ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.95 by root, Thu Oct 2 06:42:39 2008 UTC vs.
Revision 1.150 by root, Thu Jul 16 04:16:25 2009 UTC

14 14
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17=cut 17=cut
18 18
19our $VERSION = 4.3; 19our $VERSION = 4.82;
20 20
21=head1 SYNOPSIS 21=head1 SYNOPSIS
22 22
23 use AnyEvent; 23 use AnyEvent;
24 use AnyEvent::Handle; 24 use AnyEvent::Handle;
25 25
26 my $cv = AnyEvent->condvar; 26 my $cv = AnyEvent->condvar;
27 27
28 my $handle = 28 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 29 fh => \*STDIN,
31 on_eof => sub { 30 on_error => sub {
32 $cv->broadcast; 31 warn "got error $_[2]\n";
33 }, 32 $cv->send;
34 ); 33 );
35 34
36 # send some request line 35 # send some request line
37 $handle->push_write ("getinfo\015\012"); 36 $hdl->push_write ("getinfo\015\012");
38 37
39 # read the response line 38 # read the response line
40 $handle->push_read (line => sub { 39 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 40 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 41 warn "got line <$line>\n";
43 $cv->send; 42 $cv->send;
44 }); 43 });
45 44
46 $cv->recv; 45 $cv->recv;
47 46
59treatment of characters applies to this module as well. 58treatment of characters applies to this module as well.
60 59
61All callbacks will be invoked with the handle object as their first 60All callbacks will be invoked with the handle object as their first
62argument. 61argument.
63 62
64=head2 SIGPIPE is not handled by this module
65
66SIGPIPE is not handled by this module, so one of the practical
67requirements of using it is to ignore SIGPIPE (C<$SIG{PIPE} =
68'IGNORE'>). At least, this is highly recommend in a networked program: If
69you use AnyEvent::Handle in a filter program (like sort), exiting on
70SIGPIPE is probably the right thing to do.
71
72=head1 METHODS 63=head1 METHODS
73 64
74=over 4 65=over 4
75 66
76=item B<new (%args)> 67=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
77 68
78The constructor supports these arguments (all as key => value pairs). 69The constructor supports these arguments (all as C<< key => value >> pairs).
79 70
80=over 4 71=over 4
81 72
82=item fh => $filehandle [MANDATORY] 73=item fh => $filehandle [MANDATORY]
83 74
89 80
90=item on_eof => $cb->($handle) 81=item on_eof => $cb->($handle)
91 82
92Set the callback to be called when an end-of-file condition is detected, 83Set the callback to be called when an end-of-file condition is detected,
93i.e. in the case of a socket, when the other side has closed the 84i.e. in the case of a socket, when the other side has closed the
94connection cleanly. 85connection cleanly, and there are no outstanding read requests in the
86queue (if there are read requests, then an EOF counts as an unexpected
87connection close and will be flagged as an error).
95 88
96For sockets, this just means that the other side has stopped sending data, 89For sockets, this just means that the other side has stopped sending data,
97you can still try to write data, and, in fact, one can return from the eof 90you can still try to write data, and, in fact, one can return from the EOF
98callback and continue writing data, as only the read part has been shut 91callback and continue writing data, as only the read part has been shut
99down. 92down.
100 93
101While not mandatory, it is I<highly> recommended to set an eof callback,
102otherwise you might end up with a closed socket while you are still
103waiting for data.
104
105If an EOF condition has been detected but no C<on_eof> callback has been 94If an EOF condition has been detected but no C<on_eof> callback has been
106set, then a fatal error will be raised with C<$!> set to <0>. 95set, then a fatal error will be raised with C<$!> set to <0>.
107 96
108=item on_error => $cb->($handle, $fatal) 97=item on_error => $cb->($handle, $fatal, $message)
109 98
110This is the error callback, which is called when, well, some error 99This is the error callback, which is called when, well, some error
111occured, such as not being able to resolve the hostname, failure to 100occured, such as not being able to resolve the hostname, failure to
112connect or a read error. 101connect or a read error.
113 102
114Some errors are fatal (which is indicated by C<$fatal> being true). On 103Some errors are fatal (which is indicated by C<$fatal> being true). On
115fatal errors the handle object will be shut down and will not be usable 104fatal errors the handle object will be destroyed (by a call to C<< ->
116(but you are free to look at the current C<< ->rbuf >>). Examples of fatal 105destroy >>) after invoking the error callback (which means you are free to
117errors are an EOF condition with active (but unsatisifable) read watchers 106examine the handle object). Examples of fatal errors are an EOF condition
118(C<EPIPE>) or I/O errors. 107with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors.
108
109AnyEvent::Handle tries to find an appropriate error code for you to check
110against, but in some cases (TLS errors), this does not work well. It is
111recommended to always output the C<$message> argument in human-readable
112error messages (it's usually the same as C<"$!">).
119 113
120Non-fatal errors can be retried by simply returning, but it is recommended 114Non-fatal errors can be retried by simply returning, but it is recommended
121to simply ignore this parameter and instead abondon the handle object 115to simply ignore this parameter and instead abondon the handle object
122when this callback is invoked. Examples of non-fatal errors are timeouts 116when this callback is invoked. Examples of non-fatal errors are timeouts
123C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>). 117C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
124 118
125On callback entrance, the value of C<$!> contains the operating system 119On callback entrance, the value of C<$!> contains the operating system
126error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 120error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
121C<EPROTO>).
127 122
128While not mandatory, it is I<highly> recommended to set this callback, as 123While not mandatory, it is I<highly> recommended to set this callback, as
129you will not be notified of errors otherwise. The default simply calls 124you will not be notified of errors otherwise. The default simply calls
130C<croak>. 125C<croak>.
131 126
135and no read request is in the queue (unlike read queue callbacks, this 130and no read request is in the queue (unlike read queue callbacks, this
136callback will only be called when at least one octet of data is in the 131callback will only be called when at least one octet of data is in the
137read buffer). 132read buffer).
138 133
139To access (and remove data from) the read buffer, use the C<< ->rbuf >> 134To access (and remove data from) the read buffer, use the C<< ->rbuf >>
140method or access the C<$handle->{rbuf}> member directly. 135method or access the C<< $handle->{rbuf} >> member directly. Note that you
136must not enlarge or modify the read buffer, you can only remove data at
137the beginning from it.
141 138
142When an EOF condition is detected then AnyEvent::Handle will first try to 139When an EOF condition is detected then AnyEvent::Handle will first try to
143feed all the remaining data to the queued callbacks and C<on_read> before 140feed all the remaining data to the queued callbacks and C<on_read> before
144calling the C<on_eof> callback. If no progress can be made, then a fatal 141calling the C<on_eof> callback. If no progress can be made, then a fatal
145error will be raised (with C<$!> set to C<EPIPE>). 142error will be raised (with C<$!> set to C<EPIPE>).
143
144Note that, unlike requests in the read queue, an C<on_read> callback
145doesn't mean you I<require> some data: if there is an EOF and there
146are outstanding read requests then an error will be flagged. With an
147C<on_read> callback, the C<on_eof> callback will be invoked.
146 148
147=item on_drain => $cb->($handle) 149=item on_drain => $cb->($handle)
148 150
149This sets the callback that is called when the write buffer becomes empty 151This sets the callback that is called when the write buffer becomes empty
150(or when the callback is set and the buffer is empty already). 152(or when the callback is set and the buffer is empty already).
243 245
244This will not work for partial TLS data that could not be encoded 246This will not work for partial TLS data that could not be encoded
245yet. This data will be lost. Calling the C<stoptls> method in time might 247yet. This data will be lost. Calling the C<stoptls> method in time might
246help. 248help.
247 249
250=item peername => $string
251
252A string used to identify the remote site - usually the DNS hostname
253(I<not> IDN!) used to create the connection, rarely the IP address.
254
255Apart from being useful in error messages, this string is also used in TLS
256peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
257verification will be skipped when C<peername> is not specified or
258C<undef>.
259
248=item tls => "accept" | "connect" | Net::SSLeay::SSL object 260=item tls => "accept" | "connect" | Net::SSLeay::SSL object
249 261
250When this parameter is given, it enables TLS (SSL) mode, that means 262When this parameter is given, it enables TLS (SSL) mode, that means
251AnyEvent will start a TLS handshake as soon as the conenction has been 263AnyEvent will start a TLS handshake as soon as the conenction has been
252established and will transparently encrypt/decrypt data afterwards. 264established and will transparently encrypt/decrypt data afterwards.
265
266All TLS protocol errors will be signalled as C<EPROTO>, with an
267appropriate error message.
253 268
254TLS mode requires Net::SSLeay to be installed (it will be loaded 269TLS mode requires Net::SSLeay to be installed (it will be loaded
255automatically when you try to create a TLS handle): this module doesn't 270automatically when you try to create a TLS handle): this module doesn't
256have a dependency on that module, so if your module requires it, you have 271have a dependency on that module, so if your module requires it, you have
257to add the dependency yourself. 272to add the dependency yourself.
261mode. 276mode.
262 277
263You can also provide your own TLS connection object, but you have 278You can also provide your own TLS connection object, but you have
264to make sure that you call either C<Net::SSLeay::set_connect_state> 279to make sure that you call either C<Net::SSLeay::set_connect_state>
265or C<Net::SSLeay::set_accept_state> on it before you pass it to 280or C<Net::SSLeay::set_accept_state> on it before you pass it to
266AnyEvent::Handle. 281AnyEvent::Handle. Also, this module will take ownership of this connection
282object.
283
284At some future point, AnyEvent::Handle might switch to another TLS
285implementation, then the option to use your own session object will go
286away.
287
288B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
289passing in the wrong integer will lead to certain crash. This most often
290happens when one uses a stylish C<< tls => 1 >> and is surprised about the
291segmentation fault.
267 292
268See the C<< ->starttls >> method for when need to start TLS negotiation later. 293See the C<< ->starttls >> method for when need to start TLS negotiation later.
269 294
270=item tls_ctx => $ssl_ctx 295=item tls_ctx => $anyevent_tls
271 296
272Use the given C<Net::SSLeay::CTX> object to create the new TLS connection 297Use the given C<AnyEvent::TLS> object to create the new TLS connection
273(unless a connection object was specified directly). If this parameter is 298(unless a connection object was specified directly). If this parameter is
274missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 299missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
300
301Instead of an object, you can also specify a hash reference with C<< key
302=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
303new TLS context object.
304
305=item on_starttls => $cb->($handle, $success[, $error_message])
306
307This callback will be invoked when the TLS/SSL handshake has finished. If
308C<$success> is true, then the TLS handshake succeeded, otherwise it failed
309(C<on_stoptls> will not be called in this case).
310
311The session in C<< $handle->{tls} >> can still be examined in this
312callback, even when the handshake was not successful.
313
314TLS handshake failures will not cause C<on_error> to be invoked when this
315callback is in effect, instead, the error message will be passed to C<on_starttls>.
316
317Without this callback, handshake failures lead to C<on_error> being
318called, as normal.
319
320Note that you cannot call C<starttls> right again in this callback. If you
321need to do that, start an zero-second timer instead whose callback can
322then call C<< ->starttls >> again.
323
324=item on_stoptls => $cb->($handle)
325
326When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
327set, then it will be invoked after freeing the TLS session. If it is not,
328then a TLS shutdown condition will be treated like a normal EOF condition
329on the handle.
330
331The session in C<< $handle->{tls} >> can still be examined in this
332callback.
333
334This callback will only be called on TLS shutdowns, not when the
335underlying handle signals EOF.
275 336
276=item json => JSON or JSON::XS object 337=item json => JSON or JSON::XS object
277 338
278This is the json coder object used by the C<json> read and write types. 339This is the json coder object used by the C<json> read and write types.
279 340
288 349
289=cut 350=cut
290 351
291sub new { 352sub new {
292 my $class = shift; 353 my $class = shift;
293
294 my $self = bless { @_ }, $class; 354 my $self = bless { @_ }, $class;
295 355
296 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 356 $self->{fh} or Carp::croak "mandatory argument fh is missing";
297 357
298 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 358 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
359
360 $self->{_activity} = AnyEvent->now;
361 $self->_timeout;
362
363 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
299 364
300 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}) 365 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
301 if $self->{tls}; 366 if $self->{tls};
302 367
303 $self->{_activity} = AnyEvent->now;
304 $self->_timeout;
305
306 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain}; 368 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
307 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
308 369
309 $self->start_read 370 $self->start_read
310 if $self->{on_read}; 371 if $self->{on_read};
311 372
312 $self 373 $self->{fh} && $self
313} 374}
314 375
315sub _shutdown { 376#sub _shutdown {
316 my ($self) = @_; 377# my ($self) = @_;
317 378#
318 delete $self->{_tw}; 379# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
319 delete $self->{_rw}; 380# $self->{_eof} = 1; # tell starttls et. al to stop trying
320 delete $self->{_ww}; 381#
321 delete $self->{fh};
322
323 &_freetls; 382# &_freetls;
324 383#}
325 delete $self->{on_read};
326 delete $self->{_queue};
327}
328 384
329sub _error { 385sub _error {
330 my ($self, $errno, $fatal) = @_; 386 my ($self, $errno, $fatal, $message) = @_;
331
332 $self->_shutdown
333 if $fatal;
334 387
335 $! = $errno; 388 $! = $errno;
389 $message ||= "$!";
336 390
337 if ($self->{on_error}) { 391 if ($self->{on_error}) {
338 $self->{on_error}($self, $fatal); 392 $self->{on_error}($self, $fatal, $message);
339 } else { 393 $self->destroy;
394 } elsif ($self->{fh}) {
395 $self->destroy;
340 Carp::croak "AnyEvent::Handle uncaught error: $!"; 396 Carp::croak "AnyEvent::Handle uncaught error: $message";
341 } 397 }
342} 398}
343 399
344=item $fh = $handle->fh 400=item $fh = $handle->fh
345 401
382} 438}
383 439
384=item $handle->autocork ($boolean) 440=item $handle->autocork ($boolean)
385 441
386Enables or disables the current autocork behaviour (see C<autocork> 442Enables or disables the current autocork behaviour (see C<autocork>
387constructor argument). 443constructor argument). Changes will only take effect on the next write.
388 444
389=cut 445=cut
446
447sub autocork {
448 $_[0]{autocork} = $_[1];
449}
390 450
391=item $handle->no_delay ($boolean) 451=item $handle->no_delay ($boolean)
392 452
393Enables or disables the C<no_delay> setting (see constructor argument of 453Enables or disables the C<no_delay> setting (see constructor argument of
394the same name for details). 454the same name for details).
402 local $SIG{__DIE__}; 462 local $SIG{__DIE__};
403 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 463 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
404 }; 464 };
405} 465}
406 466
467=item $handle->on_starttls ($cb)
468
469Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
470
471=cut
472
473sub on_starttls {
474 $_[0]{on_starttls} = $_[1];
475}
476
477=item $handle->on_stoptls ($cb)
478
479Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
480
481=cut
482
483sub on_starttls {
484 $_[0]{on_stoptls} = $_[1];
485}
486
407############################################################################# 487#############################################################################
408 488
409=item $handle->timeout ($seconds) 489=item $handle->timeout ($seconds)
410 490
411Configures (or disables) the inactivity timeout. 491Configures (or disables) the inactivity timeout.
435 $self->{_activity} = $NOW; 515 $self->{_activity} = $NOW;
436 516
437 if ($self->{on_timeout}) { 517 if ($self->{on_timeout}) {
438 $self->{on_timeout}($self); 518 $self->{on_timeout}($self);
439 } else { 519 } else {
440 $self->_error (&Errno::ETIMEDOUT); 520 $self->_error (Errno::ETIMEDOUT);
441 } 521 }
442 522
443 # callback could have changed timeout value, optimise 523 # callback could have changed timeout value, optimise
444 return unless $self->{timeout}; 524 return unless $self->{timeout};
445 525
508 Scalar::Util::weaken $self; 588 Scalar::Util::weaken $self;
509 589
510 my $cb = sub { 590 my $cb = sub {
511 my $len = syswrite $self->{fh}, $self->{wbuf}; 591 my $len = syswrite $self->{fh}, $self->{wbuf};
512 592
513 if ($len >= 0) { 593 if (defined $len) {
514 substr $self->{wbuf}, 0, $len, ""; 594 substr $self->{wbuf}, 0, $len, "";
515 595
516 $self->{_activity} = AnyEvent->now; 596 $self->{_activity} = AnyEvent->now;
517 597
518 $self->{on_drain}($self) 598 $self->{on_drain}($self)
550 ->($self, @_); 630 ->($self, @_);
551 } 631 }
552 632
553 if ($self->{tls}) { 633 if ($self->{tls}) {
554 $self->{_tls_wbuf} .= $_[0]; 634 $self->{_tls_wbuf} .= $_[0];
635
555 &_dotls ($self); 636 &_dotls ($self);
556 } else { 637 } else {
557 $self->{wbuf} .= $_[0]; 638 $self->{wbuf} .= $_[0];
558 $self->_drain_wbuf; 639 $self->_drain_wbuf;
559 } 640 }
577=cut 658=cut
578 659
579register_write_type netstring => sub { 660register_write_type netstring => sub {
580 my ($self, $string) = @_; 661 my ($self, $string) = @_;
581 662
582 sprintf "%d:%s,", (length $string), $string 663 (length $string) . ":$string,"
583}; 664};
584 665
585=item packstring => $format, $data 666=item packstring => $format, $data
586 667
587An octet string prefixed with an encoded length. The encoding C<$format> 668An octet string prefixed with an encoded length. The encoding C<$format>
652 733
653 pack "w/a*", Storable::nfreeze ($ref) 734 pack "w/a*", Storable::nfreeze ($ref)
654}; 735};
655 736
656=back 737=back
738
739=item $handle->push_shutdown
740
741Sometimes you know you want to close the socket after writing your data
742before it was actually written. One way to do that is to replace your
743C<on_drain> handler by a callback that shuts down the socket (and set
744C<low_water_mark> to C<0>). This method is a shorthand for just that, and
745replaces the C<on_drain> callback with:
746
747 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
748
749This simply shuts down the write side and signals an EOF condition to the
750the peer.
751
752You can rely on the normal read queue and C<on_eof> handling
753afterwards. This is the cleanest way to close a connection.
754
755=cut
756
757sub push_shutdown {
758 my ($self) = @_;
759
760 delete $self->{low_water_mark};
761 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
762}
657 763
658=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 764=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
659 765
660This function (not method) lets you add your own types to C<push_write>. 766This function (not method) lets you add your own types to C<push_write>.
661Whenever the given C<type> is used, C<push_write> will invoke the code 767Whenever the given C<type> is used, C<push_write> will invoke the code
761 867
762 if ( 868 if (
763 defined $self->{rbuf_max} 869 defined $self->{rbuf_max}
764 && $self->{rbuf_max} < length $self->{rbuf} 870 && $self->{rbuf_max} < length $self->{rbuf}
765 ) { 871 ) {
766 $self->_error (&Errno::ENOSPC, 1), return; 872 $self->_error (Errno::ENOSPC, 1), return;
767 } 873 }
768 874
769 while () { 875 while () {
876 # we need to use a separate tls read buffer, as we must not receive data while
877 # we are draining the buffer, and this can only happen with TLS.
878 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
879
770 my $len = length $self->{rbuf}; 880 my $len = length $self->{rbuf};
771 881
772 if (my $cb = shift @{ $self->{_queue} }) { 882 if (my $cb = shift @{ $self->{_queue} }) {
773 unless ($cb->($self)) { 883 unless ($cb->($self)) {
774 if ($self->{_eof}) { 884 if ($self->{_eof}) {
775 # no progress can be made (not enough data and no data forthcoming) 885 # no progress can be made (not enough data and no data forthcoming)
776 $self->_error (&Errno::EPIPE, 1), return; 886 $self->_error (Errno::EPIPE, 1), return;
777 } 887 }
778 888
779 unshift @{ $self->{_queue} }, $cb; 889 unshift @{ $self->{_queue} }, $cb;
780 last; 890 last;
781 } 891 }
789 && !@{ $self->{_queue} } # and the queue is still empty 899 && !@{ $self->{_queue} } # and the queue is still empty
790 && $self->{on_read} # but we still have on_read 900 && $self->{on_read} # but we still have on_read
791 ) { 901 ) {
792 # no further data will arrive 902 # no further data will arrive
793 # so no progress can be made 903 # so no progress can be made
794 $self->_error (&Errno::EPIPE, 1), return 904 $self->_error (Errno::EPIPE, 1), return
795 if $self->{_eof}; 905 if $self->{_eof};
796 906
797 last; # more data might arrive 907 last; # more data might arrive
798 } 908 }
799 } else { 909 } else {
805 915
806 if ($self->{_eof}) { 916 if ($self->{_eof}) {
807 if ($self->{on_eof}) { 917 if ($self->{on_eof}) {
808 $self->{on_eof}($self) 918 $self->{on_eof}($self)
809 } else { 919 } else {
810 $self->_error (0, 1); 920 $self->_error (0, 1, "Unexpected end-of-file");
811 } 921 }
812 } 922 }
813 923
814 # may need to restart read watcher 924 # may need to restart read watcher
815 unless ($self->{_rw}) { 925 unless ($self->{_rw}) {
835 945
836=item $handle->rbuf 946=item $handle->rbuf
837 947
838Returns the read buffer (as a modifiable lvalue). 948Returns the read buffer (as a modifiable lvalue).
839 949
840You can access the read buffer directly as the C<< ->{rbuf} >> member, if 950You can access the read buffer directly as the C<< ->{rbuf} >>
841you want. 951member, if you want. However, the only operation allowed on the
952read buffer (apart from looking at it) is removing data from its
953beginning. Otherwise modifying or appending to it is not allowed and will
954lead to hard-to-track-down bugs.
842 955
843NOTE: The read buffer should only be used or modified if the C<on_read>, 956NOTE: The read buffer should only be used or modified if the C<on_read>,
844C<push_read> or C<unshift_read> methods are used. The other read methods 957C<push_read> or C<unshift_read> methods are used. The other read methods
845automatically manage the read buffer. 958automatically manage the read buffer.
846 959
1046 return 1; 1159 return 1;
1047 } 1160 }
1048 1161
1049 # reject 1162 # reject
1050 if ($reject && $$rbuf =~ $reject) { 1163 if ($reject && $$rbuf =~ $reject) {
1051 $self->_error (&Errno::EBADMSG); 1164 $self->_error (Errno::EBADMSG);
1052 } 1165 }
1053 1166
1054 # skip 1167 # skip
1055 if ($skip && $$rbuf =~ $skip) { 1168 if ($skip && $$rbuf =~ $skip) {
1056 $data .= substr $$rbuf, 0, $+[0], ""; 1169 $data .= substr $$rbuf, 0, $+[0], "";
1072 my ($self, $cb) = @_; 1185 my ($self, $cb) = @_;
1073 1186
1074 sub { 1187 sub {
1075 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1188 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1076 if ($_[0]{rbuf} =~ /[^0-9]/) { 1189 if ($_[0]{rbuf} =~ /[^0-9]/) {
1077 $self->_error (&Errno::EBADMSG); 1190 $self->_error (Errno::EBADMSG);
1078 } 1191 }
1079 return; 1192 return;
1080 } 1193 }
1081 1194
1082 my $len = $1; 1195 my $len = $1;
1085 my $string = $_[1]; 1198 my $string = $_[1];
1086 $_[0]->unshift_read (chunk => 1, sub { 1199 $_[0]->unshift_read (chunk => 1, sub {
1087 if ($_[1] eq ",") { 1200 if ($_[1] eq ",") {
1088 $cb->($_[0], $string); 1201 $cb->($_[0], $string);
1089 } else { 1202 } else {
1090 $self->_error (&Errno::EBADMSG); 1203 $self->_error (Errno::EBADMSG);
1091 } 1204 }
1092 }); 1205 });
1093 }); 1206 });
1094 1207
1095 1 1208 1
1101An octet string prefixed with an encoded length. The encoding C<$format> 1214An octet string prefixed with an encoded length. The encoding C<$format>
1102uses the same format as a Perl C<pack> format, but must specify a single 1215uses the same format as a Perl C<pack> format, but must specify a single
1103integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1216integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1104optional C<!>, C<< < >> or C<< > >> modifier). 1217optional C<!>, C<< < >> or C<< > >> modifier).
1105 1218
1106DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1219For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1220EPP uses a prefix of C<N> (4 octtes).
1107 1221
1108Example: read a block of data prefixed by its length in BER-encoded 1222Example: read a block of data prefixed by its length in BER-encoded
1109format (very efficient). 1223format (very efficient).
1110 1224
1111 $handle->push_read (packstring => "w", sub { 1225 $handle->push_read (packstring => "w", sub {
1141 } 1255 }
1142}; 1256};
1143 1257
1144=item json => $cb->($handle, $hash_or_arrayref) 1258=item json => $cb->($handle, $hash_or_arrayref)
1145 1259
1146Reads a JSON object or array, decodes it and passes it to the callback. 1260Reads a JSON object or array, decodes it and passes it to the
1261callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1147 1262
1148If a C<json> object was passed to the constructor, then that will be used 1263If a C<json> object was passed to the constructor, then that will be used
1149for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1264for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1150 1265
1151This read type uses the incremental parser available with JSON version 1266This read type uses the incremental parser available with JSON version
1160=cut 1275=cut
1161 1276
1162register_read_type json => sub { 1277register_read_type json => sub {
1163 my ($self, $cb) = @_; 1278 my ($self, $cb) = @_;
1164 1279
1165 require JSON; 1280 my $json = $self->{json} ||=
1281 eval { require JSON::XS; JSON::XS->new->utf8 }
1282 || do { require JSON; JSON->new->utf8 };
1166 1283
1167 my $data; 1284 my $data;
1168 my $rbuf = \$self->{rbuf}; 1285 my $rbuf = \$self->{rbuf};
1169 1286
1170 my $json = $self->{json} ||= JSON->new->utf8;
1171
1172 sub { 1287 sub {
1173 my $ref = $json->incr_parse ($self->{rbuf}); 1288 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1174 1289
1175 if ($ref) { 1290 if ($ref) {
1176 $self->{rbuf} = $json->incr_text; 1291 $self->{rbuf} = $json->incr_text;
1177 $json->incr_text = ""; 1292 $json->incr_text = "";
1178 $cb->($self, $ref); 1293 $cb->($self, $ref);
1179 1294
1180 1 1295 1
1296 } elsif ($@) {
1297 # error case
1298 $json->incr_skip;
1299
1300 $self->{rbuf} = $json->incr_text;
1301 $json->incr_text = "";
1302
1303 $self->_error (Errno::EBADMSG);
1304
1305 ()
1181 } else { 1306 } else {
1182 $self->{rbuf} = ""; 1307 $self->{rbuf} = "";
1308
1183 () 1309 ()
1184 } 1310 }
1185 } 1311 }
1186}; 1312};
1187 1313
1219 # read remaining chunk 1345 # read remaining chunk
1220 $_[0]->unshift_read (chunk => $len, sub { 1346 $_[0]->unshift_read (chunk => $len, sub {
1221 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1347 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1222 $cb->($_[0], $ref); 1348 $cb->($_[0], $ref);
1223 } else { 1349 } else {
1224 $self->_error (&Errno::EBADMSG); 1350 $self->_error (Errno::EBADMSG);
1225 } 1351 }
1226 }); 1352 });
1227 } 1353 }
1228 1354
1229 1 1355 1
1290 if ($len > 0) { 1416 if ($len > 0) {
1291 $self->{_activity} = AnyEvent->now; 1417 $self->{_activity} = AnyEvent->now;
1292 1418
1293 if ($self->{tls}) { 1419 if ($self->{tls}) {
1294 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf); 1420 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1421
1295 &_dotls ($self); 1422 &_dotls ($self);
1296 } else { 1423 } else {
1297 $self->_drain_rbuf unless $self->{_in_drain}; 1424 $self->_drain_rbuf unless $self->{_in_drain};
1298 } 1425 }
1299 1426
1307 } 1434 }
1308 }); 1435 });
1309 } 1436 }
1310} 1437}
1311 1438
1439our $ERROR_SYSCALL;
1440our $ERROR_WANT_READ;
1441
1442sub _tls_error {
1443 my ($self, $err) = @_;
1444
1445 return $self->_error ($!, 1)
1446 if $err == Net::SSLeay::ERROR_SYSCALL ();
1447
1448 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1449
1450 # reduce error string to look less scary
1451 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1452
1453 if ($self->{_on_starttls}) {
1454 (delete $self->{_on_starttls})->($self, undef, $err);
1455 &_freetls;
1456 } else {
1457 &_freetls;
1458 $self->_error (Errno::EPROTO, 1, $err);
1459 }
1460}
1461
1462# poll the write BIO and send the data if applicable
1463# also decode read data if possible
1464# this is basiclaly our TLS state machine
1465# more efficient implementations are possible with openssl,
1466# but not with the buggy and incomplete Net::SSLeay.
1312sub _dotls { 1467sub _dotls {
1313 my ($self) = @_; 1468 my ($self) = @_;
1314 1469
1315 my $buf; 1470 my $tmp;
1316 1471
1317 if (length $self->{_tls_wbuf}) { 1472 if (length $self->{_tls_wbuf}) {
1318 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1473 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1319 substr $self->{_tls_wbuf}, 0, $len, ""; 1474 substr $self->{_tls_wbuf}, 0, $tmp, "";
1320 } 1475 }
1321 }
1322 1476
1477 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1478 return $self->_tls_error ($tmp)
1479 if $tmp != $ERROR_WANT_READ
1480 && ($tmp != $ERROR_SYSCALL || $!);
1481 }
1482
1323 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1483 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1324 unless (length $buf) { 1484 unless (length $tmp) {
1325 # let's treat SSL-eof as we treat normal EOF 1485 $self->{_on_starttls}
1326 delete $self->{_rw}; 1486 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1327 $self->{_eof} = 1;
1328 &_freetls; 1487 &_freetls;
1488
1489 if ($self->{on_stoptls}) {
1490 $self->{on_stoptls}($self);
1491 return;
1492 } else {
1493 # let's treat SSL-eof as we treat normal EOF
1494 delete $self->{_rw};
1495 $self->{_eof} = 1;
1496 }
1329 } 1497 }
1330 1498
1331 $self->{rbuf} .= $buf; 1499 $self->{_tls_rbuf} .= $tmp;
1332 $self->_drain_rbuf unless $self->{_in_drain}; 1500 $self->_drain_rbuf unless $self->{_in_drain};
1333 $self->{tls} or return; # tls session might have gone away in callback 1501 $self->{tls} or return; # tls session might have gone away in callback
1334 } 1502 }
1335 1503
1336 my $err = Net::SSLeay::get_error ($self->{tls}, -1); 1504 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1337
1338 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1339 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1340 return $self->_error ($!, 1); 1505 return $self->_tls_error ($tmp)
1341 } elsif ($err == Net::SSLeay::ERROR_SSL ()) { 1506 if $tmp != $ERROR_WANT_READ
1342 return $self->_error (&Errno::EIO, 1); 1507 && ($tmp != $ERROR_SYSCALL || $!);
1343 }
1344 1508
1345 # all others are fine for our purposes
1346 }
1347
1348 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1509 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1349 $self->{wbuf} .= $buf; 1510 $self->{wbuf} .= $tmp;
1350 $self->_drain_wbuf; 1511 $self->_drain_wbuf;
1351 } 1512 }
1513
1514 $self->{_on_starttls}
1515 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1516 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1352} 1517}
1353 1518
1354=item $handle->starttls ($tls[, $tls_ctx]) 1519=item $handle->starttls ($tls[, $tls_ctx])
1355 1520
1356Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1521Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1358C<starttls>. 1523C<starttls>.
1359 1524
1360The first argument is the same as the C<tls> constructor argument (either 1525The first argument is the same as the C<tls> constructor argument (either
1361C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1526C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1362 1527
1363The second argument is the optional C<Net::SSLeay::CTX> object that is 1528The second argument is the optional C<AnyEvent::TLS> object that is used
1364used when AnyEvent::Handle has to create its own TLS connection object. 1529when AnyEvent::Handle has to create its own TLS connection object, or
1530a hash reference with C<< key => value >> pairs that will be used to
1531construct a new context.
1365 1532
1366The TLS connection object will end up in C<< $handle->{tls} >> after this 1533The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1367call and can be used or changed to your liking. Note that the handshake 1534context in C<< $handle->{tls_ctx} >> after this call and can be used or
1368might have already started when this function returns. 1535changed to your liking. Note that the handshake might have already started
1536when this function returns.
1369 1537
1370If it an error to start a TLS handshake more than once per 1538If it an error to start a TLS handshake more than once per
1371AnyEvent::Handle object (this is due to bugs in OpenSSL). 1539AnyEvent::Handle object (this is due to bugs in OpenSSL).
1372 1540
1373=cut 1541=cut
1374 1542
1543our %TLS_CACHE; #TODO not yet documented, should we?
1544
1375sub starttls { 1545sub starttls {
1376 my ($self, $ssl, $ctx) = @_; 1546 my ($self, $ssl, $ctx) = @_;
1377 1547
1378 require Net::SSLeay; 1548 require Net::SSLeay;
1379 1549
1380 Carp::croak "it is an error to call starttls more than once on an Anyevent::Handle object" 1550 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1381 if $self->{tls}; 1551 if $self->{tls};
1552
1553 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1554 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1555
1556 $ctx ||= $self->{tls_ctx};
1557
1558 if ("HASH" eq ref $ctx) {
1559 require AnyEvent::TLS;
1560
1561 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context
1562
1563 if ($ctx->{cache}) {
1564 my $key = $ctx+0;
1565 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1566 } else {
1567 $ctx = new AnyEvent::TLS %$ctx;
1568 }
1569 }
1382 1570
1383 if ($ssl eq "accept") { 1571 $self->{tls_ctx} = $ctx || TLS_CTX ();
1384 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1572 $self->{tls} = $ssl = $self->{tls_ctx}->_get_session ($ssl, $self, $self->{peername});
1385 Net::SSLeay::set_accept_state ($ssl);
1386 } elsif ($ssl eq "connect") {
1387 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1388 Net::SSLeay::set_connect_state ($ssl);
1389 }
1390
1391 $self->{tls} = $ssl;
1392 1573
1393 # basically, this is deep magic (because SSL_read should have the same issues) 1574 # basically, this is deep magic (because SSL_read should have the same issues)
1394 # but the openssl maintainers basically said: "trust us, it just works". 1575 # but the openssl maintainers basically said: "trust us, it just works".
1395 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1576 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1396 # and mismaintained ssleay-module doesn't even offer them). 1577 # and mismaintained ssleay-module doesn't even offer them).
1400 # 1581 #
1401 # note that we do not try to keep the length constant between writes as we are required to do. 1582 # note that we do not try to keep the length constant between writes as we are required to do.
1402 # we assume that most (but not all) of this insanity only applies to non-blocking cases, 1583 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1403 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to 1584 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1404 # have identity issues in that area. 1585 # have identity issues in that area.
1405 Net::SSLeay::CTX_set_mode ($self->{tls}, 1586# Net::SSLeay::CTX_set_mode ($ssl,
1406 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1587# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1407 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1588# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1589 Net::SSLeay::CTX_set_mode ($ssl, 1|2);
1408 1590
1409 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1591 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1410 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1592 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1411 1593
1412 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1594 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1595
1596 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1597 if $self->{on_starttls};
1413 1598
1414 &_dotls; # need to trigger the initial handshake 1599 &_dotls; # need to trigger the initial handshake
1415 $self->start_read; # make sure we actually do read 1600 $self->start_read; # make sure we actually do read
1416} 1601}
1417 1602
1430 if ($self->{tls}) { 1615 if ($self->{tls}) {
1431 Net::SSLeay::shutdown ($self->{tls}); 1616 Net::SSLeay::shutdown ($self->{tls});
1432 1617
1433 &_dotls; 1618 &_dotls;
1434 1619
1435 # we don't give a shit. no, we do, but we can't. no... 1620# # we don't give a shit. no, we do, but we can't. no...#d#
1436 # we, we... have to use openssl :/ 1621# # we, we... have to use openssl :/#d#
1437 &_freetls; 1622# &_freetls;#d#
1438 } 1623 }
1439} 1624}
1440 1625
1441sub _freetls { 1626sub _freetls {
1442 my ($self) = @_; 1627 my ($self) = @_;
1443 1628
1444 return unless $self->{tls}; 1629 return unless $self->{tls};
1445 1630
1446 Net::SSLeay::free (delete $self->{tls}); 1631 $self->{tls_ctx}->_put_session (delete $self->{tls});
1447 1632
1448 delete @$self{qw(_rbio _wbio _tls_wbuf)}; 1633 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1449} 1634}
1450 1635
1451sub DESTROY { 1636sub DESTROY {
1452 my $self = shift; 1637 my ($self) = @_;
1453 1638
1454 &_freetls; 1639 &_freetls;
1455 1640
1456 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1641 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1457 1642
1474 @linger = (); 1659 @linger = ();
1475 }); 1660 });
1476 } 1661 }
1477} 1662}
1478 1663
1664=item $handle->destroy
1665
1666Shuts down the handle object as much as possible - this call ensures that
1667no further callbacks will be invoked and as many resources as possible
1668will be freed. You must not call any methods on the object afterwards.
1669
1670Normally, you can just "forget" any references to an AnyEvent::Handle
1671object and it will simply shut down. This works in fatal error and EOF
1672callbacks, as well as code outside. It does I<NOT> work in a read or write
1673callback, so when you want to destroy the AnyEvent::Handle object from
1674within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1675that case.
1676
1677Destroying the handle object in this way has the advantage that callbacks
1678will be removed as well, so if those are the only reference holders (as
1679is common), then one doesn't need to do anything special to break any
1680reference cycles.
1681
1682The handle might still linger in the background and write out remaining
1683data, as specified by the C<linger> option, however.
1684
1685=cut
1686
1687sub destroy {
1688 my ($self) = @_;
1689
1690 $self->DESTROY;
1691 %$self = ();
1692}
1693
1479=item AnyEvent::Handle::TLS_CTX 1694=item AnyEvent::Handle::TLS_CTX
1480 1695
1481This function creates and returns the Net::SSLeay::CTX object used by 1696This function creates and returns the AnyEvent::TLS object used by default
1482default for TLS mode. 1697for TLS mode.
1483 1698
1484The context is created like this: 1699The context is created by calling L<AnyEvent::TLS> without any arguments.
1485
1486 Net::SSLeay::load_error_strings;
1487 Net::SSLeay::SSLeay_add_ssl_algorithms;
1488 Net::SSLeay::randomize;
1489
1490 my $CTX = Net::SSLeay::CTX_new;
1491
1492 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1493 1700
1494=cut 1701=cut
1495 1702
1496our $TLS_CTX; 1703our $TLS_CTX;
1497 1704
1498sub TLS_CTX() { 1705sub TLS_CTX() {
1499 $TLS_CTX || do { 1706 $TLS_CTX ||= do {
1500 require Net::SSLeay; 1707 require AnyEvent::TLS;
1501 1708
1502 Net::SSLeay::load_error_strings (); 1709 new AnyEvent::TLS
1503 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1504 Net::SSLeay::randomize ();
1505
1506 $TLS_CTX = Net::SSLeay::CTX_new ();
1507
1508 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1509
1510 $TLS_CTX
1511 } 1710 }
1512} 1711}
1513 1712
1514=back 1713=back
1515 1714
1516 1715
1517=head1 NONFREQUENTLY ASKED QUESTIONS 1716=head1 NONFREQUENTLY ASKED QUESTIONS
1518 1717
1519=over 4 1718=over 4
1520 1719
1720=item I C<undef> the AnyEvent::Handle reference inside my callback and
1721still get further invocations!
1722
1723That's because AnyEvent::Handle keeps a reference to itself when handling
1724read or write callbacks.
1725
1726It is only safe to "forget" the reference inside EOF or error callbacks,
1727from within all other callbacks, you need to explicitly call the C<<
1728->destroy >> method.
1729
1730=item I get different callback invocations in TLS mode/Why can't I pause
1731reading?
1732
1733Unlike, say, TCP, TLS connections do not consist of two independent
1734communication channels, one for each direction. Or put differently. The
1735read and write directions are not independent of each other: you cannot
1736write data unless you are also prepared to read, and vice versa.
1737
1738This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1739callback invocations when you are not expecting any read data - the reason
1740is that AnyEvent::Handle always reads in TLS mode.
1741
1742During the connection, you have to make sure that you always have a
1743non-empty read-queue, or an C<on_read> watcher. At the end of the
1744connection (or when you no longer want to use it) you can call the
1745C<destroy> method.
1746
1521=item How do I read data until the other side closes the connection? 1747=item How do I read data until the other side closes the connection?
1522 1748
1523If you just want to read your data into a perl scalar, the easiest way to achieve this is 1749If you just want to read your data into a perl scalar, the easiest way
1524by setting an C<on_read> callback that does nothing, clearing the C<on_eof> callback 1750to achieve this is by setting an C<on_read> callback that does nothing,
1525and in the C<on_error> callback, the data will be in C<$_[0]{rbuf}>: 1751clearing the C<on_eof> callback and in the C<on_error> callback, the data
1752will be in C<$_[0]{rbuf}>:
1526 1753
1527 $handle->on_read (sub { }); 1754 $handle->on_read (sub { });
1528 $handle->on_eof (undef); 1755 $handle->on_eof (undef);
1529 $handle->on_error (sub { 1756 $handle->on_error (sub {
1530 my $data = delete $_[0]{rbuf}; 1757 my $data = delete $_[0]{rbuf};
1531 undef $handle;
1532 }); 1758 });
1533 1759
1534The reason to use C<on_error> is that TCP connections, due to latencies 1760The reason to use C<on_error> is that TCP connections, due to latencies
1535and packets loss, might get closed quite violently with an error, when in 1761and packets loss, might get closed quite violently with an error, when in
1536fact, all data has been received. 1762fact, all data has been received.
1537 1763
1538It is usually better to use acknowledgements when transfering data, 1764It is usually better to use acknowledgements when transferring data,
1539to make sure the other side hasn't just died and you got the data 1765to make sure the other side hasn't just died and you got the data
1540intact. This is also one reason why so many internet protocols have an 1766intact. This is also one reason why so many internet protocols have an
1541explicit QUIT command. 1767explicit QUIT command.
1542 1768
1543
1544=item I don't want to destroy the handle too early - how do I wait until all data has been sent? 1769=item I don't want to destroy the handle too early - how do I wait until
1770all data has been written?
1545 1771
1546After writing your last bits of data, set the C<on_drain> callback 1772After writing your last bits of data, set the C<on_drain> callback
1547and destroy the handle in there - with the default setting of 1773and destroy the handle in there - with the default setting of
1548C<low_water_mark> this will be called precisely when all data has been 1774C<low_water_mark> this will be called precisely when all data has been
1549written to the socket: 1775written to the socket:
1552 $handle->on_drain (sub { 1778 $handle->on_drain (sub {
1553 warn "all data submitted to the kernel\n"; 1779 warn "all data submitted to the kernel\n";
1554 undef $handle; 1780 undef $handle;
1555 }); 1781 });
1556 1782
1783If you just want to queue some data and then signal EOF to the other side,
1784consider using C<< ->push_shutdown >> instead.
1785
1786=item I want to contact a TLS/SSL server, I don't care about security.
1787
1788If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1789simply connect to it and then create the AnyEvent::Handle with the C<tls>
1790parameter:
1791
1792 tcp_connect $host, $port, sub {
1793 my ($fh) = @_;
1794
1795 my $handle = new AnyEvent::Handle
1796 fh => $fh,
1797 tls => "connect",
1798 on_error => sub { ... };
1799
1800 $handle->push_write (...);
1801 };
1802
1803=item I want to contact a TLS/SSL server, I do care about security.
1804
1805Then you should additionally enable certificate verification, including
1806peername verification, if the protocol you use supports it (see
1807L<AnyEvent::TLS>, C<verify_peername>).
1808
1809E.g. for HTTPS:
1810
1811 tcp_connect $host, $port, sub {
1812 my ($fh) = @_;
1813
1814 my $handle = new AnyEvent::Handle
1815 fh => $fh,
1816 peername => $host,
1817 tls => "connect",
1818 tls_ctx => { verify => 1, verify_peername => "https" },
1819 ...
1820
1821Note that you must specify the hostname you connected to (or whatever
1822"peername" the protocol needs) as the C<peername> argument, otherwise no
1823peername verification will be done.
1824
1825The above will use the system-dependent default set of trusted CA
1826certificates. If you want to check against a specific CA, add the
1827C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1828
1829 tls_ctx => {
1830 verify => 1,
1831 verify_peername => "https",
1832 ca_file => "my-ca-cert.pem",
1833 },
1834
1835=item I want to create a TLS/SSL server, how do I do that?
1836
1837Well, you first need to get a server certificate and key. You have
1838three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1839self-signed certificate (cheap. check the search engine of your choice,
1840there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1841nice program for that purpose).
1842
1843Then create a file with your private key (in PEM format, see
1844L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1845file should then look like this:
1846
1847 -----BEGIN RSA PRIVATE KEY-----
1848 ...header data
1849 ... lots of base64'y-stuff
1850 -----END RSA PRIVATE KEY-----
1851
1852 -----BEGIN CERTIFICATE-----
1853 ... lots of base64'y-stuff
1854 -----END CERTIFICATE-----
1855
1856The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
1857specify this file as C<cert_file>:
1858
1859 tcp_server undef, $port, sub {
1860 my ($fh) = @_;
1861
1862 my $handle = new AnyEvent::Handle
1863 fh => $fh,
1864 tls => "accept",
1865 tls_ctx => { cert_file => "my-server-keycert.pem" },
1866 ...
1867
1868When you have intermediate CA certificates that your clients might not
1869know about, just append them to the C<cert_file>.
1870
1557=back 1871=back
1558 1872
1559 1873
1560=head1 SUBCLASSING AnyEvent::Handle 1874=head1 SUBCLASSING AnyEvent::Handle
1561 1875

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines