ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.81 by root, Wed Aug 20 12:37:21 2008 UTC vs.
Revision 1.177 by root, Sun Aug 9 00:24:35 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17=cut
18
19our $VERSION = 4.231;
20 4
21=head1 SYNOPSIS 5=head1 SYNOPSIS
22 6
23 use AnyEvent; 7 use AnyEvent;
24 use AnyEvent::Handle; 8 use AnyEvent::Handle;
25 9
26 my $cv = AnyEvent->condvar; 10 my $cv = AnyEvent->condvar;
27 11
28 my $handle = 12 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 13 fh => \*STDIN,
31 on_eof => sub { 14 on_error => sub {
32 $cv->broadcast; 15 my ($hdl, $fatal, $msg) = @_;
33 }, 16 warn "got error $msg\n";
17 $hdl->destroy;
18 $cv->send;
34 ); 19 );
35 20
36 # send some request line 21 # send some request line
37 $handle->push_write ("getinfo\015\012"); 22 $hdl->push_write ("getinfo\015\012");
38 23
39 # read the response line 24 # read the response line
40 $handle->push_read (line => sub { 25 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 26 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 27 warn "got line <$line>\n";
43 $cv->send; 28 $cv->send;
44 }); 29 });
45 30
46 $cv->recv; 31 $cv->recv;
47 32
48=head1 DESCRIPTION 33=head1 DESCRIPTION
49 34
50This module is a helper module to make it easier to do event-based I/O on 35This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 36filehandles.
52on sockets see L<AnyEvent::Util>. 37
38The L<AnyEvent::Intro> tutorial contains some well-documented
39AnyEvent::Handle examples.
53 40
54In the following, when the documentation refers to of "bytes" then this 41In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 42means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 43treatment of characters applies to this module as well.
57 44
45At the very minimum, you should specify C<fh> or C<connect>, and the
46C<on_error> callback.
47
58All callbacks will be invoked with the handle object as their first 48All callbacks will be invoked with the handle object as their first
59argument. 49argument.
60 50
51=cut
52
53package AnyEvent::Handle;
54
55use Scalar::Util ();
56use List::Util ();
57use Carp ();
58use Errno qw(EAGAIN EINTR);
59
60use AnyEvent (); BEGIN { AnyEvent::common_sense }
61use AnyEvent::Util qw(WSAEWOULDBLOCK);
62
63our $VERSION = $AnyEvent::VERSION;
64
61=head1 METHODS 65=head1 METHODS
62 66
63=over 4 67=over 4
64 68
65=item B<new (%args)> 69=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 70
67The constructor supports these arguments (all as key => value pairs). 71The constructor supports these arguments (all as C<< key => value >> pairs).
68 72
69=over 4 73=over 4
70 74
71=item fh => $filehandle [MANDATORY] 75=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
72 76
73The filehandle this L<AnyEvent::Handle> object will operate on. 77The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
77 81
82=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
83
84Try to connect to the specified host and service (port), using
85C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
86default C<peername>.
87
88You have to specify either this parameter, or C<fh>, above.
89
90It is possible to push requests on the read and write queues, and modify
91properties of the stream, even while AnyEvent::Handle is connecting.
92
93When this parameter is specified, then the C<on_prepare>,
94C<on_connect_error> and C<on_connect> callbacks will be called under the
95appropriate circumstances:
96
97=over 4
98
78=item on_eof => $cb->($handle) 99=item on_prepare => $cb->($handle)
79 100
80Set the callback to be called when an end-of-file condition is detected, 101This (rarely used) callback is called before a new connection is
81i.e. in the case of a socket, when the other side has closed the 102attempted, but after the file handle has been created. It could be used to
82connection cleanly. 103prepare the file handle with parameters required for the actual connect
104(as opposed to settings that can be changed when the connection is already
105established).
83 106
84While not mandatory, it is I<highly> recommended to set an eof callback, 107The return value of this callback should be the connect timeout value in
85otherwise you might end up with a closed socket while you are still 108seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
86waiting for data. 109timeout is to be used).
87 110
88If an EOF condition has been detected but no C<on_eof> callback has been 111=item on_connect => $cb->($handle, $host, $port, $retry->())
89set, then a fatal error will be raised with C<$!> set to <0>.
90 112
113This callback is called when a connection has been successfully established.
114
115The actual numeric host and port (the socket peername) are passed as
116parameters, together with a retry callback.
117
118When, for some reason, the handle is not acceptable, then calling
119C<$retry> will continue with the next conenction target (in case of
120multi-homed hosts or SRV records there can be multiple connection
121endpoints). When it is called then the read and write queues, eof status,
122tls status and similar properties of the handle are being reset.
123
124In most cases, ignoring the C<$retry> parameter is the way to go.
125
126=item on_connect_error => $cb->($handle, $message)
127
128This callback is called when the conenction could not be
129established. C<$!> will contain the relevant error code, and C<$message> a
130message describing it (usually the same as C<"$!">).
131
132If this callback isn't specified, then C<on_error> will be called with a
133fatal error instead.
134
135=back
136
91=item on_error => $cb->($handle, $fatal) 137=item on_error => $cb->($handle, $fatal, $message)
92 138
93This is the error callback, which is called when, well, some error 139This is the error callback, which is called when, well, some error
94occured, such as not being able to resolve the hostname, failure to 140occured, such as not being able to resolve the hostname, failure to
95connect or a read error. 141connect or a read error.
96 142
97Some errors are fatal (which is indicated by C<$fatal> being true). On 143Some errors are fatal (which is indicated by C<$fatal> being true). On
98fatal errors the handle object will be shut down and will not be 144fatal errors the handle object will be destroyed (by a call to C<< ->
145destroy >>) after invoking the error callback (which means you are free to
146examine the handle object). Examples of fatal errors are an EOF condition
147with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
148cases where the other side can close the connection at their will it is
149often easiest to not report C<EPIPE> errors in this callback.
150
151AnyEvent::Handle tries to find an appropriate error code for you to check
152against, but in some cases (TLS errors), this does not work well. It is
153recommended to always output the C<$message> argument in human-readable
154error messages (it's usually the same as C<"$!">).
155
99usable. Non-fatal errors can be retried by simply returning, but it is 156Non-fatal errors can be retried by simply returning, but it is recommended
100recommended to simply ignore this parameter and instead abondon the handle 157to simply ignore this parameter and instead abondon the handle object
101object when this callback is invoked. 158when this callback is invoked. Examples of non-fatal errors are timeouts
159C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
102 160
103On callback entrance, the value of C<$!> contains the operating system 161On callback entrance, the value of C<$!> contains the operating system
104error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 162error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
163C<EPROTO>).
105 164
106While not mandatory, it is I<highly> recommended to set this callback, as 165While not mandatory, it is I<highly> recommended to set this callback, as
107you will not be notified of errors otherwise. The default simply calls 166you will not be notified of errors otherwise. The default simply calls
108C<croak>. 167C<croak>.
109 168
113and no read request is in the queue (unlike read queue callbacks, this 172and no read request is in the queue (unlike read queue callbacks, this
114callback will only be called when at least one octet of data is in the 173callback will only be called when at least one octet of data is in the
115read buffer). 174read buffer).
116 175
117To access (and remove data from) the read buffer, use the C<< ->rbuf >> 176To access (and remove data from) the read buffer, use the C<< ->rbuf >>
118method or access the C<$handle->{rbuf}> member directly. 177method or access the C<< $handle->{rbuf} >> member directly. Note that you
178must not enlarge or modify the read buffer, you can only remove data at
179the beginning from it.
119 180
120When an EOF condition is detected then AnyEvent::Handle will first try to 181When an EOF condition is detected then AnyEvent::Handle will first try to
121feed all the remaining data to the queued callbacks and C<on_read> before 182feed all the remaining data to the queued callbacks and C<on_read> before
122calling the C<on_eof> callback. If no progress can be made, then a fatal 183calling the C<on_eof> callback. If no progress can be made, then a fatal
123error will be raised (with C<$!> set to C<EPIPE>). 184error will be raised (with C<$!> set to C<EPIPE>).
185
186Note that, unlike requests in the read queue, an C<on_read> callback
187doesn't mean you I<require> some data: if there is an EOF and there
188are outstanding read requests then an error will be flagged. With an
189C<on_read> callback, the C<on_eof> callback will be invoked.
190
191=item on_eof => $cb->($handle)
192
193Set the callback to be called when an end-of-file condition is detected,
194i.e. in the case of a socket, when the other side has closed the
195connection cleanly, and there are no outstanding read requests in the
196queue (if there are read requests, then an EOF counts as an unexpected
197connection close and will be flagged as an error).
198
199For sockets, this just means that the other side has stopped sending data,
200you can still try to write data, and, in fact, one can return from the EOF
201callback and continue writing data, as only the read part has been shut
202down.
203
204If an EOF condition has been detected but no C<on_eof> callback has been
205set, then a fatal error will be raised with C<$!> set to <0>.
124 206
125=item on_drain => $cb->($handle) 207=item on_drain => $cb->($handle)
126 208
127This sets the callback that is called when the write buffer becomes empty 209This sets the callback that is called when the write buffer becomes empty
128(or when the callback is set and the buffer is empty already). 210(or when the callback is set and the buffer is empty already).
135memory and push it into the queue, but instead only read more data from 217memory and push it into the queue, but instead only read more data from
136the file when the write queue becomes empty. 218the file when the write queue becomes empty.
137 219
138=item timeout => $fractional_seconds 220=item timeout => $fractional_seconds
139 221
222=item rtimeout => $fractional_seconds
223
224=item wtimeout => $fractional_seconds
225
140If non-zero, then this enables an "inactivity" timeout: whenever this many 226If non-zero, then these enables an "inactivity" timeout: whenever this
141seconds pass without a successful read or write on the underlying file 227many seconds pass without a successful read or write on the underlying
142handle, the C<on_timeout> callback will be invoked (and if that one is 228file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
143missing, an C<ETIMEDOUT> error will be raised). 229will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
230error will be raised).
231
232There are three variants of the timeouts that work fully independent
233of each other, for both read and write, just read, and just write:
234C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
235C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
236C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
144 237
145Note that timeout processing is also active when you currently do not have 238Note that timeout processing is also active when you currently do not have
146any outstanding read or write requests: If you plan to keep the connection 239any outstanding read or write requests: If you plan to keep the connection
147idle then you should disable the timout temporarily or ignore the timeout 240idle then you should disable the timout temporarily or ignore the timeout
148in the C<on_timeout> callback. 241in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
242restart the timeout.
149 243
150Zero (the default) disables this timeout. 244Zero (the default) disables this timeout.
151 245
152=item on_timeout => $cb->($handle) 246=item on_timeout => $cb->($handle)
153 247
157 251
158=item rbuf_max => <bytes> 252=item rbuf_max => <bytes>
159 253
160If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 254If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
161when the read buffer ever (strictly) exceeds this size. This is useful to 255when the read buffer ever (strictly) exceeds this size. This is useful to
162avoid denial-of-service attacks. 256avoid some forms of denial-of-service attacks.
163 257
164For example, a server accepting connections from untrusted sources should 258For example, a server accepting connections from untrusted sources should
165be configured to accept only so-and-so much data that it cannot act on 259be configured to accept only so-and-so much data that it cannot act on
166(for example, when expecting a line, an attacker could send an unlimited 260(for example, when expecting a line, an attacker could send an unlimited
167amount of data without a callback ever being called as long as the line 261amount of data without a callback ever being called as long as the line
168isn't finished). 262isn't finished).
169 263
170=item autocork => <boolean> 264=item autocork => <boolean>
171 265
172When disabled (the default), then C<push_write> will try to immediately 266When disabled (the default), then C<push_write> will try to immediately
173write the data to the handle if possible. This avoids having to register 267write the data to the handle, if possible. This avoids having to register
174a write watcher and wait for the next event loop iteration, but can be 268a write watcher and wait for the next event loop iteration, but can
175inefficient if you write multiple small chunks (this disadvantage is 269be inefficient if you write multiple small chunks (on the wire, this
176usually avoided by your kernel's nagle algorithm, see C<low_delay>). 270disadvantage is usually avoided by your kernel's nagle algorithm, see
271C<no_delay>, but this option can save costly syscalls).
177 272
178When enabled, then writes will always be queued till the next event loop 273When enabled, then writes will always be queued till the next event loop
179iteration. This is efficient when you do many small writes per iteration, 274iteration. This is efficient when you do many small writes per iteration,
180but less efficient when you do a single write only. 275but less efficient when you do a single write only per iteration (or when
276the write buffer often is full). It also increases write latency.
181 277
182=item no_delay => <boolean> 278=item no_delay => <boolean>
183 279
184When doing small writes on sockets, your operating system kernel might 280When doing small writes on sockets, your operating system kernel might
185wait a bit for more data before actually sending it out. This is called 281wait a bit for more data before actually sending it out. This is called
186the Nagle algorithm, and usually it is beneficial. 282the Nagle algorithm, and usually it is beneficial.
187 283
188In some situations you want as low a delay as possible, which cna be 284In some situations you want as low a delay as possible, which can be
189accomplishd by setting this option to true. 285accomplishd by setting this option to a true value.
190 286
191The default is your opertaing system's default behaviour, this option 287The default is your opertaing system's default behaviour (most likely
192explicitly enables or disables it, if possible. 288enabled), this option explicitly enables or disables it, if possible.
193 289
194=item read_size => <bytes> 290=item read_size => <bytes>
195 291
196The default read block size (the amount of bytes this module will try to read 292The default read block size (the amount of bytes this module will
197during each (loop iteration). Default: C<8192>. 293try to read during each loop iteration, which affects memory
294requirements). Default: C<8192>.
198 295
199=item low_water_mark => <bytes> 296=item low_water_mark => <bytes>
200 297
201Sets the amount of bytes (default: C<0>) that make up an "empty" write 298Sets the amount of bytes (default: C<0>) that make up an "empty" write
202buffer: If the write reaches this size or gets even samller it is 299buffer: If the write reaches this size or gets even samller it is
203considered empty. 300considered empty.
204 301
302Sometimes it can be beneficial (for performance reasons) to add data to
303the write buffer before it is fully drained, but this is a rare case, as
304the operating system kernel usually buffers data as well, so the default
305is good in almost all cases.
306
205=item linger => <seconds> 307=item linger => <seconds>
206 308
207If non-zero (default: C<3600>), then the destructor of the 309If non-zero (default: C<3600>), then the destructor of the
208AnyEvent::Handle object will check wether there is still outstanding write 310AnyEvent::Handle object will check whether there is still outstanding
209data and will install a watcher that will write out this data. No errors 311write data and will install a watcher that will write this data to the
210will be reported (this mostly matches how the operating system treats 312socket. No errors will be reported (this mostly matches how the operating
211outstanding data at socket close time). 313system treats outstanding data at socket close time).
212 314
213This will not work for partial TLS data that could not yet been 315This will not work for partial TLS data that could not be encoded
214encoded. This data will be lost. 316yet. This data will be lost. Calling the C<stoptls> method in time might
317help.
318
319=item peername => $string
320
321A string used to identify the remote site - usually the DNS hostname
322(I<not> IDN!) used to create the connection, rarely the IP address.
323
324Apart from being useful in error messages, this string is also used in TLS
325peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
326verification will be skipped when C<peername> is not specified or
327C<undef>.
215 328
216=item tls => "accept" | "connect" | Net::SSLeay::SSL object 329=item tls => "accept" | "connect" | Net::SSLeay::SSL object
217 330
218When this parameter is given, it enables TLS (SSL) mode, that means it 331When this parameter is given, it enables TLS (SSL) mode, that means
219will start making tls handshake and will transparently encrypt/decrypt 332AnyEvent will start a TLS handshake as soon as the conenction has been
220data. 333established and will transparently encrypt/decrypt data afterwards.
334
335All TLS protocol errors will be signalled as C<EPROTO>, with an
336appropriate error message.
221 337
222TLS mode requires Net::SSLeay to be installed (it will be loaded 338TLS mode requires Net::SSLeay to be installed (it will be loaded
223automatically when you try to create a TLS handle). 339automatically when you try to create a TLS handle): this module doesn't
340have a dependency on that module, so if your module requires it, you have
341to add the dependency yourself.
224 342
225For the TLS server side, use C<accept>, and for the TLS client side of a 343Unlike TCP, TLS has a server and client side: for the TLS server side, use
226connection, use C<connect> mode. 344C<accept>, and for the TLS client side of a connection, use C<connect>
345mode.
227 346
228You can also provide your own TLS connection object, but you have 347You can also provide your own TLS connection object, but you have
229to make sure that you call either C<Net::SSLeay::set_connect_state> 348to make sure that you call either C<Net::SSLeay::set_connect_state>
230or C<Net::SSLeay::set_accept_state> on it before you pass it to 349or C<Net::SSLeay::set_accept_state> on it before you pass it to
231AnyEvent::Handle. 350AnyEvent::Handle. Also, this module will take ownership of this connection
351object.
232 352
353At some future point, AnyEvent::Handle might switch to another TLS
354implementation, then the option to use your own session object will go
355away.
356
357B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
358passing in the wrong integer will lead to certain crash. This most often
359happens when one uses a stylish C<< tls => 1 >> and is surprised about the
360segmentation fault.
361
233See the C<starttls> method if you need to start TLS negotiation later. 362See the C<< ->starttls >> method for when need to start TLS negotiation later.
234 363
235=item tls_ctx => $ssl_ctx 364=item tls_ctx => $anyevent_tls
236 365
237Use the given Net::SSLeay::CTX object to create the new TLS connection 366Use the given C<AnyEvent::TLS> object to create the new TLS connection
238(unless a connection object was specified directly). If this parameter is 367(unless a connection object was specified directly). If this parameter is
239missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 368missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
240 369
370Instead of an object, you can also specify a hash reference with C<< key
371=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
372new TLS context object.
373
374=item on_starttls => $cb->($handle, $success[, $error_message])
375
376This callback will be invoked when the TLS/SSL handshake has finished. If
377C<$success> is true, then the TLS handshake succeeded, otherwise it failed
378(C<on_stoptls> will not be called in this case).
379
380The session in C<< $handle->{tls} >> can still be examined in this
381callback, even when the handshake was not successful.
382
383TLS handshake failures will not cause C<on_error> to be invoked when this
384callback is in effect, instead, the error message will be passed to C<on_starttls>.
385
386Without this callback, handshake failures lead to C<on_error> being
387called, as normal.
388
389Note that you cannot call C<starttls> right again in this callback. If you
390need to do that, start an zero-second timer instead whose callback can
391then call C<< ->starttls >> again.
392
393=item on_stoptls => $cb->($handle)
394
395When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
396set, then it will be invoked after freeing the TLS session. If it is not,
397then a TLS shutdown condition will be treated like a normal EOF condition
398on the handle.
399
400The session in C<< $handle->{tls} >> can still be examined in this
401callback.
402
403This callback will only be called on TLS shutdowns, not when the
404underlying handle signals EOF.
405
241=item json => JSON or JSON::XS object 406=item json => JSON or JSON::XS object
242 407
243This is the json coder object used by the C<json> read and write types. 408This is the json coder object used by the C<json> read and write types.
244 409
245If you don't supply it, then AnyEvent::Handle will create and use a 410If you don't supply it, then AnyEvent::Handle will create and use a
246suitable one, which will write and expect UTF-8 encoded JSON texts. 411suitable one (on demand), which will write and expect UTF-8 encoded JSON
412texts.
247 413
248Note that you are responsible to depend on the JSON module if you want to 414Note that you are responsible to depend on the JSON module if you want to
249use this functionality, as AnyEvent does not have a dependency itself. 415use this functionality, as AnyEvent does not have a dependency itself.
250 416
251=item filter_r => $cb
252
253=item filter_w => $cb
254
255These exist, but are undocumented at this time.
256
257=back 417=back
258 418
259=cut 419=cut
260 420
261sub new { 421sub new {
262 my $class = shift; 422 my $class = shift;
263
264 my $self = bless { @_ }, $class; 423 my $self = bless { @_ }, $class;
265 424
266 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 425 if ($self->{fh}) {
426 $self->_start;
427 return unless $self->{fh}; # could be gone by now
428
429 } elsif ($self->{connect}) {
430 require AnyEvent::Socket;
431
432 $self->{peername} = $self->{connect}[0]
433 unless exists $self->{peername};
434
435 $self->{_skip_drain_rbuf} = 1;
436
437 {
438 Scalar::Util::weaken (my $self = $self);
439
440 $self->{_connect} =
441 AnyEvent::Socket::tcp_connect (
442 $self->{connect}[0],
443 $self->{connect}[1],
444 sub {
445 my ($fh, $host, $port, $retry) = @_;
446
447 if ($fh) {
448 $self->{fh} = $fh;
449
450 delete $self->{_skip_drain_rbuf};
451 $self->_start;
452
453 $self->{on_connect}
454 and $self->{on_connect}($self, $host, $port, sub {
455 delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
456 $self->{_skip_drain_rbuf} = 1;
457 &$retry;
458 });
459
460 } else {
461 if ($self->{on_connect_error}) {
462 $self->{on_connect_error}($self, "$!");
463 $self->destroy;
464 } else {
465 $self->_error ($!, 1);
466 }
467 }
468 },
469 sub {
470 local $self->{fh} = $_[0];
471
472 $self->{on_prepare}
473 ? $self->{on_prepare}->($self)
474 : ()
475 }
476 );
477 }
478
479 } else {
480 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
481 }
482
483 $self
484}
485
486sub _start {
487 my ($self) = @_;
267 488
268 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 489 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
269 490
270 if ($self->{tls}) { 491 $self->{_activity} =
271 require Net::SSLeay; 492 $self->{_ractivity} =
272 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
273 }
274
275 $self->{_activity} = AnyEvent->now; 493 $self->{_wactivity} = AE::now;
276 $self->_timeout;
277 494
278 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain}; 495 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
496 $self->rtimeout (delete $self->{rtimeout}) if $self->{rtimeout};
497 $self->wtimeout (delete $self->{wtimeout}) if $self->{wtimeout};
498
279 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay}; 499 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
280 500
501 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
502 if $self->{tls};
503
504 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
505
281 $self->start_read 506 $self->start_read
282 if $self->{on_read}; 507 if $self->{on_read} || @{ $self->{_queue} };
283 508
284 $self 509 $self->_drain_wbuf;
285} 510}
286 511
287sub _shutdown { 512#sub _shutdown {
288 my ($self) = @_; 513# my ($self) = @_;
289 514#
290 delete $self->{_tw}; 515# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
291 delete $self->{_rw}; 516# $self->{_eof} = 1; # tell starttls et. al to stop trying
292 delete $self->{_ww}; 517#
293 delete $self->{fh}; 518# &_freetls;
294 519#}
295 $self->stoptls;
296}
297 520
298sub _error { 521sub _error {
299 my ($self, $errno, $fatal) = @_; 522 my ($self, $errno, $fatal, $message) = @_;
300
301 $self->_shutdown
302 if $fatal;
303 523
304 $! = $errno; 524 $! = $errno;
525 $message ||= "$!";
305 526
306 if ($self->{on_error}) { 527 if ($self->{on_error}) {
307 $self->{on_error}($self, $fatal); 528 $self->{on_error}($self, $fatal, $message);
308 } else { 529 $self->destroy if $fatal;
530 } elsif ($self->{fh}) {
531 $self->destroy;
309 Carp::croak "AnyEvent::Handle uncaught error: $!"; 532 Carp::croak "AnyEvent::Handle uncaught error: $message";
310 } 533 }
311} 534}
312 535
313=item $fh = $handle->fh 536=item $fh = $handle->fh
314 537
315This method returns the file handle of the L<AnyEvent::Handle> object. 538This method returns the file handle used to create the L<AnyEvent::Handle> object.
316 539
317=cut 540=cut
318 541
319sub fh { $_[0]{fh} } 542sub fh { $_[0]{fh} }
320 543
338 $_[0]{on_eof} = $_[1]; 561 $_[0]{on_eof} = $_[1];
339} 562}
340 563
341=item $handle->on_timeout ($cb) 564=item $handle->on_timeout ($cb)
342 565
343Replace the current C<on_timeout> callback, or disables the callback 566=item $handle->on_rtimeout ($cb)
344(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
345argument.
346 567
347=cut 568=item $handle->on_wtimeout ($cb)
348 569
349sub on_timeout { 570Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
350 $_[0]{on_timeout} = $_[1]; 571callback, or disables the callback (but not the timeout) if C<$cb> =
351} 572C<undef>. See the C<timeout> constructor argument and method.
573
574=cut
575
576# see below
352 577
353=item $handle->autocork ($boolean) 578=item $handle->autocork ($boolean)
354 579
355Enables or disables the current autocork behaviour (see C<autocork> 580Enables or disables the current autocork behaviour (see C<autocork>
356constructor argument). 581constructor argument). Changes will only take effect on the next write.
357 582
358=cut 583=cut
584
585sub autocork {
586 $_[0]{autocork} = $_[1];
587}
359 588
360=item $handle->no_delay ($boolean) 589=item $handle->no_delay ($boolean)
361 590
362Enables or disables the C<no_delay> setting (see constructor argument of 591Enables or disables the C<no_delay> setting (see constructor argument of
363the same name for details). 592the same name for details).
367sub no_delay { 596sub no_delay {
368 $_[0]{no_delay} = $_[1]; 597 $_[0]{no_delay} = $_[1];
369 598
370 eval { 599 eval {
371 local $SIG{__DIE__}; 600 local $SIG{__DIE__};
372 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 601 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
602 if $_[0]{fh};
373 }; 603 };
374} 604}
375 605
606=item $handle->on_starttls ($cb)
607
608Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
609
610=cut
611
612sub on_starttls {
613 $_[0]{on_starttls} = $_[1];
614}
615
616=item $handle->on_stoptls ($cb)
617
618Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
619
620=cut
621
622sub on_starttls {
623 $_[0]{on_stoptls} = $_[1];
624}
625
626=item $handle->rbuf_max ($max_octets)
627
628Configures the C<rbuf_max> setting (C<undef> disables it).
629
630=cut
631
632sub rbuf_max {
633 $_[0]{rbuf_max} = $_[1];
634}
635
376############################################################################# 636#############################################################################
377 637
378=item $handle->timeout ($seconds) 638=item $handle->timeout ($seconds)
379 639
640=item $handle->rtimeout ($seconds)
641
642=item $handle->wtimeout ($seconds)
643
380Configures (or disables) the inactivity timeout. 644Configures (or disables) the inactivity timeout.
381 645
382=cut 646=item $handle->timeout_reset
383 647
384sub timeout { 648=item $handle->rtimeout_reset
649
650=item $handle->wtimeout_reset
651
652Reset the activity timeout, as if data was received or sent.
653
654These methods are cheap to call.
655
656=cut
657
658for my $dir ("", "r", "w") {
659 my $timeout = "${dir}timeout";
660 my $tw = "_${dir}tw";
661 my $on_timeout = "on_${dir}timeout";
662 my $activity = "_${dir}activity";
663 my $cb;
664
665 *$on_timeout = sub {
666 $_[0]{$on_timeout} = $_[1];
667 };
668
669 *$timeout = sub {
385 my ($self, $timeout) = @_; 670 my ($self, $new_value) = @_;
386 671
387 $self->{timeout} = $timeout; 672 $self->{$timeout} = $new_value;
388 $self->_timeout; 673 delete $self->{$tw}; &$cb;
389} 674 };
390 675
676 *{"${dir}timeout_reset"} = sub {
677 $_[0]{$activity} = AE::now;
678 };
679
680 # main workhorse:
391# reset the timeout watcher, as neccessary 681 # reset the timeout watcher, as neccessary
392# also check for time-outs 682 # also check for time-outs
393sub _timeout { 683 $cb = sub {
394 my ($self) = @_; 684 my ($self) = @_;
395 685
396 if ($self->{timeout}) { 686 if ($self->{$timeout} && $self->{fh}) {
397 my $NOW = AnyEvent->now; 687 my $NOW = AE::now;
398 688
399 # when would the timeout trigger? 689 # when would the timeout trigger?
400 my $after = $self->{_activity} + $self->{timeout} - $NOW; 690 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
401 691
402 # now or in the past already? 692 # now or in the past already?
403 if ($after <= 0) { 693 if ($after <= 0) {
404 $self->{_activity} = $NOW; 694 $self->{$activity} = $NOW;
405 695
406 if ($self->{on_timeout}) { 696 if ($self->{$on_timeout}) {
407 $self->{on_timeout}($self); 697 $self->{$on_timeout}($self);
408 } else { 698 } else {
409 $self->_error (&Errno::ETIMEDOUT); 699 $self->_error (Errno::ETIMEDOUT);
700 }
701
702 # callback could have changed timeout value, optimise
703 return unless $self->{$timeout};
704
705 # calculate new after
706 $after = $self->{$timeout};
410 } 707 }
411 708
412 # callback could have changed timeout value, optimise 709 Scalar::Util::weaken $self;
413 return unless $self->{timeout}; 710 return unless $self; # ->error could have destroyed $self
414 711
415 # calculate new after 712 $self->{$tw} ||= AE::timer $after, 0, sub {
416 $after = $self->{timeout}; 713 delete $self->{$tw};
714 $cb->($self);
715 };
716 } else {
717 delete $self->{$tw};
417 } 718 }
418
419 Scalar::Util::weaken $self;
420 return unless $self; # ->error could have destroyed $self
421
422 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
423 delete $self->{_tw};
424 $self->_timeout;
425 });
426 } else {
427 delete $self->{_tw};
428 } 719 }
429} 720}
430 721
431############################################################################# 722#############################################################################
432 723
456 my ($self, $cb) = @_; 747 my ($self, $cb) = @_;
457 748
458 $self->{on_drain} = $cb; 749 $self->{on_drain} = $cb;
459 750
460 $cb->($self) 751 $cb->($self)
461 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 752 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
462} 753}
463 754
464=item $handle->push_write ($data) 755=item $handle->push_write ($data)
465 756
466Queues the given scalar to be written. You can push as much data as you 757Queues the given scalar to be written. You can push as much data as you
477 Scalar::Util::weaken $self; 768 Scalar::Util::weaken $self;
478 769
479 my $cb = sub { 770 my $cb = sub {
480 my $len = syswrite $self->{fh}, $self->{wbuf}; 771 my $len = syswrite $self->{fh}, $self->{wbuf};
481 772
482 if ($len >= 0) { 773 if (defined $len) {
483 substr $self->{wbuf}, 0, $len, ""; 774 substr $self->{wbuf}, 0, $len, "";
484 775
485 $self->{_activity} = AnyEvent->now; 776 $self->{_activity} = $self->{_wactivity} = AE::now;
486 777
487 $self->{on_drain}($self) 778 $self->{on_drain}($self)
488 if $self->{low_water_mark} >= length $self->{wbuf} 779 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
489 && $self->{on_drain}; 780 && $self->{on_drain};
490 781
491 delete $self->{_ww} unless length $self->{wbuf}; 782 delete $self->{_ww} unless length $self->{wbuf};
492 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 783 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
493 $self->_error ($!, 1); 784 $self->_error ($!, 1);
496 787
497 # try to write data immediately 788 # try to write data immediately
498 $cb->() unless $self->{autocork}; 789 $cb->() unless $self->{autocork};
499 790
500 # if still data left in wbuf, we need to poll 791 # if still data left in wbuf, we need to poll
501 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 792 $self->{_ww} = AE::io $self->{fh}, 1, $cb
502 if length $self->{wbuf}; 793 if length $self->{wbuf};
503 }; 794 };
504} 795}
505 796
506our %WH; 797our %WH;
517 808
518 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 809 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
519 ->($self, @_); 810 ->($self, @_);
520 } 811 }
521 812
522 if ($self->{filter_w}) { 813 if ($self->{tls}) {
523 $self->{filter_w}($self, \$_[0]); 814 $self->{_tls_wbuf} .= $_[0];
815 &_dotls ($self) if $self->{fh};
524 } else { 816 } else {
525 $self->{wbuf} .= $_[0]; 817 $self->{wbuf} .= $_[0];
526 $self->_drain_wbuf; 818 $self->_drain_wbuf if $self->{fh};
527 } 819 }
528} 820}
529 821
530=item $handle->push_write (type => @args) 822=item $handle->push_write (type => @args)
531 823
545=cut 837=cut
546 838
547register_write_type netstring => sub { 839register_write_type netstring => sub {
548 my ($self, $string) = @_; 840 my ($self, $string) = @_;
549 841
550 sprintf "%d:%s,", (length $string), $string 842 (length $string) . ":$string,"
551}; 843};
552 844
553=item packstring => $format, $data 845=item packstring => $format, $data
554 846
555An octet string prefixed with an encoded length. The encoding C<$format> 847An octet string prefixed with an encoded length. The encoding C<$format>
620 912
621 pack "w/a*", Storable::nfreeze ($ref) 913 pack "w/a*", Storable::nfreeze ($ref)
622}; 914};
623 915
624=back 916=back
917
918=item $handle->push_shutdown
919
920Sometimes you know you want to close the socket after writing your data
921before it was actually written. One way to do that is to replace your
922C<on_drain> handler by a callback that shuts down the socket (and set
923C<low_water_mark> to C<0>). This method is a shorthand for just that, and
924replaces the C<on_drain> callback with:
925
926 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
927
928This simply shuts down the write side and signals an EOF condition to the
929the peer.
930
931You can rely on the normal read queue and C<on_eof> handling
932afterwards. This is the cleanest way to close a connection.
933
934=cut
935
936sub push_shutdown {
937 my ($self) = @_;
938
939 delete $self->{low_water_mark};
940 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
941}
625 942
626=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 943=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
627 944
628This function (not method) lets you add your own types to C<push_write>. 945This function (not method) lets you add your own types to C<push_write>.
629Whenever the given C<type> is used, C<push_write> will invoke the code 946Whenever the given C<type> is used, C<push_write> will invoke the code
723=cut 1040=cut
724 1041
725sub _drain_rbuf { 1042sub _drain_rbuf {
726 my ($self) = @_; 1043 my ($self) = @_;
727 1044
1045 # avoid recursion
1046 return if $self->{_skip_drain_rbuf};
728 local $self->{_in_drain} = 1; 1047 local $self->{_skip_drain_rbuf} = 1;
729
730 if (
731 defined $self->{rbuf_max}
732 && $self->{rbuf_max} < length $self->{rbuf}
733 ) {
734 return $self->_error (&Errno::ENOSPC, 1);
735 }
736 1048
737 while () { 1049 while () {
1050 # we need to use a separate tls read buffer, as we must not receive data while
1051 # we are draining the buffer, and this can only happen with TLS.
1052 $self->{rbuf} .= delete $self->{_tls_rbuf}
1053 if exists $self->{_tls_rbuf};
1054
738 my $len = length $self->{rbuf}; 1055 my $len = length $self->{rbuf};
739 1056
740 if (my $cb = shift @{ $self->{_queue} }) { 1057 if (my $cb = shift @{ $self->{_queue} }) {
741 unless ($cb->($self)) { 1058 unless ($cb->($self)) {
742 if ($self->{_eof}) { 1059 # no progress can be made
743 # no progress can be made (not enough data and no data forthcoming) 1060 # (not enough data and no data forthcoming)
744 $self->_error (&Errno::EPIPE, 1), last; 1061 $self->_error (Errno::EPIPE, 1), return
745 } 1062 if $self->{_eof};
746 1063
747 unshift @{ $self->{_queue} }, $cb; 1064 unshift @{ $self->{_queue} }, $cb;
748 last; 1065 last;
749 } 1066 }
750 } elsif ($self->{on_read}) { 1067 } elsif ($self->{on_read}) {
757 && !@{ $self->{_queue} } # and the queue is still empty 1074 && !@{ $self->{_queue} } # and the queue is still empty
758 && $self->{on_read} # but we still have on_read 1075 && $self->{on_read} # but we still have on_read
759 ) { 1076 ) {
760 # no further data will arrive 1077 # no further data will arrive
761 # so no progress can be made 1078 # so no progress can be made
762 $self->_error (&Errno::EPIPE, 1), last 1079 $self->_error (Errno::EPIPE, 1), return
763 if $self->{_eof}; 1080 if $self->{_eof};
764 1081
765 last; # more data might arrive 1082 last; # more data might arrive
766 } 1083 }
767 } else { 1084 } else {
768 # read side becomes idle 1085 # read side becomes idle
769 delete $self->{_rw}; 1086 delete $self->{_rw} unless $self->{tls};
770 last; 1087 last;
771 } 1088 }
772 } 1089 }
773 1090
774 if ($self->{_eof}) { 1091 if ($self->{_eof}) {
775 if ($self->{on_eof}) { 1092 $self->{on_eof}
776 $self->{on_eof}($self) 1093 ? $self->{on_eof}($self)
777 } else { 1094 : $self->_error (0, 1, "Unexpected end-of-file");
778 $self->_error (0, 1); 1095
779 } 1096 return;
1097 }
1098
1099 if (
1100 defined $self->{rbuf_max}
1101 && $self->{rbuf_max} < length $self->{rbuf}
1102 ) {
1103 $self->_error (Errno::ENOSPC, 1), return;
780 } 1104 }
781 1105
782 # may need to restart read watcher 1106 # may need to restart read watcher
783 unless ($self->{_rw}) { 1107 unless ($self->{_rw}) {
784 $self->start_read 1108 $self->start_read
796 1120
797sub on_read { 1121sub on_read {
798 my ($self, $cb) = @_; 1122 my ($self, $cb) = @_;
799 1123
800 $self->{on_read} = $cb; 1124 $self->{on_read} = $cb;
801 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1125 $self->_drain_rbuf if $cb;
802} 1126}
803 1127
804=item $handle->rbuf 1128=item $handle->rbuf
805 1129
806Returns the read buffer (as a modifiable lvalue). 1130Returns the read buffer (as a modifiable lvalue).
807 1131
808You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1132You can access the read buffer directly as the C<< ->{rbuf} >>
809you want. 1133member, if you want. However, the only operation allowed on the
1134read buffer (apart from looking at it) is removing data from its
1135beginning. Otherwise modifying or appending to it is not allowed and will
1136lead to hard-to-track-down bugs.
810 1137
811NOTE: The read buffer should only be used or modified if the C<on_read>, 1138NOTE: The read buffer should only be used or modified if the C<on_read>,
812C<push_read> or C<unshift_read> methods are used. The other read methods 1139C<push_read> or C<unshift_read> methods are used. The other read methods
813automatically manage the read buffer. 1140automatically manage the read buffer.
814 1141
855 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1182 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
856 ->($self, $cb, @_); 1183 ->($self, $cb, @_);
857 } 1184 }
858 1185
859 push @{ $self->{_queue} }, $cb; 1186 push @{ $self->{_queue} }, $cb;
860 $self->_drain_rbuf unless $self->{_in_drain}; 1187 $self->_drain_rbuf;
861} 1188}
862 1189
863sub unshift_read { 1190sub unshift_read {
864 my $self = shift; 1191 my $self = shift;
865 my $cb = pop; 1192 my $cb = pop;
871 ->($self, $cb, @_); 1198 ->($self, $cb, @_);
872 } 1199 }
873 1200
874 1201
875 unshift @{ $self->{_queue} }, $cb; 1202 unshift @{ $self->{_queue} }, $cb;
876 $self->_drain_rbuf unless $self->{_in_drain}; 1203 $self->_drain_rbuf;
877} 1204}
878 1205
879=item $handle->push_read (type => @args, $cb) 1206=item $handle->push_read (type => @args, $cb)
880 1207
881=item $handle->unshift_read (type => @args, $cb) 1208=item $handle->unshift_read (type => @args, $cb)
1014 return 1; 1341 return 1;
1015 } 1342 }
1016 1343
1017 # reject 1344 # reject
1018 if ($reject && $$rbuf =~ $reject) { 1345 if ($reject && $$rbuf =~ $reject) {
1019 $self->_error (&Errno::EBADMSG); 1346 $self->_error (Errno::EBADMSG);
1020 } 1347 }
1021 1348
1022 # skip 1349 # skip
1023 if ($skip && $$rbuf =~ $skip) { 1350 if ($skip && $$rbuf =~ $skip) {
1024 $data .= substr $$rbuf, 0, $+[0], ""; 1351 $data .= substr $$rbuf, 0, $+[0], "";
1040 my ($self, $cb) = @_; 1367 my ($self, $cb) = @_;
1041 1368
1042 sub { 1369 sub {
1043 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1370 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1044 if ($_[0]{rbuf} =~ /[^0-9]/) { 1371 if ($_[0]{rbuf} =~ /[^0-9]/) {
1045 $self->_error (&Errno::EBADMSG); 1372 $self->_error (Errno::EBADMSG);
1046 } 1373 }
1047 return; 1374 return;
1048 } 1375 }
1049 1376
1050 my $len = $1; 1377 my $len = $1;
1053 my $string = $_[1]; 1380 my $string = $_[1];
1054 $_[0]->unshift_read (chunk => 1, sub { 1381 $_[0]->unshift_read (chunk => 1, sub {
1055 if ($_[1] eq ",") { 1382 if ($_[1] eq ",") {
1056 $cb->($_[0], $string); 1383 $cb->($_[0], $string);
1057 } else { 1384 } else {
1058 $self->_error (&Errno::EBADMSG); 1385 $self->_error (Errno::EBADMSG);
1059 } 1386 }
1060 }); 1387 });
1061 }); 1388 });
1062 1389
1063 1 1390 1
1069An octet string prefixed with an encoded length. The encoding C<$format> 1396An octet string prefixed with an encoded length. The encoding C<$format>
1070uses the same format as a Perl C<pack> format, but must specify a single 1397uses the same format as a Perl C<pack> format, but must specify a single
1071integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1398integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1072optional C<!>, C<< < >> or C<< > >> modifier). 1399optional C<!>, C<< < >> or C<< > >> modifier).
1073 1400
1074DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1401For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1402EPP uses a prefix of C<N> (4 octtes).
1075 1403
1076Example: read a block of data prefixed by its length in BER-encoded 1404Example: read a block of data prefixed by its length in BER-encoded
1077format (very efficient). 1405format (very efficient).
1078 1406
1079 $handle->push_read (packstring => "w", sub { 1407 $handle->push_read (packstring => "w", sub {
1109 } 1437 }
1110}; 1438};
1111 1439
1112=item json => $cb->($handle, $hash_or_arrayref) 1440=item json => $cb->($handle, $hash_or_arrayref)
1113 1441
1114Reads a JSON object or array, decodes it and passes it to the callback. 1442Reads a JSON object or array, decodes it and passes it to the
1443callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1115 1444
1116If a C<json> object was passed to the constructor, then that will be used 1445If a C<json> object was passed to the constructor, then that will be used
1117for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1446for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1118 1447
1119This read type uses the incremental parser available with JSON version 1448This read type uses the incremental parser available with JSON version
1128=cut 1457=cut
1129 1458
1130register_read_type json => sub { 1459register_read_type json => sub {
1131 my ($self, $cb) = @_; 1460 my ($self, $cb) = @_;
1132 1461
1133 require JSON; 1462 my $json = $self->{json} ||=
1463 eval { require JSON::XS; JSON::XS->new->utf8 }
1464 || do { require JSON; JSON->new->utf8 };
1134 1465
1135 my $data; 1466 my $data;
1136 my $rbuf = \$self->{rbuf}; 1467 my $rbuf = \$self->{rbuf};
1137 1468
1138 my $json = $self->{json} ||= JSON->new->utf8;
1139
1140 sub { 1469 sub {
1141 my $ref = $json->incr_parse ($self->{rbuf}); 1470 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1142 1471
1143 if ($ref) { 1472 if ($ref) {
1144 $self->{rbuf} = $json->incr_text; 1473 $self->{rbuf} = $json->incr_text;
1145 $json->incr_text = ""; 1474 $json->incr_text = "";
1146 $cb->($self, $ref); 1475 $cb->($self, $ref);
1147 1476
1148 1 1477 1
1478 } elsif ($@) {
1479 # error case
1480 $json->incr_skip;
1481
1482 $self->{rbuf} = $json->incr_text;
1483 $json->incr_text = "";
1484
1485 $self->_error (Errno::EBADMSG);
1486
1487 ()
1149 } else { 1488 } else {
1150 $self->{rbuf} = ""; 1489 $self->{rbuf} = "";
1490
1151 () 1491 ()
1152 } 1492 }
1153 } 1493 }
1154}; 1494};
1155 1495
1187 # read remaining chunk 1527 # read remaining chunk
1188 $_[0]->unshift_read (chunk => $len, sub { 1528 $_[0]->unshift_read (chunk => $len, sub {
1189 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1529 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1190 $cb->($_[0], $ref); 1530 $cb->($_[0], $ref);
1191 } else { 1531 } else {
1192 $self->_error (&Errno::EBADMSG); 1532 $self->_error (Errno::EBADMSG);
1193 } 1533 }
1194 }); 1534 });
1195 } 1535 }
1196 1536
1197 1 1537 1
1232Note that AnyEvent::Handle will automatically C<start_read> for you when 1572Note that AnyEvent::Handle will automatically C<start_read> for you when
1233you change the C<on_read> callback or push/unshift a read callback, and it 1573you change the C<on_read> callback or push/unshift a read callback, and it
1234will automatically C<stop_read> for you when neither C<on_read> is set nor 1574will automatically C<stop_read> for you when neither C<on_read> is set nor
1235there are any read requests in the queue. 1575there are any read requests in the queue.
1236 1576
1577These methods will have no effect when in TLS mode (as TLS doesn't support
1578half-duplex connections).
1579
1237=cut 1580=cut
1238 1581
1239sub stop_read { 1582sub stop_read {
1240 my ($self) = @_; 1583 my ($self) = @_;
1241 1584
1242 delete $self->{_rw}; 1585 delete $self->{_rw} unless $self->{tls};
1243} 1586}
1244 1587
1245sub start_read { 1588sub start_read {
1246 my ($self) = @_; 1589 my ($self) = @_;
1247 1590
1248 unless ($self->{_rw} || $self->{_eof}) { 1591 unless ($self->{_rw} || $self->{_eof}) {
1249 Scalar::Util::weaken $self; 1592 Scalar::Util::weaken $self;
1250 1593
1251 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1594 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1252 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1595 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1253 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1596 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1254 1597
1255 if ($len > 0) { 1598 if ($len > 0) {
1256 $self->{_activity} = AnyEvent->now; 1599 $self->{_activity} = $self->{_ractivity} = AE::now;
1257 1600
1258 $self->{filter_r} 1601 if ($self->{tls}) {
1259 ? $self->{filter_r}($self, $rbuf) 1602 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1260 : $self->{_in_drain} || $self->_drain_rbuf; 1603
1604 &_dotls ($self);
1605 } else {
1606 $self->_drain_rbuf;
1607 }
1261 1608
1262 } elsif (defined $len) { 1609 } elsif (defined $len) {
1263 delete $self->{_rw}; 1610 delete $self->{_rw};
1264 $self->{_eof} = 1; 1611 $self->{_eof} = 1;
1265 $self->_drain_rbuf unless $self->{_in_drain}; 1612 $self->_drain_rbuf;
1266 1613
1267 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1614 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1268 return $self->_error ($!, 1); 1615 return $self->_error ($!, 1);
1269 } 1616 }
1270 }); 1617 };
1271 } 1618 }
1272} 1619}
1273 1620
1621our $ERROR_SYSCALL;
1622our $ERROR_WANT_READ;
1623
1624sub _tls_error {
1625 my ($self, $err) = @_;
1626
1627 return $self->_error ($!, 1)
1628 if $err == Net::SSLeay::ERROR_SYSCALL ();
1629
1630 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1631
1632 # reduce error string to look less scary
1633 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1634
1635 if ($self->{_on_starttls}) {
1636 (delete $self->{_on_starttls})->($self, undef, $err);
1637 &_freetls;
1638 } else {
1639 &_freetls;
1640 $self->_error (Errno::EPROTO, 1, $err);
1641 }
1642}
1643
1644# poll the write BIO and send the data if applicable
1645# also decode read data if possible
1646# this is basiclaly our TLS state machine
1647# more efficient implementations are possible with openssl,
1648# but not with the buggy and incomplete Net::SSLeay.
1274sub _dotls { 1649sub _dotls {
1275 my ($self) = @_; 1650 my ($self) = @_;
1276 1651
1277 my $buf; 1652 my $tmp;
1278 1653
1279 if (length $self->{_tls_wbuf}) { 1654 if (length $self->{_tls_wbuf}) {
1280 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1655 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1281 substr $self->{_tls_wbuf}, 0, $len, ""; 1656 substr $self->{_tls_wbuf}, 0, $tmp, "";
1282 } 1657 }
1283 }
1284 1658
1659 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1660 return $self->_tls_error ($tmp)
1661 if $tmp != $ERROR_WANT_READ
1662 && ($tmp != $ERROR_SYSCALL || $!);
1663 }
1664
1665 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1666 unless (length $tmp) {
1667 $self->{_on_starttls}
1668 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1669 &_freetls;
1670
1671 if ($self->{on_stoptls}) {
1672 $self->{on_stoptls}($self);
1673 return;
1674 } else {
1675 # let's treat SSL-eof as we treat normal EOF
1676 delete $self->{_rw};
1677 $self->{_eof} = 1;
1678 }
1679 }
1680
1681 $self->{_tls_rbuf} .= $tmp;
1682 $self->_drain_rbuf;
1683 $self->{tls} or return; # tls session might have gone away in callback
1684 }
1685
1686 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1687 return $self->_tls_error ($tmp)
1688 if $tmp != $ERROR_WANT_READ
1689 && ($tmp != $ERROR_SYSCALL || $!);
1690
1285 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1691 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1286 $self->{wbuf} .= $buf; 1692 $self->{wbuf} .= $tmp;
1287 $self->_drain_wbuf; 1693 $self->_drain_wbuf;
1288 } 1694 }
1289 1695
1290 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1696 $self->{_on_starttls}
1291 if (length $buf) { 1697 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1292 $self->{rbuf} .= $buf; 1698 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1293 $self->_drain_rbuf unless $self->{_in_drain};
1294 } else {
1295 # let's treat SSL-eof as we treat normal EOF
1296 $self->{_eof} = 1;
1297 $self->_shutdown;
1298 return;
1299 }
1300 }
1301
1302 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1303
1304 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1305 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1306 return $self->_error ($!, 1);
1307 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1308 return $self->_error (&Errno::EIO, 1);
1309 }
1310
1311 # all others are fine for our purposes
1312 }
1313} 1699}
1314 1700
1315=item $handle->starttls ($tls[, $tls_ctx]) 1701=item $handle->starttls ($tls[, $tls_ctx])
1316 1702
1317Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1703Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1318object is created, you can also do that at a later time by calling 1704object is created, you can also do that at a later time by calling
1319C<starttls>. 1705C<starttls>.
1320 1706
1707Starting TLS is currently an asynchronous operation - when you push some
1708write data and then call C<< ->starttls >> then TLS negotiation will start
1709immediately, after which the queued write data is then sent.
1710
1321The first argument is the same as the C<tls> constructor argument (either 1711The first argument is the same as the C<tls> constructor argument (either
1322C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1712C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1323 1713
1324The second argument is the optional C<Net::SSLeay::CTX> object that is 1714The second argument is the optional C<AnyEvent::TLS> object that is used
1325used when AnyEvent::Handle has to create its own TLS connection object. 1715when AnyEvent::Handle has to create its own TLS connection object, or
1716a hash reference with C<< key => value >> pairs that will be used to
1717construct a new context.
1326 1718
1327The TLS connection object will end up in C<< $handle->{tls} >> after this 1719The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1328call and can be used or changed to your liking. Note that the handshake 1720context in C<< $handle->{tls_ctx} >> after this call and can be used or
1329might have already started when this function returns. 1721changed to your liking. Note that the handshake might have already started
1722when this function returns.
1330 1723
1724Due to bugs in OpenSSL, it might or might not be possible to do multiple
1725handshakes on the same stream. Best do not attempt to use the stream after
1726stopping TLS.
1727
1331=cut 1728=cut
1729
1730our %TLS_CACHE; #TODO not yet documented, should we?
1332 1731
1333sub starttls { 1732sub starttls {
1334 my ($self, $ssl, $ctx) = @_; 1733 my ($self, $tls, $ctx) = @_;
1335 1734
1336 $self->stoptls; 1735 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1736 if $self->{tls};
1337 1737
1338 if ($ssl eq "accept") { 1738 $self->{tls} = $tls;
1339 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1739 $self->{tls_ctx} = $ctx if @_ > 2;
1340 Net::SSLeay::set_accept_state ($ssl); 1740
1341 } elsif ($ssl eq "connect") { 1741 return unless $self->{fh};
1342 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1742
1343 Net::SSLeay::set_connect_state ($ssl); 1743 require Net::SSLeay;
1744
1745 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1746 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1747
1748 $tls = $self->{tls};
1749 $ctx = $self->{tls_ctx};
1750
1751 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1752
1753 if ("HASH" eq ref $ctx) {
1754 require AnyEvent::TLS;
1755
1756 if ($ctx->{cache}) {
1757 my $key = $ctx+0;
1758 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1759 } else {
1760 $ctx = new AnyEvent::TLS %$ctx;
1761 }
1762 }
1344 } 1763
1345 1764 $self->{tls_ctx} = $ctx || TLS_CTX ();
1346 $self->{tls} = $ssl; 1765 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1347 1766
1348 # basically, this is deep magic (because SSL_read should have the same issues) 1767 # basically, this is deep magic (because SSL_read should have the same issues)
1349 # but the openssl maintainers basically said: "trust us, it just works". 1768 # but the openssl maintainers basically said: "trust us, it just works".
1350 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1769 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1351 # and mismaintained ssleay-module doesn't even offer them). 1770 # and mismaintained ssleay-module doesn't even offer them).
1352 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1771 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1772 #
1773 # in short: this is a mess.
1774 #
1775 # note that we do not try to keep the length constant between writes as we are required to do.
1776 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1777 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1778 # have identity issues in that area.
1353 Net::SSLeay::CTX_set_mode ($self->{tls}, 1779# Net::SSLeay::CTX_set_mode ($ssl,
1354 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1780# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1355 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1781# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1782 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1356 1783
1357 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1784 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1358 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1785 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1359 1786
1787 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1788
1360 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1789 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1361 1790
1362 $self->{filter_w} = sub { 1791 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1363 $_[0]{_tls_wbuf} .= ${$_[1]}; 1792 if $self->{on_starttls};
1364 &_dotls; 1793
1365 }; 1794 &_dotls; # need to trigger the initial handshake
1366 $self->{filter_r} = sub { 1795 $self->start_read; # make sure we actually do read
1367 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1368 &_dotls;
1369 };
1370} 1796}
1371 1797
1372=item $handle->stoptls 1798=item $handle->stoptls
1373 1799
1374Destroys the SSL connection, if any. Partial read or write data will be 1800Shuts down the SSL connection - this makes a proper EOF handshake by
1375lost. 1801sending a close notify to the other side, but since OpenSSL doesn't
1802support non-blocking shut downs, it is not guarenteed that you can re-use
1803the stream afterwards.
1376 1804
1377=cut 1805=cut
1378 1806
1379sub stoptls { 1807sub stoptls {
1380 my ($self) = @_; 1808 my ($self) = @_;
1381 1809
1382 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1810 if ($self->{tls}) {
1811 Net::SSLeay::shutdown ($self->{tls});
1383 1812
1384 delete $self->{_rbio}; 1813 &_dotls;
1385 delete $self->{_wbio}; 1814
1386 delete $self->{_tls_wbuf}; 1815# # we don't give a shit. no, we do, but we can't. no...#d#
1387 delete $self->{filter_r}; 1816# # we, we... have to use openssl :/#d#
1388 delete $self->{filter_w}; 1817# &_freetls;#d#
1818 }
1819}
1820
1821sub _freetls {
1822 my ($self) = @_;
1823
1824 return unless $self->{tls};
1825
1826 $self->{tls_ctx}->_put_session (delete $self->{tls})
1827 if $self->{tls} > 0;
1828
1829 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1389} 1830}
1390 1831
1391sub DESTROY { 1832sub DESTROY {
1392 my $self = shift; 1833 my ($self) = @_;
1393 1834
1394 $self->stoptls; 1835 &_freetls;
1395 1836
1396 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1837 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1397 1838
1398 if ($linger && length $self->{wbuf}) { 1839 if ($linger && length $self->{wbuf} && $self->{fh}) {
1399 my $fh = delete $self->{fh}; 1840 my $fh = delete $self->{fh};
1400 my $wbuf = delete $self->{wbuf}; 1841 my $wbuf = delete $self->{wbuf};
1401 1842
1402 my @linger; 1843 my @linger;
1403 1844
1404 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub { 1845 push @linger, AE::io $fh, 1, sub {
1405 my $len = syswrite $fh, $wbuf, length $wbuf; 1846 my $len = syswrite $fh, $wbuf, length $wbuf;
1406 1847
1407 if ($len > 0) { 1848 if ($len > 0) {
1408 substr $wbuf, 0, $len, ""; 1849 substr $wbuf, 0, $len, "";
1409 } else { 1850 } else {
1410 @linger = (); # end 1851 @linger = (); # end
1411 } 1852 }
1412 }); 1853 };
1413 push @linger, AnyEvent->timer (after => $linger, cb => sub { 1854 push @linger, AE::timer $linger, 0, sub {
1414 @linger = (); 1855 @linger = ();
1415 }); 1856 };
1416 } 1857 }
1858}
1859
1860=item $handle->destroy
1861
1862Shuts down the handle object as much as possible - this call ensures that
1863no further callbacks will be invoked and as many resources as possible
1864will be freed. Any method you will call on the handle object after
1865destroying it in this way will be silently ignored (and it will return the
1866empty list).
1867
1868Normally, you can just "forget" any references to an AnyEvent::Handle
1869object and it will simply shut down. This works in fatal error and EOF
1870callbacks, as well as code outside. It does I<NOT> work in a read or write
1871callback, so when you want to destroy the AnyEvent::Handle object from
1872within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1873that case.
1874
1875Destroying the handle object in this way has the advantage that callbacks
1876will be removed as well, so if those are the only reference holders (as
1877is common), then one doesn't need to do anything special to break any
1878reference cycles.
1879
1880The handle might still linger in the background and write out remaining
1881data, as specified by the C<linger> option, however.
1882
1883=cut
1884
1885sub destroy {
1886 my ($self) = @_;
1887
1888 $self->DESTROY;
1889 %$self = ();
1890 bless $self, "AnyEvent::Handle::destroyed";
1891}
1892
1893sub AnyEvent::Handle::destroyed::AUTOLOAD {
1894 #nop
1417} 1895}
1418 1896
1419=item AnyEvent::Handle::TLS_CTX 1897=item AnyEvent::Handle::TLS_CTX
1420 1898
1421This function creates and returns the Net::SSLeay::CTX object used by 1899This function creates and returns the AnyEvent::TLS object used by default
1422default for TLS mode. 1900for TLS mode.
1423 1901
1424The context is created like this: 1902The context is created by calling L<AnyEvent::TLS> without any arguments.
1425
1426 Net::SSLeay::load_error_strings;
1427 Net::SSLeay::SSLeay_add_ssl_algorithms;
1428 Net::SSLeay::randomize;
1429
1430 my $CTX = Net::SSLeay::CTX_new;
1431
1432 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1433 1903
1434=cut 1904=cut
1435 1905
1436our $TLS_CTX; 1906our $TLS_CTX;
1437 1907
1438sub TLS_CTX() { 1908sub TLS_CTX() {
1439 $TLS_CTX || do { 1909 $TLS_CTX ||= do {
1440 require Net::SSLeay; 1910 require AnyEvent::TLS;
1441 1911
1442 Net::SSLeay::load_error_strings (); 1912 new AnyEvent::TLS
1443 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1444 Net::SSLeay::randomize ();
1445
1446 $TLS_CTX = Net::SSLeay::CTX_new ();
1447
1448 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1449
1450 $TLS_CTX
1451 } 1913 }
1452} 1914}
1453 1915
1454=back 1916=back
1917
1918
1919=head1 NONFREQUENTLY ASKED QUESTIONS
1920
1921=over 4
1922
1923=item I C<undef> the AnyEvent::Handle reference inside my callback and
1924still get further invocations!
1925
1926That's because AnyEvent::Handle keeps a reference to itself when handling
1927read or write callbacks.
1928
1929It is only safe to "forget" the reference inside EOF or error callbacks,
1930from within all other callbacks, you need to explicitly call the C<<
1931->destroy >> method.
1932
1933=item I get different callback invocations in TLS mode/Why can't I pause
1934reading?
1935
1936Unlike, say, TCP, TLS connections do not consist of two independent
1937communication channels, one for each direction. Or put differently. The
1938read and write directions are not independent of each other: you cannot
1939write data unless you are also prepared to read, and vice versa.
1940
1941This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1942callback invocations when you are not expecting any read data - the reason
1943is that AnyEvent::Handle always reads in TLS mode.
1944
1945During the connection, you have to make sure that you always have a
1946non-empty read-queue, or an C<on_read> watcher. At the end of the
1947connection (or when you no longer want to use it) you can call the
1948C<destroy> method.
1949
1950=item How do I read data until the other side closes the connection?
1951
1952If you just want to read your data into a perl scalar, the easiest way
1953to achieve this is by setting an C<on_read> callback that does nothing,
1954clearing the C<on_eof> callback and in the C<on_error> callback, the data
1955will be in C<$_[0]{rbuf}>:
1956
1957 $handle->on_read (sub { });
1958 $handle->on_eof (undef);
1959 $handle->on_error (sub {
1960 my $data = delete $_[0]{rbuf};
1961 });
1962
1963The reason to use C<on_error> is that TCP connections, due to latencies
1964and packets loss, might get closed quite violently with an error, when in
1965fact, all data has been received.
1966
1967It is usually better to use acknowledgements when transferring data,
1968to make sure the other side hasn't just died and you got the data
1969intact. This is also one reason why so many internet protocols have an
1970explicit QUIT command.
1971
1972=item I don't want to destroy the handle too early - how do I wait until
1973all data has been written?
1974
1975After writing your last bits of data, set the C<on_drain> callback
1976and destroy the handle in there - with the default setting of
1977C<low_water_mark> this will be called precisely when all data has been
1978written to the socket:
1979
1980 $handle->push_write (...);
1981 $handle->on_drain (sub {
1982 warn "all data submitted to the kernel\n";
1983 undef $handle;
1984 });
1985
1986If you just want to queue some data and then signal EOF to the other side,
1987consider using C<< ->push_shutdown >> instead.
1988
1989=item I want to contact a TLS/SSL server, I don't care about security.
1990
1991If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1992simply connect to it and then create the AnyEvent::Handle with the C<tls>
1993parameter:
1994
1995 tcp_connect $host, $port, sub {
1996 my ($fh) = @_;
1997
1998 my $handle = new AnyEvent::Handle
1999 fh => $fh,
2000 tls => "connect",
2001 on_error => sub { ... };
2002
2003 $handle->push_write (...);
2004 };
2005
2006=item I want to contact a TLS/SSL server, I do care about security.
2007
2008Then you should additionally enable certificate verification, including
2009peername verification, if the protocol you use supports it (see
2010L<AnyEvent::TLS>, C<verify_peername>).
2011
2012E.g. for HTTPS:
2013
2014 tcp_connect $host, $port, sub {
2015 my ($fh) = @_;
2016
2017 my $handle = new AnyEvent::Handle
2018 fh => $fh,
2019 peername => $host,
2020 tls => "connect",
2021 tls_ctx => { verify => 1, verify_peername => "https" },
2022 ...
2023
2024Note that you must specify the hostname you connected to (or whatever
2025"peername" the protocol needs) as the C<peername> argument, otherwise no
2026peername verification will be done.
2027
2028The above will use the system-dependent default set of trusted CA
2029certificates. If you want to check against a specific CA, add the
2030C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2031
2032 tls_ctx => {
2033 verify => 1,
2034 verify_peername => "https",
2035 ca_file => "my-ca-cert.pem",
2036 },
2037
2038=item I want to create a TLS/SSL server, how do I do that?
2039
2040Well, you first need to get a server certificate and key. You have
2041three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2042self-signed certificate (cheap. check the search engine of your choice,
2043there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2044nice program for that purpose).
2045
2046Then create a file with your private key (in PEM format, see
2047L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2048file should then look like this:
2049
2050 -----BEGIN RSA PRIVATE KEY-----
2051 ...header data
2052 ... lots of base64'y-stuff
2053 -----END RSA PRIVATE KEY-----
2054
2055 -----BEGIN CERTIFICATE-----
2056 ... lots of base64'y-stuff
2057 -----END CERTIFICATE-----
2058
2059The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2060specify this file as C<cert_file>:
2061
2062 tcp_server undef, $port, sub {
2063 my ($fh) = @_;
2064
2065 my $handle = new AnyEvent::Handle
2066 fh => $fh,
2067 tls => "accept",
2068 tls_ctx => { cert_file => "my-server-keycert.pem" },
2069 ...
2070
2071When you have intermediate CA certificates that your clients might not
2072know about, just append them to the C<cert_file>.
2073
2074=back
2075
1455 2076
1456=head1 SUBCLASSING AnyEvent::Handle 2077=head1 SUBCLASSING AnyEvent::Handle
1457 2078
1458In many cases, you might want to subclass AnyEvent::Handle. 2079In many cases, you might want to subclass AnyEvent::Handle.
1459 2080

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines