ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.88 by root, Thu Aug 21 23:48:35 2008 UTC vs.
Revision 1.171 by root, Tue Aug 4 12:38:55 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 3use Scalar::Util ();
9use Carp (); 4use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR); 5use Errno qw(EAGAIN EINTR);
12 6
7use AnyEvent (); BEGIN { AnyEvent::common_sense }
8use AnyEvent::Util qw(WSAEWOULDBLOCK);
9
13=head1 NAME 10=head1 NAME
14 11
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 12AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 13
17=cut 14=cut
18 15
19our $VERSION = 4.233; 16our $VERSION = 4.9;
20 17
21=head1 SYNOPSIS 18=head1 SYNOPSIS
22 19
23 use AnyEvent; 20 use AnyEvent;
24 use AnyEvent::Handle; 21 use AnyEvent::Handle;
25 22
26 my $cv = AnyEvent->condvar; 23 my $cv = AnyEvent->condvar;
27 24
28 my $handle = 25 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 26 fh => \*STDIN,
31 on_eof => sub { 27 on_error => sub {
32 $cv->broadcast; 28 my ($hdl, $fatal, $msg) = @_;
33 }, 29 warn "got error $msg\n";
30 $hdl->destroy;
31 $cv->send;
34 ); 32 );
35 33
36 # send some request line 34 # send some request line
37 $handle->push_write ("getinfo\015\012"); 35 $hdl->push_write ("getinfo\015\012");
38 36
39 # read the response line 37 # read the response line
40 $handle->push_read (line => sub { 38 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 39 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 40 warn "got line <$line>\n";
43 $cv->send; 41 $cv->send;
44 }); 42 });
45 43
46 $cv->recv; 44 $cv->recv;
47 45
48=head1 DESCRIPTION 46=head1 DESCRIPTION
49 47
50This module is a helper module to make it easier to do event-based I/O on 48This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 49filehandles.
52on sockets see L<AnyEvent::Util>.
53 50
54The L<AnyEvent::Intro> tutorial contains some well-documented 51The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples. 52AnyEvent::Handle examples.
56 53
57In the following, when the documentation refers to of "bytes" then this 54In the following, when the documentation refers to of "bytes" then this
58means characters. As sysread and syswrite are used for all I/O, their 55means characters. As sysread and syswrite are used for all I/O, their
59treatment of characters applies to this module as well. 56treatment of characters applies to this module as well.
60 57
58At the very minimum, you should specify C<fh> or C<connect>, and the
59C<on_error> callback.
60
61All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
62argument. 62argument.
63 63
64=head1 METHODS 64=head1 METHODS
65 65
66=over 4 66=over 4
67 67
68=item B<new (%args)> 68=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
69 69
70The constructor supports these arguments (all as key => value pairs). 70The constructor supports these arguments (all as C<< key => value >> pairs).
71 71
72=over 4 72=over 4
73 73
74=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
75 75
76The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
77
78NOTE: The filehandle will be set to non-blocking mode (using 77NOTE: The filehandle will be set to non-blocking mode (using
79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in 78C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode. 79that mode.
81 80
81=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
82
83Try to connect to the specified host and service (port), using
84C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
85default C<peername>.
86
87You have to specify either this parameter, or C<fh>, above.
88
89It is possible to push requests on the read and write queues, and modify
90properties of the stream, even while AnyEvent::Handle is connecting.
91
92When this parameter is specified, then the C<on_prepare>,
93C<on_connect_error> and C<on_connect> callbacks will be called under the
94appropriate circumstances:
95
96=over 4
97
82=item on_eof => $cb->($handle) 98=item on_prepare => $cb->($handle)
83 99
84Set the callback to be called when an end-of-file condition is detected, 100This (rarely used) callback is called before a new connection is
85i.e. in the case of a socket, when the other side has closed the 101attempted, but after the file handle has been created. It could be used to
86connection cleanly. 102prepare the file handle with parameters required for the actual connect
103(as opposed to settings that can be changed when the connection is already
104established).
87 105
88For sockets, this just means that the other side has stopped sending data, 106The return value of this callback should be the connect timeout value in
89you can still try to write data, and, in fact, one can return from the eof 107seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
90callback and continue writing data, as only the read part has been shut 108timeout is to be used).
91down.
92 109
93While not mandatory, it is I<highly> recommended to set an eof callback, 110=item on_connect => $cb->($handle, $host, $port, $retry->())
94otherwise you might end up with a closed socket while you are still
95waiting for data.
96 111
97If an EOF condition has been detected but no C<on_eof> callback has been 112This callback is called when a connection has been successfully established.
98set, then a fatal error will be raised with C<$!> set to <0>.
99 113
114The actual numeric host and port (the socket peername) are passed as
115parameters, together with a retry callback.
116
117When, for some reason, the handle is not acceptable, then calling
118C<$retry> will continue with the next conenction target (in case of
119multi-homed hosts or SRV records there can be multiple connection
120endpoints). When it is called then the read and write queues, eof status,
121tls status and similar properties of the handle are being reset.
122
123In most cases, ignoring the C<$retry> parameter is the way to go.
124
125=item on_connect_error => $cb->($handle, $message)
126
127This callback is called when the conenction could not be
128established. C<$!> will contain the relevant error code, and C<$message> a
129message describing it (usually the same as C<"$!">).
130
131If this callback isn't specified, then C<on_error> will be called with a
132fatal error instead.
133
134=back
135
100=item on_error => $cb->($handle, $fatal) 136=item on_error => $cb->($handle, $fatal, $message)
101 137
102This is the error callback, which is called when, well, some error 138This is the error callback, which is called when, well, some error
103occured, such as not being able to resolve the hostname, failure to 139occured, such as not being able to resolve the hostname, failure to
104connect or a read error. 140connect or a read error.
105 141
106Some errors are fatal (which is indicated by C<$fatal> being true). On 142Some errors are fatal (which is indicated by C<$fatal> being true). On
107fatal errors the handle object will be shut down and will not be usable 143fatal errors the handle object will be destroyed (by a call to C<< ->
108(but you are free to look at the current C<< ->rbuf >>). Examples of fatal 144destroy >>) after invoking the error callback (which means you are free to
109errors are an EOF condition with active (but unsatisifable) read watchers 145examine the handle object). Examples of fatal errors are an EOF condition
110(C<EPIPE>) or I/O errors. 146with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
147cases where the other side can close the connection at their will it is
148often easiest to not report C<EPIPE> errors in this callback.
149
150AnyEvent::Handle tries to find an appropriate error code for you to check
151against, but in some cases (TLS errors), this does not work well. It is
152recommended to always output the C<$message> argument in human-readable
153error messages (it's usually the same as C<"$!">).
111 154
112Non-fatal errors can be retried by simply returning, but it is recommended 155Non-fatal errors can be retried by simply returning, but it is recommended
113to simply ignore this parameter and instead abondon the handle object 156to simply ignore this parameter and instead abondon the handle object
114when this callback is invoked. Examples of non-fatal errors are timeouts 157when this callback is invoked. Examples of non-fatal errors are timeouts
115C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>). 158C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
116 159
117On callback entrance, the value of C<$!> contains the operating system 160On callback entrance, the value of C<$!> contains the operating system
118error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 161error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
162C<EPROTO>).
119 163
120While not mandatory, it is I<highly> recommended to set this callback, as 164While not mandatory, it is I<highly> recommended to set this callback, as
121you will not be notified of errors otherwise. The default simply calls 165you will not be notified of errors otherwise. The default simply calls
122C<croak>. 166C<croak>.
123 167
127and no read request is in the queue (unlike read queue callbacks, this 171and no read request is in the queue (unlike read queue callbacks, this
128callback will only be called when at least one octet of data is in the 172callback will only be called when at least one octet of data is in the
129read buffer). 173read buffer).
130 174
131To access (and remove data from) the read buffer, use the C<< ->rbuf >> 175To access (and remove data from) the read buffer, use the C<< ->rbuf >>
132method or access the C<$handle->{rbuf}> member directly. 176method or access the C<< $handle->{rbuf} >> member directly. Note that you
177must not enlarge or modify the read buffer, you can only remove data at
178the beginning from it.
133 179
134When an EOF condition is detected then AnyEvent::Handle will first try to 180When an EOF condition is detected then AnyEvent::Handle will first try to
135feed all the remaining data to the queued callbacks and C<on_read> before 181feed all the remaining data to the queued callbacks and C<on_read> before
136calling the C<on_eof> callback. If no progress can be made, then a fatal 182calling the C<on_eof> callback. If no progress can be made, then a fatal
137error will be raised (with C<$!> set to C<EPIPE>). 183error will be raised (with C<$!> set to C<EPIPE>).
184
185Note that, unlike requests in the read queue, an C<on_read> callback
186doesn't mean you I<require> some data: if there is an EOF and there
187are outstanding read requests then an error will be flagged. With an
188C<on_read> callback, the C<on_eof> callback will be invoked.
189
190=item on_eof => $cb->($handle)
191
192Set the callback to be called when an end-of-file condition is detected,
193i.e. in the case of a socket, when the other side has closed the
194connection cleanly, and there are no outstanding read requests in the
195queue (if there are read requests, then an EOF counts as an unexpected
196connection close and will be flagged as an error).
197
198For sockets, this just means that the other side has stopped sending data,
199you can still try to write data, and, in fact, one can return from the EOF
200callback and continue writing data, as only the read part has been shut
201down.
202
203If an EOF condition has been detected but no C<on_eof> callback has been
204set, then a fatal error will be raised with C<$!> set to <0>.
138 205
139=item on_drain => $cb->($handle) 206=item on_drain => $cb->($handle)
140 207
141This sets the callback that is called when the write buffer becomes empty 208This sets the callback that is called when the write buffer becomes empty
142(or when the callback is set and the buffer is empty already). 209(or when the callback is set and the buffer is empty already).
232write data and will install a watcher that will write this data to the 299write data and will install a watcher that will write this data to the
233socket. No errors will be reported (this mostly matches how the operating 300socket. No errors will be reported (this mostly matches how the operating
234system treats outstanding data at socket close time). 301system treats outstanding data at socket close time).
235 302
236This will not work for partial TLS data that could not be encoded 303This will not work for partial TLS data that could not be encoded
237yet. This data will be lost. 304yet. This data will be lost. Calling the C<stoptls> method in time might
305help.
306
307=item peername => $string
308
309A string used to identify the remote site - usually the DNS hostname
310(I<not> IDN!) used to create the connection, rarely the IP address.
311
312Apart from being useful in error messages, this string is also used in TLS
313peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
314verification will be skipped when C<peername> is not specified or
315C<undef>.
238 316
239=item tls => "accept" | "connect" | Net::SSLeay::SSL object 317=item tls => "accept" | "connect" | Net::SSLeay::SSL object
240 318
241When this parameter is given, it enables TLS (SSL) mode, that means 319When this parameter is given, it enables TLS (SSL) mode, that means
242AnyEvent will start a TLS handshake as soon as the conenction has been 320AnyEvent will start a TLS handshake as soon as the conenction has been
243established and will transparently encrypt/decrypt data afterwards. 321established and will transparently encrypt/decrypt data afterwards.
322
323All TLS protocol errors will be signalled as C<EPROTO>, with an
324appropriate error message.
244 325
245TLS mode requires Net::SSLeay to be installed (it will be loaded 326TLS mode requires Net::SSLeay to be installed (it will be loaded
246automatically when you try to create a TLS handle): this module doesn't 327automatically when you try to create a TLS handle): this module doesn't
247have a dependency on that module, so if your module requires it, you have 328have a dependency on that module, so if your module requires it, you have
248to add the dependency yourself. 329to add the dependency yourself.
252mode. 333mode.
253 334
254You can also provide your own TLS connection object, but you have 335You can also provide your own TLS connection object, but you have
255to make sure that you call either C<Net::SSLeay::set_connect_state> 336to make sure that you call either C<Net::SSLeay::set_connect_state>
256or C<Net::SSLeay::set_accept_state> on it before you pass it to 337or C<Net::SSLeay::set_accept_state> on it before you pass it to
257AnyEvent::Handle. 338AnyEvent::Handle. Also, this module will take ownership of this connection
339object.
340
341At some future point, AnyEvent::Handle might switch to another TLS
342implementation, then the option to use your own session object will go
343away.
344
345B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
346passing in the wrong integer will lead to certain crash. This most often
347happens when one uses a stylish C<< tls => 1 >> and is surprised about the
348segmentation fault.
258 349
259See the C<< ->starttls >> method for when need to start TLS negotiation later. 350See the C<< ->starttls >> method for when need to start TLS negotiation later.
260 351
261=item tls_ctx => $ssl_ctx 352=item tls_ctx => $anyevent_tls
262 353
263Use the given C<Net::SSLeay::CTX> object to create the new TLS connection 354Use the given C<AnyEvent::TLS> object to create the new TLS connection
264(unless a connection object was specified directly). If this parameter is 355(unless a connection object was specified directly). If this parameter is
265missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 356missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
357
358Instead of an object, you can also specify a hash reference with C<< key
359=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
360new TLS context object.
361
362=item on_starttls => $cb->($handle, $success[, $error_message])
363
364This callback will be invoked when the TLS/SSL handshake has finished. If
365C<$success> is true, then the TLS handshake succeeded, otherwise it failed
366(C<on_stoptls> will not be called in this case).
367
368The session in C<< $handle->{tls} >> can still be examined in this
369callback, even when the handshake was not successful.
370
371TLS handshake failures will not cause C<on_error> to be invoked when this
372callback is in effect, instead, the error message will be passed to C<on_starttls>.
373
374Without this callback, handshake failures lead to C<on_error> being
375called, as normal.
376
377Note that you cannot call C<starttls> right again in this callback. If you
378need to do that, start an zero-second timer instead whose callback can
379then call C<< ->starttls >> again.
380
381=item on_stoptls => $cb->($handle)
382
383When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
384set, then it will be invoked after freeing the TLS session. If it is not,
385then a TLS shutdown condition will be treated like a normal EOF condition
386on the handle.
387
388The session in C<< $handle->{tls} >> can still be examined in this
389callback.
390
391This callback will only be called on TLS shutdowns, not when the
392underlying handle signals EOF.
266 393
267=item json => JSON or JSON::XS object 394=item json => JSON or JSON::XS object
268 395
269This is the json coder object used by the C<json> read and write types. 396This is the json coder object used by the C<json> read and write types.
270 397
273texts. 400texts.
274 401
275Note that you are responsible to depend on the JSON module if you want to 402Note that you are responsible to depend on the JSON module if you want to
276use this functionality, as AnyEvent does not have a dependency itself. 403use this functionality, as AnyEvent does not have a dependency itself.
277 404
278=item filter_r => $cb
279
280=item filter_w => $cb
281
282These exist, but are undocumented at this time. (They are used internally
283by the TLS code).
284
285=back 405=back
286 406
287=cut 407=cut
288 408
289sub new { 409sub new {
290 my $class = shift; 410 my $class = shift;
291
292 my $self = bless { @_ }, $class; 411 my $self = bless { @_ }, $class;
293 412
294 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 413 if ($self->{fh}) {
414 $self->_start;
415 return unless $self->{fh}; # could be gone by now
416
417 } elsif ($self->{connect}) {
418 require AnyEvent::Socket;
419
420 $self->{peername} = $self->{connect}[0]
421 unless exists $self->{peername};
422
423 $self->{_skip_drain_rbuf} = 1;
424
425 {
426 Scalar::Util::weaken (my $self = $self);
427
428 $self->{_connect} =
429 AnyEvent::Socket::tcp_connect (
430 $self->{connect}[0],
431 $self->{connect}[1],
432 sub {
433 my ($fh, $host, $port, $retry) = @_;
434
435 if ($fh) {
436 $self->{fh} = $fh;
437
438 delete $self->{_skip_drain_rbuf};
439 $self->_start;
440
441 $self->{on_connect}
442 and $self->{on_connect}($self, $host, $port, sub {
443 delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
444 $self->{_skip_drain_rbuf} = 1;
445 &$retry;
446 });
447
448 } else {
449 if ($self->{on_connect_error}) {
450 $self->{on_connect_error}($self, "$!");
451 $self->destroy;
452 } else {
453 $self->_error ($!, 1);
454 }
455 }
456 },
457 sub {
458 local $self->{fh} = $_[0];
459
460 $self->{on_prepare}
461 ? $self->{on_prepare}->($self)
462 : ()
463 }
464 );
465 }
466
467 } else {
468 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
469 }
470
471 $self
472}
473
474sub _start {
475 my ($self) = @_;
295 476
296 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 477 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
297
298 if ($self->{tls}) {
299 require Net::SSLeay;
300 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
301 }
302 478
303 $self->{_activity} = AnyEvent->now; 479 $self->{_activity} = AnyEvent->now;
304 $self->_timeout; 480 $self->_timeout;
305 481
306 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
307 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay}; 482 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
308 483
484 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
485 if $self->{tls};
486
487 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
488
309 $self->start_read 489 $self->start_read
310 if $self->{on_read}; 490 if $self->{on_read} || @{ $self->{_queue} };
311 491
312 $self 492 $self->_drain_wbuf;
313} 493}
314 494
315sub _shutdown { 495#sub _shutdown {
316 my ($self) = @_; 496# my ($self) = @_;
317 497#
318 delete $self->{_tw}; 498# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
319 delete $self->{_rw}; 499# $self->{_eof} = 1; # tell starttls et. al to stop trying
320 delete $self->{_ww}; 500#
321 delete $self->{fh}; 501# &_freetls;
322 502#}
323 $self->stoptls;
324
325 delete $self->{on_read};
326 delete $self->{_queue};
327}
328 503
329sub _error { 504sub _error {
330 my ($self, $errno, $fatal) = @_; 505 my ($self, $errno, $fatal, $message) = @_;
331
332 $self->_shutdown
333 if $fatal;
334 506
335 $! = $errno; 507 $! = $errno;
508 $message ||= "$!";
336 509
337 if ($self->{on_error}) { 510 if ($self->{on_error}) {
338 $self->{on_error}($self, $fatal); 511 $self->{on_error}($self, $fatal, $message);
339 } else { 512 $self->destroy if $fatal;
513 } elsif ($self->{fh}) {
514 $self->destroy;
340 Carp::croak "AnyEvent::Handle uncaught error: $!"; 515 Carp::croak "AnyEvent::Handle uncaught error: $message";
341 } 516 }
342} 517}
343 518
344=item $fh = $handle->fh 519=item $fh = $handle->fh
345 520
382} 557}
383 558
384=item $handle->autocork ($boolean) 559=item $handle->autocork ($boolean)
385 560
386Enables or disables the current autocork behaviour (see C<autocork> 561Enables or disables the current autocork behaviour (see C<autocork>
387constructor argument). 562constructor argument). Changes will only take effect on the next write.
388 563
389=cut 564=cut
565
566sub autocork {
567 $_[0]{autocork} = $_[1];
568}
390 569
391=item $handle->no_delay ($boolean) 570=item $handle->no_delay ($boolean)
392 571
393Enables or disables the C<no_delay> setting (see constructor argument of 572Enables or disables the C<no_delay> setting (see constructor argument of
394the same name for details). 573the same name for details).
398sub no_delay { 577sub no_delay {
399 $_[0]{no_delay} = $_[1]; 578 $_[0]{no_delay} = $_[1];
400 579
401 eval { 580 eval {
402 local $SIG{__DIE__}; 581 local $SIG{__DIE__};
403 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 582 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
583 if $_[0]{fh};
404 }; 584 };
585}
586
587=item $handle->on_starttls ($cb)
588
589Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
590
591=cut
592
593sub on_starttls {
594 $_[0]{on_starttls} = $_[1];
595}
596
597=item $handle->on_stoptls ($cb)
598
599Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
600
601=cut
602
603sub on_starttls {
604 $_[0]{on_stoptls} = $_[1];
605}
606
607=item $handle->rbuf_max ($max_octets)
608
609Configures the C<rbuf_max> setting (C<undef> disables it).
610
611=cut
612
613sub rbuf_max {
614 $_[0]{rbuf_max} = $_[1];
405} 615}
406 616
407############################################################################# 617#############################################################################
408 618
409=item $handle->timeout ($seconds) 619=item $handle->timeout ($seconds)
422# reset the timeout watcher, as neccessary 632# reset the timeout watcher, as neccessary
423# also check for time-outs 633# also check for time-outs
424sub _timeout { 634sub _timeout {
425 my ($self) = @_; 635 my ($self) = @_;
426 636
427 if ($self->{timeout}) { 637 if ($self->{timeout} && $self->{fh}) {
428 my $NOW = AnyEvent->now; 638 my $NOW = AnyEvent->now;
429 639
430 # when would the timeout trigger? 640 # when would the timeout trigger?
431 my $after = $self->{_activity} + $self->{timeout} - $NOW; 641 my $after = $self->{_activity} + $self->{timeout} - $NOW;
432 642
435 $self->{_activity} = $NOW; 645 $self->{_activity} = $NOW;
436 646
437 if ($self->{on_timeout}) { 647 if ($self->{on_timeout}) {
438 $self->{on_timeout}($self); 648 $self->{on_timeout}($self);
439 } else { 649 } else {
440 $self->_error (&Errno::ETIMEDOUT); 650 $self->_error (Errno::ETIMEDOUT);
441 } 651 }
442 652
443 # callback could have changed timeout value, optimise 653 # callback could have changed timeout value, optimise
444 return unless $self->{timeout}; 654 return unless $self->{timeout};
445 655
487 my ($self, $cb) = @_; 697 my ($self, $cb) = @_;
488 698
489 $self->{on_drain} = $cb; 699 $self->{on_drain} = $cb;
490 700
491 $cb->($self) 701 $cb->($self)
492 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 702 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
493} 703}
494 704
495=item $handle->push_write ($data) 705=item $handle->push_write ($data)
496 706
497Queues the given scalar to be written. You can push as much data as you 707Queues the given scalar to be written. You can push as much data as you
508 Scalar::Util::weaken $self; 718 Scalar::Util::weaken $self;
509 719
510 my $cb = sub { 720 my $cb = sub {
511 my $len = syswrite $self->{fh}, $self->{wbuf}; 721 my $len = syswrite $self->{fh}, $self->{wbuf};
512 722
513 if ($len >= 0) { 723 if (defined $len) {
514 substr $self->{wbuf}, 0, $len, ""; 724 substr $self->{wbuf}, 0, $len, "";
515 725
516 $self->{_activity} = AnyEvent->now; 726 $self->{_activity} = AnyEvent->now;
517 727
518 $self->{on_drain}($self) 728 $self->{on_drain}($self)
519 if $self->{low_water_mark} >= length $self->{wbuf} 729 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
520 && $self->{on_drain}; 730 && $self->{on_drain};
521 731
522 delete $self->{_ww} unless length $self->{wbuf}; 732 delete $self->{_ww} unless length $self->{wbuf};
523 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 733 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
524 $self->_error ($!, 1); 734 $self->_error ($!, 1);
548 758
549 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 759 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
550 ->($self, @_); 760 ->($self, @_);
551 } 761 }
552 762
553 if ($self->{filter_w}) { 763 if ($self->{tls}) {
554 $self->{filter_w}($self, \$_[0]); 764 $self->{_tls_wbuf} .= $_[0];
765 &_dotls ($self) if $self->{fh};
555 } else { 766 } else {
556 $self->{wbuf} .= $_[0]; 767 $self->{wbuf} .= $_[0];
557 $self->_drain_wbuf; 768 $self->_drain_wbuf if $self->{fh};
558 } 769 }
559} 770}
560 771
561=item $handle->push_write (type => @args) 772=item $handle->push_write (type => @args)
562 773
576=cut 787=cut
577 788
578register_write_type netstring => sub { 789register_write_type netstring => sub {
579 my ($self, $string) = @_; 790 my ($self, $string) = @_;
580 791
581 sprintf "%d:%s,", (length $string), $string 792 (length $string) . ":$string,"
582}; 793};
583 794
584=item packstring => $format, $data 795=item packstring => $format, $data
585 796
586An octet string prefixed with an encoded length. The encoding C<$format> 797An octet string prefixed with an encoded length. The encoding C<$format>
651 862
652 pack "w/a*", Storable::nfreeze ($ref) 863 pack "w/a*", Storable::nfreeze ($ref)
653}; 864};
654 865
655=back 866=back
867
868=item $handle->push_shutdown
869
870Sometimes you know you want to close the socket after writing your data
871before it was actually written. One way to do that is to replace your
872C<on_drain> handler by a callback that shuts down the socket (and set
873C<low_water_mark> to C<0>). This method is a shorthand for just that, and
874replaces the C<on_drain> callback with:
875
876 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
877
878This simply shuts down the write side and signals an EOF condition to the
879the peer.
880
881You can rely on the normal read queue and C<on_eof> handling
882afterwards. This is the cleanest way to close a connection.
883
884=cut
885
886sub push_shutdown {
887 my ($self) = @_;
888
889 delete $self->{low_water_mark};
890 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
891}
656 892
657=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 893=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
658 894
659This function (not method) lets you add your own types to C<push_write>. 895This function (not method) lets you add your own types to C<push_write>.
660Whenever the given C<type> is used, C<push_write> will invoke the code 896Whenever the given C<type> is used, C<push_write> will invoke the code
754=cut 990=cut
755 991
756sub _drain_rbuf { 992sub _drain_rbuf {
757 my ($self) = @_; 993 my ($self) = @_;
758 994
995 # avoid recursion
996 return if $self->{_skip_drain_rbuf};
759 local $self->{_in_drain} = 1; 997 local $self->{_skip_drain_rbuf} = 1;
760
761 if (
762 defined $self->{rbuf_max}
763 && $self->{rbuf_max} < length $self->{rbuf}
764 ) {
765 $self->_error (&Errno::ENOSPC, 1), return;
766 }
767 998
768 while () { 999 while () {
1000 # we need to use a separate tls read buffer, as we must not receive data while
1001 # we are draining the buffer, and this can only happen with TLS.
1002 $self->{rbuf} .= delete $self->{_tls_rbuf}
1003 if exists $self->{_tls_rbuf};
1004
769 my $len = length $self->{rbuf}; 1005 my $len = length $self->{rbuf};
770 1006
771 if (my $cb = shift @{ $self->{_queue} }) { 1007 if (my $cb = shift @{ $self->{_queue} }) {
772 unless ($cb->($self)) { 1008 unless ($cb->($self)) {
773 if ($self->{_eof}) { 1009 # no progress can be made
774 # no progress can be made (not enough data and no data forthcoming) 1010 # (not enough data and no data forthcoming)
775 $self->_error (&Errno::EPIPE, 1), return; 1011 $self->_error (Errno::EPIPE, 1), return
776 } 1012 if $self->{_eof};
777 1013
778 unshift @{ $self->{_queue} }, $cb; 1014 unshift @{ $self->{_queue} }, $cb;
779 last; 1015 last;
780 } 1016 }
781 } elsif ($self->{on_read}) { 1017 } elsif ($self->{on_read}) {
788 && !@{ $self->{_queue} } # and the queue is still empty 1024 && !@{ $self->{_queue} } # and the queue is still empty
789 && $self->{on_read} # but we still have on_read 1025 && $self->{on_read} # but we still have on_read
790 ) { 1026 ) {
791 # no further data will arrive 1027 # no further data will arrive
792 # so no progress can be made 1028 # so no progress can be made
793 $self->_error (&Errno::EPIPE, 1), return 1029 $self->_error (Errno::EPIPE, 1), return
794 if $self->{_eof}; 1030 if $self->{_eof};
795 1031
796 last; # more data might arrive 1032 last; # more data might arrive
797 } 1033 }
798 } else { 1034 } else {
799 # read side becomes idle 1035 # read side becomes idle
800 delete $self->{_rw}; 1036 delete $self->{_rw} unless $self->{tls};
801 last; 1037 last;
802 } 1038 }
803 } 1039 }
804 1040
805 if ($self->{_eof}) { 1041 if ($self->{_eof}) {
806 if ($self->{on_eof}) { 1042 $self->{on_eof}
807 $self->{on_eof}($self) 1043 ? $self->{on_eof}($self)
808 } else { 1044 : $self->_error (0, 1, "Unexpected end-of-file");
809 $self->_error (0, 1); 1045
810 } 1046 return;
1047 }
1048
1049 if (
1050 defined $self->{rbuf_max}
1051 && $self->{rbuf_max} < length $self->{rbuf}
1052 ) {
1053 $self->_error (Errno::ENOSPC, 1), return;
811 } 1054 }
812 1055
813 # may need to restart read watcher 1056 # may need to restart read watcher
814 unless ($self->{_rw}) { 1057 unless ($self->{_rw}) {
815 $self->start_read 1058 $self->start_read
827 1070
828sub on_read { 1071sub on_read {
829 my ($self, $cb) = @_; 1072 my ($self, $cb) = @_;
830 1073
831 $self->{on_read} = $cb; 1074 $self->{on_read} = $cb;
832 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1075 $self->_drain_rbuf if $cb;
833} 1076}
834 1077
835=item $handle->rbuf 1078=item $handle->rbuf
836 1079
837Returns the read buffer (as a modifiable lvalue). 1080Returns the read buffer (as a modifiable lvalue).
838 1081
839You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1082You can access the read buffer directly as the C<< ->{rbuf} >>
840you want. 1083member, if you want. However, the only operation allowed on the
1084read buffer (apart from looking at it) is removing data from its
1085beginning. Otherwise modifying or appending to it is not allowed and will
1086lead to hard-to-track-down bugs.
841 1087
842NOTE: The read buffer should only be used or modified if the C<on_read>, 1088NOTE: The read buffer should only be used or modified if the C<on_read>,
843C<push_read> or C<unshift_read> methods are used. The other read methods 1089C<push_read> or C<unshift_read> methods are used. The other read methods
844automatically manage the read buffer. 1090automatically manage the read buffer.
845 1091
886 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1132 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
887 ->($self, $cb, @_); 1133 ->($self, $cb, @_);
888 } 1134 }
889 1135
890 push @{ $self->{_queue} }, $cb; 1136 push @{ $self->{_queue} }, $cb;
891 $self->_drain_rbuf unless $self->{_in_drain}; 1137 $self->_drain_rbuf;
892} 1138}
893 1139
894sub unshift_read { 1140sub unshift_read {
895 my $self = shift; 1141 my $self = shift;
896 my $cb = pop; 1142 my $cb = pop;
902 ->($self, $cb, @_); 1148 ->($self, $cb, @_);
903 } 1149 }
904 1150
905 1151
906 unshift @{ $self->{_queue} }, $cb; 1152 unshift @{ $self->{_queue} }, $cb;
907 $self->_drain_rbuf unless $self->{_in_drain}; 1153 $self->_drain_rbuf;
908} 1154}
909 1155
910=item $handle->push_read (type => @args, $cb) 1156=item $handle->push_read (type => @args, $cb)
911 1157
912=item $handle->unshift_read (type => @args, $cb) 1158=item $handle->unshift_read (type => @args, $cb)
1045 return 1; 1291 return 1;
1046 } 1292 }
1047 1293
1048 # reject 1294 # reject
1049 if ($reject && $$rbuf =~ $reject) { 1295 if ($reject && $$rbuf =~ $reject) {
1050 $self->_error (&Errno::EBADMSG); 1296 $self->_error (Errno::EBADMSG);
1051 } 1297 }
1052 1298
1053 # skip 1299 # skip
1054 if ($skip && $$rbuf =~ $skip) { 1300 if ($skip && $$rbuf =~ $skip) {
1055 $data .= substr $$rbuf, 0, $+[0], ""; 1301 $data .= substr $$rbuf, 0, $+[0], "";
1071 my ($self, $cb) = @_; 1317 my ($self, $cb) = @_;
1072 1318
1073 sub { 1319 sub {
1074 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1320 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1075 if ($_[0]{rbuf} =~ /[^0-9]/) { 1321 if ($_[0]{rbuf} =~ /[^0-9]/) {
1076 $self->_error (&Errno::EBADMSG); 1322 $self->_error (Errno::EBADMSG);
1077 } 1323 }
1078 return; 1324 return;
1079 } 1325 }
1080 1326
1081 my $len = $1; 1327 my $len = $1;
1084 my $string = $_[1]; 1330 my $string = $_[1];
1085 $_[0]->unshift_read (chunk => 1, sub { 1331 $_[0]->unshift_read (chunk => 1, sub {
1086 if ($_[1] eq ",") { 1332 if ($_[1] eq ",") {
1087 $cb->($_[0], $string); 1333 $cb->($_[0], $string);
1088 } else { 1334 } else {
1089 $self->_error (&Errno::EBADMSG); 1335 $self->_error (Errno::EBADMSG);
1090 } 1336 }
1091 }); 1337 });
1092 }); 1338 });
1093 1339
1094 1 1340 1
1100An octet string prefixed with an encoded length. The encoding C<$format> 1346An octet string prefixed with an encoded length. The encoding C<$format>
1101uses the same format as a Perl C<pack> format, but must specify a single 1347uses the same format as a Perl C<pack> format, but must specify a single
1102integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1348integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1103optional C<!>, C<< < >> or C<< > >> modifier). 1349optional C<!>, C<< < >> or C<< > >> modifier).
1104 1350
1105DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1351For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1352EPP uses a prefix of C<N> (4 octtes).
1106 1353
1107Example: read a block of data prefixed by its length in BER-encoded 1354Example: read a block of data prefixed by its length in BER-encoded
1108format (very efficient). 1355format (very efficient).
1109 1356
1110 $handle->push_read (packstring => "w", sub { 1357 $handle->push_read (packstring => "w", sub {
1140 } 1387 }
1141}; 1388};
1142 1389
1143=item json => $cb->($handle, $hash_or_arrayref) 1390=item json => $cb->($handle, $hash_or_arrayref)
1144 1391
1145Reads a JSON object or array, decodes it and passes it to the callback. 1392Reads a JSON object or array, decodes it and passes it to the
1393callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1146 1394
1147If a C<json> object was passed to the constructor, then that will be used 1395If a C<json> object was passed to the constructor, then that will be used
1148for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1396for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1149 1397
1150This read type uses the incremental parser available with JSON version 1398This read type uses the incremental parser available with JSON version
1159=cut 1407=cut
1160 1408
1161register_read_type json => sub { 1409register_read_type json => sub {
1162 my ($self, $cb) = @_; 1410 my ($self, $cb) = @_;
1163 1411
1164 require JSON; 1412 my $json = $self->{json} ||=
1413 eval { require JSON::XS; JSON::XS->new->utf8 }
1414 || do { require JSON; JSON->new->utf8 };
1165 1415
1166 my $data; 1416 my $data;
1167 my $rbuf = \$self->{rbuf}; 1417 my $rbuf = \$self->{rbuf};
1168 1418
1169 my $json = $self->{json} ||= JSON->new->utf8;
1170
1171 sub { 1419 sub {
1172 my $ref = $json->incr_parse ($self->{rbuf}); 1420 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1173 1421
1174 if ($ref) { 1422 if ($ref) {
1175 $self->{rbuf} = $json->incr_text; 1423 $self->{rbuf} = $json->incr_text;
1176 $json->incr_text = ""; 1424 $json->incr_text = "";
1177 $cb->($self, $ref); 1425 $cb->($self, $ref);
1178 1426
1179 1 1427 1
1428 } elsif ($@) {
1429 # error case
1430 $json->incr_skip;
1431
1432 $self->{rbuf} = $json->incr_text;
1433 $json->incr_text = "";
1434
1435 $self->_error (Errno::EBADMSG);
1436
1437 ()
1180 } else { 1438 } else {
1181 $self->{rbuf} = ""; 1439 $self->{rbuf} = "";
1440
1182 () 1441 ()
1183 } 1442 }
1184 } 1443 }
1185}; 1444};
1186 1445
1218 # read remaining chunk 1477 # read remaining chunk
1219 $_[0]->unshift_read (chunk => $len, sub { 1478 $_[0]->unshift_read (chunk => $len, sub {
1220 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1479 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1221 $cb->($_[0], $ref); 1480 $cb->($_[0], $ref);
1222 } else { 1481 } else {
1223 $self->_error (&Errno::EBADMSG); 1482 $self->_error (Errno::EBADMSG);
1224 } 1483 }
1225 }); 1484 });
1226 } 1485 }
1227 1486
1228 1 1487 1
1263Note that AnyEvent::Handle will automatically C<start_read> for you when 1522Note that AnyEvent::Handle will automatically C<start_read> for you when
1264you change the C<on_read> callback or push/unshift a read callback, and it 1523you change the C<on_read> callback or push/unshift a read callback, and it
1265will automatically C<stop_read> for you when neither C<on_read> is set nor 1524will automatically C<stop_read> for you when neither C<on_read> is set nor
1266there are any read requests in the queue. 1525there are any read requests in the queue.
1267 1526
1527These methods will have no effect when in TLS mode (as TLS doesn't support
1528half-duplex connections).
1529
1268=cut 1530=cut
1269 1531
1270sub stop_read { 1532sub stop_read {
1271 my ($self) = @_; 1533 my ($self) = @_;
1272 1534
1273 delete $self->{_rw}; 1535 delete $self->{_rw} unless $self->{tls};
1274} 1536}
1275 1537
1276sub start_read { 1538sub start_read {
1277 my ($self) = @_; 1539 my ($self) = @_;
1278 1540
1279 unless ($self->{_rw} || $self->{_eof}) { 1541 unless ($self->{_rw} || $self->{_eof}) {
1280 Scalar::Util::weaken $self; 1542 Scalar::Util::weaken $self;
1281 1543
1282 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1544 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1283 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1545 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1284 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1546 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1285 1547
1286 if ($len > 0) { 1548 if ($len > 0) {
1287 $self->{_activity} = AnyEvent->now; 1549 $self->{_activity} = AnyEvent->now;
1288 1550
1289 $self->{filter_r} 1551 if ($self->{tls}) {
1290 ? $self->{filter_r}($self, $rbuf) 1552 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1291 : $self->{_in_drain} || $self->_drain_rbuf; 1553
1554 &_dotls ($self);
1555 } else {
1556 $self->_drain_rbuf;
1557 }
1292 1558
1293 } elsif (defined $len) { 1559 } elsif (defined $len) {
1294 delete $self->{_rw}; 1560 delete $self->{_rw};
1295 $self->{_eof} = 1; 1561 $self->{_eof} = 1;
1296 $self->_drain_rbuf unless $self->{_in_drain}; 1562 $self->_drain_rbuf;
1297 1563
1298 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1564 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1299 return $self->_error ($!, 1); 1565 return $self->_error ($!, 1);
1300 } 1566 }
1301 }); 1567 });
1302 } 1568 }
1303} 1569}
1304 1570
1571our $ERROR_SYSCALL;
1572our $ERROR_WANT_READ;
1573
1574sub _tls_error {
1575 my ($self, $err) = @_;
1576
1577 return $self->_error ($!, 1)
1578 if $err == Net::SSLeay::ERROR_SYSCALL ();
1579
1580 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1581
1582 # reduce error string to look less scary
1583 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1584
1585 if ($self->{_on_starttls}) {
1586 (delete $self->{_on_starttls})->($self, undef, $err);
1587 &_freetls;
1588 } else {
1589 &_freetls;
1590 $self->_error (Errno::EPROTO, 1, $err);
1591 }
1592}
1593
1594# poll the write BIO and send the data if applicable
1595# also decode read data if possible
1596# this is basiclaly our TLS state machine
1597# more efficient implementations are possible with openssl,
1598# but not with the buggy and incomplete Net::SSLeay.
1305sub _dotls { 1599sub _dotls {
1306 my ($self) = @_; 1600 my ($self) = @_;
1307 1601
1308 my $buf; 1602 my $tmp;
1309 1603
1310 if (length $self->{_tls_wbuf}) { 1604 if (length $self->{_tls_wbuf}) {
1311 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1605 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1312 substr $self->{_tls_wbuf}, 0, $len, ""; 1606 substr $self->{_tls_wbuf}, 0, $tmp, "";
1313 } 1607 }
1314 }
1315 1608
1609 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1610 return $self->_tls_error ($tmp)
1611 if $tmp != $ERROR_WANT_READ
1612 && ($tmp != $ERROR_SYSCALL || $!);
1613 }
1614
1615 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1616 unless (length $tmp) {
1617 $self->{_on_starttls}
1618 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1619 &_freetls;
1620
1621 if ($self->{on_stoptls}) {
1622 $self->{on_stoptls}($self);
1623 return;
1624 } else {
1625 # let's treat SSL-eof as we treat normal EOF
1626 delete $self->{_rw};
1627 $self->{_eof} = 1;
1628 }
1629 }
1630
1631 $self->{_tls_rbuf} .= $tmp;
1632 $self->_drain_rbuf;
1633 $self->{tls} or return; # tls session might have gone away in callback
1634 }
1635
1636 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1637 return $self->_tls_error ($tmp)
1638 if $tmp != $ERROR_WANT_READ
1639 && ($tmp != $ERROR_SYSCALL || $!);
1640
1316 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1641 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1317 $self->{wbuf} .= $buf; 1642 $self->{wbuf} .= $tmp;
1318 $self->_drain_wbuf; 1643 $self->_drain_wbuf;
1319 } 1644 }
1320 1645
1321 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1646 $self->{_on_starttls}
1322 if (length $buf) { 1647 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1323 $self->{rbuf} .= $buf; 1648 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1324 $self->_drain_rbuf unless $self->{_in_drain};
1325 } else {
1326 # let's treat SSL-eof as we treat normal EOF
1327 $self->{_eof} = 1;
1328 $self->_shutdown;
1329 return;
1330 }
1331 }
1332
1333 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1334
1335 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1336 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1337 return $self->_error ($!, 1);
1338 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1339 return $self->_error (&Errno::EIO, 1);
1340 }
1341
1342 # all others are fine for our purposes
1343 }
1344} 1649}
1345 1650
1346=item $handle->starttls ($tls[, $tls_ctx]) 1651=item $handle->starttls ($tls[, $tls_ctx])
1347 1652
1348Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1653Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1349object is created, you can also do that at a later time by calling 1654object is created, you can also do that at a later time by calling
1350C<starttls>. 1655C<starttls>.
1351 1656
1657Starting TLS is currently an asynchronous operation - when you push some
1658write data and then call C<< ->starttls >> then TLS negotiation will start
1659immediately, after which the queued write data is then sent.
1660
1352The first argument is the same as the C<tls> constructor argument (either 1661The first argument is the same as the C<tls> constructor argument (either
1353C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1662C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1354 1663
1355The second argument is the optional C<Net::SSLeay::CTX> object that is 1664The second argument is the optional C<AnyEvent::TLS> object that is used
1356used when AnyEvent::Handle has to create its own TLS connection object. 1665when AnyEvent::Handle has to create its own TLS connection object, or
1666a hash reference with C<< key => value >> pairs that will be used to
1667construct a new context.
1357 1668
1358The TLS connection object will end up in C<< $handle->{tls} >> after this 1669The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1359call and can be used or changed to your liking. Note that the handshake 1670context in C<< $handle->{tls_ctx} >> after this call and can be used or
1360might have already started when this function returns. 1671changed to your liking. Note that the handshake might have already started
1672when this function returns.
1361 1673
1674Due to bugs in OpenSSL, it might or might not be possible to do multiple
1675handshakes on the same stream. Best do not attempt to use the stream after
1676stopping TLS.
1677
1362=cut 1678=cut
1679
1680our %TLS_CACHE; #TODO not yet documented, should we?
1363 1681
1364sub starttls { 1682sub starttls {
1365 my ($self, $ssl, $ctx) = @_; 1683 my ($self, $tls, $ctx) = @_;
1366 1684
1367 $self->stoptls; 1685 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1686 if $self->{tls};
1368 1687
1369 if ($ssl eq "accept") { 1688 $self->{tls} = $tls;
1370 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1689 $self->{tls_ctx} = $ctx if @_ > 2;
1371 Net::SSLeay::set_accept_state ($ssl); 1690
1372 } elsif ($ssl eq "connect") { 1691 return unless $self->{fh};
1373 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1692
1374 Net::SSLeay::set_connect_state ($ssl); 1693 require Net::SSLeay;
1694
1695 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1696 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1697
1698 $tls = $self->{tls};
1699 $ctx = $self->{tls_ctx};
1700
1701 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1702
1703 if ("HASH" eq ref $ctx) {
1704 require AnyEvent::TLS;
1705
1706 if ($ctx->{cache}) {
1707 my $key = $ctx+0;
1708 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1709 } else {
1710 $ctx = new AnyEvent::TLS %$ctx;
1711 }
1712 }
1375 } 1713
1376 1714 $self->{tls_ctx} = $ctx || TLS_CTX ();
1377 $self->{tls} = $ssl; 1715 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1378 1716
1379 # basically, this is deep magic (because SSL_read should have the same issues) 1717 # basically, this is deep magic (because SSL_read should have the same issues)
1380 # but the openssl maintainers basically said: "trust us, it just works". 1718 # but the openssl maintainers basically said: "trust us, it just works".
1381 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1719 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1382 # and mismaintained ssleay-module doesn't even offer them). 1720 # and mismaintained ssleay-module doesn't even offer them).
1383 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1721 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1384 # 1722 #
1385 # in short: this is a mess. 1723 # in short: this is a mess.
1386 # 1724 #
1387 # note that we do not try to kepe the length constant between writes as we are required to do. 1725 # note that we do not try to keep the length constant between writes as we are required to do.
1388 # we assume that most (but not all) of this insanity only applies to non-blocking cases, 1726 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1389 # and we drive openssl fully in blocking mode here. 1727 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1728 # have identity issues in that area.
1390 Net::SSLeay::CTX_set_mode ($self->{tls}, 1729# Net::SSLeay::CTX_set_mode ($ssl,
1391 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1730# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1392 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1731# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1732 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1393 1733
1394 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1734 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1395 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1735 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1396 1736
1397 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1737 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1398 1738
1399 $self->{filter_w} = sub { 1739 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1400 $_[0]{_tls_wbuf} .= ${$_[1]}; 1740 if $self->{on_starttls};
1401 &_dotls; 1741
1402 }; 1742 &_dotls; # need to trigger the initial handshake
1403 $self->{filter_r} = sub { 1743 $self->start_read; # make sure we actually do read
1404 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1405 &_dotls;
1406 };
1407} 1744}
1408 1745
1409=item $handle->stoptls 1746=item $handle->stoptls
1410 1747
1411Destroys the SSL connection, if any. Partial read or write data will be 1748Shuts down the SSL connection - this makes a proper EOF handshake by
1412lost. 1749sending a close notify to the other side, but since OpenSSL doesn't
1750support non-blocking shut downs, it is not guarenteed that you can re-use
1751the stream afterwards.
1413 1752
1414=cut 1753=cut
1415 1754
1416sub stoptls { 1755sub stoptls {
1417 my ($self) = @_; 1756 my ($self) = @_;
1418 1757
1419 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1758 if ($self->{tls}) {
1759 Net::SSLeay::shutdown ($self->{tls});
1420 1760
1421 delete $self->{_rbio}; 1761 &_dotls;
1422 delete $self->{_wbio}; 1762
1423 delete $self->{_tls_wbuf}; 1763# # we don't give a shit. no, we do, but we can't. no...#d#
1424 delete $self->{filter_r}; 1764# # we, we... have to use openssl :/#d#
1425 delete $self->{filter_w}; 1765# &_freetls;#d#
1766 }
1767}
1768
1769sub _freetls {
1770 my ($self) = @_;
1771
1772 return unless $self->{tls};
1773
1774 $self->{tls_ctx}->_put_session (delete $self->{tls})
1775 if $self->{tls} > 0;
1776
1777 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1426} 1778}
1427 1779
1428sub DESTROY { 1780sub DESTROY {
1429 my $self = shift; 1781 my ($self) = @_;
1430 1782
1431 $self->stoptls; 1783 &_freetls;
1432 1784
1433 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1785 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1434 1786
1435 if ($linger && length $self->{wbuf}) { 1787 if ($linger && length $self->{wbuf} && $self->{fh}) {
1436 my $fh = delete $self->{fh}; 1788 my $fh = delete $self->{fh};
1437 my $wbuf = delete $self->{wbuf}; 1789 my $wbuf = delete $self->{wbuf};
1438 1790
1439 my @linger; 1791 my @linger;
1440 1792
1451 @linger = (); 1803 @linger = ();
1452 }); 1804 });
1453 } 1805 }
1454} 1806}
1455 1807
1808=item $handle->destroy
1809
1810Shuts down the handle object as much as possible - this call ensures that
1811no further callbacks will be invoked and as many resources as possible
1812will be freed. Any method you will call on the handle object after
1813destroying it in this way will be silently ignored (and it will return the
1814empty list).
1815
1816Normally, you can just "forget" any references to an AnyEvent::Handle
1817object and it will simply shut down. This works in fatal error and EOF
1818callbacks, as well as code outside. It does I<NOT> work in a read or write
1819callback, so when you want to destroy the AnyEvent::Handle object from
1820within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1821that case.
1822
1823Destroying the handle object in this way has the advantage that callbacks
1824will be removed as well, so if those are the only reference holders (as
1825is common), then one doesn't need to do anything special to break any
1826reference cycles.
1827
1828The handle might still linger in the background and write out remaining
1829data, as specified by the C<linger> option, however.
1830
1831=cut
1832
1833sub destroy {
1834 my ($self) = @_;
1835
1836 $self->DESTROY;
1837 %$self = ();
1838 bless $self, "AnyEvent::Handle::destroyed";
1839}
1840
1841sub AnyEvent::Handle::destroyed::AUTOLOAD {
1842 #nop
1843}
1844
1456=item AnyEvent::Handle::TLS_CTX 1845=item AnyEvent::Handle::TLS_CTX
1457 1846
1458This function creates and returns the Net::SSLeay::CTX object used by 1847This function creates and returns the AnyEvent::TLS object used by default
1459default for TLS mode. 1848for TLS mode.
1460 1849
1461The context is created like this: 1850The context is created by calling L<AnyEvent::TLS> without any arguments.
1462
1463 Net::SSLeay::load_error_strings;
1464 Net::SSLeay::SSLeay_add_ssl_algorithms;
1465 Net::SSLeay::randomize;
1466
1467 my $CTX = Net::SSLeay::CTX_new;
1468
1469 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1470 1851
1471=cut 1852=cut
1472 1853
1473our $TLS_CTX; 1854our $TLS_CTX;
1474 1855
1475sub TLS_CTX() { 1856sub TLS_CTX() {
1476 $TLS_CTX || do { 1857 $TLS_CTX ||= do {
1477 require Net::SSLeay; 1858 require AnyEvent::TLS;
1478 1859
1479 Net::SSLeay::load_error_strings (); 1860 new AnyEvent::TLS
1480 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1481 Net::SSLeay::randomize ();
1482
1483 $TLS_CTX = Net::SSLeay::CTX_new ();
1484
1485 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1486
1487 $TLS_CTX
1488 } 1861 }
1489} 1862}
1490 1863
1491=back 1864=back
1865
1866
1867=head1 NONFREQUENTLY ASKED QUESTIONS
1868
1869=over 4
1870
1871=item I C<undef> the AnyEvent::Handle reference inside my callback and
1872still get further invocations!
1873
1874That's because AnyEvent::Handle keeps a reference to itself when handling
1875read or write callbacks.
1876
1877It is only safe to "forget" the reference inside EOF or error callbacks,
1878from within all other callbacks, you need to explicitly call the C<<
1879->destroy >> method.
1880
1881=item I get different callback invocations in TLS mode/Why can't I pause
1882reading?
1883
1884Unlike, say, TCP, TLS connections do not consist of two independent
1885communication channels, one for each direction. Or put differently. The
1886read and write directions are not independent of each other: you cannot
1887write data unless you are also prepared to read, and vice versa.
1888
1889This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1890callback invocations when you are not expecting any read data - the reason
1891is that AnyEvent::Handle always reads in TLS mode.
1892
1893During the connection, you have to make sure that you always have a
1894non-empty read-queue, or an C<on_read> watcher. At the end of the
1895connection (or when you no longer want to use it) you can call the
1896C<destroy> method.
1897
1898=item How do I read data until the other side closes the connection?
1899
1900If you just want to read your data into a perl scalar, the easiest way
1901to achieve this is by setting an C<on_read> callback that does nothing,
1902clearing the C<on_eof> callback and in the C<on_error> callback, the data
1903will be in C<$_[0]{rbuf}>:
1904
1905 $handle->on_read (sub { });
1906 $handle->on_eof (undef);
1907 $handle->on_error (sub {
1908 my $data = delete $_[0]{rbuf};
1909 });
1910
1911The reason to use C<on_error> is that TCP connections, due to latencies
1912and packets loss, might get closed quite violently with an error, when in
1913fact, all data has been received.
1914
1915It is usually better to use acknowledgements when transferring data,
1916to make sure the other side hasn't just died and you got the data
1917intact. This is also one reason why so many internet protocols have an
1918explicit QUIT command.
1919
1920=item I don't want to destroy the handle too early - how do I wait until
1921all data has been written?
1922
1923After writing your last bits of data, set the C<on_drain> callback
1924and destroy the handle in there - with the default setting of
1925C<low_water_mark> this will be called precisely when all data has been
1926written to the socket:
1927
1928 $handle->push_write (...);
1929 $handle->on_drain (sub {
1930 warn "all data submitted to the kernel\n";
1931 undef $handle;
1932 });
1933
1934If you just want to queue some data and then signal EOF to the other side,
1935consider using C<< ->push_shutdown >> instead.
1936
1937=item I want to contact a TLS/SSL server, I don't care about security.
1938
1939If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1940simply connect to it and then create the AnyEvent::Handle with the C<tls>
1941parameter:
1942
1943 tcp_connect $host, $port, sub {
1944 my ($fh) = @_;
1945
1946 my $handle = new AnyEvent::Handle
1947 fh => $fh,
1948 tls => "connect",
1949 on_error => sub { ... };
1950
1951 $handle->push_write (...);
1952 };
1953
1954=item I want to contact a TLS/SSL server, I do care about security.
1955
1956Then you should additionally enable certificate verification, including
1957peername verification, if the protocol you use supports it (see
1958L<AnyEvent::TLS>, C<verify_peername>).
1959
1960E.g. for HTTPS:
1961
1962 tcp_connect $host, $port, sub {
1963 my ($fh) = @_;
1964
1965 my $handle = new AnyEvent::Handle
1966 fh => $fh,
1967 peername => $host,
1968 tls => "connect",
1969 tls_ctx => { verify => 1, verify_peername => "https" },
1970 ...
1971
1972Note that you must specify the hostname you connected to (or whatever
1973"peername" the protocol needs) as the C<peername> argument, otherwise no
1974peername verification will be done.
1975
1976The above will use the system-dependent default set of trusted CA
1977certificates. If you want to check against a specific CA, add the
1978C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1979
1980 tls_ctx => {
1981 verify => 1,
1982 verify_peername => "https",
1983 ca_file => "my-ca-cert.pem",
1984 },
1985
1986=item I want to create a TLS/SSL server, how do I do that?
1987
1988Well, you first need to get a server certificate and key. You have
1989three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1990self-signed certificate (cheap. check the search engine of your choice,
1991there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1992nice program for that purpose).
1993
1994Then create a file with your private key (in PEM format, see
1995L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1996file should then look like this:
1997
1998 -----BEGIN RSA PRIVATE KEY-----
1999 ...header data
2000 ... lots of base64'y-stuff
2001 -----END RSA PRIVATE KEY-----
2002
2003 -----BEGIN CERTIFICATE-----
2004 ... lots of base64'y-stuff
2005 -----END CERTIFICATE-----
2006
2007The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2008specify this file as C<cert_file>:
2009
2010 tcp_server undef, $port, sub {
2011 my ($fh) = @_;
2012
2013 my $handle = new AnyEvent::Handle
2014 fh => $fh,
2015 tls => "accept",
2016 tls_ctx => { cert_file => "my-server-keycert.pem" },
2017 ...
2018
2019When you have intermediate CA certificates that your clients might not
2020know about, just append them to the C<cert_file>.
2021
2022=back
2023
1492 2024
1493=head1 SUBCLASSING AnyEvent::Handle 2025=head1 SUBCLASSING AnyEvent::Handle
1494 2026
1495In many cases, you might want to subclass AnyEvent::Handle. 2027In many cases, you might want to subclass AnyEvent::Handle.
1496 2028

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines