ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.87 by root, Thu Aug 21 20:52:39 2008 UTC vs.
Revision 1.175 by root, Sat Aug 8 22:20:43 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 3use Scalar::Util ();
9use Carp (); 4use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR); 5use Errno qw(EAGAIN EINTR);
12 6
7use AnyEvent (); BEGIN { AnyEvent::common_sense }
8use AnyEvent::Util qw(WSAEWOULDBLOCK);
9
13=head1 NAME 10=head1 NAME
14 11
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 12AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 13
17=cut 14=cut
18 15
19our $VERSION = 4.232; 16our $VERSION = 4.91;
20 17
21=head1 SYNOPSIS 18=head1 SYNOPSIS
22 19
23 use AnyEvent; 20 use AnyEvent;
24 use AnyEvent::Handle; 21 use AnyEvent::Handle;
25 22
26 my $cv = AnyEvent->condvar; 23 my $cv = AnyEvent->condvar;
27 24
28 my $handle = 25 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 26 fh => \*STDIN,
31 on_eof => sub { 27 on_error => sub {
32 $cv->broadcast; 28 my ($hdl, $fatal, $msg) = @_;
33 }, 29 warn "got error $msg\n";
30 $hdl->destroy;
31 $cv->send;
34 ); 32 );
35 33
36 # send some request line 34 # send some request line
37 $handle->push_write ("getinfo\015\012"); 35 $hdl->push_write ("getinfo\015\012");
38 36
39 # read the response line 37 # read the response line
40 $handle->push_read (line => sub { 38 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 39 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 40 warn "got line <$line>\n";
43 $cv->send; 41 $cv->send;
44 }); 42 });
45 43
46 $cv->recv; 44 $cv->recv;
47 45
48=head1 DESCRIPTION 46=head1 DESCRIPTION
49 47
50This module is a helper module to make it easier to do event-based I/O on 48This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 49filehandles.
52on sockets see L<AnyEvent::Util>.
53 50
54The L<AnyEvent::Intro> tutorial contains some well-documented 51The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples. 52AnyEvent::Handle examples.
56 53
57In the following, when the documentation refers to of "bytes" then this 54In the following, when the documentation refers to of "bytes" then this
58means characters. As sysread and syswrite are used for all I/O, their 55means characters. As sysread and syswrite are used for all I/O, their
59treatment of characters applies to this module as well. 56treatment of characters applies to this module as well.
60 57
58At the very minimum, you should specify C<fh> or C<connect>, and the
59C<on_error> callback.
60
61All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
62argument. 62argument.
63 63
64=head1 METHODS 64=head1 METHODS
65 65
66=over 4 66=over 4
67 67
68=item B<new (%args)> 68=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
69 69
70The constructor supports these arguments (all as key => value pairs). 70The constructor supports these arguments (all as C<< key => value >> pairs).
71 71
72=over 4 72=over 4
73 73
74=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
75 75
76The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
77
78NOTE: The filehandle will be set to non-blocking mode (using 77NOTE: The filehandle will be set to non-blocking mode (using
79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in 78C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode. 79that mode.
81 80
81=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
82
83Try to connect to the specified host and service (port), using
84C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
85default C<peername>.
86
87You have to specify either this parameter, or C<fh>, above.
88
89It is possible to push requests on the read and write queues, and modify
90properties of the stream, even while AnyEvent::Handle is connecting.
91
92When this parameter is specified, then the C<on_prepare>,
93C<on_connect_error> and C<on_connect> callbacks will be called under the
94appropriate circumstances:
95
96=over 4
97
82=item on_eof => $cb->($handle) 98=item on_prepare => $cb->($handle)
83 99
84Set the callback to be called when an end-of-file condition is detected, 100This (rarely used) callback is called before a new connection is
85i.e. in the case of a socket, when the other side has closed the 101attempted, but after the file handle has been created. It could be used to
86connection cleanly. 102prepare the file handle with parameters required for the actual connect
103(as opposed to settings that can be changed when the connection is already
104established).
87 105
88For sockets, this just means that the other side has stopped sending data, 106The return value of this callback should be the connect timeout value in
89you can still try to write data, and, in fact, one can return from the eof 107seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
90callback and continue writing data, as only the read part has been shut 108timeout is to be used).
91down.
92 109
93While not mandatory, it is I<highly> recommended to set an eof callback, 110=item on_connect => $cb->($handle, $host, $port, $retry->())
94otherwise you might end up with a closed socket while you are still
95waiting for data.
96 111
97If an EOF condition has been detected but no C<on_eof> callback has been 112This callback is called when a connection has been successfully established.
98set, then a fatal error will be raised with C<$!> set to <0>.
99 113
114The actual numeric host and port (the socket peername) are passed as
115parameters, together with a retry callback.
116
117When, for some reason, the handle is not acceptable, then calling
118C<$retry> will continue with the next conenction target (in case of
119multi-homed hosts or SRV records there can be multiple connection
120endpoints). When it is called then the read and write queues, eof status,
121tls status and similar properties of the handle are being reset.
122
123In most cases, ignoring the C<$retry> parameter is the way to go.
124
125=item on_connect_error => $cb->($handle, $message)
126
127This callback is called when the conenction could not be
128established. C<$!> will contain the relevant error code, and C<$message> a
129message describing it (usually the same as C<"$!">).
130
131If this callback isn't specified, then C<on_error> will be called with a
132fatal error instead.
133
134=back
135
100=item on_error => $cb->($handle, $fatal) 136=item on_error => $cb->($handle, $fatal, $message)
101 137
102This is the error callback, which is called when, well, some error 138This is the error callback, which is called when, well, some error
103occured, such as not being able to resolve the hostname, failure to 139occured, such as not being able to resolve the hostname, failure to
104connect or a read error. 140connect or a read error.
105 141
106Some errors are fatal (which is indicated by C<$fatal> being true). On 142Some errors are fatal (which is indicated by C<$fatal> being true). On
107fatal errors the handle object will be shut down and will not be usable 143fatal errors the handle object will be destroyed (by a call to C<< ->
108(but you are free to look at the current C< ->rbuf >). Examples of fatal 144destroy >>) after invoking the error callback (which means you are free to
109errors are an EOF condition with active (but unsatisifable) read watchers 145examine the handle object). Examples of fatal errors are an EOF condition
110(C<EPIPE>) or I/O errors. 146with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
147cases where the other side can close the connection at their will it is
148often easiest to not report C<EPIPE> errors in this callback.
149
150AnyEvent::Handle tries to find an appropriate error code for you to check
151against, but in some cases (TLS errors), this does not work well. It is
152recommended to always output the C<$message> argument in human-readable
153error messages (it's usually the same as C<"$!">).
111 154
112Non-fatal errors can be retried by simply returning, but it is recommended 155Non-fatal errors can be retried by simply returning, but it is recommended
113to simply ignore this parameter and instead abondon the handle object 156to simply ignore this parameter and instead abondon the handle object
114when this callback is invoked. Examples of non-fatal errors are timeouts 157when this callback is invoked. Examples of non-fatal errors are timeouts
115C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>). 158C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
116 159
117On callback entrance, the value of C<$!> contains the operating system 160On callback entrance, the value of C<$!> contains the operating system
118error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 161error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
162C<EPROTO>).
119 163
120While not mandatory, it is I<highly> recommended to set this callback, as 164While not mandatory, it is I<highly> recommended to set this callback, as
121you will not be notified of errors otherwise. The default simply calls 165you will not be notified of errors otherwise. The default simply calls
122C<croak>. 166C<croak>.
123 167
127and no read request is in the queue (unlike read queue callbacks, this 171and no read request is in the queue (unlike read queue callbacks, this
128callback will only be called when at least one octet of data is in the 172callback will only be called when at least one octet of data is in the
129read buffer). 173read buffer).
130 174
131To access (and remove data from) the read buffer, use the C<< ->rbuf >> 175To access (and remove data from) the read buffer, use the C<< ->rbuf >>
132method or access the C<$handle->{rbuf}> member directly. 176method or access the C<< $handle->{rbuf} >> member directly. Note that you
177must not enlarge or modify the read buffer, you can only remove data at
178the beginning from it.
133 179
134When an EOF condition is detected then AnyEvent::Handle will first try to 180When an EOF condition is detected then AnyEvent::Handle will first try to
135feed all the remaining data to the queued callbacks and C<on_read> before 181feed all the remaining data to the queued callbacks and C<on_read> before
136calling the C<on_eof> callback. If no progress can be made, then a fatal 182calling the C<on_eof> callback. If no progress can be made, then a fatal
137error will be raised (with C<$!> set to C<EPIPE>). 183error will be raised (with C<$!> set to C<EPIPE>).
184
185Note that, unlike requests in the read queue, an C<on_read> callback
186doesn't mean you I<require> some data: if there is an EOF and there
187are outstanding read requests then an error will be flagged. With an
188C<on_read> callback, the C<on_eof> callback will be invoked.
189
190=item on_eof => $cb->($handle)
191
192Set the callback to be called when an end-of-file condition is detected,
193i.e. in the case of a socket, when the other side has closed the
194connection cleanly, and there are no outstanding read requests in the
195queue (if there are read requests, then an EOF counts as an unexpected
196connection close and will be flagged as an error).
197
198For sockets, this just means that the other side has stopped sending data,
199you can still try to write data, and, in fact, one can return from the EOF
200callback and continue writing data, as only the read part has been shut
201down.
202
203If an EOF condition has been detected but no C<on_eof> callback has been
204set, then a fatal error will be raised with C<$!> set to <0>.
138 205
139=item on_drain => $cb->($handle) 206=item on_drain => $cb->($handle)
140 207
141This sets the callback that is called when the write buffer becomes empty 208This sets the callback that is called when the write buffer becomes empty
142(or when the callback is set and the buffer is empty already). 209(or when the callback is set and the buffer is empty already).
152=item timeout => $fractional_seconds 219=item timeout => $fractional_seconds
153 220
154If non-zero, then this enables an "inactivity" timeout: whenever this many 221If non-zero, then this enables an "inactivity" timeout: whenever this many
155seconds pass without a successful read or write on the underlying file 222seconds pass without a successful read or write on the underlying file
156handle, the C<on_timeout> callback will be invoked (and if that one is 223handle, the C<on_timeout> callback will be invoked (and if that one is
157missing, an C<ETIMEDOUT> error will be raised). 224missing, a non-fatal C<ETIMEDOUT> error will be raised).
158 225
159Note that timeout processing is also active when you currently do not have 226Note that timeout processing is also active when you currently do not have
160any outstanding read or write requests: If you plan to keep the connection 227any outstanding read or write requests: If you plan to keep the connection
161idle then you should disable the timout temporarily or ignore the timeout 228idle then you should disable the timout temporarily or ignore the timeout
162in the C<on_timeout> callback. 229in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
230restart the timeout.
163 231
164Zero (the default) disables this timeout. 232Zero (the default) disables this timeout.
165 233
166=item on_timeout => $cb->($handle) 234=item on_timeout => $cb->($handle)
167 235
171 239
172=item rbuf_max => <bytes> 240=item rbuf_max => <bytes>
173 241
174If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 242If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
175when the read buffer ever (strictly) exceeds this size. This is useful to 243when the read buffer ever (strictly) exceeds this size. This is useful to
176avoid denial-of-service attacks. 244avoid some forms of denial-of-service attacks.
177 245
178For example, a server accepting connections from untrusted sources should 246For example, a server accepting connections from untrusted sources should
179be configured to accept only so-and-so much data that it cannot act on 247be configured to accept only so-and-so much data that it cannot act on
180(for example, when expecting a line, an attacker could send an unlimited 248(for example, when expecting a line, an attacker could send an unlimited
181amount of data without a callback ever being called as long as the line 249amount of data without a callback ever being called as long as the line
182isn't finished). 250isn't finished).
183 251
184=item autocork => <boolean> 252=item autocork => <boolean>
185 253
186When disabled (the default), then C<push_write> will try to immediately 254When disabled (the default), then C<push_write> will try to immediately
187write the data to the handle if possible. This avoids having to register 255write the data to the handle, if possible. This avoids having to register
188a write watcher and wait for the next event loop iteration, but can be 256a write watcher and wait for the next event loop iteration, but can
189inefficient if you write multiple small chunks (this disadvantage is 257be inefficient if you write multiple small chunks (on the wire, this
190usually avoided by your kernel's nagle algorithm, see C<low_delay>). 258disadvantage is usually avoided by your kernel's nagle algorithm, see
259C<no_delay>, but this option can save costly syscalls).
191 260
192When enabled, then writes will always be queued till the next event loop 261When enabled, then writes will always be queued till the next event loop
193iteration. This is efficient when you do many small writes per iteration, 262iteration. This is efficient when you do many small writes per iteration,
194but less efficient when you do a single write only. 263but less efficient when you do a single write only per iteration (or when
264the write buffer often is full). It also increases write latency.
195 265
196=item no_delay => <boolean> 266=item no_delay => <boolean>
197 267
198When doing small writes on sockets, your operating system kernel might 268When doing small writes on sockets, your operating system kernel might
199wait a bit for more data before actually sending it out. This is called 269wait a bit for more data before actually sending it out. This is called
200the Nagle algorithm, and usually it is beneficial. 270the Nagle algorithm, and usually it is beneficial.
201 271
202In some situations you want as low a delay as possible, which cna be 272In some situations you want as low a delay as possible, which can be
203accomplishd by setting this option to true. 273accomplishd by setting this option to a true value.
204 274
205The default is your opertaing system's default behaviour, this option 275The default is your opertaing system's default behaviour (most likely
206explicitly enables or disables it, if possible. 276enabled), this option explicitly enables or disables it, if possible.
207 277
208=item read_size => <bytes> 278=item read_size => <bytes>
209 279
210The default read block size (the amount of bytes this module will try to read 280The default read block size (the amount of bytes this module will
211during each (loop iteration). Default: C<8192>. 281try to read during each loop iteration, which affects memory
282requirements). Default: C<8192>.
212 283
213=item low_water_mark => <bytes> 284=item low_water_mark => <bytes>
214 285
215Sets the amount of bytes (default: C<0>) that make up an "empty" write 286Sets the amount of bytes (default: C<0>) that make up an "empty" write
216buffer: If the write reaches this size or gets even samller it is 287buffer: If the write reaches this size or gets even samller it is
217considered empty. 288considered empty.
218 289
290Sometimes it can be beneficial (for performance reasons) to add data to
291the write buffer before it is fully drained, but this is a rare case, as
292the operating system kernel usually buffers data as well, so the default
293is good in almost all cases.
294
219=item linger => <seconds> 295=item linger => <seconds>
220 296
221If non-zero (default: C<3600>), then the destructor of the 297If non-zero (default: C<3600>), then the destructor of the
222AnyEvent::Handle object will check wether there is still outstanding write 298AnyEvent::Handle object will check whether there is still outstanding
223data and will install a watcher that will write out this data. No errors 299write data and will install a watcher that will write this data to the
224will be reported (this mostly matches how the operating system treats 300socket. No errors will be reported (this mostly matches how the operating
225outstanding data at socket close time). 301system treats outstanding data at socket close time).
226 302
227This will not work for partial TLS data that could not yet been 303This will not work for partial TLS data that could not be encoded
228encoded. This data will be lost. 304yet. This data will be lost. Calling the C<stoptls> method in time might
305help.
306
307=item peername => $string
308
309A string used to identify the remote site - usually the DNS hostname
310(I<not> IDN!) used to create the connection, rarely the IP address.
311
312Apart from being useful in error messages, this string is also used in TLS
313peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
314verification will be skipped when C<peername> is not specified or
315C<undef>.
229 316
230=item tls => "accept" | "connect" | Net::SSLeay::SSL object 317=item tls => "accept" | "connect" | Net::SSLeay::SSL object
231 318
232When this parameter is given, it enables TLS (SSL) mode, that means 319When this parameter is given, it enables TLS (SSL) mode, that means
233AnyEvent will start a TLS handshake and will transparently encrypt/decrypt 320AnyEvent will start a TLS handshake as soon as the conenction has been
234data. 321established and will transparently encrypt/decrypt data afterwards.
322
323All TLS protocol errors will be signalled as C<EPROTO>, with an
324appropriate error message.
235 325
236TLS mode requires Net::SSLeay to be installed (it will be loaded 326TLS mode requires Net::SSLeay to be installed (it will be loaded
237automatically when you try to create a TLS handle). 327automatically when you try to create a TLS handle): this module doesn't
328have a dependency on that module, so if your module requires it, you have
329to add the dependency yourself.
238 330
239Unlike TCP, TLS has a server and client side: for the TLS server side, use 331Unlike TCP, TLS has a server and client side: for the TLS server side, use
240C<accept>, and for the TLS client side of a connection, use C<connect> 332C<accept>, and for the TLS client side of a connection, use C<connect>
241mode. 333mode.
242 334
243You can also provide your own TLS connection object, but you have 335You can also provide your own TLS connection object, but you have
244to make sure that you call either C<Net::SSLeay::set_connect_state> 336to make sure that you call either C<Net::SSLeay::set_connect_state>
245or C<Net::SSLeay::set_accept_state> on it before you pass it to 337or C<Net::SSLeay::set_accept_state> on it before you pass it to
246AnyEvent::Handle. 338AnyEvent::Handle. Also, this module will take ownership of this connection
339object.
247 340
341At some future point, AnyEvent::Handle might switch to another TLS
342implementation, then the option to use your own session object will go
343away.
344
345B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
346passing in the wrong integer will lead to certain crash. This most often
347happens when one uses a stylish C<< tls => 1 >> and is surprised about the
348segmentation fault.
349
248See the C<starttls> method for when need to start TLS negotiation later. 350See the C<< ->starttls >> method for when need to start TLS negotiation later.
249 351
250=item tls_ctx => $ssl_ctx 352=item tls_ctx => $anyevent_tls
251 353
252Use the given Net::SSLeay::CTX object to create the new TLS connection 354Use the given C<AnyEvent::TLS> object to create the new TLS connection
253(unless a connection object was specified directly). If this parameter is 355(unless a connection object was specified directly). If this parameter is
254missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 356missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
357
358Instead of an object, you can also specify a hash reference with C<< key
359=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
360new TLS context object.
361
362=item on_starttls => $cb->($handle, $success[, $error_message])
363
364This callback will be invoked when the TLS/SSL handshake has finished. If
365C<$success> is true, then the TLS handshake succeeded, otherwise it failed
366(C<on_stoptls> will not be called in this case).
367
368The session in C<< $handle->{tls} >> can still be examined in this
369callback, even when the handshake was not successful.
370
371TLS handshake failures will not cause C<on_error> to be invoked when this
372callback is in effect, instead, the error message will be passed to C<on_starttls>.
373
374Without this callback, handshake failures lead to C<on_error> being
375called, as normal.
376
377Note that you cannot call C<starttls> right again in this callback. If you
378need to do that, start an zero-second timer instead whose callback can
379then call C<< ->starttls >> again.
380
381=item on_stoptls => $cb->($handle)
382
383When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
384set, then it will be invoked after freeing the TLS session. If it is not,
385then a TLS shutdown condition will be treated like a normal EOF condition
386on the handle.
387
388The session in C<< $handle->{tls} >> can still be examined in this
389callback.
390
391This callback will only be called on TLS shutdowns, not when the
392underlying handle signals EOF.
255 393
256=item json => JSON or JSON::XS object 394=item json => JSON or JSON::XS object
257 395
258This is the json coder object used by the C<json> read and write types. 396This is the json coder object used by the C<json> read and write types.
259 397
262texts. 400texts.
263 401
264Note that you are responsible to depend on the JSON module if you want to 402Note that you are responsible to depend on the JSON module if you want to
265use this functionality, as AnyEvent does not have a dependency itself. 403use this functionality, as AnyEvent does not have a dependency itself.
266 404
267=item filter_r => $cb
268
269=item filter_w => $cb
270
271These exist, but are undocumented at this time. (They are used internally
272by the TLS code).
273
274=back 405=back
275 406
276=cut 407=cut
277 408
278sub new { 409sub new {
279 my $class = shift; 410 my $class = shift;
280
281 my $self = bless { @_ }, $class; 411 my $self = bless { @_ }, $class;
282 412
283 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 413 if ($self->{fh}) {
414 $self->_start;
415 return unless $self->{fh}; # could be gone by now
416
417 } elsif ($self->{connect}) {
418 require AnyEvent::Socket;
419
420 $self->{peername} = $self->{connect}[0]
421 unless exists $self->{peername};
422
423 $self->{_skip_drain_rbuf} = 1;
424
425 {
426 Scalar::Util::weaken (my $self = $self);
427
428 $self->{_connect} =
429 AnyEvent::Socket::tcp_connect (
430 $self->{connect}[0],
431 $self->{connect}[1],
432 sub {
433 my ($fh, $host, $port, $retry) = @_;
434
435 if ($fh) {
436 $self->{fh} = $fh;
437
438 delete $self->{_skip_drain_rbuf};
439 $self->_start;
440
441 $self->{on_connect}
442 and $self->{on_connect}($self, $host, $port, sub {
443 delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
444 $self->{_skip_drain_rbuf} = 1;
445 &$retry;
446 });
447
448 } else {
449 if ($self->{on_connect_error}) {
450 $self->{on_connect_error}($self, "$!");
451 $self->destroy;
452 } else {
453 $self->_error ($!, 1);
454 }
455 }
456 },
457 sub {
458 local $self->{fh} = $_[0];
459
460 $self->{on_prepare}
461 ? $self->{on_prepare}->($self)
462 : ()
463 }
464 );
465 }
466
467 } else {
468 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
469 }
470
471 $self
472}
473
474sub _start {
475 my ($self) = @_;
284 476
285 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 477 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
286 478
287 if ($self->{tls}) {
288 require Net::SSLeay;
289 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
290 }
291
292 $self->{_activity} = AnyEvent->now; 479 $self->{_activity} = AE::now;
293 $self->_timeout; 480 $self->_timeout;
294 481
295 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
296 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay}; 482 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
297 483
484 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
485 if $self->{tls};
486
487 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
488
298 $self->start_read 489 $self->start_read
299 if $self->{on_read}; 490 if $self->{on_read} || @{ $self->{_queue} };
300 491
301 $self 492 $self->_drain_wbuf;
302} 493}
303 494
304sub _shutdown { 495#sub _shutdown {
305 my ($self) = @_; 496# my ($self) = @_;
306 497#
307 delete $self->{_tw}; 498# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
308 delete $self->{_rw}; 499# $self->{_eof} = 1; # tell starttls et. al to stop trying
309 delete $self->{_ww}; 500#
310 delete $self->{fh}; 501# &_freetls;
311 502#}
312 $self->stoptls;
313
314 delete $self->{on_read};
315 delete $self->{_queue};
316}
317 503
318sub _error { 504sub _error {
319 my ($self, $errno, $fatal) = @_; 505 my ($self, $errno, $fatal, $message) = @_;
320
321 $self->_shutdown
322 if $fatal;
323 506
324 $! = $errno; 507 $! = $errno;
508 $message ||= "$!";
325 509
326 if ($self->{on_error}) { 510 if ($self->{on_error}) {
327 $self->{on_error}($self, $fatal); 511 $self->{on_error}($self, $fatal, $message);
328 } else { 512 $self->destroy if $fatal;
513 } elsif ($self->{fh}) {
514 $self->destroy;
329 Carp::croak "AnyEvent::Handle uncaught error: $!"; 515 Carp::croak "AnyEvent::Handle uncaught error: $message";
330 } 516 }
331} 517}
332 518
333=item $fh = $handle->fh 519=item $fh = $handle->fh
334 520
335This method returns the file handle of the L<AnyEvent::Handle> object. 521This method returns the file handle used to create the L<AnyEvent::Handle> object.
336 522
337=cut 523=cut
338 524
339sub fh { $_[0]{fh} } 525sub fh { $_[0]{fh} }
340 526
358 $_[0]{on_eof} = $_[1]; 544 $_[0]{on_eof} = $_[1];
359} 545}
360 546
361=item $handle->on_timeout ($cb) 547=item $handle->on_timeout ($cb)
362 548
363Replace the current C<on_timeout> callback, or disables the callback 549Replace the current C<on_timeout> callback, or disables the callback (but
364(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor 550not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
365argument. 551argument and method.
366 552
367=cut 553=cut
368 554
369sub on_timeout { 555sub on_timeout {
370 $_[0]{on_timeout} = $_[1]; 556 $_[0]{on_timeout} = $_[1];
371} 557}
372 558
373=item $handle->autocork ($boolean) 559=item $handle->autocork ($boolean)
374 560
375Enables or disables the current autocork behaviour (see C<autocork> 561Enables or disables the current autocork behaviour (see C<autocork>
376constructor argument). 562constructor argument). Changes will only take effect on the next write.
377 563
378=cut 564=cut
565
566sub autocork {
567 $_[0]{autocork} = $_[1];
568}
379 569
380=item $handle->no_delay ($boolean) 570=item $handle->no_delay ($boolean)
381 571
382Enables or disables the C<no_delay> setting (see constructor argument of 572Enables or disables the C<no_delay> setting (see constructor argument of
383the same name for details). 573the same name for details).
387sub no_delay { 577sub no_delay {
388 $_[0]{no_delay} = $_[1]; 578 $_[0]{no_delay} = $_[1];
389 579
390 eval { 580 eval {
391 local $SIG{__DIE__}; 581 local $SIG{__DIE__};
392 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 582 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
583 if $_[0]{fh};
393 }; 584 };
585}
586
587=item $handle->on_starttls ($cb)
588
589Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
590
591=cut
592
593sub on_starttls {
594 $_[0]{on_starttls} = $_[1];
595}
596
597=item $handle->on_stoptls ($cb)
598
599Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
600
601=cut
602
603sub on_starttls {
604 $_[0]{on_stoptls} = $_[1];
605}
606
607=item $handle->rbuf_max ($max_octets)
608
609Configures the C<rbuf_max> setting (C<undef> disables it).
610
611=cut
612
613sub rbuf_max {
614 $_[0]{rbuf_max} = $_[1];
394} 615}
395 616
396############################################################################# 617#############################################################################
397 618
398=item $handle->timeout ($seconds) 619=item $handle->timeout ($seconds)
403 624
404sub timeout { 625sub timeout {
405 my ($self, $timeout) = @_; 626 my ($self, $timeout) = @_;
406 627
407 $self->{timeout} = $timeout; 628 $self->{timeout} = $timeout;
629 delete $self->{_tw};
408 $self->_timeout; 630 $self->_timeout;
409} 631}
410 632
411# reset the timeout watcher, as neccessary 633# reset the timeout watcher, as neccessary
412# also check for time-outs 634# also check for time-outs
413sub _timeout { 635sub _timeout {
414 my ($self) = @_; 636 my ($self) = @_;
415 637
416 if ($self->{timeout}) { 638 if ($self->{timeout} && $self->{fh}) {
417 my $NOW = AnyEvent->now; 639 my $NOW = AE::now;
418 640
419 # when would the timeout trigger? 641 # when would the timeout trigger?
420 my $after = $self->{_activity} + $self->{timeout} - $NOW; 642 my $after = $self->{_activity} + $self->{timeout} - $NOW;
421 643
422 # now or in the past already? 644 # now or in the past already?
424 $self->{_activity} = $NOW; 646 $self->{_activity} = $NOW;
425 647
426 if ($self->{on_timeout}) { 648 if ($self->{on_timeout}) {
427 $self->{on_timeout}($self); 649 $self->{on_timeout}($self);
428 } else { 650 } else {
429 $self->_error (&Errno::ETIMEDOUT); 651 $self->_error (Errno::ETIMEDOUT);
430 } 652 }
431 653
432 # callback could have changed timeout value, optimise 654 # callback could have changed timeout value, optimise
433 return unless $self->{timeout}; 655 return unless $self->{timeout};
434 656
437 } 659 }
438 660
439 Scalar::Util::weaken $self; 661 Scalar::Util::weaken $self;
440 return unless $self; # ->error could have destroyed $self 662 return unless $self; # ->error could have destroyed $self
441 663
442 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub { 664 $self->{_tw} ||= AE::timer $after, 0, sub {
443 delete $self->{_tw}; 665 delete $self->{_tw};
444 $self->_timeout; 666 $self->_timeout;
445 }); 667 };
446 } else { 668 } else {
447 delete $self->{_tw}; 669 delete $self->{_tw};
448 } 670 }
449} 671}
450 672
476 my ($self, $cb) = @_; 698 my ($self, $cb) = @_;
477 699
478 $self->{on_drain} = $cb; 700 $self->{on_drain} = $cb;
479 701
480 $cb->($self) 702 $cb->($self)
481 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 703 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
482} 704}
483 705
484=item $handle->push_write ($data) 706=item $handle->push_write ($data)
485 707
486Queues the given scalar to be written. You can push as much data as you 708Queues the given scalar to be written. You can push as much data as you
497 Scalar::Util::weaken $self; 719 Scalar::Util::weaken $self;
498 720
499 my $cb = sub { 721 my $cb = sub {
500 my $len = syswrite $self->{fh}, $self->{wbuf}; 722 my $len = syswrite $self->{fh}, $self->{wbuf};
501 723
502 if ($len >= 0) { 724 if (defined $len) {
503 substr $self->{wbuf}, 0, $len, ""; 725 substr $self->{wbuf}, 0, $len, "";
504 726
505 $self->{_activity} = AnyEvent->now; 727 $self->{_activity} = AE::now;
506 728
507 $self->{on_drain}($self) 729 $self->{on_drain}($self)
508 if $self->{low_water_mark} >= length $self->{wbuf} 730 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
509 && $self->{on_drain}; 731 && $self->{on_drain};
510 732
511 delete $self->{_ww} unless length $self->{wbuf}; 733 delete $self->{_ww} unless length $self->{wbuf};
512 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 734 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
513 $self->_error ($!, 1); 735 $self->_error ($!, 1);
516 738
517 # try to write data immediately 739 # try to write data immediately
518 $cb->() unless $self->{autocork}; 740 $cb->() unless $self->{autocork};
519 741
520 # if still data left in wbuf, we need to poll 742 # if still data left in wbuf, we need to poll
521 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 743 $self->{_ww} = AE::io $self->{fh}, 1, $cb
522 if length $self->{wbuf}; 744 if length $self->{wbuf};
523 }; 745 };
524} 746}
525 747
526our %WH; 748our %WH;
537 759
538 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 760 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
539 ->($self, @_); 761 ->($self, @_);
540 } 762 }
541 763
542 if ($self->{filter_w}) { 764 if ($self->{tls}) {
543 $self->{filter_w}($self, \$_[0]); 765 $self->{_tls_wbuf} .= $_[0];
766 &_dotls ($self) if $self->{fh};
544 } else { 767 } else {
545 $self->{wbuf} .= $_[0]; 768 $self->{wbuf} .= $_[0];
546 $self->_drain_wbuf; 769 $self->_drain_wbuf if $self->{fh};
547 } 770 }
548} 771}
549 772
550=item $handle->push_write (type => @args) 773=item $handle->push_write (type => @args)
551 774
565=cut 788=cut
566 789
567register_write_type netstring => sub { 790register_write_type netstring => sub {
568 my ($self, $string) = @_; 791 my ($self, $string) = @_;
569 792
570 sprintf "%d:%s,", (length $string), $string 793 (length $string) . ":$string,"
571}; 794};
572 795
573=item packstring => $format, $data 796=item packstring => $format, $data
574 797
575An octet string prefixed with an encoded length. The encoding C<$format> 798An octet string prefixed with an encoded length. The encoding C<$format>
640 863
641 pack "w/a*", Storable::nfreeze ($ref) 864 pack "w/a*", Storable::nfreeze ($ref)
642}; 865};
643 866
644=back 867=back
868
869=item $handle->push_shutdown
870
871Sometimes you know you want to close the socket after writing your data
872before it was actually written. One way to do that is to replace your
873C<on_drain> handler by a callback that shuts down the socket (and set
874C<low_water_mark> to C<0>). This method is a shorthand for just that, and
875replaces the C<on_drain> callback with:
876
877 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
878
879This simply shuts down the write side and signals an EOF condition to the
880the peer.
881
882You can rely on the normal read queue and C<on_eof> handling
883afterwards. This is the cleanest way to close a connection.
884
885=cut
886
887sub push_shutdown {
888 my ($self) = @_;
889
890 delete $self->{low_water_mark};
891 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
892}
645 893
646=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 894=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
647 895
648This function (not method) lets you add your own types to C<push_write>. 896This function (not method) lets you add your own types to C<push_write>.
649Whenever the given C<type> is used, C<push_write> will invoke the code 897Whenever the given C<type> is used, C<push_write> will invoke the code
743=cut 991=cut
744 992
745sub _drain_rbuf { 993sub _drain_rbuf {
746 my ($self) = @_; 994 my ($self) = @_;
747 995
996 # avoid recursion
997 return if $self->{_skip_drain_rbuf};
748 local $self->{_in_drain} = 1; 998 local $self->{_skip_drain_rbuf} = 1;
749
750 if (
751 defined $self->{rbuf_max}
752 && $self->{rbuf_max} < length $self->{rbuf}
753 ) {
754 $self->_error (&Errno::ENOSPC, 1), return;
755 }
756 999
757 while () { 1000 while () {
1001 # we need to use a separate tls read buffer, as we must not receive data while
1002 # we are draining the buffer, and this can only happen with TLS.
1003 $self->{rbuf} .= delete $self->{_tls_rbuf}
1004 if exists $self->{_tls_rbuf};
1005
758 my $len = length $self->{rbuf}; 1006 my $len = length $self->{rbuf};
759 1007
760 if (my $cb = shift @{ $self->{_queue} }) { 1008 if (my $cb = shift @{ $self->{_queue} }) {
761 unless ($cb->($self)) { 1009 unless ($cb->($self)) {
762 if ($self->{_eof}) { 1010 # no progress can be made
763 # no progress can be made (not enough data and no data forthcoming) 1011 # (not enough data and no data forthcoming)
764 $self->_error (&Errno::EPIPE, 1), return; 1012 $self->_error (Errno::EPIPE, 1), return
765 } 1013 if $self->{_eof};
766 1014
767 unshift @{ $self->{_queue} }, $cb; 1015 unshift @{ $self->{_queue} }, $cb;
768 last; 1016 last;
769 } 1017 }
770 } elsif ($self->{on_read}) { 1018 } elsif ($self->{on_read}) {
777 && !@{ $self->{_queue} } # and the queue is still empty 1025 && !@{ $self->{_queue} } # and the queue is still empty
778 && $self->{on_read} # but we still have on_read 1026 && $self->{on_read} # but we still have on_read
779 ) { 1027 ) {
780 # no further data will arrive 1028 # no further data will arrive
781 # so no progress can be made 1029 # so no progress can be made
782 $self->_error (&Errno::EPIPE, 1), return 1030 $self->_error (Errno::EPIPE, 1), return
783 if $self->{_eof}; 1031 if $self->{_eof};
784 1032
785 last; # more data might arrive 1033 last; # more data might arrive
786 } 1034 }
787 } else { 1035 } else {
788 # read side becomes idle 1036 # read side becomes idle
789 delete $self->{_rw}; 1037 delete $self->{_rw} unless $self->{tls};
790 last; 1038 last;
791 } 1039 }
792 } 1040 }
793 1041
794 if ($self->{_eof}) { 1042 if ($self->{_eof}) {
795 if ($self->{on_eof}) { 1043 $self->{on_eof}
796 $self->{on_eof}($self) 1044 ? $self->{on_eof}($self)
797 } else { 1045 : $self->_error (0, 1, "Unexpected end-of-file");
798 $self->_error (0, 1); 1046
799 } 1047 return;
1048 }
1049
1050 if (
1051 defined $self->{rbuf_max}
1052 && $self->{rbuf_max} < length $self->{rbuf}
1053 ) {
1054 $self->_error (Errno::ENOSPC, 1), return;
800 } 1055 }
801 1056
802 # may need to restart read watcher 1057 # may need to restart read watcher
803 unless ($self->{_rw}) { 1058 unless ($self->{_rw}) {
804 $self->start_read 1059 $self->start_read
816 1071
817sub on_read { 1072sub on_read {
818 my ($self, $cb) = @_; 1073 my ($self, $cb) = @_;
819 1074
820 $self->{on_read} = $cb; 1075 $self->{on_read} = $cb;
821 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1076 $self->_drain_rbuf if $cb;
822} 1077}
823 1078
824=item $handle->rbuf 1079=item $handle->rbuf
825 1080
826Returns the read buffer (as a modifiable lvalue). 1081Returns the read buffer (as a modifiable lvalue).
827 1082
828You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1083You can access the read buffer directly as the C<< ->{rbuf} >>
829you want. 1084member, if you want. However, the only operation allowed on the
1085read buffer (apart from looking at it) is removing data from its
1086beginning. Otherwise modifying or appending to it is not allowed and will
1087lead to hard-to-track-down bugs.
830 1088
831NOTE: The read buffer should only be used or modified if the C<on_read>, 1089NOTE: The read buffer should only be used or modified if the C<on_read>,
832C<push_read> or C<unshift_read> methods are used. The other read methods 1090C<push_read> or C<unshift_read> methods are used. The other read methods
833automatically manage the read buffer. 1091automatically manage the read buffer.
834 1092
875 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1133 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
876 ->($self, $cb, @_); 1134 ->($self, $cb, @_);
877 } 1135 }
878 1136
879 push @{ $self->{_queue} }, $cb; 1137 push @{ $self->{_queue} }, $cb;
880 $self->_drain_rbuf unless $self->{_in_drain}; 1138 $self->_drain_rbuf;
881} 1139}
882 1140
883sub unshift_read { 1141sub unshift_read {
884 my $self = shift; 1142 my $self = shift;
885 my $cb = pop; 1143 my $cb = pop;
891 ->($self, $cb, @_); 1149 ->($self, $cb, @_);
892 } 1150 }
893 1151
894 1152
895 unshift @{ $self->{_queue} }, $cb; 1153 unshift @{ $self->{_queue} }, $cb;
896 $self->_drain_rbuf unless $self->{_in_drain}; 1154 $self->_drain_rbuf;
897} 1155}
898 1156
899=item $handle->push_read (type => @args, $cb) 1157=item $handle->push_read (type => @args, $cb)
900 1158
901=item $handle->unshift_read (type => @args, $cb) 1159=item $handle->unshift_read (type => @args, $cb)
1034 return 1; 1292 return 1;
1035 } 1293 }
1036 1294
1037 # reject 1295 # reject
1038 if ($reject && $$rbuf =~ $reject) { 1296 if ($reject && $$rbuf =~ $reject) {
1039 $self->_error (&Errno::EBADMSG); 1297 $self->_error (Errno::EBADMSG);
1040 } 1298 }
1041 1299
1042 # skip 1300 # skip
1043 if ($skip && $$rbuf =~ $skip) { 1301 if ($skip && $$rbuf =~ $skip) {
1044 $data .= substr $$rbuf, 0, $+[0], ""; 1302 $data .= substr $$rbuf, 0, $+[0], "";
1060 my ($self, $cb) = @_; 1318 my ($self, $cb) = @_;
1061 1319
1062 sub { 1320 sub {
1063 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1321 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1064 if ($_[0]{rbuf} =~ /[^0-9]/) { 1322 if ($_[0]{rbuf} =~ /[^0-9]/) {
1065 $self->_error (&Errno::EBADMSG); 1323 $self->_error (Errno::EBADMSG);
1066 } 1324 }
1067 return; 1325 return;
1068 } 1326 }
1069 1327
1070 my $len = $1; 1328 my $len = $1;
1073 my $string = $_[1]; 1331 my $string = $_[1];
1074 $_[0]->unshift_read (chunk => 1, sub { 1332 $_[0]->unshift_read (chunk => 1, sub {
1075 if ($_[1] eq ",") { 1333 if ($_[1] eq ",") {
1076 $cb->($_[0], $string); 1334 $cb->($_[0], $string);
1077 } else { 1335 } else {
1078 $self->_error (&Errno::EBADMSG); 1336 $self->_error (Errno::EBADMSG);
1079 } 1337 }
1080 }); 1338 });
1081 }); 1339 });
1082 1340
1083 1 1341 1
1089An octet string prefixed with an encoded length. The encoding C<$format> 1347An octet string prefixed with an encoded length. The encoding C<$format>
1090uses the same format as a Perl C<pack> format, but must specify a single 1348uses the same format as a Perl C<pack> format, but must specify a single
1091integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1349integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1092optional C<!>, C<< < >> or C<< > >> modifier). 1350optional C<!>, C<< < >> or C<< > >> modifier).
1093 1351
1094DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1352For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1353EPP uses a prefix of C<N> (4 octtes).
1095 1354
1096Example: read a block of data prefixed by its length in BER-encoded 1355Example: read a block of data prefixed by its length in BER-encoded
1097format (very efficient). 1356format (very efficient).
1098 1357
1099 $handle->push_read (packstring => "w", sub { 1358 $handle->push_read (packstring => "w", sub {
1129 } 1388 }
1130}; 1389};
1131 1390
1132=item json => $cb->($handle, $hash_or_arrayref) 1391=item json => $cb->($handle, $hash_or_arrayref)
1133 1392
1134Reads a JSON object or array, decodes it and passes it to the callback. 1393Reads a JSON object or array, decodes it and passes it to the
1394callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1135 1395
1136If a C<json> object was passed to the constructor, then that will be used 1396If a C<json> object was passed to the constructor, then that will be used
1137for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1397for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1138 1398
1139This read type uses the incremental parser available with JSON version 1399This read type uses the incremental parser available with JSON version
1148=cut 1408=cut
1149 1409
1150register_read_type json => sub { 1410register_read_type json => sub {
1151 my ($self, $cb) = @_; 1411 my ($self, $cb) = @_;
1152 1412
1153 require JSON; 1413 my $json = $self->{json} ||=
1414 eval { require JSON::XS; JSON::XS->new->utf8 }
1415 || do { require JSON; JSON->new->utf8 };
1154 1416
1155 my $data; 1417 my $data;
1156 my $rbuf = \$self->{rbuf}; 1418 my $rbuf = \$self->{rbuf};
1157 1419
1158 my $json = $self->{json} ||= JSON->new->utf8;
1159
1160 sub { 1420 sub {
1161 my $ref = $json->incr_parse ($self->{rbuf}); 1421 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1162 1422
1163 if ($ref) { 1423 if ($ref) {
1164 $self->{rbuf} = $json->incr_text; 1424 $self->{rbuf} = $json->incr_text;
1165 $json->incr_text = ""; 1425 $json->incr_text = "";
1166 $cb->($self, $ref); 1426 $cb->($self, $ref);
1167 1427
1168 1 1428 1
1429 } elsif ($@) {
1430 # error case
1431 $json->incr_skip;
1432
1433 $self->{rbuf} = $json->incr_text;
1434 $json->incr_text = "";
1435
1436 $self->_error (Errno::EBADMSG);
1437
1438 ()
1169 } else { 1439 } else {
1170 $self->{rbuf} = ""; 1440 $self->{rbuf} = "";
1441
1171 () 1442 ()
1172 } 1443 }
1173 } 1444 }
1174}; 1445};
1175 1446
1207 # read remaining chunk 1478 # read remaining chunk
1208 $_[0]->unshift_read (chunk => $len, sub { 1479 $_[0]->unshift_read (chunk => $len, sub {
1209 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1480 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1210 $cb->($_[0], $ref); 1481 $cb->($_[0], $ref);
1211 } else { 1482 } else {
1212 $self->_error (&Errno::EBADMSG); 1483 $self->_error (Errno::EBADMSG);
1213 } 1484 }
1214 }); 1485 });
1215 } 1486 }
1216 1487
1217 1 1488 1
1252Note that AnyEvent::Handle will automatically C<start_read> for you when 1523Note that AnyEvent::Handle will automatically C<start_read> for you when
1253you change the C<on_read> callback or push/unshift a read callback, and it 1524you change the C<on_read> callback or push/unshift a read callback, and it
1254will automatically C<stop_read> for you when neither C<on_read> is set nor 1525will automatically C<stop_read> for you when neither C<on_read> is set nor
1255there are any read requests in the queue. 1526there are any read requests in the queue.
1256 1527
1528These methods will have no effect when in TLS mode (as TLS doesn't support
1529half-duplex connections).
1530
1257=cut 1531=cut
1258 1532
1259sub stop_read { 1533sub stop_read {
1260 my ($self) = @_; 1534 my ($self) = @_;
1261 1535
1262 delete $self->{_rw}; 1536 delete $self->{_rw} unless $self->{tls};
1263} 1537}
1264 1538
1265sub start_read { 1539sub start_read {
1266 my ($self) = @_; 1540 my ($self) = @_;
1267 1541
1268 unless ($self->{_rw} || $self->{_eof}) { 1542 unless ($self->{_rw} || $self->{_eof}) {
1269 Scalar::Util::weaken $self; 1543 Scalar::Util::weaken $self;
1270 1544
1271 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1545 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1272 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1546 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1273 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1547 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1274 1548
1275 if ($len > 0) { 1549 if ($len > 0) {
1276 $self->{_activity} = AnyEvent->now; 1550 $self->{_activity} = AE::now;
1277 1551
1278 $self->{filter_r} 1552 if ($self->{tls}) {
1279 ? $self->{filter_r}($self, $rbuf) 1553 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1280 : $self->{_in_drain} || $self->_drain_rbuf; 1554
1555 &_dotls ($self);
1556 } else {
1557 $self->_drain_rbuf;
1558 }
1281 1559
1282 } elsif (defined $len) { 1560 } elsif (defined $len) {
1283 delete $self->{_rw}; 1561 delete $self->{_rw};
1284 $self->{_eof} = 1; 1562 $self->{_eof} = 1;
1285 $self->_drain_rbuf unless $self->{_in_drain}; 1563 $self->_drain_rbuf;
1286 1564
1287 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1565 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1288 return $self->_error ($!, 1); 1566 return $self->_error ($!, 1);
1289 } 1567 }
1290 }); 1568 };
1291 } 1569 }
1292} 1570}
1293 1571
1572our $ERROR_SYSCALL;
1573our $ERROR_WANT_READ;
1574
1575sub _tls_error {
1576 my ($self, $err) = @_;
1577
1578 return $self->_error ($!, 1)
1579 if $err == Net::SSLeay::ERROR_SYSCALL ();
1580
1581 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1582
1583 # reduce error string to look less scary
1584 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1585
1586 if ($self->{_on_starttls}) {
1587 (delete $self->{_on_starttls})->($self, undef, $err);
1588 &_freetls;
1589 } else {
1590 &_freetls;
1591 $self->_error (Errno::EPROTO, 1, $err);
1592 }
1593}
1594
1595# poll the write BIO and send the data if applicable
1596# also decode read data if possible
1597# this is basiclaly our TLS state machine
1598# more efficient implementations are possible with openssl,
1599# but not with the buggy and incomplete Net::SSLeay.
1294sub _dotls { 1600sub _dotls {
1295 my ($self) = @_; 1601 my ($self) = @_;
1296 1602
1297 my $buf; 1603 my $tmp;
1298 1604
1299 if (length $self->{_tls_wbuf}) { 1605 if (length $self->{_tls_wbuf}) {
1300 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1606 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1301 substr $self->{_tls_wbuf}, 0, $len, ""; 1607 substr $self->{_tls_wbuf}, 0, $tmp, "";
1302 } 1608 }
1303 }
1304 1609
1610 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1611 return $self->_tls_error ($tmp)
1612 if $tmp != $ERROR_WANT_READ
1613 && ($tmp != $ERROR_SYSCALL || $!);
1614 }
1615
1616 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1617 unless (length $tmp) {
1618 $self->{_on_starttls}
1619 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1620 &_freetls;
1621
1622 if ($self->{on_stoptls}) {
1623 $self->{on_stoptls}($self);
1624 return;
1625 } else {
1626 # let's treat SSL-eof as we treat normal EOF
1627 delete $self->{_rw};
1628 $self->{_eof} = 1;
1629 }
1630 }
1631
1632 $self->{_tls_rbuf} .= $tmp;
1633 $self->_drain_rbuf;
1634 $self->{tls} or return; # tls session might have gone away in callback
1635 }
1636
1637 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1638 return $self->_tls_error ($tmp)
1639 if $tmp != $ERROR_WANT_READ
1640 && ($tmp != $ERROR_SYSCALL || $!);
1641
1305 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1642 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1306 $self->{wbuf} .= $buf; 1643 $self->{wbuf} .= $tmp;
1307 $self->_drain_wbuf; 1644 $self->_drain_wbuf;
1308 } 1645 }
1309 1646
1310 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1647 $self->{_on_starttls}
1311 if (length $buf) { 1648 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1312 $self->{rbuf} .= $buf; 1649 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1313 $self->_drain_rbuf unless $self->{_in_drain};
1314 } else {
1315 # let's treat SSL-eof as we treat normal EOF
1316 $self->{_eof} = 1;
1317 $self->_shutdown;
1318 return;
1319 }
1320 }
1321
1322 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1323
1324 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1325 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1326 return $self->_error ($!, 1);
1327 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1328 return $self->_error (&Errno::EIO, 1);
1329 }
1330
1331 # all others are fine for our purposes
1332 }
1333} 1650}
1334 1651
1335=item $handle->starttls ($tls[, $tls_ctx]) 1652=item $handle->starttls ($tls[, $tls_ctx])
1336 1653
1337Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1654Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1338object is created, you can also do that at a later time by calling 1655object is created, you can also do that at a later time by calling
1339C<starttls>. 1656C<starttls>.
1340 1657
1658Starting TLS is currently an asynchronous operation - when you push some
1659write data and then call C<< ->starttls >> then TLS negotiation will start
1660immediately, after which the queued write data is then sent.
1661
1341The first argument is the same as the C<tls> constructor argument (either 1662The first argument is the same as the C<tls> constructor argument (either
1342C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1663C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1343 1664
1344The second argument is the optional C<Net::SSLeay::CTX> object that is 1665The second argument is the optional C<AnyEvent::TLS> object that is used
1345used when AnyEvent::Handle has to create its own TLS connection object. 1666when AnyEvent::Handle has to create its own TLS connection object, or
1667a hash reference with C<< key => value >> pairs that will be used to
1668construct a new context.
1346 1669
1347The TLS connection object will end up in C<< $handle->{tls} >> after this 1670The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1348call and can be used or changed to your liking. Note that the handshake 1671context in C<< $handle->{tls_ctx} >> after this call and can be used or
1349might have already started when this function returns. 1672changed to your liking. Note that the handshake might have already started
1673when this function returns.
1350 1674
1675Due to bugs in OpenSSL, it might or might not be possible to do multiple
1676handshakes on the same stream. Best do not attempt to use the stream after
1677stopping TLS.
1678
1351=cut 1679=cut
1680
1681our %TLS_CACHE; #TODO not yet documented, should we?
1352 1682
1353sub starttls { 1683sub starttls {
1354 my ($self, $ssl, $ctx) = @_; 1684 my ($self, $tls, $ctx) = @_;
1355 1685
1356 $self->stoptls; 1686 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1687 if $self->{tls};
1357 1688
1358 if ($ssl eq "accept") { 1689 $self->{tls} = $tls;
1359 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1690 $self->{tls_ctx} = $ctx if @_ > 2;
1360 Net::SSLeay::set_accept_state ($ssl); 1691
1361 } elsif ($ssl eq "connect") { 1692 return unless $self->{fh};
1362 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1693
1363 Net::SSLeay::set_connect_state ($ssl); 1694 require Net::SSLeay;
1695
1696 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1697 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1698
1699 $tls = $self->{tls};
1700 $ctx = $self->{tls_ctx};
1701
1702 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1703
1704 if ("HASH" eq ref $ctx) {
1705 require AnyEvent::TLS;
1706
1707 if ($ctx->{cache}) {
1708 my $key = $ctx+0;
1709 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1710 } else {
1711 $ctx = new AnyEvent::TLS %$ctx;
1712 }
1713 }
1364 } 1714
1365 1715 $self->{tls_ctx} = $ctx || TLS_CTX ();
1366 $self->{tls} = $ssl; 1716 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1367 1717
1368 # basically, this is deep magic (because SSL_read should have the same issues) 1718 # basically, this is deep magic (because SSL_read should have the same issues)
1369 # but the openssl maintainers basically said: "trust us, it just works". 1719 # but the openssl maintainers basically said: "trust us, it just works".
1370 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1720 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1371 # and mismaintained ssleay-module doesn't even offer them). 1721 # and mismaintained ssleay-module doesn't even offer them).
1372 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1722 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1373 # 1723 #
1374 # in short: this is a mess. 1724 # in short: this is a mess.
1375 # 1725 #
1376 # note that we do not try to kepe the length constant between writes as we are required to do. 1726 # note that we do not try to keep the length constant between writes as we are required to do.
1377 # we assume that most (but not all) of this insanity only applies to non-blocking cases, 1727 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1378 # and we drive openssl fully in blocking mode here. 1728 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1729 # have identity issues in that area.
1379 Net::SSLeay::CTX_set_mode ($self->{tls}, 1730# Net::SSLeay::CTX_set_mode ($ssl,
1380 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1731# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1381 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1732# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1733 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1382 1734
1383 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1735 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1384 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1736 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1385 1737
1738 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1739
1386 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1740 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1387 1741
1388 $self->{filter_w} = sub { 1742 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1389 $_[0]{_tls_wbuf} .= ${$_[1]}; 1743 if $self->{on_starttls};
1390 &_dotls; 1744
1391 }; 1745 &_dotls; # need to trigger the initial handshake
1392 $self->{filter_r} = sub { 1746 $self->start_read; # make sure we actually do read
1393 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1394 &_dotls;
1395 };
1396} 1747}
1397 1748
1398=item $handle->stoptls 1749=item $handle->stoptls
1399 1750
1400Destroys the SSL connection, if any. Partial read or write data will be 1751Shuts down the SSL connection - this makes a proper EOF handshake by
1401lost. 1752sending a close notify to the other side, but since OpenSSL doesn't
1753support non-blocking shut downs, it is not guarenteed that you can re-use
1754the stream afterwards.
1402 1755
1403=cut 1756=cut
1404 1757
1405sub stoptls { 1758sub stoptls {
1406 my ($self) = @_; 1759 my ($self) = @_;
1407 1760
1408 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1761 if ($self->{tls}) {
1762 Net::SSLeay::shutdown ($self->{tls});
1409 1763
1410 delete $self->{_rbio}; 1764 &_dotls;
1411 delete $self->{_wbio}; 1765
1412 delete $self->{_tls_wbuf}; 1766# # we don't give a shit. no, we do, but we can't. no...#d#
1413 delete $self->{filter_r}; 1767# # we, we... have to use openssl :/#d#
1414 delete $self->{filter_w}; 1768# &_freetls;#d#
1769 }
1770}
1771
1772sub _freetls {
1773 my ($self) = @_;
1774
1775 return unless $self->{tls};
1776
1777 $self->{tls_ctx}->_put_session (delete $self->{tls})
1778 if $self->{tls} > 0;
1779
1780 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1415} 1781}
1416 1782
1417sub DESTROY { 1783sub DESTROY {
1418 my $self = shift; 1784 my ($self) = @_;
1419 1785
1420 $self->stoptls; 1786 &_freetls;
1421 1787
1422 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1788 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1423 1789
1424 if ($linger && length $self->{wbuf}) { 1790 if ($linger && length $self->{wbuf} && $self->{fh}) {
1425 my $fh = delete $self->{fh}; 1791 my $fh = delete $self->{fh};
1426 my $wbuf = delete $self->{wbuf}; 1792 my $wbuf = delete $self->{wbuf};
1427 1793
1428 my @linger; 1794 my @linger;
1429 1795
1430 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub { 1796 push @linger, AE::io $fh, 1, sub {
1431 my $len = syswrite $fh, $wbuf, length $wbuf; 1797 my $len = syswrite $fh, $wbuf, length $wbuf;
1432 1798
1433 if ($len > 0) { 1799 if ($len > 0) {
1434 substr $wbuf, 0, $len, ""; 1800 substr $wbuf, 0, $len, "";
1435 } else { 1801 } else {
1436 @linger = (); # end 1802 @linger = (); # end
1437 } 1803 }
1438 }); 1804 };
1439 push @linger, AnyEvent->timer (after => $linger, cb => sub { 1805 push @linger, AE::timer $linger, 0, sub {
1440 @linger = (); 1806 @linger = ();
1441 }); 1807 };
1442 } 1808 }
1809}
1810
1811=item $handle->destroy
1812
1813Shuts down the handle object as much as possible - this call ensures that
1814no further callbacks will be invoked and as many resources as possible
1815will be freed. Any method you will call on the handle object after
1816destroying it in this way will be silently ignored (and it will return the
1817empty list).
1818
1819Normally, you can just "forget" any references to an AnyEvent::Handle
1820object and it will simply shut down. This works in fatal error and EOF
1821callbacks, as well as code outside. It does I<NOT> work in a read or write
1822callback, so when you want to destroy the AnyEvent::Handle object from
1823within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1824that case.
1825
1826Destroying the handle object in this way has the advantage that callbacks
1827will be removed as well, so if those are the only reference holders (as
1828is common), then one doesn't need to do anything special to break any
1829reference cycles.
1830
1831The handle might still linger in the background and write out remaining
1832data, as specified by the C<linger> option, however.
1833
1834=cut
1835
1836sub destroy {
1837 my ($self) = @_;
1838
1839 $self->DESTROY;
1840 %$self = ();
1841 bless $self, "AnyEvent::Handle::destroyed";
1842}
1843
1844sub AnyEvent::Handle::destroyed::AUTOLOAD {
1845 #nop
1443} 1846}
1444 1847
1445=item AnyEvent::Handle::TLS_CTX 1848=item AnyEvent::Handle::TLS_CTX
1446 1849
1447This function creates and returns the Net::SSLeay::CTX object used by 1850This function creates and returns the AnyEvent::TLS object used by default
1448default for TLS mode. 1851for TLS mode.
1449 1852
1450The context is created like this: 1853The context is created by calling L<AnyEvent::TLS> without any arguments.
1451
1452 Net::SSLeay::load_error_strings;
1453 Net::SSLeay::SSLeay_add_ssl_algorithms;
1454 Net::SSLeay::randomize;
1455
1456 my $CTX = Net::SSLeay::CTX_new;
1457
1458 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1459 1854
1460=cut 1855=cut
1461 1856
1462our $TLS_CTX; 1857our $TLS_CTX;
1463 1858
1464sub TLS_CTX() { 1859sub TLS_CTX() {
1465 $TLS_CTX || do { 1860 $TLS_CTX ||= do {
1466 require Net::SSLeay; 1861 require AnyEvent::TLS;
1467 1862
1468 Net::SSLeay::load_error_strings (); 1863 new AnyEvent::TLS
1469 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1470 Net::SSLeay::randomize ();
1471
1472 $TLS_CTX = Net::SSLeay::CTX_new ();
1473
1474 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1475
1476 $TLS_CTX
1477 } 1864 }
1478} 1865}
1479 1866
1480=back 1867=back
1868
1869
1870=head1 NONFREQUENTLY ASKED QUESTIONS
1871
1872=over 4
1873
1874=item I C<undef> the AnyEvent::Handle reference inside my callback and
1875still get further invocations!
1876
1877That's because AnyEvent::Handle keeps a reference to itself when handling
1878read or write callbacks.
1879
1880It is only safe to "forget" the reference inside EOF or error callbacks,
1881from within all other callbacks, you need to explicitly call the C<<
1882->destroy >> method.
1883
1884=item I get different callback invocations in TLS mode/Why can't I pause
1885reading?
1886
1887Unlike, say, TCP, TLS connections do not consist of two independent
1888communication channels, one for each direction. Or put differently. The
1889read and write directions are not independent of each other: you cannot
1890write data unless you are also prepared to read, and vice versa.
1891
1892This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1893callback invocations when you are not expecting any read data - the reason
1894is that AnyEvent::Handle always reads in TLS mode.
1895
1896During the connection, you have to make sure that you always have a
1897non-empty read-queue, or an C<on_read> watcher. At the end of the
1898connection (or when you no longer want to use it) you can call the
1899C<destroy> method.
1900
1901=item How do I read data until the other side closes the connection?
1902
1903If you just want to read your data into a perl scalar, the easiest way
1904to achieve this is by setting an C<on_read> callback that does nothing,
1905clearing the C<on_eof> callback and in the C<on_error> callback, the data
1906will be in C<$_[0]{rbuf}>:
1907
1908 $handle->on_read (sub { });
1909 $handle->on_eof (undef);
1910 $handle->on_error (sub {
1911 my $data = delete $_[0]{rbuf};
1912 });
1913
1914The reason to use C<on_error> is that TCP connections, due to latencies
1915and packets loss, might get closed quite violently with an error, when in
1916fact, all data has been received.
1917
1918It is usually better to use acknowledgements when transferring data,
1919to make sure the other side hasn't just died and you got the data
1920intact. This is also one reason why so many internet protocols have an
1921explicit QUIT command.
1922
1923=item I don't want to destroy the handle too early - how do I wait until
1924all data has been written?
1925
1926After writing your last bits of data, set the C<on_drain> callback
1927and destroy the handle in there - with the default setting of
1928C<low_water_mark> this will be called precisely when all data has been
1929written to the socket:
1930
1931 $handle->push_write (...);
1932 $handle->on_drain (sub {
1933 warn "all data submitted to the kernel\n";
1934 undef $handle;
1935 });
1936
1937If you just want to queue some data and then signal EOF to the other side,
1938consider using C<< ->push_shutdown >> instead.
1939
1940=item I want to contact a TLS/SSL server, I don't care about security.
1941
1942If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1943simply connect to it and then create the AnyEvent::Handle with the C<tls>
1944parameter:
1945
1946 tcp_connect $host, $port, sub {
1947 my ($fh) = @_;
1948
1949 my $handle = new AnyEvent::Handle
1950 fh => $fh,
1951 tls => "connect",
1952 on_error => sub { ... };
1953
1954 $handle->push_write (...);
1955 };
1956
1957=item I want to contact a TLS/SSL server, I do care about security.
1958
1959Then you should additionally enable certificate verification, including
1960peername verification, if the protocol you use supports it (see
1961L<AnyEvent::TLS>, C<verify_peername>).
1962
1963E.g. for HTTPS:
1964
1965 tcp_connect $host, $port, sub {
1966 my ($fh) = @_;
1967
1968 my $handle = new AnyEvent::Handle
1969 fh => $fh,
1970 peername => $host,
1971 tls => "connect",
1972 tls_ctx => { verify => 1, verify_peername => "https" },
1973 ...
1974
1975Note that you must specify the hostname you connected to (or whatever
1976"peername" the protocol needs) as the C<peername> argument, otherwise no
1977peername verification will be done.
1978
1979The above will use the system-dependent default set of trusted CA
1980certificates. If you want to check against a specific CA, add the
1981C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1982
1983 tls_ctx => {
1984 verify => 1,
1985 verify_peername => "https",
1986 ca_file => "my-ca-cert.pem",
1987 },
1988
1989=item I want to create a TLS/SSL server, how do I do that?
1990
1991Well, you first need to get a server certificate and key. You have
1992three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1993self-signed certificate (cheap. check the search engine of your choice,
1994there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1995nice program for that purpose).
1996
1997Then create a file with your private key (in PEM format, see
1998L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1999file should then look like this:
2000
2001 -----BEGIN RSA PRIVATE KEY-----
2002 ...header data
2003 ... lots of base64'y-stuff
2004 -----END RSA PRIVATE KEY-----
2005
2006 -----BEGIN CERTIFICATE-----
2007 ... lots of base64'y-stuff
2008 -----END CERTIFICATE-----
2009
2010The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2011specify this file as C<cert_file>:
2012
2013 tcp_server undef, $port, sub {
2014 my ($fh) = @_;
2015
2016 my $handle = new AnyEvent::Handle
2017 fh => $fh,
2018 tls => "accept",
2019 tls_ctx => { cert_file => "my-server-keycert.pem" },
2020 ...
2021
2022When you have intermediate CA certificates that your clients might not
2023know about, just append them to the C<cert_file>.
2024
2025=back
2026
1481 2027
1482=head1 SUBCLASSING AnyEvent::Handle 2028=head1 SUBCLASSING AnyEvent::Handle
1483 2029
1484In many cases, you might want to subclass AnyEvent::Handle. 2030In many cases, you might want to subclass AnyEvent::Handle.
1485 2031

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines