ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.90 by root, Mon Sep 29 02:08:57 2008 UTC vs.
Revision 1.150 by root, Thu Jul 16 04:16:25 2009 UTC

14 14
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17=cut 17=cut
18 18
19our $VERSION = 4.234; 19our $VERSION = 4.82;
20 20
21=head1 SYNOPSIS 21=head1 SYNOPSIS
22 22
23 use AnyEvent; 23 use AnyEvent;
24 use AnyEvent::Handle; 24 use AnyEvent::Handle;
25 25
26 my $cv = AnyEvent->condvar; 26 my $cv = AnyEvent->condvar;
27 27
28 my $handle = 28 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 29 fh => \*STDIN,
31 on_eof => sub { 30 on_error => sub {
32 $cv->broadcast; 31 warn "got error $_[2]\n";
33 }, 32 $cv->send;
34 ); 33 );
35 34
36 # send some request line 35 # send some request line
37 $handle->push_write ("getinfo\015\012"); 36 $hdl->push_write ("getinfo\015\012");
38 37
39 # read the response line 38 # read the response line
40 $handle->push_read (line => sub { 39 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 40 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 41 warn "got line <$line>\n";
43 $cv->send; 42 $cv->send;
44 }); 43 });
45 44
46 $cv->recv; 45 $cv->recv;
47 46
59treatment of characters applies to this module as well. 58treatment of characters applies to this module as well.
60 59
61All callbacks will be invoked with the handle object as their first 60All callbacks will be invoked with the handle object as their first
62argument. 61argument.
63 62
64=head2 SIGPIPE is not handled by this module
65
66SIGPIPE is not handled by this module, so one of the practical
67requirements of using it is to ignore SIGPIPE (C<$SIG{PIPE} =
68'IGNORE'>). At least, this is highly recommend in a networked program: If
69you use AnyEvent::Handle in a filter program (like sort), exiting on
70SIGPIPE is probably the right thing to do.
71
72=head1 METHODS 63=head1 METHODS
73 64
74=over 4 65=over 4
75 66
76=item B<new (%args)> 67=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
77 68
78The constructor supports these arguments (all as key => value pairs). 69The constructor supports these arguments (all as C<< key => value >> pairs).
79 70
80=over 4 71=over 4
81 72
82=item fh => $filehandle [MANDATORY] 73=item fh => $filehandle [MANDATORY]
83 74
89 80
90=item on_eof => $cb->($handle) 81=item on_eof => $cb->($handle)
91 82
92Set the callback to be called when an end-of-file condition is detected, 83Set the callback to be called when an end-of-file condition is detected,
93i.e. in the case of a socket, when the other side has closed the 84i.e. in the case of a socket, when the other side has closed the
94connection cleanly. 85connection cleanly, and there are no outstanding read requests in the
86queue (if there are read requests, then an EOF counts as an unexpected
87connection close and will be flagged as an error).
95 88
96For sockets, this just means that the other side has stopped sending data, 89For sockets, this just means that the other side has stopped sending data,
97you can still try to write data, and, in fact, one can return from the eof 90you can still try to write data, and, in fact, one can return from the EOF
98callback and continue writing data, as only the read part has been shut 91callback and continue writing data, as only the read part has been shut
99down. 92down.
100 93
101While not mandatory, it is I<highly> recommended to set an eof callback,
102otherwise you might end up with a closed socket while you are still
103waiting for data.
104
105If an EOF condition has been detected but no C<on_eof> callback has been 94If an EOF condition has been detected but no C<on_eof> callback has been
106set, then a fatal error will be raised with C<$!> set to <0>. 95set, then a fatal error will be raised with C<$!> set to <0>.
107 96
108=item on_error => $cb->($handle, $fatal) 97=item on_error => $cb->($handle, $fatal, $message)
109 98
110This is the error callback, which is called when, well, some error 99This is the error callback, which is called when, well, some error
111occured, such as not being able to resolve the hostname, failure to 100occured, such as not being able to resolve the hostname, failure to
112connect or a read error. 101connect or a read error.
113 102
114Some errors are fatal (which is indicated by C<$fatal> being true). On 103Some errors are fatal (which is indicated by C<$fatal> being true). On
115fatal errors the handle object will be shut down and will not be usable 104fatal errors the handle object will be destroyed (by a call to C<< ->
116(but you are free to look at the current C<< ->rbuf >>). Examples of fatal 105destroy >>) after invoking the error callback (which means you are free to
117errors are an EOF condition with active (but unsatisifable) read watchers 106examine the handle object). Examples of fatal errors are an EOF condition
118(C<EPIPE>) or I/O errors. 107with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors.
108
109AnyEvent::Handle tries to find an appropriate error code for you to check
110against, but in some cases (TLS errors), this does not work well. It is
111recommended to always output the C<$message> argument in human-readable
112error messages (it's usually the same as C<"$!">).
119 113
120Non-fatal errors can be retried by simply returning, but it is recommended 114Non-fatal errors can be retried by simply returning, but it is recommended
121to simply ignore this parameter and instead abondon the handle object 115to simply ignore this parameter and instead abondon the handle object
122when this callback is invoked. Examples of non-fatal errors are timeouts 116when this callback is invoked. Examples of non-fatal errors are timeouts
123C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>). 117C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
124 118
125On callback entrance, the value of C<$!> contains the operating system 119On callback entrance, the value of C<$!> contains the operating system
126error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 120error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
121C<EPROTO>).
127 122
128While not mandatory, it is I<highly> recommended to set this callback, as 123While not mandatory, it is I<highly> recommended to set this callback, as
129you will not be notified of errors otherwise. The default simply calls 124you will not be notified of errors otherwise. The default simply calls
130C<croak>. 125C<croak>.
131 126
135and no read request is in the queue (unlike read queue callbacks, this 130and no read request is in the queue (unlike read queue callbacks, this
136callback will only be called when at least one octet of data is in the 131callback will only be called when at least one octet of data is in the
137read buffer). 132read buffer).
138 133
139To access (and remove data from) the read buffer, use the C<< ->rbuf >> 134To access (and remove data from) the read buffer, use the C<< ->rbuf >>
140method or access the C<$handle->{rbuf}> member directly. 135method or access the C<< $handle->{rbuf} >> member directly. Note that you
136must not enlarge or modify the read buffer, you can only remove data at
137the beginning from it.
141 138
142When an EOF condition is detected then AnyEvent::Handle will first try to 139When an EOF condition is detected then AnyEvent::Handle will first try to
143feed all the remaining data to the queued callbacks and C<on_read> before 140feed all the remaining data to the queued callbacks and C<on_read> before
144calling the C<on_eof> callback. If no progress can be made, then a fatal 141calling the C<on_eof> callback. If no progress can be made, then a fatal
145error will be raised (with C<$!> set to C<EPIPE>). 142error will be raised (with C<$!> set to C<EPIPE>).
143
144Note that, unlike requests in the read queue, an C<on_read> callback
145doesn't mean you I<require> some data: if there is an EOF and there
146are outstanding read requests then an error will be flagged. With an
147C<on_read> callback, the C<on_eof> callback will be invoked.
146 148
147=item on_drain => $cb->($handle) 149=item on_drain => $cb->($handle)
148 150
149This sets the callback that is called when the write buffer becomes empty 151This sets the callback that is called when the write buffer becomes empty
150(or when the callback is set and the buffer is empty already). 152(or when the callback is set and the buffer is empty already).
240write data and will install a watcher that will write this data to the 242write data and will install a watcher that will write this data to the
241socket. No errors will be reported (this mostly matches how the operating 243socket. No errors will be reported (this mostly matches how the operating
242system treats outstanding data at socket close time). 244system treats outstanding data at socket close time).
243 245
244This will not work for partial TLS data that could not be encoded 246This will not work for partial TLS data that could not be encoded
245yet. This data will be lost. 247yet. This data will be lost. Calling the C<stoptls> method in time might
248help.
249
250=item peername => $string
251
252A string used to identify the remote site - usually the DNS hostname
253(I<not> IDN!) used to create the connection, rarely the IP address.
254
255Apart from being useful in error messages, this string is also used in TLS
256peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
257verification will be skipped when C<peername> is not specified or
258C<undef>.
246 259
247=item tls => "accept" | "connect" | Net::SSLeay::SSL object 260=item tls => "accept" | "connect" | Net::SSLeay::SSL object
248 261
249When this parameter is given, it enables TLS (SSL) mode, that means 262When this parameter is given, it enables TLS (SSL) mode, that means
250AnyEvent will start a TLS handshake as soon as the conenction has been 263AnyEvent will start a TLS handshake as soon as the conenction has been
251established and will transparently encrypt/decrypt data afterwards. 264established and will transparently encrypt/decrypt data afterwards.
265
266All TLS protocol errors will be signalled as C<EPROTO>, with an
267appropriate error message.
252 268
253TLS mode requires Net::SSLeay to be installed (it will be loaded 269TLS mode requires Net::SSLeay to be installed (it will be loaded
254automatically when you try to create a TLS handle): this module doesn't 270automatically when you try to create a TLS handle): this module doesn't
255have a dependency on that module, so if your module requires it, you have 271have a dependency on that module, so if your module requires it, you have
256to add the dependency yourself. 272to add the dependency yourself.
260mode. 276mode.
261 277
262You can also provide your own TLS connection object, but you have 278You can also provide your own TLS connection object, but you have
263to make sure that you call either C<Net::SSLeay::set_connect_state> 279to make sure that you call either C<Net::SSLeay::set_connect_state>
264or C<Net::SSLeay::set_accept_state> on it before you pass it to 280or C<Net::SSLeay::set_accept_state> on it before you pass it to
265AnyEvent::Handle. 281AnyEvent::Handle. Also, this module will take ownership of this connection
282object.
283
284At some future point, AnyEvent::Handle might switch to another TLS
285implementation, then the option to use your own session object will go
286away.
287
288B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
289passing in the wrong integer will lead to certain crash. This most often
290happens when one uses a stylish C<< tls => 1 >> and is surprised about the
291segmentation fault.
266 292
267See the C<< ->starttls >> method for when need to start TLS negotiation later. 293See the C<< ->starttls >> method for when need to start TLS negotiation later.
268 294
269=item tls_ctx => $ssl_ctx 295=item tls_ctx => $anyevent_tls
270 296
271Use the given C<Net::SSLeay::CTX> object to create the new TLS connection 297Use the given C<AnyEvent::TLS> object to create the new TLS connection
272(unless a connection object was specified directly). If this parameter is 298(unless a connection object was specified directly). If this parameter is
273missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 299missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
300
301Instead of an object, you can also specify a hash reference with C<< key
302=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
303new TLS context object.
304
305=item on_starttls => $cb->($handle, $success[, $error_message])
306
307This callback will be invoked when the TLS/SSL handshake has finished. If
308C<$success> is true, then the TLS handshake succeeded, otherwise it failed
309(C<on_stoptls> will not be called in this case).
310
311The session in C<< $handle->{tls} >> can still be examined in this
312callback, even when the handshake was not successful.
313
314TLS handshake failures will not cause C<on_error> to be invoked when this
315callback is in effect, instead, the error message will be passed to C<on_starttls>.
316
317Without this callback, handshake failures lead to C<on_error> being
318called, as normal.
319
320Note that you cannot call C<starttls> right again in this callback. If you
321need to do that, start an zero-second timer instead whose callback can
322then call C<< ->starttls >> again.
323
324=item on_stoptls => $cb->($handle)
325
326When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
327set, then it will be invoked after freeing the TLS session. If it is not,
328then a TLS shutdown condition will be treated like a normal EOF condition
329on the handle.
330
331The session in C<< $handle->{tls} >> can still be examined in this
332callback.
333
334This callback will only be called on TLS shutdowns, not when the
335underlying handle signals EOF.
274 336
275=item json => JSON or JSON::XS object 337=item json => JSON or JSON::XS object
276 338
277This is the json coder object used by the C<json> read and write types. 339This is the json coder object used by the C<json> read and write types.
278 340
281texts. 343texts.
282 344
283Note that you are responsible to depend on the JSON module if you want to 345Note that you are responsible to depend on the JSON module if you want to
284use this functionality, as AnyEvent does not have a dependency itself. 346use this functionality, as AnyEvent does not have a dependency itself.
285 347
286=item filter_r => $cb
287
288=item filter_w => $cb
289
290These exist, but are undocumented at this time. (They are used internally
291by the TLS code).
292
293=back 348=back
294 349
295=cut 350=cut
296 351
297sub new { 352sub new {
298 my $class = shift; 353 my $class = shift;
299
300 my $self = bless { @_ }, $class; 354 my $self = bless { @_ }, $class;
301 355
302 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 356 $self->{fh} or Carp::croak "mandatory argument fh is missing";
303 357
304 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 358 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
305
306 if ($self->{tls}) {
307 require Net::SSLeay;
308 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
309 }
310 359
311 $self->{_activity} = AnyEvent->now; 360 $self->{_activity} = AnyEvent->now;
312 $self->_timeout; 361 $self->_timeout;
313 362
314 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
315 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay}; 363 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
364
365 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
366 if $self->{tls};
367
368 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
316 369
317 $self->start_read 370 $self->start_read
318 if $self->{on_read}; 371 if $self->{on_read};
319 372
320 $self 373 $self->{fh} && $self
321} 374}
322 375
323sub _shutdown { 376#sub _shutdown {
324 my ($self) = @_; 377# my ($self) = @_;
325 378#
326 delete $self->{_tw}; 379# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
327 delete $self->{_rw}; 380# $self->{_eof} = 1; # tell starttls et. al to stop trying
328 delete $self->{_ww}; 381#
329 delete $self->{fh}; 382# &_freetls;
330 383#}
331 $self->stoptls;
332
333 delete $self->{on_read};
334 delete $self->{_queue};
335}
336 384
337sub _error { 385sub _error {
338 my ($self, $errno, $fatal) = @_; 386 my ($self, $errno, $fatal, $message) = @_;
339
340 $self->_shutdown
341 if $fatal;
342 387
343 $! = $errno; 388 $! = $errno;
389 $message ||= "$!";
344 390
345 if ($self->{on_error}) { 391 if ($self->{on_error}) {
346 $self->{on_error}($self, $fatal); 392 $self->{on_error}($self, $fatal, $message);
347 } else { 393 $self->destroy;
394 } elsif ($self->{fh}) {
395 $self->destroy;
348 Carp::croak "AnyEvent::Handle uncaught error: $!"; 396 Carp::croak "AnyEvent::Handle uncaught error: $message";
349 } 397 }
350} 398}
351 399
352=item $fh = $handle->fh 400=item $fh = $handle->fh
353 401
390} 438}
391 439
392=item $handle->autocork ($boolean) 440=item $handle->autocork ($boolean)
393 441
394Enables or disables the current autocork behaviour (see C<autocork> 442Enables or disables the current autocork behaviour (see C<autocork>
395constructor argument). 443constructor argument). Changes will only take effect on the next write.
396 444
397=cut 445=cut
446
447sub autocork {
448 $_[0]{autocork} = $_[1];
449}
398 450
399=item $handle->no_delay ($boolean) 451=item $handle->no_delay ($boolean)
400 452
401Enables or disables the C<no_delay> setting (see constructor argument of 453Enables or disables the C<no_delay> setting (see constructor argument of
402the same name for details). 454the same name for details).
410 local $SIG{__DIE__}; 462 local $SIG{__DIE__};
411 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 463 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
412 }; 464 };
413} 465}
414 466
467=item $handle->on_starttls ($cb)
468
469Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
470
471=cut
472
473sub on_starttls {
474 $_[0]{on_starttls} = $_[1];
475}
476
477=item $handle->on_stoptls ($cb)
478
479Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
480
481=cut
482
483sub on_starttls {
484 $_[0]{on_stoptls} = $_[1];
485}
486
415############################################################################# 487#############################################################################
416 488
417=item $handle->timeout ($seconds) 489=item $handle->timeout ($seconds)
418 490
419Configures (or disables) the inactivity timeout. 491Configures (or disables) the inactivity timeout.
443 $self->{_activity} = $NOW; 515 $self->{_activity} = $NOW;
444 516
445 if ($self->{on_timeout}) { 517 if ($self->{on_timeout}) {
446 $self->{on_timeout}($self); 518 $self->{on_timeout}($self);
447 } else { 519 } else {
448 $self->_error (&Errno::ETIMEDOUT); 520 $self->_error (Errno::ETIMEDOUT);
449 } 521 }
450 522
451 # callback could have changed timeout value, optimise 523 # callback could have changed timeout value, optimise
452 return unless $self->{timeout}; 524 return unless $self->{timeout};
453 525
495 my ($self, $cb) = @_; 567 my ($self, $cb) = @_;
496 568
497 $self->{on_drain} = $cb; 569 $self->{on_drain} = $cb;
498 570
499 $cb->($self) 571 $cb->($self)
500 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 572 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
501} 573}
502 574
503=item $handle->push_write ($data) 575=item $handle->push_write ($data)
504 576
505Queues the given scalar to be written. You can push as much data as you 577Queues the given scalar to be written. You can push as much data as you
516 Scalar::Util::weaken $self; 588 Scalar::Util::weaken $self;
517 589
518 my $cb = sub { 590 my $cb = sub {
519 my $len = syswrite $self->{fh}, $self->{wbuf}; 591 my $len = syswrite $self->{fh}, $self->{wbuf};
520 592
521 if ($len >= 0) { 593 if (defined $len) {
522 substr $self->{wbuf}, 0, $len, ""; 594 substr $self->{wbuf}, 0, $len, "";
523 595
524 $self->{_activity} = AnyEvent->now; 596 $self->{_activity} = AnyEvent->now;
525 597
526 $self->{on_drain}($self) 598 $self->{on_drain}($self)
527 if $self->{low_water_mark} >= length $self->{wbuf} 599 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
528 && $self->{on_drain}; 600 && $self->{on_drain};
529 601
530 delete $self->{_ww} unless length $self->{wbuf}; 602 delete $self->{_ww} unless length $self->{wbuf};
531 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 603 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
532 $self->_error ($!, 1); 604 $self->_error ($!, 1);
556 628
557 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 629 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
558 ->($self, @_); 630 ->($self, @_);
559 } 631 }
560 632
561 if ($self->{filter_w}) { 633 if ($self->{tls}) {
562 $self->{filter_w}($self, \$_[0]); 634 $self->{_tls_wbuf} .= $_[0];
635
636 &_dotls ($self);
563 } else { 637 } else {
564 $self->{wbuf} .= $_[0]; 638 $self->{wbuf} .= $_[0];
565 $self->_drain_wbuf; 639 $self->_drain_wbuf;
566 } 640 }
567} 641}
584=cut 658=cut
585 659
586register_write_type netstring => sub { 660register_write_type netstring => sub {
587 my ($self, $string) = @_; 661 my ($self, $string) = @_;
588 662
589 sprintf "%d:%s,", (length $string), $string 663 (length $string) . ":$string,"
590}; 664};
591 665
592=item packstring => $format, $data 666=item packstring => $format, $data
593 667
594An octet string prefixed with an encoded length. The encoding C<$format> 668An octet string prefixed with an encoded length. The encoding C<$format>
659 733
660 pack "w/a*", Storable::nfreeze ($ref) 734 pack "w/a*", Storable::nfreeze ($ref)
661}; 735};
662 736
663=back 737=back
738
739=item $handle->push_shutdown
740
741Sometimes you know you want to close the socket after writing your data
742before it was actually written. One way to do that is to replace your
743C<on_drain> handler by a callback that shuts down the socket (and set
744C<low_water_mark> to C<0>). This method is a shorthand for just that, and
745replaces the C<on_drain> callback with:
746
747 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
748
749This simply shuts down the write side and signals an EOF condition to the
750the peer.
751
752You can rely on the normal read queue and C<on_eof> handling
753afterwards. This is the cleanest way to close a connection.
754
755=cut
756
757sub push_shutdown {
758 my ($self) = @_;
759
760 delete $self->{low_water_mark};
761 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
762}
664 763
665=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 764=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
666 765
667This function (not method) lets you add your own types to C<push_write>. 766This function (not method) lets you add your own types to C<push_write>.
668Whenever the given C<type> is used, C<push_write> will invoke the code 767Whenever the given C<type> is used, C<push_write> will invoke the code
768 867
769 if ( 868 if (
770 defined $self->{rbuf_max} 869 defined $self->{rbuf_max}
771 && $self->{rbuf_max} < length $self->{rbuf} 870 && $self->{rbuf_max} < length $self->{rbuf}
772 ) { 871 ) {
773 $self->_error (&Errno::ENOSPC, 1), return; 872 $self->_error (Errno::ENOSPC, 1), return;
774 } 873 }
775 874
776 while () { 875 while () {
876 # we need to use a separate tls read buffer, as we must not receive data while
877 # we are draining the buffer, and this can only happen with TLS.
878 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
879
777 my $len = length $self->{rbuf}; 880 my $len = length $self->{rbuf};
778 881
779 if (my $cb = shift @{ $self->{_queue} }) { 882 if (my $cb = shift @{ $self->{_queue} }) {
780 unless ($cb->($self)) { 883 unless ($cb->($self)) {
781 if ($self->{_eof}) { 884 if ($self->{_eof}) {
782 # no progress can be made (not enough data and no data forthcoming) 885 # no progress can be made (not enough data and no data forthcoming)
783 $self->_error (&Errno::EPIPE, 1), return; 886 $self->_error (Errno::EPIPE, 1), return;
784 } 887 }
785 888
786 unshift @{ $self->{_queue} }, $cb; 889 unshift @{ $self->{_queue} }, $cb;
787 last; 890 last;
788 } 891 }
796 && !@{ $self->{_queue} } # and the queue is still empty 899 && !@{ $self->{_queue} } # and the queue is still empty
797 && $self->{on_read} # but we still have on_read 900 && $self->{on_read} # but we still have on_read
798 ) { 901 ) {
799 # no further data will arrive 902 # no further data will arrive
800 # so no progress can be made 903 # so no progress can be made
801 $self->_error (&Errno::EPIPE, 1), return 904 $self->_error (Errno::EPIPE, 1), return
802 if $self->{_eof}; 905 if $self->{_eof};
803 906
804 last; # more data might arrive 907 last; # more data might arrive
805 } 908 }
806 } else { 909 } else {
807 # read side becomes idle 910 # read side becomes idle
808 delete $self->{_rw}; 911 delete $self->{_rw} unless $self->{tls};
809 last; 912 last;
810 } 913 }
811 } 914 }
812 915
813 if ($self->{_eof}) { 916 if ($self->{_eof}) {
814 if ($self->{on_eof}) { 917 if ($self->{on_eof}) {
815 $self->{on_eof}($self) 918 $self->{on_eof}($self)
816 } else { 919 } else {
817 $self->_error (0, 1); 920 $self->_error (0, 1, "Unexpected end-of-file");
818 } 921 }
819 } 922 }
820 923
821 # may need to restart read watcher 924 # may need to restart read watcher
822 unless ($self->{_rw}) { 925 unless ($self->{_rw}) {
842 945
843=item $handle->rbuf 946=item $handle->rbuf
844 947
845Returns the read buffer (as a modifiable lvalue). 948Returns the read buffer (as a modifiable lvalue).
846 949
847You can access the read buffer directly as the C<< ->{rbuf} >> member, if 950You can access the read buffer directly as the C<< ->{rbuf} >>
848you want. 951member, if you want. However, the only operation allowed on the
952read buffer (apart from looking at it) is removing data from its
953beginning. Otherwise modifying or appending to it is not allowed and will
954lead to hard-to-track-down bugs.
849 955
850NOTE: The read buffer should only be used or modified if the C<on_read>, 956NOTE: The read buffer should only be used or modified if the C<on_read>,
851C<push_read> or C<unshift_read> methods are used. The other read methods 957C<push_read> or C<unshift_read> methods are used. The other read methods
852automatically manage the read buffer. 958automatically manage the read buffer.
853 959
1053 return 1; 1159 return 1;
1054 } 1160 }
1055 1161
1056 # reject 1162 # reject
1057 if ($reject && $$rbuf =~ $reject) { 1163 if ($reject && $$rbuf =~ $reject) {
1058 $self->_error (&Errno::EBADMSG); 1164 $self->_error (Errno::EBADMSG);
1059 } 1165 }
1060 1166
1061 # skip 1167 # skip
1062 if ($skip && $$rbuf =~ $skip) { 1168 if ($skip && $$rbuf =~ $skip) {
1063 $data .= substr $$rbuf, 0, $+[0], ""; 1169 $data .= substr $$rbuf, 0, $+[0], "";
1079 my ($self, $cb) = @_; 1185 my ($self, $cb) = @_;
1080 1186
1081 sub { 1187 sub {
1082 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1188 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1083 if ($_[0]{rbuf} =~ /[^0-9]/) { 1189 if ($_[0]{rbuf} =~ /[^0-9]/) {
1084 $self->_error (&Errno::EBADMSG); 1190 $self->_error (Errno::EBADMSG);
1085 } 1191 }
1086 return; 1192 return;
1087 } 1193 }
1088 1194
1089 my $len = $1; 1195 my $len = $1;
1092 my $string = $_[1]; 1198 my $string = $_[1];
1093 $_[0]->unshift_read (chunk => 1, sub { 1199 $_[0]->unshift_read (chunk => 1, sub {
1094 if ($_[1] eq ",") { 1200 if ($_[1] eq ",") {
1095 $cb->($_[0], $string); 1201 $cb->($_[0], $string);
1096 } else { 1202 } else {
1097 $self->_error (&Errno::EBADMSG); 1203 $self->_error (Errno::EBADMSG);
1098 } 1204 }
1099 }); 1205 });
1100 }); 1206 });
1101 1207
1102 1 1208 1
1108An octet string prefixed with an encoded length. The encoding C<$format> 1214An octet string prefixed with an encoded length. The encoding C<$format>
1109uses the same format as a Perl C<pack> format, but must specify a single 1215uses the same format as a Perl C<pack> format, but must specify a single
1110integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1216integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1111optional C<!>, C<< < >> or C<< > >> modifier). 1217optional C<!>, C<< < >> or C<< > >> modifier).
1112 1218
1113DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1219For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1220EPP uses a prefix of C<N> (4 octtes).
1114 1221
1115Example: read a block of data prefixed by its length in BER-encoded 1222Example: read a block of data prefixed by its length in BER-encoded
1116format (very efficient). 1223format (very efficient).
1117 1224
1118 $handle->push_read (packstring => "w", sub { 1225 $handle->push_read (packstring => "w", sub {
1148 } 1255 }
1149}; 1256};
1150 1257
1151=item json => $cb->($handle, $hash_or_arrayref) 1258=item json => $cb->($handle, $hash_or_arrayref)
1152 1259
1153Reads a JSON object or array, decodes it and passes it to the callback. 1260Reads a JSON object or array, decodes it and passes it to the
1261callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1154 1262
1155If a C<json> object was passed to the constructor, then that will be used 1263If a C<json> object was passed to the constructor, then that will be used
1156for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1264for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1157 1265
1158This read type uses the incremental parser available with JSON version 1266This read type uses the incremental parser available with JSON version
1167=cut 1275=cut
1168 1276
1169register_read_type json => sub { 1277register_read_type json => sub {
1170 my ($self, $cb) = @_; 1278 my ($self, $cb) = @_;
1171 1279
1172 require JSON; 1280 my $json = $self->{json} ||=
1281 eval { require JSON::XS; JSON::XS->new->utf8 }
1282 || do { require JSON; JSON->new->utf8 };
1173 1283
1174 my $data; 1284 my $data;
1175 my $rbuf = \$self->{rbuf}; 1285 my $rbuf = \$self->{rbuf};
1176 1286
1177 my $json = $self->{json} ||= JSON->new->utf8;
1178
1179 sub { 1287 sub {
1180 my $ref = $json->incr_parse ($self->{rbuf}); 1288 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1181 1289
1182 if ($ref) { 1290 if ($ref) {
1183 $self->{rbuf} = $json->incr_text; 1291 $self->{rbuf} = $json->incr_text;
1184 $json->incr_text = ""; 1292 $json->incr_text = "";
1185 $cb->($self, $ref); 1293 $cb->($self, $ref);
1186 1294
1187 1 1295 1
1296 } elsif ($@) {
1297 # error case
1298 $json->incr_skip;
1299
1300 $self->{rbuf} = $json->incr_text;
1301 $json->incr_text = "";
1302
1303 $self->_error (Errno::EBADMSG);
1304
1305 ()
1188 } else { 1306 } else {
1189 $self->{rbuf} = ""; 1307 $self->{rbuf} = "";
1308
1190 () 1309 ()
1191 } 1310 }
1192 } 1311 }
1193}; 1312};
1194 1313
1226 # read remaining chunk 1345 # read remaining chunk
1227 $_[0]->unshift_read (chunk => $len, sub { 1346 $_[0]->unshift_read (chunk => $len, sub {
1228 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1347 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1229 $cb->($_[0], $ref); 1348 $cb->($_[0], $ref);
1230 } else { 1349 } else {
1231 $self->_error (&Errno::EBADMSG); 1350 $self->_error (Errno::EBADMSG);
1232 } 1351 }
1233 }); 1352 });
1234 } 1353 }
1235 1354
1236 1 1355 1
1271Note that AnyEvent::Handle will automatically C<start_read> for you when 1390Note that AnyEvent::Handle will automatically C<start_read> for you when
1272you change the C<on_read> callback or push/unshift a read callback, and it 1391you change the C<on_read> callback or push/unshift a read callback, and it
1273will automatically C<stop_read> for you when neither C<on_read> is set nor 1392will automatically C<stop_read> for you when neither C<on_read> is set nor
1274there are any read requests in the queue. 1393there are any read requests in the queue.
1275 1394
1395These methods will have no effect when in TLS mode (as TLS doesn't support
1396half-duplex connections).
1397
1276=cut 1398=cut
1277 1399
1278sub stop_read { 1400sub stop_read {
1279 my ($self) = @_; 1401 my ($self) = @_;
1280 1402
1281 delete $self->{_rw}; 1403 delete $self->{_rw} unless $self->{tls};
1282} 1404}
1283 1405
1284sub start_read { 1406sub start_read {
1285 my ($self) = @_; 1407 my ($self) = @_;
1286 1408
1287 unless ($self->{_rw} || $self->{_eof}) { 1409 unless ($self->{_rw} || $self->{_eof}) {
1288 Scalar::Util::weaken $self; 1410 Scalar::Util::weaken $self;
1289 1411
1290 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1412 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1291 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1413 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1292 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1414 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1293 1415
1294 if ($len > 0) { 1416 if ($len > 0) {
1295 $self->{_activity} = AnyEvent->now; 1417 $self->{_activity} = AnyEvent->now;
1296 1418
1297 $self->{filter_r} 1419 if ($self->{tls}) {
1298 ? $self->{filter_r}($self, $rbuf) 1420 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1299 : $self->{_in_drain} || $self->_drain_rbuf; 1421
1422 &_dotls ($self);
1423 } else {
1424 $self->_drain_rbuf unless $self->{_in_drain};
1425 }
1300 1426
1301 } elsif (defined $len) { 1427 } elsif (defined $len) {
1302 delete $self->{_rw}; 1428 delete $self->{_rw};
1303 $self->{_eof} = 1; 1429 $self->{_eof} = 1;
1304 $self->_drain_rbuf unless $self->{_in_drain}; 1430 $self->_drain_rbuf unless $self->{_in_drain};
1308 } 1434 }
1309 }); 1435 });
1310 } 1436 }
1311} 1437}
1312 1438
1439our $ERROR_SYSCALL;
1440our $ERROR_WANT_READ;
1441
1442sub _tls_error {
1443 my ($self, $err) = @_;
1444
1445 return $self->_error ($!, 1)
1446 if $err == Net::SSLeay::ERROR_SYSCALL ();
1447
1448 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1449
1450 # reduce error string to look less scary
1451 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1452
1453 if ($self->{_on_starttls}) {
1454 (delete $self->{_on_starttls})->($self, undef, $err);
1455 &_freetls;
1456 } else {
1457 &_freetls;
1458 $self->_error (Errno::EPROTO, 1, $err);
1459 }
1460}
1461
1462# poll the write BIO and send the data if applicable
1463# also decode read data if possible
1464# this is basiclaly our TLS state machine
1465# more efficient implementations are possible with openssl,
1466# but not with the buggy and incomplete Net::SSLeay.
1313sub _dotls { 1467sub _dotls {
1314 my ($self) = @_; 1468 my ($self) = @_;
1315 1469
1316 my $buf; 1470 my $tmp;
1317 1471
1318 if (length $self->{_tls_wbuf}) { 1472 if (length $self->{_tls_wbuf}) {
1319 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1473 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1320 substr $self->{_tls_wbuf}, 0, $len, ""; 1474 substr $self->{_tls_wbuf}, 0, $tmp, "";
1321 } 1475 }
1322 }
1323 1476
1477 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1478 return $self->_tls_error ($tmp)
1479 if $tmp != $ERROR_WANT_READ
1480 && ($tmp != $ERROR_SYSCALL || $!);
1481 }
1482
1483 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1484 unless (length $tmp) {
1485 $self->{_on_starttls}
1486 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1487 &_freetls;
1488
1489 if ($self->{on_stoptls}) {
1490 $self->{on_stoptls}($self);
1491 return;
1492 } else {
1493 # let's treat SSL-eof as we treat normal EOF
1494 delete $self->{_rw};
1495 $self->{_eof} = 1;
1496 }
1497 }
1498
1499 $self->{_tls_rbuf} .= $tmp;
1500 $self->_drain_rbuf unless $self->{_in_drain};
1501 $self->{tls} or return; # tls session might have gone away in callback
1502 }
1503
1504 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1505 return $self->_tls_error ($tmp)
1506 if $tmp != $ERROR_WANT_READ
1507 && ($tmp != $ERROR_SYSCALL || $!);
1508
1324 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1509 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1325 $self->{wbuf} .= $buf; 1510 $self->{wbuf} .= $tmp;
1326 $self->_drain_wbuf; 1511 $self->_drain_wbuf;
1327 } 1512 }
1328 1513
1329 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1514 $self->{_on_starttls}
1330 if (length $buf) { 1515 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1331 $self->{rbuf} .= $buf; 1516 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1332 $self->_drain_rbuf unless $self->{_in_drain};
1333 } else {
1334 # let's treat SSL-eof as we treat normal EOF
1335 $self->{_eof} = 1;
1336 $self->_shutdown;
1337 return;
1338 }
1339 }
1340
1341 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1342
1343 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1344 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1345 return $self->_error ($!, 1);
1346 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1347 return $self->_error (&Errno::EIO, 1);
1348 }
1349
1350 # all others are fine for our purposes
1351 }
1352} 1517}
1353 1518
1354=item $handle->starttls ($tls[, $tls_ctx]) 1519=item $handle->starttls ($tls[, $tls_ctx])
1355 1520
1356Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1521Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1358C<starttls>. 1523C<starttls>.
1359 1524
1360The first argument is the same as the C<tls> constructor argument (either 1525The first argument is the same as the C<tls> constructor argument (either
1361C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1526C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1362 1527
1363The second argument is the optional C<Net::SSLeay::CTX> object that is 1528The second argument is the optional C<AnyEvent::TLS> object that is used
1364used when AnyEvent::Handle has to create its own TLS connection object. 1529when AnyEvent::Handle has to create its own TLS connection object, or
1530a hash reference with C<< key => value >> pairs that will be used to
1531construct a new context.
1365 1532
1366The TLS connection object will end up in C<< $handle->{tls} >> after this 1533The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1367call and can be used or changed to your liking. Note that the handshake 1534context in C<< $handle->{tls_ctx} >> after this call and can be used or
1368might have already started when this function returns. 1535changed to your liking. Note that the handshake might have already started
1536when this function returns.
1369 1537
1538If it an error to start a TLS handshake more than once per
1539AnyEvent::Handle object (this is due to bugs in OpenSSL).
1540
1370=cut 1541=cut
1542
1543our %TLS_CACHE; #TODO not yet documented, should we?
1371 1544
1372sub starttls { 1545sub starttls {
1373 my ($self, $ssl, $ctx) = @_; 1546 my ($self, $ssl, $ctx) = @_;
1374 1547
1375 $self->stoptls; 1548 require Net::SSLeay;
1376 1549
1377 if ($ssl eq "accept") { 1550 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1378 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1551 if $self->{tls};
1379 Net::SSLeay::set_accept_state ($ssl); 1552
1380 } elsif ($ssl eq "connect") { 1553 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1381 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1554 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1382 Net::SSLeay::set_connect_state ($ssl); 1555
1556 $ctx ||= $self->{tls_ctx};
1557
1558 if ("HASH" eq ref $ctx) {
1559 require AnyEvent::TLS;
1560
1561 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context
1562
1563 if ($ctx->{cache}) {
1564 my $key = $ctx+0;
1565 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1566 } else {
1567 $ctx = new AnyEvent::TLS %$ctx;
1568 }
1569 }
1383 } 1570
1384 1571 $self->{tls_ctx} = $ctx || TLS_CTX ();
1385 $self->{tls} = $ssl; 1572 $self->{tls} = $ssl = $self->{tls_ctx}->_get_session ($ssl, $self, $self->{peername});
1386 1573
1387 # basically, this is deep magic (because SSL_read should have the same issues) 1574 # basically, this is deep magic (because SSL_read should have the same issues)
1388 # but the openssl maintainers basically said: "trust us, it just works". 1575 # but the openssl maintainers basically said: "trust us, it just works".
1389 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1576 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1390 # and mismaintained ssleay-module doesn't even offer them). 1577 # and mismaintained ssleay-module doesn't even offer them).
1391 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1578 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1392 # 1579 #
1393 # in short: this is a mess. 1580 # in short: this is a mess.
1394 # 1581 #
1395 # note that we do not try to kepe the length constant between writes as we are required to do. 1582 # note that we do not try to keep the length constant between writes as we are required to do.
1396 # we assume that most (but not all) of this insanity only applies to non-blocking cases, 1583 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1397 # and we drive openssl fully in blocking mode here. 1584 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1585 # have identity issues in that area.
1398 Net::SSLeay::CTX_set_mode ($self->{tls}, 1586# Net::SSLeay::CTX_set_mode ($ssl,
1399 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1587# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1400 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1588# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1589 Net::SSLeay::CTX_set_mode ($ssl, 1|2);
1401 1590
1402 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1591 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1403 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1592 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1404 1593
1405 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1594 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1406 1595
1407 $self->{filter_w} = sub { 1596 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1408 $_[0]{_tls_wbuf} .= ${$_[1]}; 1597 if $self->{on_starttls};
1409 &_dotls; 1598
1410 }; 1599 &_dotls; # need to trigger the initial handshake
1411 $self->{filter_r} = sub { 1600 $self->start_read; # make sure we actually do read
1412 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1413 &_dotls;
1414 };
1415} 1601}
1416 1602
1417=item $handle->stoptls 1603=item $handle->stoptls
1418 1604
1419Destroys the SSL connection, if any. Partial read or write data will be 1605Shuts down the SSL connection - this makes a proper EOF handshake by
1420lost. 1606sending a close notify to the other side, but since OpenSSL doesn't
1607support non-blocking shut downs, it is not possible to re-use the stream
1608afterwards.
1421 1609
1422=cut 1610=cut
1423 1611
1424sub stoptls { 1612sub stoptls {
1425 my ($self) = @_; 1613 my ($self) = @_;
1426 1614
1427 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1615 if ($self->{tls}) {
1616 Net::SSLeay::shutdown ($self->{tls});
1428 1617
1429 delete $self->{_rbio}; 1618 &_dotls;
1430 delete $self->{_wbio}; 1619
1431 delete $self->{_tls_wbuf}; 1620# # we don't give a shit. no, we do, but we can't. no...#d#
1432 delete $self->{filter_r}; 1621# # we, we... have to use openssl :/#d#
1433 delete $self->{filter_w}; 1622# &_freetls;#d#
1623 }
1624}
1625
1626sub _freetls {
1627 my ($self) = @_;
1628
1629 return unless $self->{tls};
1630
1631 $self->{tls_ctx}->_put_session (delete $self->{tls});
1632
1633 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1434} 1634}
1435 1635
1436sub DESTROY { 1636sub DESTROY {
1437 my $self = shift; 1637 my ($self) = @_;
1438 1638
1439 $self->stoptls; 1639 &_freetls;
1440 1640
1441 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1641 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1442 1642
1443 if ($linger && length $self->{wbuf}) { 1643 if ($linger && length $self->{wbuf}) {
1444 my $fh = delete $self->{fh}; 1644 my $fh = delete $self->{fh};
1459 @linger = (); 1659 @linger = ();
1460 }); 1660 });
1461 } 1661 }
1462} 1662}
1463 1663
1664=item $handle->destroy
1665
1666Shuts down the handle object as much as possible - this call ensures that
1667no further callbacks will be invoked and as many resources as possible
1668will be freed. You must not call any methods on the object afterwards.
1669
1670Normally, you can just "forget" any references to an AnyEvent::Handle
1671object and it will simply shut down. This works in fatal error and EOF
1672callbacks, as well as code outside. It does I<NOT> work in a read or write
1673callback, so when you want to destroy the AnyEvent::Handle object from
1674within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1675that case.
1676
1677Destroying the handle object in this way has the advantage that callbacks
1678will be removed as well, so if those are the only reference holders (as
1679is common), then one doesn't need to do anything special to break any
1680reference cycles.
1681
1682The handle might still linger in the background and write out remaining
1683data, as specified by the C<linger> option, however.
1684
1685=cut
1686
1687sub destroy {
1688 my ($self) = @_;
1689
1690 $self->DESTROY;
1691 %$self = ();
1692}
1693
1464=item AnyEvent::Handle::TLS_CTX 1694=item AnyEvent::Handle::TLS_CTX
1465 1695
1466This function creates and returns the Net::SSLeay::CTX object used by 1696This function creates and returns the AnyEvent::TLS object used by default
1467default for TLS mode. 1697for TLS mode.
1468 1698
1469The context is created like this: 1699The context is created by calling L<AnyEvent::TLS> without any arguments.
1470
1471 Net::SSLeay::load_error_strings;
1472 Net::SSLeay::SSLeay_add_ssl_algorithms;
1473 Net::SSLeay::randomize;
1474
1475 my $CTX = Net::SSLeay::CTX_new;
1476
1477 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1478 1700
1479=cut 1701=cut
1480 1702
1481our $TLS_CTX; 1703our $TLS_CTX;
1482 1704
1483sub TLS_CTX() { 1705sub TLS_CTX() {
1484 $TLS_CTX || do { 1706 $TLS_CTX ||= do {
1485 require Net::SSLeay; 1707 require AnyEvent::TLS;
1486 1708
1487 Net::SSLeay::load_error_strings (); 1709 new AnyEvent::TLS
1488 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1489 Net::SSLeay::randomize ();
1490
1491 $TLS_CTX = Net::SSLeay::CTX_new ();
1492
1493 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1494
1495 $TLS_CTX
1496 } 1710 }
1497} 1711}
1498 1712
1499=back 1713=back
1714
1715
1716=head1 NONFREQUENTLY ASKED QUESTIONS
1717
1718=over 4
1719
1720=item I C<undef> the AnyEvent::Handle reference inside my callback and
1721still get further invocations!
1722
1723That's because AnyEvent::Handle keeps a reference to itself when handling
1724read or write callbacks.
1725
1726It is only safe to "forget" the reference inside EOF or error callbacks,
1727from within all other callbacks, you need to explicitly call the C<<
1728->destroy >> method.
1729
1730=item I get different callback invocations in TLS mode/Why can't I pause
1731reading?
1732
1733Unlike, say, TCP, TLS connections do not consist of two independent
1734communication channels, one for each direction. Or put differently. The
1735read and write directions are not independent of each other: you cannot
1736write data unless you are also prepared to read, and vice versa.
1737
1738This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1739callback invocations when you are not expecting any read data - the reason
1740is that AnyEvent::Handle always reads in TLS mode.
1741
1742During the connection, you have to make sure that you always have a
1743non-empty read-queue, or an C<on_read> watcher. At the end of the
1744connection (or when you no longer want to use it) you can call the
1745C<destroy> method.
1746
1747=item How do I read data until the other side closes the connection?
1748
1749If you just want to read your data into a perl scalar, the easiest way
1750to achieve this is by setting an C<on_read> callback that does nothing,
1751clearing the C<on_eof> callback and in the C<on_error> callback, the data
1752will be in C<$_[0]{rbuf}>:
1753
1754 $handle->on_read (sub { });
1755 $handle->on_eof (undef);
1756 $handle->on_error (sub {
1757 my $data = delete $_[0]{rbuf};
1758 });
1759
1760The reason to use C<on_error> is that TCP connections, due to latencies
1761and packets loss, might get closed quite violently with an error, when in
1762fact, all data has been received.
1763
1764It is usually better to use acknowledgements when transferring data,
1765to make sure the other side hasn't just died and you got the data
1766intact. This is also one reason why so many internet protocols have an
1767explicit QUIT command.
1768
1769=item I don't want to destroy the handle too early - how do I wait until
1770all data has been written?
1771
1772After writing your last bits of data, set the C<on_drain> callback
1773and destroy the handle in there - with the default setting of
1774C<low_water_mark> this will be called precisely when all data has been
1775written to the socket:
1776
1777 $handle->push_write (...);
1778 $handle->on_drain (sub {
1779 warn "all data submitted to the kernel\n";
1780 undef $handle;
1781 });
1782
1783If you just want to queue some data and then signal EOF to the other side,
1784consider using C<< ->push_shutdown >> instead.
1785
1786=item I want to contact a TLS/SSL server, I don't care about security.
1787
1788If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1789simply connect to it and then create the AnyEvent::Handle with the C<tls>
1790parameter:
1791
1792 tcp_connect $host, $port, sub {
1793 my ($fh) = @_;
1794
1795 my $handle = new AnyEvent::Handle
1796 fh => $fh,
1797 tls => "connect",
1798 on_error => sub { ... };
1799
1800 $handle->push_write (...);
1801 };
1802
1803=item I want to contact a TLS/SSL server, I do care about security.
1804
1805Then you should additionally enable certificate verification, including
1806peername verification, if the protocol you use supports it (see
1807L<AnyEvent::TLS>, C<verify_peername>).
1808
1809E.g. for HTTPS:
1810
1811 tcp_connect $host, $port, sub {
1812 my ($fh) = @_;
1813
1814 my $handle = new AnyEvent::Handle
1815 fh => $fh,
1816 peername => $host,
1817 tls => "connect",
1818 tls_ctx => { verify => 1, verify_peername => "https" },
1819 ...
1820
1821Note that you must specify the hostname you connected to (or whatever
1822"peername" the protocol needs) as the C<peername> argument, otherwise no
1823peername verification will be done.
1824
1825The above will use the system-dependent default set of trusted CA
1826certificates. If you want to check against a specific CA, add the
1827C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1828
1829 tls_ctx => {
1830 verify => 1,
1831 verify_peername => "https",
1832 ca_file => "my-ca-cert.pem",
1833 },
1834
1835=item I want to create a TLS/SSL server, how do I do that?
1836
1837Well, you first need to get a server certificate and key. You have
1838three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1839self-signed certificate (cheap. check the search engine of your choice,
1840there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1841nice program for that purpose).
1842
1843Then create a file with your private key (in PEM format, see
1844L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1845file should then look like this:
1846
1847 -----BEGIN RSA PRIVATE KEY-----
1848 ...header data
1849 ... lots of base64'y-stuff
1850 -----END RSA PRIVATE KEY-----
1851
1852 -----BEGIN CERTIFICATE-----
1853 ... lots of base64'y-stuff
1854 -----END CERTIFICATE-----
1855
1856The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
1857specify this file as C<cert_file>:
1858
1859 tcp_server undef, $port, sub {
1860 my ($fh) = @_;
1861
1862 my $handle = new AnyEvent::Handle
1863 fh => $fh,
1864 tls => "accept",
1865 tls_ctx => { cert_file => "my-server-keycert.pem" },
1866 ...
1867
1868When you have intermediate CA certificates that your clients might not
1869know about, just append them to the C<cert_file>.
1870
1871=back
1872
1500 1873
1501=head1 SUBCLASSING AnyEvent::Handle 1874=head1 SUBCLASSING AnyEvent::Handle
1502 1875
1503In many cases, you might want to subclass AnyEvent::Handle. 1876In many cases, you might want to subclass AnyEvent::Handle.
1504 1877

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines