 $self->{wbuf} .= $_[0]; 637 $self->{wbuf} .= $_[0];
546 $self->_drain_wbuf; 638 $self->_drain_wbuf;
547 } 639 }
548} 640}
565=cut 657=cut
566 658
567register_write_type netstring => sub { 659register_write_type netstring => sub {
568 my ($self, $string) = @_; 660 my ($self, $string) = @_;
569 661
570 sprintf "%d:%s,", (length $string), $string 662 (length $string) . ":$string,"
571}; 663};
572 664
573=item packstring => $format, $data 665=item packstring => $format, $data
574 666
575An octet string prefixed with an encoded length. The encoding C<$format> 667An octet string prefixed with an encoded length. The encoding C<$format>
640 732
641 pack "w/a*", Storable::nfreeze ($ref) 733 pack "w/a*", Storable::nfreeze ($ref)
642}; 734};
643 735
644=back 736=back
737
738=item $handle->push_shutdown
739
740Sometimes you know you want to close the socket after writing your data
741before it was actually written. One way to do that is to replace your
742C<on_drain> handler by a callback that shuts down the socket (and set
743C<low_water_mark> to C<0>). This method is a shorthand for just that, and
744replaces the C<on_drain> callback with:
745
746 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
747
748This simply shuts down the write side and signals an EOF condition to the
749the peer.
750
751You can rely on the normal read queue and C<on_eof> handling
752afterwards. This is the cleanest way to close a connection.
753
754=cut
755
756sub push_shutdown {
757 my ($self) = @_;
758
759 delete $self->{low_water_mark};
760 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
761}
645 762
646=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 763=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
647 764
648This function (not method) lets you add your own types to C<push_write>. 765This function (not method) lets you add your own types to C<push_write>.
649Whenever the given C<type> is used, C<push_write> will invoke the code 766Whenever the given C<type> is used, C<push_write> will invoke the code
749 866
750 if ( 867 if (
751 defined $self->{rbuf_max} 868 defined $self->{rbuf_max}
752 && $self->{rbuf_max} < length $self->{rbuf} 869 && $self->{rbuf_max} < length $self->{rbuf}
753 ) { 870 ) {
754 $self->_error (&Errno::ENOSPC, 1), return; 871 $self->_error (Errno::ENOSPC, 1), return;
755 } 872 }
756 873
757 while () { 874 while () {
875 # we need to use a separate tls read buffer, as we must not receive data while
876 # we are draining the buffer, and this can only happen with TLS.
877 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
878
758 my $len = length $self->{rbuf}; 879 my $len = length $self->{rbuf};
759 880
760 if (my $cb = shift @{ $self->{_queue} }) { 881 if (my $cb = shift @{ $self->{_queue} }) {
761 unless ($cb->($self)) { 882 unless ($cb->($self)) {
762 if ($self->{_eof}) { 883 if ($self->{_eof}) {
763 # no progress can be made (not enough data and no data forthcoming) 884 # no progress can be made (not enough data and no data forthcoming)
764 $self->_error (&Errno::EPIPE, 1), return; 885 $self->_error (Errno::EPIPE, 1), return;
765 } 886 }
766 887
767 unshift @{ $self->{_queue} }, $cb; 888 unshift @{ $self->{_queue} }, $cb;
768 last; 889 last;
769 } 890 }
777 && !@{ $self->{_queue} } # and the queue is still empty 898 && !@{ $self->{_queue} } # and the queue is still empty
778 && $self->{on_read} # but we still have on_read 899 && $self->{on_read} # but we still have on_read
779 ) { 900 ) {
780 # no further data will arrive 901 # no further data will arrive
781 # so no progress can be made 902 # so no progress can be made
782 $self->_error (&Errno::EPIPE, 1), return 903 $self->_error (Errno::EPIPE, 1), return
783 if $self->{_eof}; 904 if $self->{_eof};
784 905
785 last; # more data might arrive 906 last; # more data might arrive
786 } 907 }
787 } else { 908 } else {
788 # read side becomes idle 909 # read side becomes idle
789 delete $self->{_rw}; 910 delete $self->{_rw} unless $self->{tls};
790 last; 911 last;
791 } 912 }
792 } 913 }
793 914
794 if ($self->{_eof}) { 915 if ($self->{_eof}) {
795 if ($self->{on_eof}) { 916 if ($self->{on_eof}) {
796 $self->{on_eof}($self) 917 $self->{on_eof}($self)
797 } else { 918 } else {
798 $self->_error (0, 1); 919 $self->_error (0, 1, "Unexpected end-of-file");
799 } 920 }
800 } 921 }
801 922
802 # may need to restart read watcher 923 # may need to restart read watcher
803 unless ($self->{_rw}) { 924 unless ($self->{_rw}) {
823 944
824=item $handle->rbuf 945=item $handle->rbuf
825 946
826Returns the read buffer (as a modifiable lvalue). 947Returns the read buffer (as a modifiable lvalue).
827 948
828You can access the read buffer directly as the C<< ->{rbuf} >> member, if 949You can access the read buffer directly as the C<< ->{rbuf} >>
829you want. 950member, if you want. However, the only operation allowed on the
951read buffer (apart from looking at it) is removing data from its
952beginning. Otherwise modifying or appending to it is not allowed and will
953lead to hard-to-track-down bugs.
830 954
831NOTE: The read buffer should only be used or modified if the C<on_read>, 955NOTE: The read buffer should only be used or modified if the C<on_read>,
832C<push_read> or C<unshift_read> methods are used. The other read methods 956C<push_read> or C<unshift_read> methods are used. The other read methods
833automatically manage the read buffer. 957automatically manage the read buffer.
834 958
1034 return 1; 1158 return 1;
1035 } 1159 }
1036 1160
1037 # reject 1161 # reject
1038 if ($reject && $$rbuf =~ $reject) { 1162 if ($reject && $$rbuf =~ $reject) {
1039 $self->_error (&Errno::EBADMSG); 1163 $self->_error (Errno::EBADMSG);
1040 } 1164 }
1041 1165
1042 # skip 1166 # skip
1043 if ($skip && $$rbuf =~ $skip) { 1167 if ($skip && $$rbuf =~ $skip) {
1044 $data .= substr $$rbuf, 0, $+[0], ""; 1168 $data .= substr $$rbuf, 0, $+[0], "";
1060 my ($self, $cb) = @_; 1184 my ($self, $cb) = @_;
1061 1185
1062 sub { 1186 sub {
1063 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1187 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1064 if ($_[0]{rbuf} =~ /[^0-9]/) { 1188 if ($_[0]{rbuf} =~ /[^0-9]/) {
1065 $self->_error (&Errno::EBADMSG); 1189 $self->_error (Errno::EBADMSG);
1066 } 1190 }
1067 return; 1191 return;
1068 } 1192 }
1069 1193
1070 my $len = $1; 1194 my $len = $1;
1073 my $string = $_[1]; 1197 my $string = $_[1];
1074 $_[0]->unshift_read (chunk => 1, sub { 1198 $_[0]->unshift_read (chunk => 1, sub {
1075 if ($_[1] eq ",") { 1199 if ($_[1] eq ",") {
1076 $cb->($_[0], $string); 1200 $cb->($_[0], $string);
1077 } else { 1201 } else {
1078 $self->_error (&Errno::EBADMSG); 1202 $self->_error (Errno::EBADMSG);
1079 } 1203 }
1080 }); 1204 });
1081 }); 1205 });
1082 1206
1083 1 1207 1
1089An octet string prefixed with an encoded length. The encoding C<$format> 1213An octet string prefixed with an encoded length. The encoding C<$format>
1090uses the same format as a Perl C<pack> format, but must specify a single 1214uses the same format as a Perl C<pack> format, but must specify a single
1091integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1215integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1092optional C<!>, C<< < >> or C<< > >> modifier). 1216optional C<!>, C<< < >> or C<< > >> modifier).
1093 1217
1094DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1218For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1219EPP uses a prefix of C<N> (4 octtes).
1095 1220
1096Example: read a block of data prefixed by its length in BER-encoded 1221Example: read a block of data prefixed by its length in BER-encoded
1097format (very efficient). 1222format (very efficient).
1098 1223
1099 $handle->push_read (packstring => "w", sub { 1224 $handle->push_read (packstring => "w", sub {
1129 } 1254 }
1130}; 1255};
1131 1256
1132=item json => $cb->($handle, $hash_or_arrayref) 1257=item json => $cb->($handle, $hash_or_arrayref)
1133 1258
1134Reads a JSON object or array, decodes it and passes it to the callback. 1259Reads a JSON object or array, decodes it and passes it to the
1260callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1135 1261
1136If a C<json> object was passed to the constructor, then that will be used 1262If a C<json> object was passed to the constructor, then that will be used
1137for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1263for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1138 1264
1139This read type uses the incremental parser available with JSON version 1265This read type uses the incremental parser available with JSON version
1148=cut 1274=cut
1149 1275
1150register_read_type json => sub { 1276register_read_type json => sub {
1151 my ($self, $cb) = @_; 1277 my ($self, $cb) = @_;
1152 1278
1153 require JSON; 1279 my $json = $self->{json} ||=
1280 eval { require JSON::XS; JSON::XS->new->utf8 }
1281 || do { require JSON; JSON->new->utf8 };
1154 1282
1155 my $data; 1283 my $data;
1156 my $rbuf = \$self->{rbuf}; 1284 my $rbuf = \$self->{rbuf};
1157 1285
1158 my $json = $self->{json} ||= JSON->new->utf8;
1159
1160 sub { 1286 sub {
1161 my $ref = $json->incr_parse ($self->{rbuf}); 1287 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1162 1288
1163 if ($ref) { 1289 if ($ref) {
1164 $self->{rbuf} = $json->incr_text; 1290 $self->{rbuf} = $json->incr_text;
1165 $json->incr_text = ""; 1291 $json->incr_text = "";
1166 $cb->($self, $ref); 1292 $cb->($self, $ref);
1167 1293
1168 1 1294 1
1295 } elsif ($@) {
1296 # error case
1297 $json->incr_skip;
1298
1299 $self->{rbuf} = $json->incr_text;
1300 $json->incr_text = "";
1301
1302 $self->_error (Errno::EBADMSG);
1303
1304 ()
1169 } else { 1305 } else {
1170 $self->{rbuf} = ""; 1306 $self->{rbuf} = "";
1307
1171 () 1308 ()
1172 } 1309 }
1173 } 1310 }
1174}; 1311};
1175 1312
1207 # read remaining chunk 1344 # read remaining chunk
1208 $_[0]->unshift_read (chunk => $len, sub { 1345 $_[0]->unshift_read (chunk => $len, sub {
1209 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1346 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1210 $cb->($_[0], $ref); 1347 $cb->($_[0], $ref);
1211 } else { 1348 } else {
1212 $self->_error (&Errno::EBADMSG); 1349 $self->_error (Errno::EBADMSG);
1213 } 1350 }
1214 }); 1351 });
1215 } 1352 }
1216 1353
1217 1 1354 1
1252Note that AnyEvent::Handle will automatically C<start_read> for you when 1389Note that AnyEvent::Handle will automatically C<start_read> for you when
1253you change the C<on_read> callback or push/unshift a read callback, and it 1390you change the C<on_read> callback or push/unshift a read callback, and it
1254will automatically C<stop_read> for you when neither C<on_read> is set nor 1391will automatically C<stop_read> for you when neither C<on_read> is set nor
1255there are any read requests in the queue. 1392there are any read requests in the queue.
1256 1393
1394These methods will have no effect when in TLS mode (as TLS doesn't support
1395half-duplex connections).
1396
1257=cut 1397=cut
1258 1398
1259sub stop_read { 1399sub stop_read {
1260 my ($self) = @_; 1400 my ($self) = @_;
1261 1401
1262 delete $self->{_rw}; 1402 delete $self->{_rw} unless $self->{tls};
1263} 1403}
1264 1404
1265sub start_read { 1405sub start_read {
1266 my ($self) = @_; 1406 my ($self) = @_;
1267 1407
1268 unless ($self->{_rw} || $self->{_eof}) { 1408 unless ($self->{_rw} || $self->{_eof}) {
1269 Scalar::Util::weaken $self; 1409 Scalar::Util::weaken $self;
1270 1410
1271 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1411 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1272 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1412 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1273 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1413 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1274 1414
1275 if ($len > 0) { 1415 if ($len > 0) {
1276 $self->{_activity} = AnyEvent->now; 1416 $self->{_activity} = AnyEvent->now;
1277 1417
1278 $self->{filter_r} 1418 if ($self->{tls}) {
1279 ? $self->{filter_r}($self, $rbuf) 1419 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1280 : $self->{_in_drain} || $self->_drain_rbuf; 1420
1421 &_dotls ($self);
1422 } else {
1423 $self->_drain_rbuf unless $self->{_in_drain};
1424 }
1281 1425
1282 } elsif (defined $len) { 1426 } elsif (defined $len) {
1283 delete $self->{_rw}; 1427 delete $self->{_rw};
1284 $self->{_eof} = 1; 1428 $self->{_eof} = 1;
1285 $self->_drain_rbuf unless $self->{_in_drain}; 1429 $self->_drain_rbuf unless $self->{_in_drain};
1289 } 1433 }
1290 }); 1434 });
1291 } 1435 }
1292} 1436}
1293 1437
1438our $ERROR_SYSCALL;
1439our $ERROR_WANT_READ;
1440
1441sub _tls_error {
1442 my ($self, $err) = @_;
1443
1444 return $self->_error ($!, 1)
1445 if $err == Net::SSLeay::ERROR_SYSCALL ();
1446
1447 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1448
1449 # reduce error string to look less scary
1450 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1451
1452 if ($self->{_on_starttls}) {
1453 (delete $self->{_on_starttls})->($self, undef, $err);
1454 &_freetls;
1455 } else {
1456 &_freetls;
1457 $self->_error (Errno::EPROTO, 1, $err);
1458 }
1459}
1460
1461# poll the write BIO and send the data if applicable
1462# also decode read data if possible
1463# this is basiclaly our TLS state machine
1464# more efficient implementations are possible with openssl,
1465# but not with the buggy and incomplete Net::SSLeay.
1294sub _dotls { 1466sub _dotls {
1295 my ($self) = @_; 1467 my ($self) = @_;
1296 1468
1297 my $buf; 1469 my $tmp;
1298 1470
1299 if (length $self->{_tls_wbuf}) { 1471 if (length $self->{_tls_wbuf}) {
1300 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1472 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1301 substr $self->{_tls_wbuf}, 0, $len, ""; 1473 substr $self->{_tls_wbuf}, 0, $tmp, "";
1302 } 1474 }
1303 }
1304 1475
1476 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1477 return $self->_tls_error ($tmp)
1478 if $tmp != $ERROR_WANT_READ
1479 && ($tmp != $ERROR_SYSCALL || $!);
1480 }
1481
1482 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1483 unless (length $tmp) {
1484 $self->{_on_starttls}
1485 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1486 &_freetls;
1487
1488 if ($self->{on_stoptls}) {
1489 $self->{on_stoptls}($self);
1490 return;
1491 } else {
1492 # let's treat SSL-eof as we treat normal EOF
1493 delete $self->{_rw};
1494 $self->{_eof} = 1;
1495 }
1496 }
1497
1498 $self->{_tls_rbuf} .= $tmp;
1499 $self->_drain_rbuf unless $self->{_in_drain};
1500 $self->{tls} or return; # tls session might have gone away in callback
1501 }
1502
1503 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1504 return $self->_tls_error ($tmp)
1505 if $tmp != $ERROR_WANT_READ
1506 && ($tmp != $ERROR_SYSCALL || $!);
1507
1305 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1508 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1306 $self->{wbuf} .= $buf; 1509 $self->{wbuf} .= $tmp;
1307 $self->_drain_wbuf; 1510 $self->_drain_wbuf;
1308 } 1511 }
1309 1512
1310 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1513 $self->{_on_starttls}
1311 if (length $buf) { 1514 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1312 $self->{rbuf} .= $buf; 1515 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1313 $self->_drain_rbuf unless $self->{_in_drain};
1314 } else {
1315 # let's treat SSL-eof as we treat normal EOF
1316 $self->{_eof} = 1;
1317 $self->_shutdown;
1318 return;
1319 }
1320 }
1321
1322 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1323
1324 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1325 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1326 return $self->_error ($!, 1);
1327 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1328 return $self->_error (&Errno::EIO, 1);
1329 }
1330
1331 # all others are fine for our purposes
1332 }
1333} 1516}
1334 1517
1335=item $handle->starttls ($tls[, $tls_ctx]) 1518=item $handle->starttls ($tls[, $tls_ctx])
1336 1519
1337Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1520Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1339C<starttls>. 1522C<starttls>.
1340 1523
1341The first argument is the same as the C<tls> constructor argument (either 1524The first argument is the same as the C<tls> constructor argument (either
1342C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1525C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1343 1526
1344The second argument is the optional C<Net::SSLeay::CTX> object that is 1527The second argument is the optional C<AnyEvent::TLS> object that is used
1345used when AnyEvent::Handle has to create its own TLS connection object. 1528when AnyEvent::Handle has to create its own TLS connection object, or
1529a hash reference with C<< key => value >> pairs that will be used to
1530construct a new context.
1346 1531
1347The TLS connection object will end up in C<< $handle->{tls} >> after this 1532The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1348call and can be used or changed to your liking. Note that the handshake 1533context in C<< $handle->{tls_ctx} >> after this call and can be used or
1349might have already started when this function returns. 1534changed to your liking. Note that the handshake might have already started
1535when this function returns.
1350 1536
1537If it an error to start a TLS handshake more than once per
1538AnyEvent::Handle object (this is due to bugs in OpenSSL).
1539
1351=cut 1540=cut
1541
1542our %TLS_CACHE; #TODO not yet documented, should we?
1352 1543
1353sub starttls { 1544sub starttls {
1354 my ($self, $ssl, $ctx) = @_; 1545 my ($self, $ssl, $ctx) = @_;
1355 1546
1356 $self->stoptls; 1547 require Net::SSLeay;
1357 1548
1358 if ($ssl eq "accept") { 1549 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1359 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1550 if $self->{tls};
1360 Net::SSLeay::set_accept_state ($ssl); 1551
1361 } elsif ($ssl eq "connect") { 1552 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1362 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1553 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1363 Net::SSLeay::set_connect_state ($ssl); 1554
1555 $ctx ||= $self->{tls_ctx};
1556
1557 if ("HASH" eq ref $ctx) {
1558 require AnyEvent::TLS;
1559
1560 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context
1561
1562 if ($ctx->{cache}) {
1563 my $key = $ctx+0;
1564 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1565 } else {
1566 $ctx = new AnyEvent::TLS %$ctx;
1567 }
1568 }
1364 } 1569
1365 1570 $self->{tls_ctx} = $ctx || TLS_CTX ();
1366 $self->{tls} = $ssl; 1571 $self->{tls} = $ssl = $self->{tls_ctx}->_get_session ($ssl, $self, $self->{peername});
1367 1572
1368 # basically, this is deep magic (because SSL_read should have the same issues) 1573 # basically, this is deep magic (because SSL_read should have the same issues)
1369 # but the openssl maintainers basically said: "trust us, it just works". 1574 # but the openssl maintainers basically said: "trust us, it just works".
1370 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1575 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1371 # and mismaintained ssleay-module doesn't even offer them). 1576 # and mismaintained ssleay-module doesn't even offer them).
1372 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1577 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1373 # 1578 #
1374 # in short: this is a mess. 1579 # in short: this is a mess.
1375 # 1580 #
1376 # note that we do not try to kepe the length constant between writes as we are required to do. 1581 # note that we do not try to keep the length constant between writes as we are required to do.
1377 # we assume that most (but not all) of this insanity only applies to non-blocking cases, 1582 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1378 # and we drive openssl fully in blocking mode here. 1583 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1584 # have identity issues in that area.
1379 Net::SSLeay::CTX_set_mode ($self->{tls}, 1585# Net::SSLeay::CTX_set_mode ($ssl,
1380 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1586# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1381 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1587# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1588 Net::SSLeay::CTX_set_mode ($ssl, 1|2);
1382 1589
1383 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1590 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1384 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1591 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1385 1592
1386 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1593 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1387 1594
1388 $self->{filter_w} = sub { 1595 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1389 $_[0]{_tls_wbuf} .= ${$_[1]}; 1596 if $self->{on_starttls};
1390 &_dotls; 1597
1391 }; 1598 &_dotls; # need to trigger the initial handshake
1392 $self->{filter_r} = sub { 1599 $self->start_read; # make sure we actually do read
1393 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1394 &_dotls;
1395 };
1396} 1600}
1397 1601
1398=item $handle->stoptls 1602=item $handle->stoptls
1399 1603
1400Destroys the SSL connection, if any. Partial read or write data will be 1604Shuts down the SSL connection - this makes a proper EOF handshake by
1401lost. 1605sending a close notify to the other side, but since OpenSSL doesn't
1606support non-blocking shut downs, it is not possible to re-use the stream
1607afterwards.
1402 1608
1403=cut 1609=cut
1404 1610
1405sub stoptls { 1611sub stoptls {
1406 my ($self) = @_; 1612 my ($self) = @_;
1407 1613
1408 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1614 if ($self->{tls}) {
1615 Net::SSLeay::shutdown ($self->{tls});
1409 1616
1410 delete $self->{_rbio}; 1617 &_dotls;
1411 delete $self->{_wbio}; 1618
1412 delete $self->{_tls_wbuf}; 1619# # we don't give a shit. no, we do, but we can't. no...#d#
1413 delete $self->{filter_r}; 1620# # we, we... have to use openssl :/#d#
1414 delete $self->{filter_w}; 1621# &_freetls;#d#
1622 }
1623}
1624
1625sub _freetls {
1626 my ($self) = @_;
1627
1628 return unless $self->{tls};
1629
1630 $self->{tls_ctx}->_put_session (delete $self->{tls});
1631
1632 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1415} 1633}
1416 1634
1417sub DESTROY { 1635sub DESTROY {
1418 my $self = shift; 1636 my ($self) = @_;
1419 1637
1420 $self->stoptls; 1638 &_freetls;
1421 1639
1422 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1640 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1423 1641
1424 if ($linger && length $self->{wbuf}) { 1642 if ($linger && length $self->{wbuf}) {
1425 my $fh = delete $self->{fh}; 1643 my $fh = delete $self->{fh};
1440 @linger = (); 1658 @linger = ();
1441 }); 1659 });
1442 } 1660 }
1443} 1661}
1444 1662
1663=item $handle->destroy
1664
1665Shuts down the handle object as much as possible - this call ensures that
1666no further callbacks will be invoked and as many resources as possible
1667will be freed. You must not call any methods on the object afterwards.
1668
1669Normally, you can just "forget" any references to an AnyEvent::Handle
1670object and it will simply shut down. This works in fatal error and EOF
1671callbacks, as well as code outside. It does I<NOT> work in a read or write
1672callback, so when you want to destroy the AnyEvent::Handle object from
1673within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1674that case.
1675
1676Destroying the handle object in this way has the advantage that callbacks
1677will be removed as well, so if those are the only reference holders (as
1678is common), then one doesn't need to do anything special to break any
1679reference cycles.
1680
1681The handle might still linger in the background and write out remaining
1682data, as specified by the C<linger> option, however.
1683
1684=cut
1685
1686sub destroy {
1687 my ($self) = @_;
1688
1689 $self->DESTROY;
1690 %$self = ();
1691}
1692
1445=item AnyEvent::Handle::TLS_CTX 1693=item AnyEvent::Handle::TLS_CTX
1446 1694
1447This function creates and returns the Net::SSLeay::CTX object used by 1695This function creates and returns the AnyEvent::TLS object used by default
1448default for TLS mode. 1696for TLS mode.
1449 1697
1450The context is created like this: 1698The context is created by calling L<AnyEvent::TLS> without any arguments.
1451
1452 Net::SSLeay::load_error_strings;
1453 Net::SSLeay::SSLeay_add_ssl_algorithms;
1454 Net::SSLeay::randomize;
1455
1456 my $CTX = Net::SSLeay::CTX_new;
1457
1458 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1459 1699
1460=cut 1700=cut
1461 1701
1462our $TLS_CTX; 1702our $TLS_CTX;
1463 1703
1464sub TLS_CTX() { 1704sub TLS_CTX() {
1465 $TLS_CTX || do { 1705 $TLS_CTX ||= do {
1466 require Net::SSLeay; 1706 require AnyEvent::TLS;
1467 1707
1468 Net::SSLeay::load_error_strings (); 1708 new AnyEvent::TLS
1469 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1470 Net::SSLeay::randomize ();
1471
1472 $TLS_CTX = Net::SSLeay::CTX_new ();
1473
1474 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1475
1476 $TLS_CTX
1477 } 1709 }
1478} 1710}
1479 1711
1480=back 1712=back
1713
1714
1715=head1 NONFREQUENTLY ASKED QUESTIONS
1716
1717=over 4
1718
1719=item I C<undef> the AnyEvent::Handle reference inside my callback and
1720still get further invocations!
1721
1722That's because AnyEvent::Handle keeps a reference to itself when handling
1723read or write callbacks.
1724
1725It is only safe to "forget" the reference inside EOF or error callbacks,
1726from within all other callbacks, you need to explicitly call the C<<
1727->destroy >> method.
1728
1729=item I get different callback invocations in TLS mode/Why can't I pause
1730reading?
1731
1732Unlike, say, TCP, TLS connections do not consist of two independent
1733communication channels, one for each direction. Or put differently. The
1734read and write directions are not independent of each other: you cannot
1735write data unless you are also prepared to read, and vice versa.
1736
1737This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1738callback invocations when you are not expecting any read data - the reason
1739is that AnyEvent::Handle always reads in TLS mode.
1740
1741During the connection, you have to make sure that you always have a
1742non-empty read-queue, or an C<on_read> watcher. At the end of the
1743connection (or when you no longer want to use it) you can call the
1744C<destroy> method.
1745
1746=item How do I read data until the other side closes the connection?
1747
1748If you just want to read your data into a perl scalar, the easiest way
1749to achieve this is by setting an C<on_read> callback that does nothing,
1750clearing the C<on_eof> callback and in the C<on_error> callback, the data
1751will be in C<$_[0]{rbuf}>:
1752
1753 $handle->on_read (sub { });
1754 $handle->on_eof (undef);
1755 $handle->on_error (sub {
1756 my $data = delete $_[0]{rbuf};
1757 });
1758
1759The reason to use C<on_error> is that TCP connections, due to latencies
1760and packets loss, might get closed quite violently with an error, when in
1761fact, all data has been received.
1762
1763It is usually better to use acknowledgements when transferring data,
1764to make sure the other side hasn't just died and you got the data
1765intact. This is also one reason why so many internet protocols have an
1766explicit QUIT command.
1767
1768=item I don't want to destroy the handle too early - how do I wait until
1769all data has been written?
1770
1771After writing your last bits of data, set the C<on_drain> callback
1772and destroy the handle in there - with the default setting of
1773C<low_water_mark> this will be called precisely when all data has been
1774written to the socket:
1775
1776 $handle->push_write (...);
1777 $handle->on_drain (sub {
1778 warn "all data submitted to the kernel\n";
1779 undef $handle;
1780 });
1781
1782If you just want to queue some data and then signal EOF to the other side,
1783consider using C<< ->push_shutdown >> instead.
1784
1785=item I want to contact a TLS/SSL server, I don't care about security.
1786
1787If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1788simply connect to it and then create the AnyEvent::Handle with the C<tls>
1789parameter:
1790
1791 tcp_connect $host, $port, sub {
1792 my ($fh) = @_;
1793
1794 my $handle = new AnyEvent::Handle
1795 fh => $fh,
1796 tls => "connect",
1797 on_error => sub { ... };
1798
1799 $handle->push_write (...);
1800 };
1801
1802=item I want to contact a TLS/SSL server, I do care about security.
1803
1804Then you should additionally enable certificate verification, including
1805peername verification, if the protocol you use supports it (see
1806L<AnyEvent::TLS>, C<verify_peername>).
1807
1808E.g. for HTTPS:
1809
1810 tcp_connect $host, $port, sub {
1811 my ($fh) = @_;
1812
1813 my $handle = new AnyEvent::Handle
1814 fh => $fh,
1815 peername => $host,
1816 tls => "connect",
1817 tls_ctx => { verify => 1, verify_peername => "https" },
1818 ...
1819
1820Note that you must specify the hostname you connected to (or whatever
1821"peername" the protocol needs) as the C<peername> argument, otherwise no
1822peername verification will be done.
1823
1824The above will use the system-dependent default set of trusted CA
1825certificates. If you want to check against a specific CA, add the
1826C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1827
1828 tls_ctx => {
1829 verify => 1,
1830 verify_peername => "https",
1831 ca_file => "my-ca-cert.pem",
1832 },
1833
1834=item I want to create a TLS/SSL server, how do I do that?
1835
1836Well, you first need to get a server certificate and key. You have
1837three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1838self-signed certificate (cheap. check the search engine of your choice,
1839there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1840nice program for that purpose).
1841
1842Then create a file with your private key (in PEM format, see
1843L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1844file should then look like this:
1845
1846 -----BEGIN RSA PRIVATE KEY-----
1847 ...header data
1848 ... lots of base64'y-stuff
1849 -----END RSA PRIVATE KEY-----
1850
1851 -----BEGIN CERTIFICATE-----
1852 ... lots of base64'y-stuff
1853 -----END CERTIFICATE-----
1854
1855The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
1856specify this file as C<cert_file>:
1857
1858 tcp_server undef, $port, sub {
1859 my ($fh) = @_;
1860
1861 my $handle = new AnyEvent::Handle
1862 fh => $fh,
1863 tls => "accept",
1864 tls_ctx => { cert_file => "my-server-keycert.pem" },
1865 ...
1866
1867When you have intermediate CA certificates that your clients might not
1868know about, just append them to the C<cert_file>.
1869
1870=back
1871
1481 1872
1482=head1 SUBCLASSING AnyEvent::Handle 1873=head1 SUBCLASSING AnyEvent::Handle
1483 1874
1484In many cases, you might want to subclass AnyEvent::Handle. 1875In many cases, you might want to subclass AnyEvent::Handle.
1485 1876

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines