ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.97 by root, Thu Oct 2 11:07:59 2008 UTC vs.
Revision 1.164 by root, Mon Jul 27 22:44:43 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 3use Scalar::Util ();
9use Carp (); 4use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR); 5use Errno qw(EAGAIN EINTR);
12 6
7use AnyEvent (); BEGIN { AnyEvent::common_sense }
8use AnyEvent::Util qw(WSAEWOULDBLOCK);
9
13=head1 NAME 10=head1 NAME
14 11
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 12AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 13
17=cut 14=cut
18 15
19our $VERSION = 4.3; 16our $VERSION = 4.87;
20 17
21=head1 SYNOPSIS 18=head1 SYNOPSIS
22 19
23 use AnyEvent; 20 use AnyEvent;
24 use AnyEvent::Handle; 21 use AnyEvent::Handle;
25 22
26 my $cv = AnyEvent->condvar; 23 my $cv = AnyEvent->condvar;
27 24
28 my $handle = 25 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 26 fh => \*STDIN,
31 on_eof => sub { 27 on_error => sub {
32 $cv->broadcast; 28 my ($hdl, $fatal, $msg) = @_;
33 }, 29 warn "got error $msg\n";
30 $hdl->destroy;
31 $cv->send;
34 ); 32 );
35 33
36 # send some request line 34 # send some request line
37 $handle->push_write ("getinfo\015\012"); 35 $hdl->push_write ("getinfo\015\012");
38 36
39 # read the response line 37 # read the response line
40 $handle->push_read (line => sub { 38 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 39 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 40 warn "got line <$line>\n";
43 $cv->send; 41 $cv->send;
44 }); 42 });
45 43
46 $cv->recv; 44 $cv->recv;
47 45
48=head1 DESCRIPTION 46=head1 DESCRIPTION
49 47
50This module is a helper module to make it easier to do event-based I/O on 48This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 49filehandles.
52on sockets see L<AnyEvent::Util>.
53 50
54The L<AnyEvent::Intro> tutorial contains some well-documented 51The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples. 52AnyEvent::Handle examples.
56 53
57In the following, when the documentation refers to of "bytes" then this 54In the following, when the documentation refers to of "bytes" then this
58means characters. As sysread and syswrite are used for all I/O, their 55means characters. As sysread and syswrite are used for all I/O, their
59treatment of characters applies to this module as well. 56treatment of characters applies to this module as well.
60 57
58At the very minimum, you should specify C<fh> or C<connect>, and the
59C<on_error> callback.
60
61All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
62argument. 62argument.
63 63
64=head2 SIGPIPE is not handled by this module
65
66SIGPIPE is not handled by this module, so one of the practical
67requirements of using it is to ignore SIGPIPE (C<$SIG{PIPE} =
68'IGNORE'>). At least, this is highly recommend in a networked program: If
69you use AnyEvent::Handle in a filter program (like sort), exiting on
70SIGPIPE is probably the right thing to do.
71
72=head1 METHODS 64=head1 METHODS
73 65
74=over 4 66=over 4
75 67
76=item B<new (%args)> 68=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
77 69
78The constructor supports these arguments (all as key => value pairs). 70The constructor supports these arguments (all as C<< key => value >> pairs).
79 71
80=over 4 72=over 4
81 73
82=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
83 75
84The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
85
86NOTE: The filehandle will be set to non-blocking mode (using 77NOTE: The filehandle will be set to non-blocking mode (using
87C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in 78C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
88that mode. 79that mode.
89 80
81=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
82
83Try to connect to the specified host and service (port), using
84C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
85default C<peername>.
86
87You have to specify either this parameter, or C<fh>, above.
88
89It is possible to push requests on the read and write queues, and modify
90properties of the stream, even while AnyEvent::Handle is connecting.
91
92When this parameter is specified, then the C<on_prepare>,
93C<on_connect_error> and C<on_connect> callbacks will be called under the
94appropriate circumstances:
95
96=over 4
97
90=item on_eof => $cb->($handle) 98=item on_prepare => $cb->($handle)
91 99
92Set the callback to be called when an end-of-file condition is detected, 100This (rarely used) callback is called before a new connection is
93i.e. in the case of a socket, when the other side has closed the 101attempted, but after the file handle has been created. It could be used to
94connection cleanly. 102prepare the file handle with parameters required for the actual connect
103(as opposed to settings that can be changed when the connection is already
104established).
95 105
96For sockets, this just means that the other side has stopped sending data, 106The return value of this callback should be the connect timeout value in
97you can still try to write data, and, in fact, one can return from the eof 107seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
98callback and continue writing data, as only the read part has been shut 108timeout is to be used).
99down.
100 109
101While not mandatory, it is I<highly> recommended to set an eof callback, 110=item on_connect => $cb->($handle, $host, $port, $retry->())
102otherwise you might end up with a closed socket while you are still
103waiting for data.
104 111
105If an EOF condition has been detected but no C<on_eof> callback has been 112This callback is called when a connection has been successfully established.
106set, then a fatal error will be raised with C<$!> set to <0>.
107 113
114The actual numeric host and port (the socket peername) are passed as
115parameters, together with a retry callback.
116
117When, for some reason, the handle is not acceptable, then calling
118C<$retry> will continue with the next conenction target (in case of
119multi-homed hosts or SRV records there can be multiple connection
120endpoints). When it is called then the read and write queues, eof status,
121tls status and similar properties of the handle are being reset.
122
123In most cases, ignoring the C<$retry> parameter is the way to go.
124
125=item on_connect_error => $cb->($handle, $message)
126
127This callback is called when the conenction could not be
128established. C<$!> will contain the relevant error code, and C<$message> a
129message describing it (usually the same as C<"$!">).
130
131If this callback isn't specified, then C<on_error> will be called with a
132fatal error instead.
133
134=back
135
108=item on_error => $cb->($handle, $fatal) 136=item on_error => $cb->($handle, $fatal, $message)
109 137
110This is the error callback, which is called when, well, some error 138This is the error callback, which is called when, well, some error
111occured, such as not being able to resolve the hostname, failure to 139occured, such as not being able to resolve the hostname, failure to
112connect or a read error. 140connect or a read error.
113 141
114Some errors are fatal (which is indicated by C<$fatal> being true). On 142Some errors are fatal (which is indicated by C<$fatal> being true). On
115fatal errors the handle object will be shut down and will not be usable 143fatal errors the handle object will be destroyed (by a call to C<< ->
116(but you are free to look at the current C<< ->rbuf >>). Examples of fatal 144destroy >>) after invoking the error callback (which means you are free to
117errors are an EOF condition with active (but unsatisifable) read watchers 145examine the handle object). Examples of fatal errors are an EOF condition
118(C<EPIPE>) or I/O errors. 146with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
147cases where the other side can close the connection at their will it is
148often easiest to not report C<EPIPE> errors in this callback.
149
150AnyEvent::Handle tries to find an appropriate error code for you to check
151against, but in some cases (TLS errors), this does not work well. It is
152recommended to always output the C<$message> argument in human-readable
153error messages (it's usually the same as C<"$!">).
119 154
120Non-fatal errors can be retried by simply returning, but it is recommended 155Non-fatal errors can be retried by simply returning, but it is recommended
121to simply ignore this parameter and instead abondon the handle object 156to simply ignore this parameter and instead abondon the handle object
122when this callback is invoked. Examples of non-fatal errors are timeouts 157when this callback is invoked. Examples of non-fatal errors are timeouts
123C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>). 158C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
124 159
125On callback entrance, the value of C<$!> contains the operating system 160On callback entrance, the value of C<$!> contains the operating system
126error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 161error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
162C<EPROTO>).
127 163
128While not mandatory, it is I<highly> recommended to set this callback, as 164While not mandatory, it is I<highly> recommended to set this callback, as
129you will not be notified of errors otherwise. The default simply calls 165you will not be notified of errors otherwise. The default simply calls
130C<croak>. 166C<croak>.
131 167
135and no read request is in the queue (unlike read queue callbacks, this 171and no read request is in the queue (unlike read queue callbacks, this
136callback will only be called when at least one octet of data is in the 172callback will only be called when at least one octet of data is in the
137read buffer). 173read buffer).
138 174
139To access (and remove data from) the read buffer, use the C<< ->rbuf >> 175To access (and remove data from) the read buffer, use the C<< ->rbuf >>
140method or access the C<$handle->{rbuf}> member directly. 176method or access the C<< $handle->{rbuf} >> member directly. Note that you
177must not enlarge or modify the read buffer, you can only remove data at
178the beginning from it.
141 179
142When an EOF condition is detected then AnyEvent::Handle will first try to 180When an EOF condition is detected then AnyEvent::Handle will first try to
143feed all the remaining data to the queued callbacks and C<on_read> before 181feed all the remaining data to the queued callbacks and C<on_read> before
144calling the C<on_eof> callback. If no progress can be made, then a fatal 182calling the C<on_eof> callback. If no progress can be made, then a fatal
145error will be raised (with C<$!> set to C<EPIPE>). 183error will be raised (with C<$!> set to C<EPIPE>).
184
185Note that, unlike requests in the read queue, an C<on_read> callback
186doesn't mean you I<require> some data: if there is an EOF and there
187are outstanding read requests then an error will be flagged. With an
188C<on_read> callback, the C<on_eof> callback will be invoked.
189
190=item on_eof => $cb->($handle)
191
192Set the callback to be called when an end-of-file condition is detected,
193i.e. in the case of a socket, when the other side has closed the
194connection cleanly, and there are no outstanding read requests in the
195queue (if there are read requests, then an EOF counts as an unexpected
196connection close and will be flagged as an error).
197
198For sockets, this just means that the other side has stopped sending data,
199you can still try to write data, and, in fact, one can return from the EOF
200callback and continue writing data, as only the read part has been shut
201down.
202
203If an EOF condition has been detected but no C<on_eof> callback has been
204set, then a fatal error will be raised with C<$!> set to <0>.
146 205
147=item on_drain => $cb->($handle) 206=item on_drain => $cb->($handle)
148 207
149This sets the callback that is called when the write buffer becomes empty 208This sets the callback that is called when the write buffer becomes empty
150(or when the callback is set and the buffer is empty already). 209(or when the callback is set and the buffer is empty already).
243 302
244This will not work for partial TLS data that could not be encoded 303This will not work for partial TLS data that could not be encoded
245yet. This data will be lost. Calling the C<stoptls> method in time might 304yet. This data will be lost. Calling the C<stoptls> method in time might
246help. 305help.
247 306
307=item peername => $string
308
309A string used to identify the remote site - usually the DNS hostname
310(I<not> IDN!) used to create the connection, rarely the IP address.
311
312Apart from being useful in error messages, this string is also used in TLS
313peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
314verification will be skipped when C<peername> is not specified or
315C<undef>.
316
248=item tls => "accept" | "connect" | Net::SSLeay::SSL object 317=item tls => "accept" | "connect" | Net::SSLeay::SSL object
249 318
250When this parameter is given, it enables TLS (SSL) mode, that means 319When this parameter is given, it enables TLS (SSL) mode, that means
251AnyEvent will start a TLS handshake as soon as the conenction has been 320AnyEvent will start a TLS handshake as soon as the conenction has been
252established and will transparently encrypt/decrypt data afterwards. 321established and will transparently encrypt/decrypt data afterwards.
322
323All TLS protocol errors will be signalled as C<EPROTO>, with an
324appropriate error message.
253 325
254TLS mode requires Net::SSLeay to be installed (it will be loaded 326TLS mode requires Net::SSLeay to be installed (it will be loaded
255automatically when you try to create a TLS handle): this module doesn't 327automatically when you try to create a TLS handle): this module doesn't
256have a dependency on that module, so if your module requires it, you have 328have a dependency on that module, so if your module requires it, you have
257to add the dependency yourself. 329to add the dependency yourself.
261mode. 333mode.
262 334
263You can also provide your own TLS connection object, but you have 335You can also provide your own TLS connection object, but you have
264to make sure that you call either C<Net::SSLeay::set_connect_state> 336to make sure that you call either C<Net::SSLeay::set_connect_state>
265or C<Net::SSLeay::set_accept_state> on it before you pass it to 337or C<Net::SSLeay::set_accept_state> on it before you pass it to
266AnyEvent::Handle. 338AnyEvent::Handle. Also, this module will take ownership of this connection
339object.
340
341At some future point, AnyEvent::Handle might switch to another TLS
342implementation, then the option to use your own session object will go
343away.
344
345B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
346passing in the wrong integer will lead to certain crash. This most often
347happens when one uses a stylish C<< tls => 1 >> and is surprised about the
348segmentation fault.
267 349
268See the C<< ->starttls >> method for when need to start TLS negotiation later. 350See the C<< ->starttls >> method for when need to start TLS negotiation later.
269 351
270=item tls_ctx => $ssl_ctx 352=item tls_ctx => $anyevent_tls
271 353
272Use the given C<Net::SSLeay::CTX> object to create the new TLS connection 354Use the given C<AnyEvent::TLS> object to create the new TLS connection
273(unless a connection object was specified directly). If this parameter is 355(unless a connection object was specified directly). If this parameter is
274missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 356missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
357
358Instead of an object, you can also specify a hash reference with C<< key
359=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
360new TLS context object.
361
362=item on_starttls => $cb->($handle, $success[, $error_message])
363
364This callback will be invoked when the TLS/SSL handshake has finished. If
365C<$success> is true, then the TLS handshake succeeded, otherwise it failed
366(C<on_stoptls> will not be called in this case).
367
368The session in C<< $handle->{tls} >> can still be examined in this
369callback, even when the handshake was not successful.
370
371TLS handshake failures will not cause C<on_error> to be invoked when this
372callback is in effect, instead, the error message will be passed to C<on_starttls>.
373
374Without this callback, handshake failures lead to C<on_error> being
375called, as normal.
376
377Note that you cannot call C<starttls> right again in this callback. If you
378need to do that, start an zero-second timer instead whose callback can
379then call C<< ->starttls >> again.
380
381=item on_stoptls => $cb->($handle)
382
383When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
384set, then it will be invoked after freeing the TLS session. If it is not,
385then a TLS shutdown condition will be treated like a normal EOF condition
386on the handle.
387
388The session in C<< $handle->{tls} >> can still be examined in this
389callback.
390
391This callback will only be called on TLS shutdowns, not when the
392underlying handle signals EOF.
275 393
276=item json => JSON or JSON::XS object 394=item json => JSON or JSON::XS object
277 395
278This is the json coder object used by the C<json> read and write types. 396This is the json coder object used by the C<json> read and write types.
279 397
288 406
289=cut 407=cut
290 408
291sub new { 409sub new {
292 my $class = shift; 410 my $class = shift;
293
294 my $self = bless { @_ }, $class; 411 my $self = bless { @_ }, $class;
295 412
296 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 413 if ($self->{fh}) {
414 $self->_start;
415 return unless $self->{fh}; # could be gone by now
416
417 } elsif ($self->{connect}) {
418 require AnyEvent::Socket;
419
420 $self->{peername} = $self->{connect}[0]
421 unless exists $self->{peername};
422
423 $self->{_skip_drain_rbuf} = 1;
424
425 {
426 Scalar::Util::weaken (my $self = $self);
427
428 $self->{_connect} =
429 AnyEvent::Socket::tcp_connect (
430 $self->{connect}[0],
431 $self->{connect}[1],
432 sub {
433 my ($fh, $host, $port, $retry) = @_;
434
435 if ($fh) {
436 $self->{fh} = $fh;
437
438 delete $self->{_skip_drain_rbuf};
439 $self->_start;
440
441 $self->{on_connect}
442 and $self->{on_connect}($self, $host, $port, sub {
443 delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
444 $self->{_skip_drain_rbuf} = 1;
445 &$retry;
446 });
447
448 } else {
449 if ($self->{on_connect_error}) {
450 $self->{on_connect_error}($self, "$!");
451 $self->destroy;
452 } else {
453 $self->_error ($!, 1);
454 }
455 }
456 },
457 sub {
458 local $self->{fh} = $_[0];
459
460 $self->{on_prepare}
461 ? $self->{on_prepare}->($self)
462 : ()
463 }
464 );
465 }
466
467 } else {
468 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
469 }
470
471 $self
472}
473
474sub _start {
475 my ($self) = @_;
297 476
298 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 477 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
478
479 $self->{_activity} = AnyEvent->now;
480 $self->_timeout;
481
482 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
299 483
300 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}) 484 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
301 if $self->{tls}; 485 if $self->{tls};
302 486
303 $self->{_activity} = AnyEvent->now;
304 $self->_timeout;
305
306 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain}; 487 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
307 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
308 488
309 $self->start_read 489 $self->start_read
310 if $self->{on_read}; 490 if $self->{on_read} || @{ $self->{_queue} };
311 491
312 $self 492 $self->_drain_wbuf;
313} 493}
314 494
315sub _shutdown { 495#sub _shutdown {
316 my ($self) = @_; 496# my ($self) = @_;
317 497#
318 delete $self->{_tw}; 498# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
319 delete $self->{_rw}; 499# $self->{_eof} = 1; # tell starttls et. al to stop trying
320 delete $self->{_ww}; 500#
321 delete $self->{fh};
322
323 &_freetls; 501# &_freetls;
324 502#}
325 delete $self->{on_read};
326 delete $self->{_queue};
327}
328 503
329sub _error { 504sub _error {
330 my ($self, $errno, $fatal) = @_; 505 my ($self, $errno, $fatal, $message) = @_;
331
332 $self->_shutdown
333 if $fatal;
334 506
335 $! = $errno; 507 $! = $errno;
508 $message ||= "$!";
336 509
337 if ($self->{on_error}) { 510 if ($self->{on_error}) {
338 $self->{on_error}($self, $fatal); 511 $self->{on_error}($self, $fatal, $message);
339 } else { 512 $self->destroy if $fatal;
513 } elsif ($self->{fh}) {
514 $self->destroy;
340 Carp::croak "AnyEvent::Handle uncaught error: $!"; 515 Carp::croak "AnyEvent::Handle uncaught error: $message";
341 } 516 }
342} 517}
343 518
344=item $fh = $handle->fh 519=item $fh = $handle->fh
345 520
382} 557}
383 558
384=item $handle->autocork ($boolean) 559=item $handle->autocork ($boolean)
385 560
386Enables or disables the current autocork behaviour (see C<autocork> 561Enables or disables the current autocork behaviour (see C<autocork>
387constructor argument). 562constructor argument). Changes will only take effect on the next write.
388 563
389=cut 564=cut
565
566sub autocork {
567 $_[0]{autocork} = $_[1];
568}
390 569
391=item $handle->no_delay ($boolean) 570=item $handle->no_delay ($boolean)
392 571
393Enables or disables the C<no_delay> setting (see constructor argument of 572Enables or disables the C<no_delay> setting (see constructor argument of
394the same name for details). 573the same name for details).
398sub no_delay { 577sub no_delay {
399 $_[0]{no_delay} = $_[1]; 578 $_[0]{no_delay} = $_[1];
400 579
401 eval { 580 eval {
402 local $SIG{__DIE__}; 581 local $SIG{__DIE__};
403 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 582 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
583 if $_[0]{fh};
404 }; 584 };
585}
586
587=item $handle->on_starttls ($cb)
588
589Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
590
591=cut
592
593sub on_starttls {
594 $_[0]{on_starttls} = $_[1];
595}
596
597=item $handle->on_stoptls ($cb)
598
599Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
600
601=cut
602
603sub on_starttls {
604 $_[0]{on_stoptls} = $_[1];
405} 605}
406 606
407############################################################################# 607#############################################################################
408 608
409=item $handle->timeout ($seconds) 609=item $handle->timeout ($seconds)
422# reset the timeout watcher, as neccessary 622# reset the timeout watcher, as neccessary
423# also check for time-outs 623# also check for time-outs
424sub _timeout { 624sub _timeout {
425 my ($self) = @_; 625 my ($self) = @_;
426 626
427 if ($self->{timeout}) { 627 if ($self->{timeout} && $self->{fh}) {
428 my $NOW = AnyEvent->now; 628 my $NOW = AnyEvent->now;
429 629
430 # when would the timeout trigger? 630 # when would the timeout trigger?
431 my $after = $self->{_activity} + $self->{timeout} - $NOW; 631 my $after = $self->{_activity} + $self->{timeout} - $NOW;
432 632
435 $self->{_activity} = $NOW; 635 $self->{_activity} = $NOW;
436 636
437 if ($self->{on_timeout}) { 637 if ($self->{on_timeout}) {
438 $self->{on_timeout}($self); 638 $self->{on_timeout}($self);
439 } else { 639 } else {
440 $self->_error (&Errno::ETIMEDOUT); 640 $self->_error (Errno::ETIMEDOUT);
441 } 641 }
442 642
443 # callback could have changed timeout value, optimise 643 # callback could have changed timeout value, optimise
444 return unless $self->{timeout}; 644 return unless $self->{timeout};
445 645
508 Scalar::Util::weaken $self; 708 Scalar::Util::weaken $self;
509 709
510 my $cb = sub { 710 my $cb = sub {
511 my $len = syswrite $self->{fh}, $self->{wbuf}; 711 my $len = syswrite $self->{fh}, $self->{wbuf};
512 712
513 if ($len >= 0) { 713 if (defined $len) {
514 substr $self->{wbuf}, 0, $len, ""; 714 substr $self->{wbuf}, 0, $len, "";
515 715
516 $self->{_activity} = AnyEvent->now; 716 $self->{_activity} = AnyEvent->now;
517 717
518 $self->{on_drain}($self) 718 $self->{on_drain}($self)
550 ->($self, @_); 750 ->($self, @_);
551 } 751 }
552 752
553 if ($self->{tls}) { 753 if ($self->{tls}) {
554 $self->{_tls_wbuf} .= $_[0]; 754 $self->{_tls_wbuf} .= $_[0];
555 755 &_dotls ($self) if $self->{fh};
556 &_dotls ($self);
557 } else { 756 } else {
558 $self->{wbuf} .= $_[0]; 757 $self->{wbuf} .= $_[0];
559 $self->_drain_wbuf; 758 $self->_drain_wbuf if $self->{fh};
560 } 759 }
561} 760}
562 761
563=item $handle->push_write (type => @args) 762=item $handle->push_write (type => @args)
564 763
653 852
654 pack "w/a*", Storable::nfreeze ($ref) 853 pack "w/a*", Storable::nfreeze ($ref)
655}; 854};
656 855
657=back 856=back
857
858=item $handle->push_shutdown
859
860Sometimes you know you want to close the socket after writing your data
861before it was actually written. One way to do that is to replace your
862C<on_drain> handler by a callback that shuts down the socket (and set
863C<low_water_mark> to C<0>). This method is a shorthand for just that, and
864replaces the C<on_drain> callback with:
865
866 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
867
868This simply shuts down the write side and signals an EOF condition to the
869the peer.
870
871You can rely on the normal read queue and C<on_eof> handling
872afterwards. This is the cleanest way to close a connection.
873
874=cut
875
876sub push_shutdown {
877 my ($self) = @_;
878
879 delete $self->{low_water_mark};
880 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
881}
658 882
659=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 883=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
660 884
661This function (not method) lets you add your own types to C<push_write>. 885This function (not method) lets you add your own types to C<push_write>.
662Whenever the given C<type> is used, C<push_write> will invoke the code 886Whenever the given C<type> is used, C<push_write> will invoke the code
756=cut 980=cut
757 981
758sub _drain_rbuf { 982sub _drain_rbuf {
759 my ($self) = @_; 983 my ($self) = @_;
760 984
985 # avoid recursion
986 return if exists $self->{_skip_drain_rbuf};
761 local $self->{_in_drain} = 1; 987 local $self->{_skip_drain_rbuf} = 1;
762 988
763 if ( 989 if (
764 defined $self->{rbuf_max} 990 defined $self->{rbuf_max}
765 && $self->{rbuf_max} < length $self->{rbuf} 991 && $self->{rbuf_max} < length $self->{rbuf}
766 ) { 992 ) {
767 $self->_error (&Errno::ENOSPC, 1), return; 993 $self->_error (Errno::ENOSPC, 1), return;
768 } 994 }
769 995
770 while () { 996 while () {
997 # we need to use a separate tls read buffer, as we must not receive data while
998 # we are draining the buffer, and this can only happen with TLS.
999 $self->{rbuf} .= delete $self->{_tls_rbuf}
1000 if exists $self->{_tls_rbuf};
1001
771 my $len = length $self->{rbuf}; 1002 my $len = length $self->{rbuf};
772 1003
773 if (my $cb = shift @{ $self->{_queue} }) { 1004 if (my $cb = shift @{ $self->{_queue} }) {
774 unless ($cb->($self)) { 1005 unless ($cb->($self)) {
775 if ($self->{_eof}) { 1006 # no progress can be made
776 # no progress can be made (not enough data and no data forthcoming) 1007 # (not enough data and no data forthcoming)
777 $self->_error (&Errno::EPIPE, 1), return; 1008 $self->_error (Errno::EPIPE, 1), return
778 } 1009 if $self->{_eof};
779 1010
780 unshift @{ $self->{_queue} }, $cb; 1011 unshift @{ $self->{_queue} }, $cb;
781 last; 1012 last;
782 } 1013 }
783 } elsif ($self->{on_read}) { 1014 } elsif ($self->{on_read}) {
790 && !@{ $self->{_queue} } # and the queue is still empty 1021 && !@{ $self->{_queue} } # and the queue is still empty
791 && $self->{on_read} # but we still have on_read 1022 && $self->{on_read} # but we still have on_read
792 ) { 1023 ) {
793 # no further data will arrive 1024 # no further data will arrive
794 # so no progress can be made 1025 # so no progress can be made
795 $self->_error (&Errno::EPIPE, 1), return 1026 $self->_error (Errno::EPIPE, 1), return
796 if $self->{_eof}; 1027 if $self->{_eof};
797 1028
798 last; # more data might arrive 1029 last; # more data might arrive
799 } 1030 }
800 } else { 1031 } else {
803 last; 1034 last;
804 } 1035 }
805 } 1036 }
806 1037
807 if ($self->{_eof}) { 1038 if ($self->{_eof}) {
808 if ($self->{on_eof}) { 1039 $self->{on_eof}
809 $self->{on_eof}($self) 1040 ? $self->{on_eof}($self)
810 } else { 1041 : $self->_error (0, 1, "Unexpected end-of-file");
811 $self->_error (0, 1); 1042
812 } 1043 return;
813 } 1044 }
814 1045
815 # may need to restart read watcher 1046 # may need to restart read watcher
816 unless ($self->{_rw}) { 1047 unless ($self->{_rw}) {
817 $self->start_read 1048 $self->start_read
829 1060
830sub on_read { 1061sub on_read {
831 my ($self, $cb) = @_; 1062 my ($self, $cb) = @_;
832 1063
833 $self->{on_read} = $cb; 1064 $self->{on_read} = $cb;
834 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1065 $self->_drain_rbuf if $cb;
835} 1066}
836 1067
837=item $handle->rbuf 1068=item $handle->rbuf
838 1069
839Returns the read buffer (as a modifiable lvalue). 1070Returns the read buffer (as a modifiable lvalue).
840 1071
841You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1072You can access the read buffer directly as the C<< ->{rbuf} >>
842you want. 1073member, if you want. However, the only operation allowed on the
1074read buffer (apart from looking at it) is removing data from its
1075beginning. Otherwise modifying or appending to it is not allowed and will
1076lead to hard-to-track-down bugs.
843 1077
844NOTE: The read buffer should only be used or modified if the C<on_read>, 1078NOTE: The read buffer should only be used or modified if the C<on_read>,
845C<push_read> or C<unshift_read> methods are used. The other read methods 1079C<push_read> or C<unshift_read> methods are used. The other read methods
846automatically manage the read buffer. 1080automatically manage the read buffer.
847 1081
888 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1122 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
889 ->($self, $cb, @_); 1123 ->($self, $cb, @_);
890 } 1124 }
891 1125
892 push @{ $self->{_queue} }, $cb; 1126 push @{ $self->{_queue} }, $cb;
893 $self->_drain_rbuf unless $self->{_in_drain}; 1127 $self->_drain_rbuf;
894} 1128}
895 1129
896sub unshift_read { 1130sub unshift_read {
897 my $self = shift; 1131 my $self = shift;
898 my $cb = pop; 1132 my $cb = pop;
904 ->($self, $cb, @_); 1138 ->($self, $cb, @_);
905 } 1139 }
906 1140
907 1141
908 unshift @{ $self->{_queue} }, $cb; 1142 unshift @{ $self->{_queue} }, $cb;
909 $self->_drain_rbuf unless $self->{_in_drain}; 1143 $self->_drain_rbuf;
910} 1144}
911 1145
912=item $handle->push_read (type => @args, $cb) 1146=item $handle->push_read (type => @args, $cb)
913 1147
914=item $handle->unshift_read (type => @args, $cb) 1148=item $handle->unshift_read (type => @args, $cb)
1047 return 1; 1281 return 1;
1048 } 1282 }
1049 1283
1050 # reject 1284 # reject
1051 if ($reject && $$rbuf =~ $reject) { 1285 if ($reject && $$rbuf =~ $reject) {
1052 $self->_error (&Errno::EBADMSG); 1286 $self->_error (Errno::EBADMSG);
1053 } 1287 }
1054 1288
1055 # skip 1289 # skip
1056 if ($skip && $$rbuf =~ $skip) { 1290 if ($skip && $$rbuf =~ $skip) {
1057 $data .= substr $$rbuf, 0, $+[0], ""; 1291 $data .= substr $$rbuf, 0, $+[0], "";
1073 my ($self, $cb) = @_; 1307 my ($self, $cb) = @_;
1074 1308
1075 sub { 1309 sub {
1076 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1310 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1077 if ($_[0]{rbuf} =~ /[^0-9]/) { 1311 if ($_[0]{rbuf} =~ /[^0-9]/) {
1078 $self->_error (&Errno::EBADMSG); 1312 $self->_error (Errno::EBADMSG);
1079 } 1313 }
1080 return; 1314 return;
1081 } 1315 }
1082 1316
1083 my $len = $1; 1317 my $len = $1;
1086 my $string = $_[1]; 1320 my $string = $_[1];
1087 $_[0]->unshift_read (chunk => 1, sub { 1321 $_[0]->unshift_read (chunk => 1, sub {
1088 if ($_[1] eq ",") { 1322 if ($_[1] eq ",") {
1089 $cb->($_[0], $string); 1323 $cb->($_[0], $string);
1090 } else { 1324 } else {
1091 $self->_error (&Errno::EBADMSG); 1325 $self->_error (Errno::EBADMSG);
1092 } 1326 }
1093 }); 1327 });
1094 }); 1328 });
1095 1329
1096 1 1330 1
1143 } 1377 }
1144}; 1378};
1145 1379
1146=item json => $cb->($handle, $hash_or_arrayref) 1380=item json => $cb->($handle, $hash_or_arrayref)
1147 1381
1148Reads a JSON object or array, decodes it and passes it to the callback. 1382Reads a JSON object or array, decodes it and passes it to the
1383callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1149 1384
1150If a C<json> object was passed to the constructor, then that will be used 1385If a C<json> object was passed to the constructor, then that will be used
1151for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1386for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1152 1387
1153This read type uses the incremental parser available with JSON version 1388This read type uses the incremental parser available with JSON version
1162=cut 1397=cut
1163 1398
1164register_read_type json => sub { 1399register_read_type json => sub {
1165 my ($self, $cb) = @_; 1400 my ($self, $cb) = @_;
1166 1401
1167 require JSON; 1402 my $json = $self->{json} ||=
1403 eval { require JSON::XS; JSON::XS->new->utf8 }
1404 || do { require JSON; JSON->new->utf8 };
1168 1405
1169 my $data; 1406 my $data;
1170 my $rbuf = \$self->{rbuf}; 1407 my $rbuf = \$self->{rbuf};
1171 1408
1172 my $json = $self->{json} ||= JSON->new->utf8;
1173
1174 sub { 1409 sub {
1175 my $ref = $json->incr_parse ($self->{rbuf}); 1410 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1176 1411
1177 if ($ref) { 1412 if ($ref) {
1178 $self->{rbuf} = $json->incr_text; 1413 $self->{rbuf} = $json->incr_text;
1179 $json->incr_text = ""; 1414 $json->incr_text = "";
1180 $cb->($self, $ref); 1415 $cb->($self, $ref);
1181 1416
1182 1 1417 1
1418 } elsif ($@) {
1419 # error case
1420 $json->incr_skip;
1421
1422 $self->{rbuf} = $json->incr_text;
1423 $json->incr_text = "";
1424
1425 $self->_error (Errno::EBADMSG);
1426
1427 ()
1183 } else { 1428 } else {
1184 $self->{rbuf} = ""; 1429 $self->{rbuf} = "";
1430
1185 () 1431 ()
1186 } 1432 }
1187 } 1433 }
1188}; 1434};
1189 1435
1221 # read remaining chunk 1467 # read remaining chunk
1222 $_[0]->unshift_read (chunk => $len, sub { 1468 $_[0]->unshift_read (chunk => $len, sub {
1223 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1469 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1224 $cb->($_[0], $ref); 1470 $cb->($_[0], $ref);
1225 } else { 1471 } else {
1226 $self->_error (&Errno::EBADMSG); 1472 $self->_error (Errno::EBADMSG);
1227 } 1473 }
1228 }); 1474 });
1229 } 1475 }
1230 1476
1231 1 1477 1
1295 if ($self->{tls}) { 1541 if ($self->{tls}) {
1296 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf); 1542 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1297 1543
1298 &_dotls ($self); 1544 &_dotls ($self);
1299 } else { 1545 } else {
1300 $self->_drain_rbuf unless $self->{_in_drain}; 1546 $self->_drain_rbuf;
1301 } 1547 }
1302 1548
1303 } elsif (defined $len) { 1549 } elsif (defined $len) {
1304 delete $self->{_rw}; 1550 delete $self->{_rw};
1305 $self->{_eof} = 1; 1551 $self->{_eof} = 1;
1306 $self->_drain_rbuf unless $self->{_in_drain}; 1552 $self->_drain_rbuf;
1307 1553
1308 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1554 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1309 return $self->_error ($!, 1); 1555 return $self->_error ($!, 1);
1310 } 1556 }
1311 }); 1557 });
1312 } 1558 }
1313} 1559}
1314 1560
1561our $ERROR_SYSCALL;
1562our $ERROR_WANT_READ;
1563
1564sub _tls_error {
1565 my ($self, $err) = @_;
1566
1567 return $self->_error ($!, 1)
1568 if $err == Net::SSLeay::ERROR_SYSCALL ();
1569
1570 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1571
1572 # reduce error string to look less scary
1573 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1574
1575 if ($self->{_on_starttls}) {
1576 (delete $self->{_on_starttls})->($self, undef, $err);
1577 &_freetls;
1578 } else {
1579 &_freetls;
1580 $self->_error (Errno::EPROTO, 1, $err);
1581 }
1582}
1583
1315# poll the write BIO and send the data if applicable 1584# poll the write BIO and send the data if applicable
1585# also decode read data if possible
1586# this is basiclaly our TLS state machine
1587# more efficient implementations are possible with openssl,
1588# but not with the buggy and incomplete Net::SSLeay.
1316sub _dotls { 1589sub _dotls {
1317 my ($self) = @_; 1590 my ($self) = @_;
1318 1591
1319 my $tmp; 1592 my $tmp;
1320 1593
1321 if (length $self->{_tls_wbuf}) { 1594 if (length $self->{_tls_wbuf}) {
1322 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1595 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1323 substr $self->{_tls_wbuf}, 0, $tmp, ""; 1596 substr $self->{_tls_wbuf}, 0, $tmp, "";
1324 } 1597 }
1598
1599 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1600 return $self->_tls_error ($tmp)
1601 if $tmp != $ERROR_WANT_READ
1602 && ($tmp != $ERROR_SYSCALL || $!);
1325 } 1603 }
1326 1604
1327 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) { 1605 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1328 unless (length $tmp) { 1606 unless (length $tmp) {
1329 # let's treat SSL-eof as we treat normal EOF 1607 $self->{_on_starttls}
1330 delete $self->{_rw}; 1608 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1331 $self->{_eof} = 1;
1332 &_freetls; 1609 &_freetls;
1610
1611 if ($self->{on_stoptls}) {
1612 $self->{on_stoptls}($self);
1613 return;
1614 } else {
1615 # let's treat SSL-eof as we treat normal EOF
1616 delete $self->{_rw};
1617 $self->{_eof} = 1;
1618 }
1333 } 1619 }
1334 1620
1335 $self->{rbuf} .= $tmp; 1621 $self->{_tls_rbuf} .= $tmp;
1336 $self->_drain_rbuf unless $self->{_in_drain}; 1622 $self->_drain_rbuf;
1337 $self->{tls} or return; # tls session might have gone away in callback 1623 $self->{tls} or return; # tls session might have gone away in callback
1338 } 1624 }
1339 1625
1340 $tmp = Net::SSLeay::get_error ($self->{tls}, -1); 1626 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1341
1342 if ($tmp != Net::SSLeay::ERROR_WANT_READ ()) {
1343 if ($tmp == Net::SSLeay::ERROR_SYSCALL ()) {
1344 return $self->_error ($!, 1); 1627 return $self->_tls_error ($tmp)
1345 } elsif ($tmp == Net::SSLeay::ERROR_SSL ()) { 1628 if $tmp != $ERROR_WANT_READ
1346 return $self->_error (&Errno::EIO, 1); 1629 && ($tmp != $ERROR_SYSCALL || $!);
1347 }
1348
1349 # all other errors are fine for our purposes
1350 }
1351 1630
1352 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1631 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1353 $self->{wbuf} .= $tmp; 1632 $self->{wbuf} .= $tmp;
1354 $self->_drain_wbuf; 1633 $self->_drain_wbuf;
1355 } 1634 }
1635
1636 $self->{_on_starttls}
1637 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1638 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1356} 1639}
1357 1640
1358=item $handle->starttls ($tls[, $tls_ctx]) 1641=item $handle->starttls ($tls[, $tls_ctx])
1359 1642
1360Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1643Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1361object is created, you can also do that at a later time by calling 1644object is created, you can also do that at a later time by calling
1362C<starttls>. 1645C<starttls>.
1363 1646
1647Starting TLS is currently an asynchronous operation - when you push some
1648write data and then call C<< ->starttls >> then TLS negotiation will start
1649immediately, after which the queued write data is then sent.
1650
1364The first argument is the same as the C<tls> constructor argument (either 1651The first argument is the same as the C<tls> constructor argument (either
1365C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1652C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1366 1653
1367The second argument is the optional C<Net::SSLeay::CTX> object that is 1654The second argument is the optional C<AnyEvent::TLS> object that is used
1368used when AnyEvent::Handle has to create its own TLS connection object. 1655when AnyEvent::Handle has to create its own TLS connection object, or
1656a hash reference with C<< key => value >> pairs that will be used to
1657construct a new context.
1369 1658
1370The TLS connection object will end up in C<< $handle->{tls} >> after this 1659The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1371call and can be used or changed to your liking. Note that the handshake 1660context in C<< $handle->{tls_ctx} >> after this call and can be used or
1372might have already started when this function returns. 1661changed to your liking. Note that the handshake might have already started
1662when this function returns.
1373 1663
1374If it an error to start a TLS handshake more than once per 1664Due to bugs in OpenSSL, it might or might not be possible to do multiple
1375AnyEvent::Handle object (this is due to bugs in OpenSSL). 1665handshakes on the same stream. Best do not attempt to use the stream after
1666stopping TLS.
1376 1667
1377=cut 1668=cut
1669
1670our %TLS_CACHE; #TODO not yet documented, should we?
1378 1671
1379sub starttls { 1672sub starttls {
1380 my ($self, $ssl, $ctx) = @_; 1673 my ($self, $tls, $ctx) = @_;
1674
1675 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1676 if $self->{tls};
1677
1678 $self->{tls} = $tls;
1679 $self->{tls_ctx} = $ctx if @_ > 2;
1680
1681 return unless $self->{fh};
1381 1682
1382 require Net::SSLeay; 1683 require Net::SSLeay;
1383 1684
1384 Carp::croak "it is an error to call starttls more than once on an Anyevent::Handle object" 1685 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1686 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1687
1385 if $self->{tls}; 1688 $tls = $self->{tls};
1689 $ctx = $self->{tls_ctx};
1690
1691 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1692
1693 if ("HASH" eq ref $ctx) {
1694 require AnyEvent::TLS;
1695
1696 if ($ctx->{cache}) {
1697 my $key = $ctx+0;
1698 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1699 } else {
1700 $ctx = new AnyEvent::TLS %$ctx;
1701 }
1702 }
1386 1703
1387 if ($ssl eq "accept") { 1704 $self->{tls_ctx} = $ctx || TLS_CTX ();
1388 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1705 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1389 Net::SSLeay::set_accept_state ($ssl);
1390 } elsif ($ssl eq "connect") {
1391 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1392 Net::SSLeay::set_connect_state ($ssl);
1393 }
1394
1395 $self->{tls} = $ssl;
1396 1706
1397 # basically, this is deep magic (because SSL_read should have the same issues) 1707 # basically, this is deep magic (because SSL_read should have the same issues)
1398 # but the openssl maintainers basically said: "trust us, it just works". 1708 # but the openssl maintainers basically said: "trust us, it just works".
1399 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1709 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1400 # and mismaintained ssleay-module doesn't even offer them). 1710 # and mismaintained ssleay-module doesn't even offer them).
1404 # 1714 #
1405 # note that we do not try to keep the length constant between writes as we are required to do. 1715 # note that we do not try to keep the length constant between writes as we are required to do.
1406 # we assume that most (but not all) of this insanity only applies to non-blocking cases, 1716 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1407 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to 1717 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1408 # have identity issues in that area. 1718 # have identity issues in that area.
1409 Net::SSLeay::CTX_set_mode ($self->{tls}, 1719# Net::SSLeay::CTX_set_mode ($ssl,
1410 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1720# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1411 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1721# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1722 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1412 1723
1413 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1724 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1414 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1725 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1415 1726
1416 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1727 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1728
1729 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1730 if $self->{on_starttls};
1417 1731
1418 &_dotls; # need to trigger the initial handshake 1732 &_dotls; # need to trigger the initial handshake
1419 $self->start_read; # make sure we actually do read 1733 $self->start_read; # make sure we actually do read
1420} 1734}
1421 1735
1422=item $handle->stoptls 1736=item $handle->stoptls
1423 1737
1424Shuts down the SSL connection - this makes a proper EOF handshake by 1738Shuts down the SSL connection - this makes a proper EOF handshake by
1425sending a close notify to the other side, but since OpenSSL doesn't 1739sending a close notify to the other side, but since OpenSSL doesn't
1426support non-blocking shut downs, it is not possible to re-use the stream 1740support non-blocking shut downs, it is not guarenteed that you can re-use
1427afterwards. 1741the stream afterwards.
1428 1742
1429=cut 1743=cut
1430 1744
1431sub stoptls { 1745sub stoptls {
1432 my ($self) = @_; 1746 my ($self) = @_;
1434 if ($self->{tls}) { 1748 if ($self->{tls}) {
1435 Net::SSLeay::shutdown ($self->{tls}); 1749 Net::SSLeay::shutdown ($self->{tls});
1436 1750
1437 &_dotls; 1751 &_dotls;
1438 1752
1439 # we don't give a shit. no, we do, but we can't. no... 1753# # we don't give a shit. no, we do, but we can't. no...#d#
1440 # we, we... have to use openssl :/ 1754# # we, we... have to use openssl :/#d#
1441 &_freetls; 1755# &_freetls;#d#
1442 } 1756 }
1443} 1757}
1444 1758
1445sub _freetls { 1759sub _freetls {
1446 my ($self) = @_; 1760 my ($self) = @_;
1447 1761
1448 return unless $self->{tls}; 1762 return unless $self->{tls};
1449 1763
1450 Net::SSLeay::free (delete $self->{tls}); 1764 $self->{tls_ctx}->_put_session (delete $self->{tls})
1765 if ref $self->{tls};
1451 1766
1452 delete @$self{qw(_rbio _wbio _tls_wbuf)}; 1767 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1453} 1768}
1454 1769
1455sub DESTROY { 1770sub DESTROY {
1456 my $self = shift; 1771 my ($self) = @_;
1457 1772
1458 &_freetls; 1773 &_freetls;
1459 1774
1460 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1775 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1461 1776
1462 if ($linger && length $self->{wbuf}) { 1777 if ($linger && length $self->{wbuf} && $self->{fh}) {
1463 my $fh = delete $self->{fh}; 1778 my $fh = delete $self->{fh};
1464 my $wbuf = delete $self->{wbuf}; 1779 my $wbuf = delete $self->{wbuf};
1465 1780
1466 my @linger; 1781 my @linger;
1467 1782
1478 @linger = (); 1793 @linger = ();
1479 }); 1794 });
1480 } 1795 }
1481} 1796}
1482 1797
1798=item $handle->destroy
1799
1800Shuts down the handle object as much as possible - this call ensures that
1801no further callbacks will be invoked and as many resources as possible
1802will be freed. You must not call any methods on the object afterwards.
1803
1804Normally, you can just "forget" any references to an AnyEvent::Handle
1805object and it will simply shut down. This works in fatal error and EOF
1806callbacks, as well as code outside. It does I<NOT> work in a read or write
1807callback, so when you want to destroy the AnyEvent::Handle object from
1808within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1809that case.
1810
1811Destroying the handle object in this way has the advantage that callbacks
1812will be removed as well, so if those are the only reference holders (as
1813is common), then one doesn't need to do anything special to break any
1814reference cycles.
1815
1816The handle might still linger in the background and write out remaining
1817data, as specified by the C<linger> option, however.
1818
1819=cut
1820
1821sub destroy {
1822 my ($self) = @_;
1823
1824 $self->DESTROY;
1825 %$self = ();
1826 bless $self, "AnyEvent::Handle::destroyed";
1827}
1828
1829{
1830 package AnyEvent::Handle::destroyed;
1831
1832 sub AUTOLOAD {
1833 #nop
1834 }
1835}
1836
1483=item AnyEvent::Handle::TLS_CTX 1837=item AnyEvent::Handle::TLS_CTX
1484 1838
1485This function creates and returns the Net::SSLeay::CTX object used by 1839This function creates and returns the AnyEvent::TLS object used by default
1486default for TLS mode. 1840for TLS mode.
1487 1841
1488The context is created like this: 1842The context is created by calling L<AnyEvent::TLS> without any arguments.
1489
1490 Net::SSLeay::load_error_strings;
1491 Net::SSLeay::SSLeay_add_ssl_algorithms;
1492 Net::SSLeay::randomize;
1493
1494 my $CTX = Net::SSLeay::CTX_new;
1495
1496 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1497 1843
1498=cut 1844=cut
1499 1845
1500our $TLS_CTX; 1846our $TLS_CTX;
1501 1847
1502sub TLS_CTX() { 1848sub TLS_CTX() {
1503 $TLS_CTX || do { 1849 $TLS_CTX ||= do {
1504 require Net::SSLeay; 1850 require AnyEvent::TLS;
1505 1851
1506 Net::SSLeay::load_error_strings (); 1852 new AnyEvent::TLS
1507 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1508 Net::SSLeay::randomize ();
1509
1510 $TLS_CTX = Net::SSLeay::CTX_new ();
1511
1512 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1513
1514 $TLS_CTX
1515 } 1853 }
1516} 1854}
1517 1855
1518=back 1856=back
1519 1857
1520 1858
1521=head1 NONFREQUENTLY ASKED QUESTIONS 1859=head1 NONFREQUENTLY ASKED QUESTIONS
1522 1860
1523=over 4 1861=over 4
1862
1863=item I C<undef> the AnyEvent::Handle reference inside my callback and
1864still get further invocations!
1865
1866That's because AnyEvent::Handle keeps a reference to itself when handling
1867read or write callbacks.
1868
1869It is only safe to "forget" the reference inside EOF or error callbacks,
1870from within all other callbacks, you need to explicitly call the C<<
1871->destroy >> method.
1872
1873=item I get different callback invocations in TLS mode/Why can't I pause
1874reading?
1875
1876Unlike, say, TCP, TLS connections do not consist of two independent
1877communication channels, one for each direction. Or put differently. The
1878read and write directions are not independent of each other: you cannot
1879write data unless you are also prepared to read, and vice versa.
1880
1881This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1882callback invocations when you are not expecting any read data - the reason
1883is that AnyEvent::Handle always reads in TLS mode.
1884
1885During the connection, you have to make sure that you always have a
1886non-empty read-queue, or an C<on_read> watcher. At the end of the
1887connection (or when you no longer want to use it) you can call the
1888C<destroy> method.
1524 1889
1525=item How do I read data until the other side closes the connection? 1890=item How do I read data until the other side closes the connection?
1526 1891
1527If you just want to read your data into a perl scalar, the easiest way 1892If you just want to read your data into a perl scalar, the easiest way
1528to achieve this is by setting an C<on_read> callback that does nothing, 1893to achieve this is by setting an C<on_read> callback that does nothing,
1531 1896
1532 $handle->on_read (sub { }); 1897 $handle->on_read (sub { });
1533 $handle->on_eof (undef); 1898 $handle->on_eof (undef);
1534 $handle->on_error (sub { 1899 $handle->on_error (sub {
1535 my $data = delete $_[0]{rbuf}; 1900 my $data = delete $_[0]{rbuf};
1536 undef $handle;
1537 }); 1901 });
1538 1902
1539The reason to use C<on_error> is that TCP connections, due to latencies 1903The reason to use C<on_error> is that TCP connections, due to latencies
1540and packets loss, might get closed quite violently with an error, when in 1904and packets loss, might get closed quite violently with an error, when in
1541fact, all data has been received. 1905fact, all data has been received.
1542 1906
1543It is usually better to use acknowledgements when transfering data, 1907It is usually better to use acknowledgements when transferring data,
1544to make sure the other side hasn't just died and you got the data 1908to make sure the other side hasn't just died and you got the data
1545intact. This is also one reason why so many internet protocols have an 1909intact. This is also one reason why so many internet protocols have an
1546explicit QUIT command. 1910explicit QUIT command.
1547
1548 1911
1549=item I don't want to destroy the handle too early - how do I wait until 1912=item I don't want to destroy the handle too early - how do I wait until
1550all data has been written? 1913all data has been written?
1551 1914
1552After writing your last bits of data, set the C<on_drain> callback 1915After writing your last bits of data, set the C<on_drain> callback
1558 $handle->on_drain (sub { 1921 $handle->on_drain (sub {
1559 warn "all data submitted to the kernel\n"; 1922 warn "all data submitted to the kernel\n";
1560 undef $handle; 1923 undef $handle;
1561 }); 1924 });
1562 1925
1926If you just want to queue some data and then signal EOF to the other side,
1927consider using C<< ->push_shutdown >> instead.
1928
1929=item I want to contact a TLS/SSL server, I don't care about security.
1930
1931If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1932simply connect to it and then create the AnyEvent::Handle with the C<tls>
1933parameter:
1934
1935 tcp_connect $host, $port, sub {
1936 my ($fh) = @_;
1937
1938 my $handle = new AnyEvent::Handle
1939 fh => $fh,
1940 tls => "connect",
1941 on_error => sub { ... };
1942
1943 $handle->push_write (...);
1944 };
1945
1946=item I want to contact a TLS/SSL server, I do care about security.
1947
1948Then you should additionally enable certificate verification, including
1949peername verification, if the protocol you use supports it (see
1950L<AnyEvent::TLS>, C<verify_peername>).
1951
1952E.g. for HTTPS:
1953
1954 tcp_connect $host, $port, sub {
1955 my ($fh) = @_;
1956
1957 my $handle = new AnyEvent::Handle
1958 fh => $fh,
1959 peername => $host,
1960 tls => "connect",
1961 tls_ctx => { verify => 1, verify_peername => "https" },
1962 ...
1963
1964Note that you must specify the hostname you connected to (or whatever
1965"peername" the protocol needs) as the C<peername> argument, otherwise no
1966peername verification will be done.
1967
1968The above will use the system-dependent default set of trusted CA
1969certificates. If you want to check against a specific CA, add the
1970C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1971
1972 tls_ctx => {
1973 verify => 1,
1974 verify_peername => "https",
1975 ca_file => "my-ca-cert.pem",
1976 },
1977
1978=item I want to create a TLS/SSL server, how do I do that?
1979
1980Well, you first need to get a server certificate and key. You have
1981three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1982self-signed certificate (cheap. check the search engine of your choice,
1983there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1984nice program for that purpose).
1985
1986Then create a file with your private key (in PEM format, see
1987L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1988file should then look like this:
1989
1990 -----BEGIN RSA PRIVATE KEY-----
1991 ...header data
1992 ... lots of base64'y-stuff
1993 -----END RSA PRIVATE KEY-----
1994
1995 -----BEGIN CERTIFICATE-----
1996 ... lots of base64'y-stuff
1997 -----END CERTIFICATE-----
1998
1999The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2000specify this file as C<cert_file>:
2001
2002 tcp_server undef, $port, sub {
2003 my ($fh) = @_;
2004
2005 my $handle = new AnyEvent::Handle
2006 fh => $fh,
2007 tls => "accept",
2008 tls_ctx => { cert_file => "my-server-keycert.pem" },
2009 ...
2010
2011When you have intermediate CA certificates that your clients might not
2012know about, just append them to the C<cert_file>.
2013
1563=back 2014=back
1564 2015
1565 2016
1566=head1 SUBCLASSING AnyEvent::Handle 2017=head1 SUBCLASSING AnyEvent::Handle
1567 2018

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines